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ABSTRACT
Support vector machine (SVM) has been a promising method for
classification and regression analysis because of its solidmathe-
matical foundation which conveys several salient properties that
other methods do not provide. However, despite the prominent
properties of SVM, it is not as favored for large-scale data mining
as for pattern recognition or machine learning because the training
complexity of SVM is highly dependent on the size of a data set.
Many real-world data mining applications involve millionsor bil-
lions of data records where even multiple scans of the entiredata
are too expensive to perform. This paper presents a new method,
Clustering-Based SVM (CB-SVM), which is specifically designed
for handling very large data sets. CB-SVM applies a hierarchical
micro-clustering algorithm that scans the entire data set only once
to provide an SVM with high quality samples that carry the statis-
tical summaries of the data such that the summaries maximizethe
benefit of learning the SVM. CB-SVM tries to generate the best
SVM boundary for very large data sets given limited amount of
resources. Our experiments on synthetic and real data sets show
that CB-SVM is highly scalable for very large data sets whilealso
generating high classification accuracy.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Classifier de-
sign and evaluation
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support vector machines, hierarchical cluster
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Support vector machine (SVM) has been a promising method for
data classification and regression [23, 4, 14, 6, 20, 24]. Itssuccess
in practice is drawn by its solid mathematical foundation which
conveys the following two salient properties:

� Margin maximization : The classification boundary func-
tion of SVM maximizes the margin, which in machine learn-
ing theory, corresponds to maximizing thegeneralizationper-
formance given a set of training data. (See Section 2 for more
details.)

� Nonlinear transformation of the feature space using the
kernel trick : SVM handles a nonlinear classification effi-
ciently using the kernel trick which implicitly transformsthe
input space into another high dimensional feature space.

The success of SVM in machine learning naturally leads to its
possible extension to the classification or regression problems for
mining a huge amount of data. However, despite the prominent
properties of SVM, it is not as favored for data mining as it isfor
pattern recognition or machine learning because the training com-
plexity of SVM is highly dependent on the size of data set1. Many
real-world data mining applications involve millions or billions of
data records. The following example shows how unscalable a stan-
dard SVM is on a large data set.

EXAMPLE 1. The forest cover type data set from UCI KDD
archive2 is composed of 581012 data instances with 54 attributes –
10 quantitative and 44 binary attributes. Figure 1 shows thetrain-
ing time of SVM on different numbers of training data randomly
sampled fron the original data set. From the graphs, we can infer
that it would take years for an SVM to train a million data. (We
used LIBSVM3 version 2.36, and run SVM with the RBF kernel
which gave fairly good results among others. We ran them using a
Pentium III 800Mhz with 906Mb memory.)

Researchers have proposed various revisions of SVM to increase
the training efficiency by mutating or approximating it. However,
they are still not feasible with very large data sets where even multi-
ple scans of the entire data set are too expensive to perform,or they
end up losing the benefits of using SVM by the over-simplifications.
(See Section 6 for the discussions on related work.)

1SVM is known to be at least quadratic to the number of data
points. Refer [6] for more discussions on the complexity of SVM.
2http://kdd.ics.uci.edu/databases/covertype/covertype.html
3http://www.csie.ntu.edu.tw/�cjlin/libsvm



Figure 1: Non-scalability of SVM. x-axis: # of data points; y-
axis: training time in hours

This paper presents a new approach for scalable and reliable
SVM classification. The method, calledClustering-Based SVM
(CB-SVM), is specifically designed for handling very large data
sets. When the size of the data set is large, SVM tends to per-
form worse with training from the entire data than training from
a fine quality of samples of the data set [19]. Selective sampling
(or active learning) techniques with SVM try to sample the training
data intelligently to maximize the performance of SVM, but they
normally require many scans of the entire data set [19, 22] (Sec-
tion 6). Our CB-SVM using the similar idea applies a hierarchical
micro-clustering algorithm that scans the entire data set only once
to provide an SVM with high quality samples that carry the statis-
tical summaries of the data such that the summaries maximizethe
benefit of learning the SVM. CB-SVM is scalable in terms of the
training efficiency while maximizing the performance of SVM.

The key idea of CB-SVM is to use a hierarchical micro-clustering
technique to get finer description closer to the boundary andcoarser
description farther from the boundary, which can be efficiently pro-
cessed as follows: CB-SVM first constructs two micro-cluster trees
from positive and negative training data respectively. In each tree, a
node in a higher level is a summarized representation of its children
nodes. After constructing the two trees, CB-SVM start training
an SVM only from the root nodes. Once it generates the “rough”
boundary from the root nodes, it selectively decluster onlythe data
summary near to the boundary into lower (or finer) levels using
the tree structure. The hierarchical representation of thedata sum-
maries is a perfect base structure for CB-SVM to perform the selec-
tive declustering effectively. CB-SVM repeats this selective declus-
tering to the leaf level.

CB-SVM can be used for linear classification or regression anal-
ysis for very large data sets, including streaming data or data in
large data warehouses, especially where random sampling hurts the
performance because of infrequently occurring important data or
irregular patterns of incoming data, which causes different proba-
bility distributions between training and testing data. Wediscuss
this more in Section 5.1.3.

Our experiments on the network intrusion data set (Section 5.2),
a good example which shows that random sampling could hurt,
show that CB-SVM is scalable for very large data sets while also
generating high classification accuracy. Based on the best of our
knowledge, the proposed method is currently the only SVM for
very large data sets which tries to generate the best resultsgiven
limited amount of resources.

