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Abstract

The Global Positioning System (GPS) is a world wide
navigation system run by the United State Department
of Defense. The GPS is based on a constellation of
NAVSTAR satellites and provides reliable positioning
and timing data at any time all over the world. Since
the services of the GPS are open to the public due to
the availability of receiver hardware, the importance of
the GPS has increased enormously.

To obtain this level of accuracy a number of impacts
have to be taken into account. In this paper we will
discuss the relevance of the theory of relativity first
formulated by A. Einstein in [6] as a source of error for
the GPS.

1 Introduction

We will show that the velocity of the GPS satellites
in an earth inertial reference frame is high enough
to lead to some effects not expected by classical
mechanics, which are significant for the precision
of position determination. If these effects were ne-
glected, an error of 12 km per day for position de-
termination or 39µs per day for time determination
would occur.

The first two sections will introduce the basics of
the GPS and the theory of relativity. Afterwards
the relativistic effects influencing the GPS are con-
sidered. Due to the complexity of theory of relativ-
ity we will only consider major effects.

2 Basics of the GPS

The GPS consists of three parts called the space
segment, the control segment and the user segment.

The space segment consists of a formation of 31
navigation satellites1 with atomic clocks on board.
These clocks are synchronised within 20 ns to each
other and within 100 ns to UTC [10]. The satellites
are placed in nearly circular medium earth orbits
with an orbital period half of a sidereal day.2 Nav-
igation signals are continuously broadcasted by the
satellites which contain the data needed for navi-
gation purpose. Satellites were chosen as naviga-
tion base because medium earth orbits are highly
predictable. Residual perturbations through the
moon, the sun or the solar system gas giants in-
fluencing the orbits, are measured and taken into
account for further calculations of the orbital ele-
ments.

These measurements are done by the control seg-
ment. This global network of monitoring stations
tracks the satellites’ orbits, fulfils updates to the
orbital data and synchronises the satellites’ clocks.

The user segment is represented by the GPS recei-
vers which recognize the navigation signals trans-
mitted by the satellites. Based on navigation data
and signal timing information, the GPS receiver is
able to estimate positioning and timing informa-
tion.

1 December 2008. See http://www.navcen.uscg.gov/

GPS/status_and_outage_info.htm
2 The time the earth needs for a full revolution w.r.t. dis-

tant stars (approx. 23h56m4.09s)
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2.1 Satellite communication

The navigation signals are broadcasted via L-Band
on two frequencies denoted as L1 and L2,3 Whereas
L1 is modulated with the C/A-Code (1.023 MHz)
and the P(Y)-Code (10.23 MHz). L2 is modulated
only with the P(Y)-Code. Both codes are based on
pseudorandom noise sequences (PRN), whereas the
P(Y)-Code can be encrypted. Due to the shorter
wave length of the P(Y)-Code and the transmission
on two separate carriers, a more precise position
calculation is possible. The PRN is used to mea-
sure the signal propagation delay of several signals
simultaneously.4

Each code carries the actual navigation message
with a 50 Hz data rate. The messages are repeated
twice a minute and one data frame contains 1500
bits. Every frame consists of 6 subframes and con-
tains the following data

• Time of transmission

• Satellite ephemeris data (orbital elements)

• Satellite clock information (clock offset)

• Ephemeris data of the other satellites (split to
several frames)

• Signal propagation information

• System health status.

For more information about the technical back-
ground of the GPS see [10, 9].

2.2 Reference frames

Reference frames, which map every point of space
to an unique tuple of coordinates are essential for
position determination. The GPS uses two ba-
sic reference frames, the ECEF (Earth-Centered,
Earth-Fixed) and the ECI (Earth Centered Iner-
tial). Both reference frames are Cartesian coordi-
nate systems with the origin located in the barycen-
ter of the earth and the z-axis pointing to the ter-
restrial north pole. Hence the z-axis equals the
rotational axis of the earth.

3 L1: 1575.42 MHz, L2: 1227.60 MHz
4 Within 1µs for the C/A-Code and 100 ns for the P(Y)-

Code.

The x-axis of the ECEF crosses the equator at the
zero meridian. Hence the coordinates of a location
on the earth measured in the ECEF are time in-
dependent, this frame therefore is convenient for
terrestrial navigation. The WGS84 [11] describes
a reference ellipsoid in the ECEF which approxi-
mates the shape of the earth. The equatorial ra-
dius re and the polar radius rp of this ellipsoid are
given by the WGS84 with:

re ≈ 6378 km
rp ≈ 6357 km

(1)

The ECEF reference frame with the WGS84 refer-
ence ellipsoid, which is used as reference plane by
the GPS, is shown in figure 1.

