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ABSTRACT

Support vector machine (SVM) has been a promising method for

classification and regression analysis because of its suditthe-
matical foundation which conveys several salient propsrthat
other methods do not provide. However, despite the proniinen
properties of SVM, it is not as favored for large-scale dataimg

as for pattern recognition or machine learning because dliirérig
complexity of SVM is highly dependent on the size of a data set
Many real-world data mining applications involve millioos bil-
lions of data records where even multiple scans of the edéte
are too expensive to perform. This paper presents a new mhetho
Clustering-Based SVM (CB-SVMyhich is specifically designed
for handling very large data sets. CB-SVM applies a hieliaeth
micro-clustering algorithm that scans the entire data st once

to provide an SVM with high quality samples that carry theista
tical summaries of the data such that the summaries maxitinéze
benefit of learning the SVM. CB-SVM tries to generate the best
SVM boundary for very large data sets given limited amount of
resources. Our experiments on synthetic and real datalsats s
that CB-SVM is highly scalable for very large data sets whiko
generating high classification accuracy.

Categories and Subject Descriptors

1.5.2 [Pattern Recognition]: Design Methodology-€Elassifier de-
sign and evaluation
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Support vector machine (SVM) has been a promising method for
data classification and regression [23, 4, 14, 6, 20, 24Eutsess
in practice is drawn by its solid mathematical foundationichih
conveys the following two salient properties:

e Margin maximization: The classification boundary func-
tion of SVM maximizes the margin, which in machine learn-
ing theory, corresponds to maximizing theneralizatiorper-
formance given a set of training data. (See Section 2 for more
details.)

e Nonlinear transformation of the feature space using the
kernel trick : SVM handles a nonlinear classification effi-
ciently using the kernel trick which implicitly transforntise
input space into another high dimensional feature space.

The success of SVM in machine learning naturally leads to its
possible extension to the classification or regressionlenab for
mining a huge amount of data. However, despite the prominent
properties of SVM, it is not as favored for data mining as ifas
pattern recognition or machine learning because the tgiodm-
plexity of SVM is highly dependent on the size of datal sétany
real-world data mining applications involve millions otligins of
data records. The following example shows how unscalabigmn s
dard SVM is on a large data set.

ExamMPLE 1. The forest cover type data set from UCI KDD
archivé® is composed of 581012 data instances with 54 attributes —
10 quantitative and 44 binary attributes. Figure 1 showstthé-
ing time of SVM on different numbers of training data randpml
sampled fron the original data set. From the graphs, we céderin
that it would take years for an SVM to train a million data. (We
used LIBSVM version 2.36, and run SVM with the RBF kernel
which gave fairly good results among others. We ran thengusin
Pentium 111 800Mhz with 906Mb memory.)

Researchers have proposed various revisions of SVM todeere
the training efficiency by mutating or approximating it. Hewver,
they are still not feasible with very large data sets wheemexulti-
ple scans of the entire data set are too expensive to perfortmey
end up losing the benefits of using SVM by the over-simplifarz.
(See Section 6 for the discussions on related work.)

1SVM is known to be at least quadratic to the number of data
points. Refer [6] for more discussions on the complexity \¢VB

2http://kdd.ics.uci.edu/databases/covertype/covertyml
Shttp://www.csie.ntu.edu.twicjlin/libsvm
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Figure 1: Non-scalability of SVM. x-axis: # of data points; y-
axis: training time in hours

present the CB-SVM algorithm that applies the hierarchiciaro-
clustering algorithm to a standard SVM to make the SVM sdalab
for very large data sets. Section 5 demonstrates experanent
sults on artificial and real data sets. We discuss relatedt wor
Section 6 and conclude our study in Section 7.

2. SVM OVERVIEW

In machine learning theory, the “optimal” class boundanycfu
tion (or hypothesish(z) given a limited number of training data
set{(z,y)} (y is the label ofr) is considered the one that gives the
bestgeneralizatiorperformance which denotes the performance on
“unseen” examples rather than on the training data. Theoperf
mance on the training data is not regarded as a good evaluatio
measure for a hypothesis because the hypothesis endsgeufit-
ting when it tries to fit the training data too hard. When a problem
is easy to classify and the boundary function is complicatede

This paper presents a new approach for scalable and reliablethan it needs to be, the boundary is likely overfit. When a prob

SVM classification. The method, callg@lustering-Based SVM
(CB-SVM) is specifically designed for handling very large data

sets. When the size of the data set is large, SVM tends to per-

form worse with training from the entire data than trainimgnf

a fine quality of samples of the data set [19]. Selective sagpl
(or active learning) techniques with SVM try to sample thaérting
data intelligently to maximize the performance of SVM, Hugy
normally require many scans of the entire data set [19, 28¢«S
tion 6). Our CB-SVM using the similar idea applies a hier&zah
micro-clustering algorithm that scans the entire data st once
to provide an SVM with high quality samples that carry theista
tical summaries of the data such that the summaries maxitinéze
benefit of learning the SVM. CB-SVM is scalable in terms of the
training efficiency while maximizing the performance of SYM

The key idea of CB-SVM is to use a hierarchical micro-clusigr
technique to get finer description closer to the boundarycaadser
description farther from the boundary, which can be effityepro-
cessed as follows: CB-SVM first constructs two micro-clustees
from positive and negative training data respectively.daretree, a
node in a higher level is a summarized representation ofitdren
nodes. After constructing the two trees, CB-SVM start irain
an SVM only from the root nodes. Once it generates the “rough”
boundary from the root nodes, it selectively decluster dinéydata
summary near to the boundary into lower (or finer) levels gisin
the tree structure. The hierarchical representation ofittta sum-
maries is a perfect base structure for CB-SVM to perform éhecs
tive declustering effectively. CB-SVM repeats this salactieclus-
tering to the leaf level.