The remainder of the paper is organized as follows. We first
provide an overview of SVM in Section 2. In Section 3, we intro-
duce a hierarchical micro-clustering algorithm for very large data
sets, originally exploited by T. Zhang et al. [25]. In Section 4, we

present the CB-SVM algorithm that applies the hierarchicalmicro-
clustering algorithm to a standard SVM to make the SVM scalable
for very large data sets. Section 5 demonstrates experimental re-
sults on artificial and real data sets. We discuss related work in
Section 6 and conclude our study in Section 7.

2. SVM OVERVIEW
In machine learning theory, the “optimal” class boundary func-

tion (or hypothesis)
� �� �

given a limited number of training data
set� �� � � ��

(
�

is the label of
�

) is considered the one that gives the
bestgeneralizationperformance which denotes the performance on
“unseen” examples rather than on the training data. The perfor-
mance on the training data is not regarded as a good evaluation
measure for a hypothesis because the hypothesis ends upoverfit-
ting when it tries to fit the training data too hard. When a problem
is easy to classify and the boundary function is complicatedmore
than it needs to be, the boundary is likely overfit. When a prob-
lem is hard and the classifier is not powerful enough, the bound-
ary becomes underfit. SVM is an excellent example of supervised
learning that tries to maximize the generalization by maximizing
themarginand also supports nonlinear separation using advanced
kernels, by which SVM tries to avoid overfitting and underfitting
[4, 23]. Themargin in SVM denotes the distance from the bound-
ary to the closest data in the feature space.

In SVM, the problem of computing a margin maximized bound-
ary function is specified by the following quadratic programming
(QP) problem:

�	
	� 	��  � �� � � � ���� � � � � �� ���� � ��� � � � ��� � ��� � ��� � �� �

���� ��  !  ���� � � �� � � "
# 	  " $ �� $ %

The number of training data is denoted by&, �
is a vector of&

variables, where each component
� � corresponds to a training data

(
� �, � �). %

is the soft margin parameter controlling the influence of
the outliers (or noise) in training data.

The kernel� �� � � �� �
for linear boundary function is

� � ' �� , a
scalar product of two data points. The nonlinear transformation
of the feature space is performed by replacing� �� � � �� �

with an
advanced kernel, such as polynomial kernel

��( � � � )�*
or RBF

kernel ��+ �� ��, - ..� � �� ..� �
. The use of an advanced kernel is

an attractive computational short-cut, which forgoes an expensive
creation of a complicated feature space. An advanced kernelis
a function that operates on the input data but has the effect of
computing the scalar product of their images in a usually much
higher-dimensional feature space (or even an infinite-dimensional
space), which allows one to work implicitly with hyperplanes in
such highly complex spaces.

Another characteristic of SVM is that its boundary functionis
described by thesupport vectors(SVs) which are the data the clos-
est to the boundary. The above QP problem computes a vector

�
,

each element of which specifies the weight of each data, and the
SVs is the data whose corresponding

�
is greater than zero. In

other words, the other data rather than the SVs do not contribute
to the boundary function, and thus computing an SVM boundary
function can be viewed as finding the SVs with the corresponding
weights to describe the class boundary.

There have been many attempts to revise the original QP formu-
lation such that it can be solved by a QP solver more efficiently [8,
1]. (See Section 6 for more details.) We do not revise the origi-
nal QP formulation of SVM. Instead, we try to provide a smaller



but high quality data set that is beneficial to computing the SVM
boundary function effectively by applying a hierarchical clustering
algorithm. Our CB-SVM algorithm substantially reduces thetotal
number of data points for training SVM while trying to keep the
high quality of SVs that describes the boundary the best.

3. HIERARCHICAL MICRO-CLUSTERING
ALGORITHM FOR LARGE DATA SETS

The hierarchical micro-clustering algorithm we present here and
will apply to our CB-SVM in Section 4 was originally exploited by
T. Zhang et al. at 1996 [25], which is namedBIRCH. The concept
of a “micro-cluster” is similar to those in [25, 12], which denotes
a statistically summarized representation of a group of data which
are so close together that they are likely to belong to the same clus-
ter. Our hierarchical micro-clustering algorithm has the following
characteristics.

� It constructs a micro-cluster tree, calledCF (Clustering Fea-
ture) tree, in one scan of the data set given a limited amount
of resources (i.e., available memory and time constraints)by
incrementally and dynamically clustering incoming multi-
dimensional data points. Since the single scan of the data
does not allow backtracking, localized inaccuracies may ex-
ist depending on the order of data input. However, the CF
tree captures the major distribution patterns of the data and
provides enough information for CB-SVM to perform well.

� It handles noise or outliers (data points that are not part of
the underlying distribution) effectively as a by-product of the
clustering.

Further improved hierarchical clustering algorithms havebeen
developed including CURE [10] or Chameleon [15]. Chameleon
has shown to be very powerful at discovering arbitrarily shaped
clusters of high quality, but its complexity is in the worst case� �
 � �

where
 is the number of data points. CURE produces high-
quality clusters with complex shapes, and its complexity isalso lin-
ear to the number of objects, but its parameter setting in general has
a significant influence on the results. The CF tree of BIRCH carries
the spherical shapes of hierarchical clusters and capturesthe statis-
tical summaries of the entire data set. Thus it provides an efficient
and effective structure for CB-SVM to run.

3.1 Clustering Feature and CF Tree
We start from defining some basic concepts. Given� �-dimensional

data points in a cluster:��� � where	 � )� � � � � � �� , the centroid%
and radius� of the cluster are defined as:

% � � ��� � � �
� (1)

� � �� ��� � ..� � � % ..�
�

� �- (2)

� is the average distance from member points to the centroid.
The concepts ofclustering feature(CF) tree is at the core of the

hierarchical micro-clustering algorithm which makes the cluster-
ing incremental without expensive computations. A CF is a triple
which summarizes the information that a CF tree maintains for a
cluster.

DEFINITION 1 (CLUSTERINGFEATURE). [T. Zhang et al. [25]]
Given 
 d-dimensional data points in a cluster:��� � where 	 =
1, 2,

� � �
, 
, the CF vector of the cluster is defined as a triple:

% � � �
 � 	
 � 

 �
, where
 is the number of data points in the

cluster,
	


is the linear sum of the
 data points, i.e.,
� ��� � � �,

and SS is the square sum of the
 data points, i.e.,
� ��� � � �� .

THEOREM 1 (CF ADDITIVITY THEOREM). [T. Zhang et al.
[25]] Assume that

% � � � �
 � � 	
 � � 

 �� and
% � � � �
 � �	
� � 

 � �

are the CF vectors of two disjoint clusters. Then the CF vector of
the cluster that is formed by merging the two disjoint clusters is:% � � � % � � � �
 � � 
� � 	
 � � 	
� � 

 � � 

� �

(3)

Refer to [25] for the proof.
From the CF definition and additivity theorem, we know that the

CF vectors of clusters can be stored and calculated incrementally
and accurately as clusters are merged. The centroid

%
and the ra-

dius � of each cluster can be also computed from the CF of the
cluster.

The CF is a summary of a cluster–a set of data points. Managing
only this CF summary is efficient, saves spaces significantly, and
is sufficient for calculating all the information for building the hi-
erarchical micro-clusters which will facilitate computing an SVM
boundary for a very large data set.

3.1.1 CF tree
A CF tree is a height-balanced tree with two parameters: branch-

ing factor� and threshold . A CF tree of height
� � �

is showing
in the right side of Figure 2. Each nonleaf node consists of atmost� entries of the form

�% � � � ��	&� � �, where (1)	 � )� � � � � � � �, (2)��	&� � is a pointer to its	-th child node, and (3)
% � � is the CF of

the subcluster represented by this child. Aleaf entry, the entry in
a leaf node, only has a

% �
without a child pointer. So, a leaf or

a nonleaf node represents a cluster made up of all the subclusters
represented by its entries. The threshold is a constraint for the leaf
entries to satisfy such that the radius of an entry in a leaf node has
to be less than .

The tree size is a function of . The larger is, the smaller the
tree is. The branching factor� can be determined by a page size
such that a leaf or nonleaf node fit in a page.

This CF tree is a compact representation of the data set because
each entry in a leaf node is not a single data point but a subclus-
ter (which absorbs many data points with radius under a specific
threshold ).
3.2 Algorithm Description

A CF tree is built up dynamically as new data objects are in-
serted. The ways that it inserts a data into the correct subcluster,
merges leaf nodes, and manages nonleaf nodes are similar to those
in a B+-tree, which can be sketched as follows:

1. Identifying the appropriate leaf : Starting from the root,
it descends the CF tree by choosing the child node whose
centroid is the closest.

2. Modifying the leaf: If the leaf entry can absorb the new
data object without violating the threshold condition, updates
just the CF vector of the entry. If not, add a new entry. If
adding a new entry causes a node split, split by choosing
the farthest pair of entries as seeds, and redistributing the
remaining entries based on the closest criteria.

3. Modifying the path to the leaf: It updates the CF vectors
of each nonleaf entry on the path to the leaf. Node split in
the leaf causes an insertion of a new nonleaf entry into the
parent node, and if the parent node becomes split, a new entry
is inserted into the higher level node. Likewise, this occurs
recursively to the root.



Due to the limited number of entries in a node, a highly skewed
input could cause two subclusters that should have been in one clus-
ter split across different nodes, and vice versa. These infrequent but
undesirable anomalies can be handled in the original BIRCH algo-
rithm by further refinement with additional data scans. However,
we do not perform this further refinement because the infrequent
and localized inaccuracy do not impact the performance of CB-
SVM much.

3.2.1 Determination of threshold
The choice of the threshold is crucial for building the tree in

the right size which fits in the available memory because if is too
small, we run out of memory before all the data are scanned. The
original BIRCH algorithm initially sets very low, and iteratively
increases until the tree fits in the memory. T. Zhang proved that
rebuilding the tree with a larger requires a re-scan of the data
inserted in the tree so far and at most

�
extra pages of memory,

where
�

is the height of the tree [25]. The heuristics for updating � is also provided in [25]. Due to space limitations and to keepthe
focus of the paper, we skip the details of those. In our experiments,
we set the initial threshold � intuitively based on the number of
data points
 and dimensions� and the value range�� of each
dimension such that � is proportional to
 � � � �� , and the tree of � mostly fits in the memory.

3.2.2 Outlier handling
After the construction of a CF tree, the leaf entries that contains

far fewer data points than average are considered to be outliers. A
low setting of outlier threshold can increase the classification per-
formance of CB-SVM especially when the number of data is rel-
atively large compared to the number of dimensions and the type
of boundary functions are simple (which is related to havinga low
VC dimension in machine learning theory) because the non-trivial
amount of noise in the training data which may not be separable
by the simple boundary function prevents the SVM boundary from
converging in the quadratic programming. For this reason, we en-
abled the outlier handling with a low threshold in our experiments
in Section 5 because the type of data we are targetting is of large
number of data points with relatively low dimensions, and the type
of the boundary functions is linear with VC dimension� � ) where� is the number of dimensions. See Section 5 for more details.

3.2.3 Analysis
A CF tree that fits in a memory can have the

�
� nodes at maxi-

mum where
�

is the size of memory and� is the size of a node.
The height

�
of a tree is&!�� �� which is independent of the size

of data set. However, if we assume that memory is unbounded and
the number of the leaf entries is equal to the number of data points
� due to a very small threshold , then

� � &!��� .
Insertion of a node into a tree requires the examination of� en-

tries, and the cost per entry is proportional to the dimension �.
Thus, the cost for inserting� data points is

� �� � � � � � ��
.