CB-SVM can be used for linear classification or regressiai-an
ysis for very large data sets, including streaming data ta da
large data warehouses, especially where random samplitgtha
performance because of infrequently occurring importaxia r
irregular patterns of incoming data, which causes diffepeaba-
bility distributions between training and testing data. Wgcuss
this more in Section 5.1.3.

Our experiments on the network intrusion data set (Secti®h 5
a good example which shows that random sampling could hurt,
show that CB-SVM is scalable for very large data sets whie al
generating high classification accuracy. Based on the fesiro
knowledge, the proposed method is currently the only SVM for
very large data sets which tries to generate the best raguta
limited amount of resources.

The remainder of the paper is organized as follows. We first
provide an overview of SVM in Section 2. In Section 3, we intro
duce a hierarchical micro-clustering algorithm for verygka data
sets, originally exploited by T. Zhang et al. [25]. In Senti$ we

lem is hard and the classifier is not powerful enough, the doun
ary becomes underfit. SVM is an excellent example of supedvis
learning that tries to maximize the generalization by maziing
the marginand also supports nonlinear separation using advanced
kernels, by which SVM tries to avoid overfitting and undeirfigt
[4, 23]. Themarginin SVM denotes the distance from the bound-
ary to the closest data in the feature space.

In SVM, the problem of computing a margin maximized bound-
ary function is specified by the following quadratic prograimg
(QP) problem:

1 11
minimize: W(a)=—Y ai+ 1> Y yyjeiaik(zi, z;)
i=1 i=1j=1
l
subject to : yio; =0
=1

Vi:0<a <C

The number of training data is denoted by« is a vector ofl
variables, where each componentcorresponds to a training data
(zi, y:). C is the soft margin parameter controlling the influence of
the outliers (or noise) in training data.

The kernelk(z;, z;) for linear boundary function is; - z;, a
scalar product of two data points. The nonlinear transftiona
of the feature space is performed by replack{g;, z;) with an
advanced kernel, such as polynomial kertel z; + 1)® or RBF
kernelezp(—52= ||z — =||*). The use of an advanced kernel is
an attractive computational short-cut, which forgoes gpeesive
creation of a complicated feature space. An advanced késnel
a function that operates on the input data but has the effect o
computing the scalar product of their images in a usually muc
higher-dimensional feature space (or even an infinite-dgiomal
space), which allows one to work implicitly with hyperplania
such highly complex spaces.

Another characteristic of SVM is that its boundary functisn
described by theupport vectorgSVs) which are the data the clos-
est to the boundary. The above QP problem computes a wegtor
each element of which specifies the weight of each data, and th
SVs is the data whose correspondings greater than zero. In
other words, the other data rather than the SVs do not coitrib
to the boundary function, and thus computing an SVM boundary
function can be viewed as finding the SVs with the correspuandi
weights to describe the class boundary.

There have been many attempts to revise the original QP formu
lation such that it can be solved by a QP solver more effigidBtl
1]. (See Section 6 for more details.) We do not revise the-orig
nal QP formulation of SVM. Instead, we try to provide a smalle



but high quality data set that is beneficial to computing thé1S
boundary function effectively by applying a hierarchichistering
algorithm. Our CB-SVM algorithm substantially reduces tbtal
number of data points for training SVM while trying to keegeth
high quality of SVs that describes the boundary the best.

3. HIERARCHICAL MICRO-CLUSTERING
ALGORITHM FOR LARGE DATA SETS

The hierarchical micro-clustering algorithm we presemetand
will apply to our CB-SVM in Section 4 was originally explodédy
T. Zhang et al. at 1996 [25], which is namBtRCH. The concept
of a “micro-cluster” is similar to those in [25, 12], which migtes
a statistically summarized representation of a group o ddtich
are so close together that they are likely to belong to theesdus-
ter. Our hierarchical micro-clustering algorithm has tbkofving
characteristics.

e |t constructs a micro-cluster tree, call€& (Clustering Fea-
ture) treg in one scan of the data set given a limited amount
of resources (i.e., available memory and time constrabys)
incrementally and dynamically clustering incoming multi-

CF = (n,LS,SS), wheren is the number of data points in the
cluster, LS is the linear sum of the: data points, i.e.>"" ; zi,
and SS is the square sum of theata points, i.e.3""_; z7.

THEOREM1 (CF ADDITIVITY THEOREM). [T. Zhang et al.
[25]] Assume thaC Fy = (n1, LS1,SS1) andCF; = (n2, LS>,SS2)
are the CF vectors of two disjoint clusters. Then the CF weato
the cluster that is formed by merging the two disjoint clissts:

CFi + CF> = (n1 +n2,LS1 + LS>,551 + 552) 3

Refer to [25] for the proof.

From the CF definition and additivity theorem, we know that th
CF vectors of clusters can be stored and calculated incrtathen
and accurately as clusters are merged. The cen@'céahd the ra-
dius R of each cluster can be also computed from the CF of the
cluster.

The CF is a summary of a cluster—a set of data points. Managing
only this CF summary is efficient, saves spaces significaatiyd
is sufficient for calculating all the information for buitt the hi-
erarchical micro-clusters which will facilitate compugimn SVM
boundary for a very large data set.

dimensional data points. Since the single scan of the data 3.11 CkFtree

does not allow backtracking, localized inaccuracies may ex
ist depending on the order of data input. However, the CF
tree captures the major distribution patterns of the dath an
provides enough information for CB-SVM to perform well.

e It handles noise or outliers (data points that are not part of
the underlying distribution) effectively as a by-produttie
clustering.