In case of rebuilding the tree due to the poor estimation of �, ad-
ditional re-insertions of the data already inserted has to be added in
the cost. Then the cost becomes

� �� � � � � � � � ��
where� is

the number of the rebuildings. If we only consider the dependence
of the size of data set, the computation complexity of the algorithm
is

� �� �
. Experiments from the original BIRCH algorithm have

also shown the linear scalability of the algorithm with respect to
the number of objects, and good quality of clustering of the data.

4. CLUSTERING-BASED SVM (CB-SVM)

In this section, we present the CB-SVM algorithm which trains
a very large data set using the hierarchical micro-clusters(i.e., CF
tree) to construct an accurate SVM boundary function.

The key idea of CB-SVM can be viewed being similar to that of
selective sampling (or active learning), i.e., selecting the data which
maximizes the benefit of learning. The selective sampling for SVM
selects and accumulates thelow margin dataat each round that are
close to the boundary in the feature space because the low margin
data have higher chances to become the SVs of the boundary for
the next round [22, 19]. Appreciating this idea, we decluster the
entries near the boundary to get finer samples nearer to the bound-
ary and coarser samples farther from the boundary. In this way, we
induce the SVs, the description of the boundary, as fine as possible
while keeping the total number of training data points as small as
possible.

While selective sampling needs to scan the entire data set ateach
round to select the closest data point, CB-SVM runs based on the
CF tree which can be constructed in a single scan of the entiredata
set and is carrying the statistical summaries that facilitates con-
structing an SVM boundary efficiently and effectively. The sketch
of the CB-SVM algorithm follows:

1. construct two CF trees from positive and negative data set
independently.

2. train an SVM boundary function from the centroids of the
root entries – entries in the root node – of the two CF trees. If
the root node contains too few entries, train from the entries
of the nodes in the second levels of the trees.

3. decluster the entries near the boundary into the next level,
and the children entries declustered from the parent entries
are accumulated into the training set with the non-declustered
parent entries.

4. construct another SVM from the centroids of the entries in
the training set, and repeat from step 3 until nothing is accu-
mulated.

The CF tree is a suitable base structure for CB-SVM to perform
the selective declustering efficiently. The clustered dataalso pro-
vides better summaries for SVM than random samples of the entire
data set because the random sampling is susceptible to a biased (or
skewed) input, and thus it may generate undesirable outputsespe-
cially when the probability distributions of training and testing data
are not similar, which is common in practice. (The network intru-
sion data set from the UCI KDD repository that we experiment on
in Section 5 is a good example of having substantially different dis-
tributions in training and testing data set due to the fact that in the
real world, the patterns of network intrusions are very irregular.)

4.1 CB-SVM Description
Without loss of generality, let us consider linearly separable cases

for the convenience of explanation.
Let positive tree	* andnegative tree	� be the CF trees built

from the positive data set and the negative data set respectively.
We first train an SVM boundary function

�
from thecentroids of

the root entriesof 	* and	� . Note that each entry (or cluster)
 �
contains the CF information from which we can efficiently compute
the center point

%� and the radius� � of the cluster. Figure 2 shows
an example of the SVM boundary with the root clusters and the
corresponding positive tree.

With the boundary function
�

and the root entries, we determine
the low margin clustersthat are close to the boundary and thus
needs to be declustered into the finer level. Letsupport clustersbe



Figure 2: Example of the SVM boundary trained from the root entries of positive and negative trees.

the clusters whose center points are the SVs of the boundary
�
, e.g.,

the circles of bold lines in Figure 2. Let�� be the distance from
the boundary to the centroid of a support cluster, and let� � be the
distance from the boundary to the centroid of a cluster
 �. Then,
we consider a cluster
 � which satisfies the following constraint as
a low margin cluster.

� � � � � � �� (4)

where� � is the radius of the cluster
 �.

Figure 3: Declustering of the low margin clusters.

The clusters that satisfy the constraint (4) have chances for their
subclusters to be the support clusters of the boundary as illustrated
in Figure 3 where five clusters initially satisfied the constraint (4)
(three of them were the support clusters) and thus were declus-
tered into finer levels, which results in the right picture ofFigure
3. The subclusters whose parent clusters do not satisfy constraint
(4) would not be the support clusters of the boundary

�
because

the surfaces of the parent clusters are farther than the SVs of the
boundary. Thus we have the following remark.

REMARK 1 (DECLUSTERINGHARD CONSTRAINT). Let � �
and � � be the radius of a cluster
 � and the distance from the
boundary to the centroid of the cluster respectively. Givena sep-
arable set of positive and negative clusters
 � �
 �� � � �
 �� �
and the SVM boundary

�
of the set, the subclusters of
 � have the

possibilities to be the support clusters of the boundary
�

only if
� � � � � � �� , where�� is the distance from the boundary to the
centroid of a support cluster.

The example we illustrated was a separable case with the hard
constraints of SVM. In practice, the soft constraints are necessary

to cope with noise in the training set. Using the soft constraints
generates the SVs having different distances to the boundary. For
the declustering condition with the soft constraints of SVM, we re-
place�� with ��� , the maximum distance of all�� , which would
include all the clusters whose subclusters have the possibilities to
be the support clusters of the soft boundary

�
.

� � � � � � ��� (5)

The subclusters whose parent clusters do not satisfy constraint (5)
would not be the support clusters of the soft boundary

�
because

the surfaces of the parent clusters are farther than the mostdistant
SV of the boundary.

REMARK 2 (DECLUSTERINGSOFT CONSTRAINT). For the
soft constraints of SVM, the subclusters of
 � have the possibilities
to be the support clusters of the boundary

�
only if� � �� � � ��� ,

where��� is the maximum distance from the boundary to the cen-
troids of all the support clusters.

Figures 4 and 5 describe the CB-SVM algorithm with the soft
constraints of the declustering.

4.2 CB-SVM Analysis
Building a CF tree from� number of data points costs

� �� �
� � � � � � ��

where� is the number of dimensions,� the number
of entries in a node,

�
the height of the tree, and� the number of

rebuildings. Once the CF tree is built, the training time of CB-SVM
becomes dependent on the number of entries instead of the number
of data points.

Let us assume �
 � � � � � �� � �
where �� �

is the training
time of algorithm

�
. (Note that �
 � � �

is known to be at least
quadratic to� and linear to the number of dimensions. Refer to
[6] for more discussion on the complexity of SVM.) The numberof
the leaf entries is at most�	 . Thus, �
 � � �

from the leaf entries
becomes

� ���	 �
.

Let support entriesbe the SVs when the training data are entries
in some nodes. Assume that� is the average rate of the number
of the support entries among the training entries. Namely,� �
�
� where� is the number of training entries and� is the average
number of support entries among the training entries, e.g.,� � " �" )
for � � )" and� � )"""

. Normally � �� � and
" � � �� ) for

standard SVMs with large data sets.

THEOREM 2 (TRAINING COMPLEXITY OF CB-SVM). If the
number of the leaf entries of a CF tree is equal to the number of



Input: - positive data set� , negative data set�
Output: - a boundary function

�

Notation:
- � % �� �

: a clustering algorithm that builds a hierarchical
cluster tree	 from a data set

�
- getRootEntries(	 ): return the root entries of a tree	
- getChildren(

�
): return the children entries of an entry set



- getLowMargin(

�
,
�

): return the low margin entries from a
set



which are close to the boundary

�
(See Figure 5)

Algorithm:
1. 	* � � % �� �

; 	� � � % �� �
;

2.
�

:= getRootEntries(	* )
�

getRootEntries(	� );
3. Do loop

3.1.
�

:= SVM.train(
�

);
3.2.

� �
:= getLowMargin(

�
,
�

);
3.3.

�
:=

� � � �
;

3.3.
� �

:= getChildren(
� �

);
3.4. Exit if

� �
= �;

3.5.
�

:=
� � � �

;
4. Return

�
;

Figure 4: CB-SVM

training data points� , then CB-SVM trains asymptotically)
� �	��
times faster than standard SVMs given the CF tree, where� is the
average rate of SVs and the height of the tree

� � &!��� .

PROOF. If we approximate the number of iterations in CB-SVM� � �
(the height of CF tree), then the training complexity of CB-

SVM given the CF tree is:

 �%� � 
 � � � � 		
�� �  � �%� � 
 � � �

where � �%� � 
 � � �
is the training complexity of the	-th itera-

tion of CB-SVM. The number of training data points� � at the	-th
iteration is:

� � � � � � � �� � �� � ��� � ����� � ��� � � ���
�

�
� �� � �� �) � � � �� � ��� � ���� � ���� ��
� �� � �� ��� � � )

� � ) � ���
�

�

where� is the number of data points in a node, and� is the number
of the SVs among the data. If we assume �
 � � � � � �� � �

, by
approximation of� � ) � �,

 � �%� � 
 � � � � � �
����� � ) � �
� � ���� � ���

�
��� �

� � �
���� � �� �
If we accumulate the training time of all iterations,

 �%� � 
 � � � � � � 		
�� �


������� � � � ��� 	�
�	

	��
��� �

� � ��� ��	 � )
�� � ) � � � ��� ��	�� �

Input: - a boundary function
�
, a entry set

�
Output: - a set of the low margin entries

� �

Algorithm:
1. �  � := getMaxDistanceOfSVs(

�
);

// return the maximum distance of the support vectors
from the boundary

�
2.

� �
:= getLowerMarginData(� � ,

�
);

// return the data whose margin is smaller than� �
3. Return

� �
;

Figure 5: getLowMargin(
�

,
� �

If we replace� with �� since� � �
�,
 �%� � 
 � � � � � �
�	 � 	� ��� � � � ���	 � �	�� �

Therefore, �%� � 
 � � �
trains asymptotically)
� �	��

times
faster than �
 � � �

which is
� ���	 �

for � � �	 .

Theorem 2 states that CB-SVM trains asymtotically)
� �	��
times faster than a standard SVM given a CF tree. The trainingtime
of CB-SVM is asymptotically equal to that of a standard SVM only
if all the training data points become the SVs. The rate of theSVs
is variant, depending on the type of problems, the type of kernels,
the number of dimensions, the number of data points, and the SVM
parameters. However, mostly� �� ), especially for very large
data sets. So, the performance difference between CB-SVM and a
standard SVM goes higher as the data set becomes larger.

5. EXPERIMENTAL EVALUATION
In this section, we provide empirical evidence of our analysis

on CB-SVM using synthetic and real data sets, and we discuss the
results. All our experiments are done in a Pentium III 800Mhz
machine with 906MB memory.

5.1 Synthetic data set

5.1.1 Data generator
To verify the performance of CB-SVM in realistic environments

while providing visualized results, we perform binary classifica-
tions on two-dimensional data sets we generated as follows.

1. We randomly created� clusters such that for each clus-
ter, (1) the center point

%
is randomly chosen in the range
%� � % 	

�
for each dimension independently, (2) the radius�

is randomly set in the range of

� � �� 	

�
, and (3) the number

of points
 in each cluster is also randomly set in the range
of



 � � 
 	
�
.