Further improved hierarchical clustering algorithms hheen
developed including CURE [10] or Chameleon [15]. Chameleon
has shown to be very powerful at discovering arbitrarilypsth
clusters of high quality, but its complexity is in the worstse
O(n?) wheren is the number of data points. CURE produces high-
quality clusters with complex shapes, and its complexiglss lin-
ear to the number of objects, but its parameter setting ierg¢has
a significant influence on the results. The CF tree of BIRCHesr
the spherical shapes of hierarchical clusters and capfueestatis-
tical summaries of the entire data set. Thus it provides ficieit
and effective structure for CB-SVM to run.

3.1 Clustering Feature and CF Tree

We start from defining some basic concepts. Gied-dimensional

data points in a clustefz; } wherei = 1,2,... , N, the centroid
C and radiusR of the cluster are defined as:
21[1 Zi
= == 1
¢ === (1)
N [l = CJ
R=(==20—) e

R is the average distance from member points to the centroid.

The concepts oflustering featurgCF) tree is at the core of the
hierarchical micro-clustering algorithm which makes ttester-
ing incremental without expensive computations. A CF ider
which summarizes the information that a CF tree maintainsfo
cluster.

DEFINITION 1 (CLUSTERINGFEATURE). [T.Zhang etal. [25]]
Givenn d-dimensional data points in a clustefz;} wherei =
1, 2,..., n, the CF vector of the cluster is defined as a triple:

A CF tree is a height-balanced tree with two parameters:dbran
ing factorb and threshold. A CF tree of heighfh = 3 is showing
in the right side of Figure 2. Each nonleaf node consists ofast
b entries of the form{CF3, child;), where (1) = 1,2,...,b, (2)
child; is a pointer to itg-th child node, and (3l F; is the CF of
the subcluster represented by this childleaf entry the entry in
a leaf node, only has @F without a child pointer. So, a leaf or
a nonleaf node represents a cluster made up of all the stédus
represented by its entries. The threshidkla constraint for the leaf
entries to satisfy such that the radius of an entry in a lederimas
to be less thaa.

The tree size is a function @f The largert is, the smaller the
tree is. The branching factércan be determined by a page size
such that a leaf or nonleaf node fit in a page.

This CF tree is a compact representation of the data set ecau
each entry in a leaf node is not a single data point but a sshclu
ter (which absorbs many data points with radius under a fpeci
thresholdk).

3.2 Algorithm Description

A CF tree is built up dynamically as new data objects are in-
serted. The ways that it inserts a data into the correct sater]
merges leaf hodes, and manages nonleaf nodes are simitensi t
in a B+-tree, which can be sketched as follows:

1. Identifying the appropriate leaf: Starting from the root,
it descends the CF tree by choosing the child node whose
centroid is the closest.

2. Modifying the leaf: If the leaf entry can absorb the new
data object without violating the threshold condition, ates
just the CF vector of the entry. If not, add a new entry. If
adding a new entry causes a node split, split by choosing
the farthest pair of entries as seeds, and redistributiag th
remaining entries based on the closest criteria.

3. Modifying the path to the leaf: It updates the CF vectors
of each nonleaf entry on the path to the leaf. Node split in
the leaf causes an insertion of a hew nonleaf entry into the
parent node, and if the parent node becomes split, a new entry
is inserted into the higher level node. Likewise, this oscur
recursively to the root.



Due to the limited number of entries in a node, a highly skewed
input could cause two subclusters that should have beereinlas-
ter split across different nodes, and vice versa. Thesedo&nt but
undesirable anomalies can be handled in the original BIRIbta
rithm by further refinement with additional data scans. Heeve
we do not perform this further refinement because the infegu
and localized inaccuracy do not impact the performance of CB
SVM much.

3.2.1 Determination of threshold

The choice of the thresholdis crucial for building the tree in
the right size which fits in the available memory becaugasftoo
small, we run out of memory before all the data are scanned. Th
original BIRCH algorithm initially setg very low, and iteratively
increases until the tree fits in the memory. T. Zhang proved that
rebuilding the tree with a larger requires a re-scan of the data
inserted in the tree so far and at maésextra pages of memory,
whereh is the height of the tree [25]. The heuristics for updating
t; is also provided in [25]. Due to space limitations and to kiep
focus of the paper, we skip the details of those. In our erpents,
we set the initial threshold, intuitively based on the number of
data pointsn and dimensiongl and the value range; of each
dimension such tha is proportional tan * d * r4, and the tree of
t1 mostly fits in the memory.

3.2.2 Ouitlier handling

After the construction of a CF tree, the leaf entries thataios
far fewer data points than average are considered to besutih
low setting of outlier threshold can increase the clasgiboger-
formance of CB-SVM especially when the number of data is rel-
atively large compared to the number of dimensions and the ty
of boundary functions are simple (which is related to haarigw
VC dimension in machine learning theory) because the rioiaitr
amount of noise in the training data which may not be separabl
by the simple boundary function prevents the SVM boundawgnfr
converging in the quadratic programming. For this reasanen
abled the outlier handling with a low threshold in our expents
in Section 5 because the type of data we are targetting ig@é la
number of data points with relatively low dimensions, areltipe
of the boundary functions is linear with VC dimensiort-1 where
m is the number of dimensions. See Section 5 for more details.

3.2.3 Analysis

A CF tree that fits in a memory can have tie nodes at maxi-
mum whereM is the size of memory an# is the size of a node.
The heighth of a tree islogb% which is independent of the size
of data set. However, if we assume that memory is unbounded an
the number of the leaf entries is equal to the number of datdgo
N due to a very small threshotdthenh = log, N.

Insertion of a node into a tree requires the examinatioh ef-
tries, and the cost per entry is proportional to the dimemgio
Thus, the cost for insertingV data points iSO(N * d = b  h).

In case of rebuilding the tree due to the poor estimatioty pad-
ditional re-insertions of the data already inserted hastadued in
the cost. Then the cost becom@¢k = N * d % b * h) wherek is
the number of the rebuildings. If we only consider the depeé
of the size of data set, the computation complexity of therillgm

is O(N). Experiments from the original BIRCH algorithm have
also shown the linear scalability of the algorithm with resipto
the number of objects, and good quality of clustering of thead

4. CLUSTERING-BASED SVM (CB-SVM)

In this section, we present the CB-SVM algorithm which tgain
a very large data set using the hierarchical micro-clugiers CF
tree) to construct an accurate SVM boundary function.

The key idea of CB-SVM can be viewed being similar to that of
selective sampling (or active learning), i.e., selectheydata which
maximizes the benefit of learning. The selective samplinGiov
selects and accumulates fbe/ margin dataat each round that are
close to the boundary in the feature space because the logirmar
data have higher chances to become the SVs of the boundary for
the next round [22, 19]. Appreciating this idea, we declugte
entries near the boundary to get finer samples nearer to thelbo
ary and coarser samples farther from the boundary. In thys we
induce the SVs, the description of the boundary, as fine asiges
while keeping the total number of training data points aslkasa
possible.

While selective sampling needs to scan the entire data satht
round to select the closest data point, CB-SVM runs baseti®n t
CF tree which can be constructed in a single scan of the aetdtee
set and is carrying the statistical summaries that fat#itacon-
structing an SVM boundary efficiently and effectively. Theth
of the CB-SVM algorithm follows:

1. construct two CF trees from positive and negative data set
independently.

2. train an SVM boundary function from the centroids of the
root entries — entries in the root node — of the two CF trees. If
the root node contains too few entries, train from the estrie
of the nodes in the second levels of the trees.

w

. decluster the entries near the boundary into the next, leve
and the children entries declustered from the parent entrie
are accumulated into the training set with the non-dedtadte
parent entries.

N

. construct another SVM from the centroids of the entries in
the training set, and repeat from step 3 until nothing is accu
mulated.

The CF tree is a suitable base structure for CB-SVM to perform
the selective declustering efficiently. The clustered ddga pro-
vides better summaries for SVM than random samples of theeent
data set because the random sampling is susceptible toeallf@s
skewed) input, and thus it may generate undesirable ougsyts-
cially when the probability distributions of training aresting data
are not similar, which is common in practice. (The networtkuin
sion data set from the UCI KDD repository that we experimant o
in Section 5 is a good example of having substantially diffiedis-
tributions in training and testing data set due to the faat it the
real world, the patterns of network intrusions are verygutar.)

4.1 CB-SVM Description

Without loss of generality, let us consider linearly septg@ases
for the convenience of explanation.

Let positive treeT, andnegative tre€l’,, be the CF trees built
from the positive data set and the negative data set regglcti
We first train an SVM boundary functioh from the centroids of
the root entrieof T}, andT;,. Note that each entry (or clustek)
contains the CF information from which we can efficiently qarte
the center poin€; and the radiug; of the cluster. Figure 2 shows
an example of the SVM boundary with the root clusters and the
corresponding positive tree.

With the boundary functioh and the root entries, we determine
the low margin clusterghat are close to the boundary and thus
needs to be declustered into the finer level. digiport clusterbe
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Figure 2: Example of the SVM boundary trained from the root entries of positive and negative trees.

the clusters whose center points are the SVs of the bouitdarg.,
the circles of bold lines in Figure 2. Ld®, be the distance from
the boundary to the centroid of a support cluster, andlebe the
distance from the boundary to the centroid of a clug@er Then,
we consider a clustdr; which satisfies the following constraint as
alow margin cluster

Dz_Rz<Ds

whereR; is the radius of the clustdr;.

O
(J

P

4)

O

e

Figure 3: Declustering of the low margin clusters.

The clusters that satisfy the constraint (4) have chanaehéir
subclusters to be the support clusters of the boundaryussrated
in Figure 3 where five clusters initially satisfied the coastt (4)
(three of them were the support clusters) and thus were sleclu
tered into finer levels, which results in the right pictureFadure
3. The subclusters whose parent clusters do not satisfytre@ms
(4) would not be the support clusters of the boundaryecause
the surfaces of the parent clusters are farther than the Stfeo
boundary. Thus we have the following remark.

REMARK 1 (DECLUSTERINGHARD CONSTRAINT). LetR;
and D; be the radius of a clusteF; and the distance from the
boundary to the centroid of the cluster respectively. Giaesep-
arable set of positive and negative clustés= {E;"} U {E]}
and the SVM boundark of the set, the subclusters Bf have the
possibilities to be the support clusters of the boundargnly if
D; — R; < D, whereD; is the distance from the boundary to the
centroid of a support cluster.

to cope with noise in the training set. Using the soft comstsa
generates the SVs having different distances to the boyné&ar

the declustering condition with the soft constraints of S\Wié re-

placeD; with D,, s, the maximum distance of dl)s, which would

include all the clusters whose subclusters have the ptisibio

be the support clusters of the soft boundary

D; — Ri < Dy (%)

The subclusters whose parent clusters do not satisfy @dmis(b)

would not be the support clusters of the soft boundatyecause
the surfaces of the parent clusters are farther than the distant

SV of the boundary.

REMARK 2 (DECLUSTERINGSOFT CONSTRAINT). For the
soft constraints of SVM, the subclusterdihthave the possibilities
to be the support clusters of the boundargnly if D;—R; < D,
whereD,, s is the maximum distance from the boundary to the cen-
troids of all the support clusters.