2. We labeled the clusters based on the� -axis value of each
cluster such that cluster
 � is labeled as

+ !�	 	� � if
% �� �� � � � and 
��� 	� � if

% �� � � � � �, where
% �� is the

� -axis value of the center
%�, and

�
is the threshold value

between
%� and

%
	 . We removed the clusters not assigned

to either of positive or negative which lie across the threshold�
on� -axis. In this way, we drive the clusters to be linearly

separable.



Figure 6: Synthetic data set in a two-dimensional space.‘ .’: positive data; ‘
�

’: negative data

3. Once the characteristics of each cluster are determined,the
data points for the cluster are generated according to a 2-d in-
dependent normal distribution whose mean is the center

%
,

and whose standard deviation is the radius� . The class label
of each data is inherited from the label of its parent cluster.
Note that due to the properties of the normal distribution,
the maximum distance between a point in the cluster and the
center is unbounded. In other words, a point may be arbitrar-
ily far from its belonging cluster. We refer to the points that
belongs to cluster� but located farther than the surface of�
as “outsiders”. Due to the outsiders, the data set becomes not
completely linearly separable, which is more realistic.

5.1.2 SVM parameter setting
We use the LIBSVM version 2.364 for SVM implementation and

use� -SVM with linear kernel. We enabled the shrinking heuris-
tics for fast training [13].� -SVM has an advantage over standard
SVMs: The parameter� has a semantic meaning which denotes the
upper bound of the noise rate and the lower bound of the SV ratein
training data [6]. In our experiments, we set� very low (� � " �")
or � � " �)) which usually performs very well when the size of data
set is large and the noise is relatively small.

5.1.3 Results and discussion on a “large” data set
Figure 6(a) shows an example of the data set generated according

to the parameters of Table 1. The data generated from the clusters
in the left side and in the right side are positive (‘.’) and negative
(‘

�
’) respectively.

Figure 6(b) shows 0.5% randomly sampled data from the original
data set of Figure 6(a). Random sampling could hurt the SVM
performance in the following ways:

� From Figure 6(b), we know that random sampling reflects
the unstable data distribution of the original data set, which
includes non-trivial amount of the unnecessary data points
for training an SVM. The dashed ellipses on the figure in-
dicating densely sampled areas that reflects the original data
distribution are mostly not very close to the boundary. In
practice, the areas around the boundary tends to be less dense
because cluster centers which are very dense are unlikely to

4http://www.csie.ntu.edu.tw/�cjlin/libsvm

Parameter Values
Number of clusters� 50
Range of

%
[
%� � % 	 ] [0.0, 1.0]

Range of� [� � �� 	 ] [0.0, 0.1]
Range of
 [
 � � 
 	 ] [0, 10000]�

0.5

Table 1: Data generation parameters for Figure 6

cross over the boundary of multiple classes. Thus the unnec-
essary data only increases the training time of SVM without
contributing to the SVs of the boundary.

� Random sampling hurts more when the probability distribu-
tions of training and testing data are different because ran-
dom sampling that only reflects the distribution of training
data could miss significant regions of the testing data. For
instance, in the network intrusion detection data set used
for the KDD Cup at 19995, the testing data is not from the
same probability distribution as the training data. This isbe-
cause they were collected in different times of periods, which
makes the task more realistic. (See Section 5.2 for more de-
tails.)

Figure 6(c) shows the training data points at the last iteration
in CB-SVM. We set � � " �") and � � )""

, and set the outlier
threshold with the standard deviation. It generated a CF tree of� � �

, and CB-SVM iterated three times.
Note that the training data points of CB-SVM are not the ac-

tual data but the summary of the clusters of them, so they tend
not to have narrowly focused data points as it does in the random
sampling. Also, the areas far from the boundary thus not likely to
contribute to the SV will have very sparse data points because the
clusters representing those areas would not be declusteredin the
process of CB-SVM.

Figure 7(a) and (b) show the intermediate data points that CB-
SVM generated at the first and second iterations respectively. The
data points in Figure 7(a) are the centroids of the root entries, which
are very sparse. Figure 7(b) shows dense points around the bound-
ary which are declustered into the second level of the CF tree.

5http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html



(a) Data distribution at the
first iteration (� � ��

)
(b) Data distribution at the
second iteration (� � �"�

)

Figure 7: Intermediate results of CB-SVM. ‘ .’: positive data;
‘
�

’: negative data

Original CB-SVM 0.5% samples
Number of data points 113601 597 603

SVM Training time (sec.) 160.792 0.003 0.003
Sampling time (sec.) 0.0 10.586 4.111
# of false predictions 69 86 243

(# of FP, # of FN) (49, 20) (73, 13) (220, 23)

Table 2: Performance results on synthetic data set (# of train-
ing data = 113601, # of testing data = 107072).FP:false positive;
FN:false negative; Sampling time for CB-SVM: time for contruct-
ing the CF tree

Finally, Figure 6(c) shows a better data distribution for SVM by
declustering the support entries to the leaf level.

For fair evaluation, we generated a testing set using the same
clusters and radiuses but different probability distributions by ran-
domly re-assigning the number of points
 for each cluster. We
report the number of false predictions (# of false negative +# of
false positive) on the testing data set because the data sizeis so big
compared to the number of false prediction that the accuracyitself
does not show much difference between them.