Figures 4 and 5 describe the CB-SVM algorithm with the soft
constraints of the declustering.

4.2 CB-SVM Analysis

Building a CF tree fromN number of data points cos@(k =
N x d x b+ h) whered is the number of dimensions the number
of entries in a nodeh the height of the tree, anklthe number of
rebuildings. Once the CF tree is built, the training time 8:8VM
becomes dependent on the number of entries instead of theemum
of data points.

Let us assume(SV M) = O(N?) wheret(¥) is the training
time of algorithm®. (Note thatt(SV M) is known to be at least
quadratic toN and linear to the number of dimensions. Refer to
[6] for more discussion on the complexity of SVM.) The numbger
the leaf entries is at most. Thus,t(SV M) from the leaf entries
become®) (b*").

Let support entriede the SVs when the training data are entries
in some nodes. Assume thats the average rate of the number
of the support entries among the training entries. Namely:
s/b whereb is the number of training entries asds the average
number of support entries among the training entries,e4.0.01
for s = 10 andb = 1000. Normallys << b and0 < r << 1 for
standard SVMs with large data sets.

The example we illustrated was a separable case with the hard THEOREM2 (TRAINING COMPLEXITY OF CB-SVM). Ifthe

constraints of SVM. In practice, the soft constraints areeseary

number of the leaf entries of a CF tree is equal to the number of



Input: - positive data seP, negative data se¥t
Output: - a boundary functior
Notation:

- HC(S): a clustering algorithm that builds a hierarchical
cluster treel’ from a data sef

- getRootEntried): return the root entries of a tr@e

- getChildreng): return the children entries of an entry gt
- getLowMarging, S): return the low margin entries from a
setS which are close to the boundahy(See Figure 5)

Algorithm:
1.T, = HC(P); Tn = HC(N);
2. 8§ := getRootEntried,) U getRootEntries,);
3. Do loop
3.1.h := SVM.train(S);
3.2.8’ := getLowMarging, S);
33.8=8§-&;
3.3.8’ := getChildreng’);
3.4. ExitifS’ = 0;
35.8§=8U§’;
4. Returnh;

Figure 4: CB-SVM

training data pointsV, then CB-SVM trains asymptoticallyr2"—>

times faster than standard SVMs given the CF tree, whésethe
average rate of SVs and the height of the tiee log, N.

PrROOF If we approximate the number of iterations in CB-SVM
I = h (the height of CF tree), then the training complexity of CB-
SVM given the CF tree is:

h
t(CB—SVM) =Y t(CB— SVM)
i=1
wheret; (CB — SV M) is the training complexity of theth itera-

tion of CB-SVM. The number of training data poim§ at the:-th
iteration is:

Ny = b—s+bs—s +..4+bs =5 4bs"
= (b=s)1+s+s+..+52+bs)
i—1
_ s -1 i—1
= (b—ys) po ] + bs

whereb is the number of data points in a node, arid the number
of the SVs among the data. If we assut(8V M) = O(N?), by
approximation ofs — 1 = s,

t;(CB — SVM) O([bs"™2 +1 — g — s b))
O([bsi—l]z)

If we accumulate the training time of all iterations,

h h—1
HCB—SVM) = O [bs" ') =001 ) _s™)
i=1 h=0

82

h_1
P )= O(b*s”"?)

= o’

Input: - a boundary functior, a entry setS
Output: - a set of the low margin entrie¥/
Algorithm:

1. Dsy := getMaxDistanceOfSV4j);
/I return the maximum distance of the support vectors
from the boundary,

2.8’ := getLowerMarginDatdDsv , S);
/I return the data whose margin is smaller tigy

3. ReturnS’;

Figure 5: getLowMargin(h, S)

If we replaces with br sincer = s/b,
t(CB - SVM) = O([thh—l]Z) — O(b2h’l"2h_2)

Therefore,t(CB — SV M) trains asymptoticallyl /r2"~2 times
faster thart(SV M) which isO(b*") for N = b". O

Theorem 2 states that CB-SVM trains asymtoticalljy-2"—2
times faster than a standard SVM given a CF tree. The tratirimg
of CB-SVM is asymptotically equal to that of a standard SVNyon
if all the training data points become the SVs. The rate ofSWs
is variant, depending on the type of problems, the type afidder
the number of dimensions, the number of data points, and\hé S
parameters. However, mostty << 1, especially for very large
data sets. So, the performance difference between CB-S\dMaan
standard SVM goes higher as the data set becomes larger.

5. EXPERIMENTAL EVALUATION

In this section, we provide empirical evidence of our analys
on CB-SVM using synthetic and real data sets, and we disbass t
results. All our experiments are done in a Pentium 11l 800Mhz
machine with 906 MB memory.

5.1 Synthetic data set

5.1.1 Data generator

To verify the performance of CB-SVM in realistic environnten
while providing visualized results, we perform binary clidisa-
tions on two-dimensional data sets we generated as follows.

1. We randomly createdC clusters such that for each clus-
ter, (1) the center poinf' is randomly chosen in the range
[C1, Cy] for each dimension independently, (2) the radits
is randomly set in the range R;, Ry}, and (3) the number
of pointsn in each cluster is also randomly set in the range
of [ng, na].

2. We labeled the clusters based on ffieaxis value of each
cluster such that clustdr; is labeled agpositive if CF <
0 — R; andnegative if C¥ > 6 + R;, whereCY is the
X-axis value of the centef’;, andd is the threshold value
betweenC; andC},. We removed the clusters not assigned
to either of positive or negative which lie across the thoégh
f on X -axis. In this way, we drive the clusters to be linearly
separable.



(N =603)

(b) 0.5% randomly sampled data

(c) L’latﬁﬂistribution zﬁ the las‘t ite;ation ii]
CSVM (N = 597)

Figure 6: Synthetic data set in a two-dimensional spacé|’: positive data; -’: negative data

3. Once the characteristics of each cluster are determthed,

data points for the cluster are generated according to a2-d i
dependent normal distribution whose mean is the cafiter
and whose standard deviation is the radiusThe class label
of each data is inherited from the label of its parent cluster

Note that due to the properties of the normal distribution,
the maximum distance between a point in the cluster and the
center is unbounded. In other words, a point may be arbitrar-
ily far from its belonging cluster. We refer to the pointsttha
belongs to clusted but located farther than the surfacesf

as “outsiders”. Due to the outsiders, the data set beconies no
completely linearly separable, which is more realistic.

5.1.2 SVM parameter setting

We use the LIBSVM version 2.36or SVM implementation and
usev-SVM with linear kernel. We enabled the shrinking heuris-
tics for fast training [13].v-SVM has an advantage over standard
SVMs: The parameter has a semantic meaning which denotes the
upper bound of the noise rate and the lower bound of the S\irrate
training data [6]. In our experiments, we setery low (v = 0.01
orv = 0.1) which usually performs very well when the size of data
set is large and the noise is relatively small.

5.1.3 Results and discussion on a “large” data set

Figure 6(a) shows an example of the data set generated augord
to the parameters of Table 1. The data generated from theecdus
in the left side and in the right side are positivg)(and negative
(‘—’) respectively.

Figure 6(b) shows 0.5% randomly sampled data from the aigin

Parameter Values
Number of clusterd< 50
Range ofC [C;, C:] | [0.0, 1.0]
Range ofR [R;, R] | [0.0, 0.1]
Range ofn [n;,ny] | [0, 10000]
[ 0.5

Table 1: Data generation parameters for Figure 6

cross over the boundary of multiple classes. Thus the unnec-
essary data only increases the training time of SVM without
contributing to the SVs of the boundary.

Random sampling hurts more when the probability distribu-
tions of training and testing data are different because ran
dom sampling that only reflects the distribution of training
data could miss significant regions of the testing data. For
instance, in the network intrusion detection data set used
for the KDD Cup at 1999 the testing data is not from the
same probability distribution as the training data. Thisds
cause they were collected in different times of periodsciwhi
makes the task more realistic. (See Section 5.2 for more de-
tails.)

Figure 6(c) shows the training data points at the last i@mat
in CB-SVM. We sett; = 0.01 andb = 100, and set the outlier
threshold with the standard deviation. It generated a C& dofe
h = 3, and CB-SVM iterated three times.

Note that the training data points of CB-SVM are not the ac-

data set of Figure 6(a). Random sampling could hurt the SVM 3] data but the summary of the clusters of them, so they tend

performance in the following ways:

not to have narrowly focused data points as it does in thearand

) ) sampling. Also, the areas far from the boundary thus notylite
e From Figure 6(b), we know that random sampling reflects contribute to the SV will have very sparse data points bezss

the unstable data distribution of the original data set,cihi

clusters representing those areas would not be declusteitbe

includes non-trivial amount of the unnecessary data points process of CB-SVM.

for training an SVM. The dashed ellipses on the figure in-

Figure 7(a) and (b) show the intermediate data points that CB

dicating densely sampled areas that reflects the original da SVM generated at the first and second iterations respegtivile
distribution are mostly not very close to the boundary. In data points in Figure 7(a) are the centroids of the rootesitrhich
practice, the areas around the boundary tends to be less densare very sparse. Figure 7(b) shows dense points around timelbo
because cluster centers which are very dense are unlikely toary which are declustered into the second level of the CF tree

“http://www.csie.ntu.edu.tw/cjlin/libsvm

Shttp://kdd.ics.uci.edu/databases/kddcup99/kddcupe.



Parameter Values
Number of clusterds 100
Range ofC [C;, Ch] [0.0, 1.0]
Range ofR [R;, Rx] [0.0, 0.1]
Range ofn [n;, ny] | [0, 2000000]
[ 0.5

Table 3: Data generation parameters for the very large datast

‘ - ' o [ S-Rate | #ofdata] #oferrors| T-Time | S-Time ]
(a) Data distribution at the (b) Data distribution at the 0.0001% >3 6425 0.000114] 82207

first iteration (V = 62) second iterationy = 308) 0.001% 756 2413 0.000972| 825.40
Figure 7: Intermediate results of CB-SVM. *|": positive data; 0.01% 2333 1132 0.03 828.61
0.1% 23273 1012 6.287 835.87

‘—": negative data

1% 230380 1015 1192.793| 838.92
5% 1151714 1020 20705.4 | 842.92

Original | CB-SVM | 0.5% sampleg
Number of data points | 113601 597 603 [ ASVM | 307 | 865 | 04872.213 |
SVM Training time (sec.)| 160.792| 0.003 0.003 |CB-SVM| 2893 | 876 | 1639 | 2528.213]
Sampling time (sec.) 0.0 10.586 4111
# of false predictions 69 36 243 Table 4: Performance results on the very large data set (# of
(# of FP, # of FN) (49, 20) | (73, 13) (220, 23) training data = 23066169, # of testing data = 233890)S-Rate:
sampling rate; T-Time: training time; S-Time: sampling ¢im
Table 2: Performance results on synthetic data set (# of trai- ASVM: selective sampling

ing data = 113601, # of testing data = 10707 2lrP:false positive;