Table 2 shows the performance results on the testing data set.
CB-SVM based on the clustering-based samples outperforms the
standard SVM with the same number of random samples.The
“Number of data points” for CB-SVM in Table 2 denotes the num-
ber of training data points at the last iteration as shown in Figure
6(c). The “Training time” for CB-SVM in the table indicates the
SVM training time on that data, which is almost equal to that of
0.5% random samples since both generated similar number of data
points. The “Sampling time” for CB-SVM denoting the time to the
construction of the 597 data points of Figure 6(c) definitly takes
longer than the random sampling because it involves the construc-
tion of a CF tree. (The long construction time of the CF tree is
partly caused by our non-optimized implementation of the hierar-
chical micro-clustering algorithm.)

However, as the data size grows, the random sample size that
generates similar accuracies as that of CB-SVM also increases, for
which the SVM training time (

� �� � �
) becomes dominating over

the “Sampling time” for CB-SVM (
� �� �

with a fixed
�
), and thus

the total training time of the SVM with random sampling ends up
longer than that of CB-SVM. (See the next section.)

5.1.4 Results and discussion on a “very large” data
set

We generated a much larger data set according to the parame-
ters of Table 3 to verify the performance of CB-SVM compared to

Parameter Values
Number of clusters� 100
Range of

%
[
%� � % 	 ] [0.0, 1.0]

Range of� [� � �� 	 ] [0.0, 0.1]
Range of
 [
 � � 
 	 ] [0, 1000000]�

0.5

Table 3: Data generation parameters for the very large data set

S-Rate # of data # of errors T-Time S-Time

0.0001% 23 6425 0.000114 822.97
0.001% 226 2413 0.000972 825.40
0.01% 2333 1132 0.03 828.61
0.1% 23273 1012 6.287 835.87
1% 230380 1015 1192.793 838.92
5% 1151714 1020 20705.4 842.92

ASVM 307 865 54872.213

CB-SVM 2893 876 1.639 2528.213

Table 4: Performance results on the very large data set (# of
training data = 23066169, # of testing data = 233890).S-Rate:
sampling rate; T-Time: training time; S-Time: sampling time;
ASVM: selective sampling

random sampling and ASVM (selective sampling or active learning
with SVM) for very large data sets. Table 4 shows the performance
results of random sampling, ASVM, and CB-SVM on the “very
large” data set. We did not run an SVM on the entire data set since
it will take years to finish training. Note that due to the simple
linear boundary on the very large amount of training data, random
sampling does not increase the performance of SVM at some point
as the sample size increases.ASVM and CB-SVM showed the error
rates around 15% lower than the random sampling of the highest
performance. The training time of CB-SVM in total (T-Time + S-
Time) was shorter than that of ASVM or the random sampling of
the highest performance.ASVM [19] showed the similar results
as ours since the basic idea is similar, which implies that for large
data sets,SVM performs better with a fine quality of samples than
a large amount of random samples.However,ASVM takes much
longer than CB-SVM for very large data sets that do not fit in the
memory because it needs to scan the entire data set at each round
to select the closest data point, thereby generating too much I/O
cost to undergo as many rounds as it needs to get enough training
data. In this experiment, we ran the ASVM with� � �

(starting
from one positive and one negative sample and adding five samples
at each round), which gave fairly good results among others.(�
is commonly set below ten. If� is too high, its performance con-
verges slower which ends up with larger amount of training data to
achieve the same accuracy, and if� is too low, ASVM may need
to undergo too many rounds [19, 22].) It underwent 61 rounds re-
sulting in 61 times of data scans to sample 307 training data,which
took 56872.213 seconds in total for training. We discuss ASVM
further in Section 6.

5.2 Real data set
In this section, we experiment on the network intrusion detection

data set from the UCI KDD archive which was used for the KDD
Cup at 19996. This data set consists of about five millions of train-
ing data and three hundred thousands of testing data. As previously
noted, CB-SVM works for very large data sets including streaming

6http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html



data or data warehouse analysis especially where random sampling
hurts the performance due to infrequent occuring importantdata or
irregular patterns of data incoming which causes differentproba-
bility distributions of training and testing data. The network intru-
sion data set is a good application for CB-SVM because the testing
data is not from the same probability distribution as the training
data, and it also includes specific attack types not in the training
data. (The datasets contain a total of 24 training attack types, with
an additional 14 types in the test data only.) This is becausethey
were collected in different times of periods, which makes the task
more realistic. (Some intrusion experts believe that most novel at-
tacks are variants of known attacks and the ”signature” of known
attacks can be sufficient to catch novel variants.) Our experiments
on this data set show that our method based on the clustering-based
samples significantly outperforms the random sampling having the
same number of samples.

5.2.1 Experiment setup
Each data object consists of 41 features (34 continuous features

and 7 symbolic features). We normalized the continuous feature
values into between zero and one by dividing them by their max-
imum values. We created one independent “zero-one” (predicate)
feature for each value of the symbolic features such that “one” in-
dicates the existence of the value. Our way of combining multi-
variable features may not be the best way for SVM. Using more
sophisticated techniques for pre-processing the featurescould im-
prove the performance further.

We set � � " ��
for the CF tree because the total number of fea-

tures in this data set becomes about 50 times larger than thatin our
synthetic data set and the range of each value is the same. Theout-
lier threshold in this data set was tuned with a lower value because
the outliers in the network intrusion data set could have valuable
information. However, tuning the outlier threshold involves some
heuristics depending on the type of data set and the type of bound-
ary function. Further definition and justification on the heuristics
for specific types of problems is a subsequent future work.

We used the same SVM implementation with the same way of
optimizing parameters as in the experiments on the synthetic data
sets. Linear kernel also showed good performance (over 90% ac-
curacy) in this experiment, which implies the classification on this
network intrusion data set is likely separable by a linear function.
We briefly discuss the usage of nonlinear kernel in CB-SVM in
Section 7.

5.2.2 Results
Our task is to distinguish normal connections from attacks.Ta-

ble 5 shows the performance results of random sampling, ASVM,
and CB-SVM on the network intrusion data set. Running SVM
with the larger amount of samples did not improve the performance
much for the same reason as discussed in Section 5.1.4. ASVM and
CB-SVM also generated better results than the random sampling,
and the total training time of CB-SVM is much faster than thatof
ASVM. (We run ASVM with the same parameters as in Section
5.1.4.)

6. DISCUSSION ON RELATED WORK
Our work is in some aspects related to: (1) SVM fast implemen-

tations, (2) SVM approximations, (3) on-line SVM or incremen-
tal and decremental SVM for dynamic environments, (4) selective
sampling (or active learning) for SVM, and (5) random sampling
techniques for SVM.

Many algorithms and implementation techniques have been de-
veloped for training SVMs efficiently since the running timeof the

S-Rate # of data # of errors T-Time S-Time

0.001% 47 25713 0.000991 500.02
0.01% 515 25030 0.120689 502.59
0.1% 4917 25531 6.944 504.54
1% 49204 25700 604.54 509.19
5% 245364 25587 15827.3 524.31

ASVM 747 21634 94192.213

CB-SVM 4090 20938 7.639 4745.483

Table 5: Performance results on the network intrusion data
set (# of training data = 4898431, # of testing data = 311029).
S-Rate: sampling rate; T-Time: training time; S-Time: sampling
time; ASVM: selective sampling

standard QP algorithms grows too fast. Most effective heuristics
to speed up SVM training are to divide the original QP problem
into small pieces, thereby reducing the size of each QP problem.
Chunking, decomposition [13, 7], and sequential minimal opti-
mization [18] are most well-known techniques. Our CB-SVM al-
gorithm runs on top of these techniques to handle very large data
sets by condensing further the training data into the statistical sum-
maries of large data groups such that coarse summary is made for
“unimportant” data and fine summary is made for “important” data.

SVM approximation has been attempted to improve the compu-
tational efficiency of SVM by altering the QP formulation to the
extent that it keeps a similar semantic of the original SVM while
it is faster to be solved by a QP solver [8, 1]. However, their new
formulations are still not proven to be efficient and reliable enough
to work with very large data sets.

On-line SVMs or incremental and decremental SVMs have been
developed to handle dynamically incoming data efficiently [21, 5,
16]. In this senario that an SVM model is incrementally constructed
and maintained, the newer data have a higher impact on the SVM
model than older data. In other words, recent data have a higher
chance to be the SVs of the SVM model than older data. Thus,
for the analysis of an archive data which should treat all thedata
equally, they would generate undesirable outputs.

Selective sampling or active learning is to intelligently sample a
small number of training data from the entire data set that maxi-
mizes the degree of learning, i.e., learning maximally witha mini-
mum number of data points [9, 22, 19]. The core of the active learn-
ing technique is to select the data intelligently such that the degree
of learning is maximized by the data. A common active learning
paradigm iterates a training and testing process as follows: (1) con-
struct a model by training an initially given data, (2) test the entire
data set using the model, (3) by analyzing the testing output, select
the data (from the entire data set) that will maximize the degree of
learning for the next round, (4) accumulate the data to the training
data set, and train them to construct another model, and (5) repeat
from (2) to (5) until the model becomes accurate enough.

The idea of selective sampling for SVM is to select the data close
to the boundary in the feature space at each round because thedata
near the boundary have higher chances to be SVs in the next round,
i.e., a higher chance to move the boundary further [22, 19]. They
iterate until there exists no data nearer to the boundary than the
SVs. However, an active learning system needs to scan the entire
data set at every round to select the data, which generates too much
I/O cost for very large data sets.

Some random sampling techniques [2, 11] developed to reduce
the training time of SVM for large data sets are also based the
same idea as the selective sampling which samples the data near
the boundary with higher probabilities. They also need to scan the



entire data set at each round when the samples are add in. Another
method using random sampling [17] was developed for nonlinear
SVM using the random sampling technique in the kernel trick.

Based on the best of our knowledge, our proposed method is cur-
rently the only SVM for very large data sets which tries to generate
the best results given limited amount of resource.

7. CONCLUSIONS AND FURTHER WORK
This paper proposes a new method called CB-SVM (Clustering-

Based SVM) that integrates a scalable clustering method with an
SVM method and effectively runs SVM for very large data sets.
The existing SVMs are not feasible to run such data sets due to
their high complexity on the data size or frequent accesses on the
large data sets causing expensive I/O operations. CB-SVM applies
a hierarchical micro-clustering algorithm that scans the entire data
set only once to provide an SVM with high quality micro-clusters
that carry the statistical summaries of the data such that the sum-
maries maximize the benefit of learning the SVM. CB-SVM tries
to generate the best SVM boundary for very large data sets given
limited amount of resource based on the philosophy of hierarchi-
cal clustering where progressive deepening can be conducted when
needed to find high quality boundaries for SVM. Our experiments
on synthetic and real data sets show that CB-SVM is very scalable
for very large data sets while generating high classification accu-
racy.

CB-SVM may not perform as well in high dimensional spaces
because micro-clustering in high dimensional spaces may not be
much meaningful [3]. Developing an effective indexing structure
for high dimensional classification problems (e.g., documents clas-
sification) is an interesting direction of future work.

CB-SVM is currently limited to the usage of SVM linear kernels
since the hierarchical micro-clusters would not be isomorphic in a
new high-dimensional feature space once the space is transformed
by a nonlinear kernel. Constructing effective indexing structures
for nonlinear kernels is also another interesting direction of future
work since it has high practical value especially for pattern recog-
nition of large data sets, such as classifying forest cover types or
the pictures from a huge amount of satellite data.
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