FN:false negative; Sampling time for CB-SVM: time for candt- . . . N
ing the CF tree random sampling and ASVM (selective sampling or activereay

with SVM) for very large data sets. Table 4 shows the perforrea
results of random sampling, ASVM, and CB-SVM on the “very
large” data set. We did not run an SVM on the entire data seesin
it will take years to finish training. Note that due to the sienp
linear boundary on the very large amount of training datadoan
sampling does not increase the performance of SVM at sonmé poi
as the sample size increas@SVM and CB-SVM showed the error
rates around 15% lower than the random sampling of the highes
performance. The training time of CB-SVM in total (T-Time-+ S
Time) was shorter than that of ASVM or the random sampling of
the highest performanceASVM [19] showed the similar results
as ours since the basic idea is similar, which implies thatdme
data setsSVM performs better with a fine quality of samples than
a large amount of random sampleblowever,ASVM takes much
longer than CB-SVM for very large data sets that do not fit i th
memory because it needs to scan the entire data set at eaot rou
to select the closest data point, thereby generating toohnit@
cost to undergo as many rounds as it needs to get enoughrtgaini
data. In this experiment, we ran the ASVM with = 5 (starting
from one positive and one negative sample and adding fivelsamp
at each round), which gave fairly good results among othéfs.
is commonly set below ten. i is too high, its performance con-
verges slower which ends up with larger amount of traininig tia
achieve the same accuracy, and ifs too low, ASVM may need

Finally, Figure 6(c) shows a better data distribution forNsWgy
declustering the support entries to the leaf level.

For fair evaluation, we generated a testing set using theesam
clusters and radiuses but different probability distridsas by ran-
domly re-assigning the number of pointsfor each cluster. We
report the number of false predictions (# of false negativé of
false positive) on the testing data set because the dat&siaebig
compared to the number of false prediction that the accLitaelf
does not show much difference between them.

Table 2 shows the performance results on the testing data set
CB-SVM based on the clustering-based samples outperfdrens t
standard SVM with the same number of random samplEse
“Number of data points” for CB-SVM in Table 2 denotes the hum-
ber of training data points at the last iteration as shownigure
6(c). The “Training time” for CB-SVM in the table indicatelset
SVM training time on that data, which is almost equal to thiat o
0.5% random samples since both generated similar numbetaf d
points. The “Sampling time” for CB-SVM denoting the time teet
construction of the 597 data points of Figure 6(c) definities
longer than the random sampling because it involves thetieans
tion of a CF tree. (The long construction time of the CF tree is

partly caused by our non-optimized implementation of thesdr- to undergo too many rounds [19, 22].) It underwent 61 roueds r

chical micro-clustering algorithm. o . - .
However, as the dgta %ize grozlvs the random sample size thatsumng In 61 times of data scans to sample 307 training dttah

generates similar accuracies as that of CB-SVM also ineszdsr ]Eootl;] 56.8782'2%.3 sgconds In total for training. We discuss NSV
which the SVM training time @(N?)) becomes dominating over urtherin section o.
the “Sampling time” for CB-SVM Q (V) with a fixedh), and thus 5.2 Real data set

the total training time of the SVM with random sampling engs u hi . . h Ki ion clit
longer than that of CB-SVM. (See the next section.) In this section, we experiment on the network intrusion clite

data set from the UCI KDD archive which was used for the KDD
: : “ ” Cup at 1998, This data set consists of about five millions of train-
514 S%?SUHS and discussion on a *very large” data ing data and three hundred thousands of testing data. Appsty

. noted, CB-SVM works for very large data sets including strieay
We generated a much larger data set according to the parame-

ters of Table 3 to verify the performance of CB-SVM compared t  ®http://kdd.ics.uci.edu/databases/kddcup99/kddcime.




data or data warehouse analysis especially where randoplisgm
hurts the performance due to infrequent occuring impodata or
irregular patterns of data incoming which causes diffepnba-
bility distributions of training and testing data. The netwintru-
sion data set is a good application for CB-SVM because thimtes
data is not from the same probability distribution as théning
data, and it also includes specific attack types not in thaitrg
data. (The datasets contain a total of 24 training attacksywith
an additional 14 types in the test data only.) This is becausg
were collected in different times of periods, which makestdsk
more realistic. (Some intrusion experts believe that mosehat-
tacks are variants of known attacks and the "signature” ofkm
attacks can be sufficient to catch novel variants.) Our éxyatts
on this data set show that our method based on the clusteasgd
samples significantly outperforms the random samplingritpihie
same number of samples.

5.2.1 Experiment setup

Each data object consists of 41 features (34 continuousrisat
and 7 symbolic features). We normalized the continuousufeat
values into between zero and one by dividing them by their-max
imum values. We created one independent “zero-one” (paisg)ic
feature for each value of the symbolic features such thag™om
dicates the existence of the value. Our way of combining imult
variable features may not be the best way for SVM. Using more
sophisticated technigues for pre-processing the featunelsl im-
prove the performance further.

We sett; = 0.5 for the CF tree because the total number of fea-
tures in this data set becomes about 50 times larger thamtbat
synthetic data set and the range of each value is the sameuthe
lier threshold in this data set was tuned with a lower valusabse
the outliers in the network intrusion data set could haveialkle
information. However, tuning the outlier threshold inve$¢vsome
heuristics depending on the type of data set and the typeusfdso
ary function. Further definition and justification on the fistics
for specific types of problems is a subsequent future work.

We used the same SVM implementation with the same way of
optimizing parameters as in the experiments on the syctheta
sets. Linear kernel also showed good performance (over 99% a
curacy) in this experiment, which implies the classificatom this
network intrusion data set is likely separable by a lineacfion.
We briefly discuss the usage of nonlinear kernel in CB-SVM in
Section 7.

5.2.2 Results

Our task is to distinguish normal connections from attadies.
ble 5 shows the performance results of random sampling, ASVM
and CB-SVM on the network intrusion data set. Running SVM
with the larger amount of samples did not improve the peréoroe
much for the same reason as discussed in Section 5.1.4. ABdM a
CB-SVM also generated better results than the random sagapli
and the total training time of CB-SVM is much faster than tbfat
ASVM. (We run ASVM with the same parameters as in Section
5.1.4)

6. DISCUSSION ON RELATED WORK

Our work is in some aspects related to: (1) SVM fast implemen-
tations, (2) SVM approximations, (3) on-line SVM or increme
tal and decremental SVM for dynamic environments, (4) siviec
sampling (or active learning) for SVM, and (5) random sanmpli
techniques for SVM.

Many algorithms and implementation techniques have been de
veloped for training SVMs efficiently since the running timfehe

| S-Rate | #ofdata] #oferrors| T-Time | S-Time ]
0.001% 47 25713 | 0.000991| 500.02
0.01% 515 25030 | 0.120689| 502.59
0.1% 4917 25531 6.944 504.54
1% 49204 25700 604.54 509.19
5% 245364 25587 15827.3 | 524.31

[ASVM | 747 | 21634 | 94192213 |

[CB-SVM | 4090 | 20938 | 7.639 | 4745.483]

Table 5. Performance results on the network intrusion data
set (# of training data = 4898431, # of testing data = 311029).
S-Rate: sampling rate; T-Time: training time; S-Time: singp
time; ASVM: selective sampling

standard QP algorithms grows too fast. Most effective Istiog

to speed up SVM training are to divide the original QP problem
into small pieces, thereby reducing the size of each QP @mobl
Chunking, decomposition [13, 7], and sequential minimaii-op
mization [18] are most well-known techniques. Our CB-SVM al
gorithm runs on top of these techniques to handle very laage d
sets by condensing further the training data into the siedgisum-
maries of large data groups such that coarse summary is roade f
“unimportant” data and fine summary is made for “importaratal

SVM approximation has been attempted to improve the compu-
tational efficiency of SVM by altering the QP formulation toet
extent that it keeps a similar semantic of the original SVMlarh
it is faster to be solved by a QP solver [8, 1]. However, theivn
formulations are still not proven to be efficient and releabhough
to work with very large data sets.

On-line SVMs or incremental and decremental SVMs have been
developed to handle dynamically incoming data efficien®ly, [5,

16]. In this senario that an SVM model is incrementally camnsted

and maintained, the newer data have a higher impact on the SVM
model than older data. In other words, recent data have ahigh
chance to be the SVs of the SVM model than older data. Thus,
for the analysis of an archive data which should treat allda&
equally, they would generate undesirable outputs.

Selective sampling or active learning is to intelligentiyrgple a
small number of training data from the entire data set thatima
mizes the degree of learning, i.e., learning maximally vaitimini-
mum number of data points [9, 22, 19]. The core of the actiamle
ing technique is to select the data intelligently such thatdegree
of learning is maximized by the data. A common active leagnin
paradigm iterates a training and testing process as fall(lyson-
struct a model by training an initially given data, (2) tdst entire
data set using the model, (3) by analyzing the testing ougelgct
the data (from the entire data set) that will maximize therdegf
learning for the next round, (4) accumulate the data to thieitrg
data set, and train them to construct another model, anc: (gt
from (2) to (5) until the model becomes accurate enough.

The idea of selective sampling for SVM is to select the daiael
to the boundary in the feature space at each round becaudatthe
near the boundary have higher chances to be SVs in the nexd,rou
i.e., a higher chance to move the boundary further [22, 18pyT
iterate until there exists no data nearer to the boundany tha
SVs. However, an active learning system needs to scan tire ent
data set at every round to select the data, which generat@suoh
1/0O cost for very large data sets.

Some random sampling techniques [2, 11] developed to reduce
the training time of SVM for large data sets are also based the
same idea as the selective sampling which samples the data ne
the boundary with higher probabilities. They also need amdbe



entire data set at each round when the samples are add irheknot
method using random sampling [17] was developed for noatine
SVM using the random sampling technique in the kernel trick.

Based on the best of our knowledge, our proposed method-is cur

rently the only SVM for very large data sets which tries togyae
the best results given limited amount of resource.

7. CONCLUSIONS AND FURTHER WORK

This paper proposes a new method called CB-SVM (Clustering-

Based SVM) that integrates a scalable clustering methold awit

SVM method and effectively runs SVM for very large data sets.
The existing SVMs are not feasible to run such data sets due to

their high complexity on the data size or frequent acceseeb®
large data sets causing expensive 1/O operations. CB-S\fMesp
a hierarchical micro-clustering algorithm that scans thire data
set only once to provide an SVM with high quality micro-clerst
that carry the statistical summaries of the data such tteastim-

maries maximize the benefit of learning the SVM. CB-SVM tries

to generate the best SVM boundary for very large data seengiv
limited amount of resource based on the philosophy of higiar
cal clustering where progressive deepening can be cortludten
needed to find high quality boundaries for SVM. Our experiteen
on synthetic and real data sets show that CB-SVM is very Bleala
for very large data sets while generating high classificatiocu-
racy.

CB-SVM may not perform as well in high dimensional spaces

because micro-clustering in high dimensional spaces mayp@o
much meaningful [3]. Developing an effective indexing stture
for high dimensional classification problems (e.g., docotnelas-
sification) is an interesting direction of future work.

CB-SVM is currently limited to the usage of SVM linear kersel
since the hierarchical micro-clusters would not be isorhmrm a
new high-dimensional feature space once the space is dramsd
by a nonlinear kernel. Constructing effective indexingistures
for nonlinear kernels is also another interesting directbfuture
work since it has high practical value especially for pattercog-
nition of large data sets, such as classifying forest coyees or
the pictures from a huge amount of satellite data.
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