Fig. 1: The WGS84 reference ellipsoid in the
ECEF

Every point (x, y, z) in the ECEF can be expressed
in a more practical notation by the spherical angles
λ (longitude) and ϕ (latitude) and the height h
above the reference ellipsoid by the equations

λ = arctan
y

x

ϕ = arctan
z + ε̃2 · rp · sin3 θ√

x2 + y2 − ε2 · re · cos3 θ

h =

√
x2 + y2

cosϕ
− rp√

1− ε2 sin2 ϕ

(2)
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with

θ = arctan

(
z√

x2 + y2
· re
rp

)
ε2 = 1− r2

p/r
2
e

ε̃2 = r2
e/r

2
p − 1

.

Whereas the ECEF is fixed w.r.t. the earth, the
ECI reference frame is fixed w.r.t. distant stars
and hence non rotating. The x-axis points to the
vernal point5 located in the formation Aries (�).
Therefore the ECEF rotates with the angular ve-
locity ω♁ around the z-axis in the ECI. The WGS84
defines the value of ω♁ with

ω♁ = 7.292115 · 10−5 rad · s−1 (3)

Due to the fact that many physical processes
are simpler to describe in non rotating reference
frames, the ECI is used by the GPS for position
determination [2, 4]. Afterwards a final rotation to
the ECEF has to be performed.

The y-axis of the ECEF and the ECI is perpen-
dicular to the x- and z-axis so that the coordinate
system is right handed.

2.3 Orbital mechanics

The orbit of a satellite moving periodically around
a massive celestial body can be regarded as an el-
lipse. The barycenter of the central body is lo-
cated in one focus of this ellipse. The orbit is
unambiguously defined by a tuple of six parame-
ters (a, e, ω, i,Ω, ν). The length of semi-major axis
a and the numerical eccentricity e describing the
shape of the orbit. The meaning of the argument of
periapsis ω, the inclination to the equatorial plane
i and the argument of ascending node Ω, which are
describing the orientation of the orbit, is shown in
figure 2. ν defines the true anomaly of the satellite
at the begin of epoch. ν is measured as the angle
enclosed between the satellite and the periapsis at
the focus located in the center of mass.

With the orbital elements given, it is possible to
calculate the position of the satellite at any specific

5 The point at which the sun crosses the celestial equator
from south to north (around every march 20th).

Fig. 2: Orbital elements

time. Moreover, these orbital elements are invari-
ant over time. They are only perturbed slowly by
influence of other massive bodies like the moon, the
sun or the Jovian solar system bodies.

2.4 Trilateration

Fig. 3: Constellation of 4 GPS-satellites with
ranges di to Chemnitz, Germany

Consider a constellation of four GPS satellites as
shown in figure 3. The navigation signals broad-
casted by the GPS satellites are propagating with
speed of light c. Assume the signal of satellite i is
transmitted at time ti. Let ~ri be the position of
satellite i at this time. Assume further all these
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signals are received by the observer located at ~r
simultaneously at time t. Now the ranges di be-
tween satellite i and the observer can be estimated
by equation (4).

‖~r − ~ri‖ = di = c · (t− ti) (4)

~ri can be calculated by ti and the orbital elements
of satellite i, which are transmitted within every
navigation message. To estimate ti simultaneously,
the pseudorandom sequence is needed, because the
GPS-time is only signaled at start of each subframe
in the navigation message. Due to the PRN se-
quences the offsets of the signals to each other can
be measured and only one subframe start is needed
to get all ti. t is the time of reception and can be
measured by the observer’s clock.

There are three degrees of freedom in equation (4)
(the three components of ~r). Therefore the mea-
surements of three different satellites are needed to
solve the given system of equations.

At this point we assumed that the observer’s clock
is synchronised to the GPS clocks. This cannot
be guaranteed. But it can be guaranteed, that the
observer’s clock is stable enough to allow a cor-
rect measurement of short term time differences.
Simple crystal oscillators comply this requirement.
Assume the observers clock reads τ at the time of
reception with an unknown offset ∆ between the
local clock and the GPS clocks, expressed by

t = τ + ∆.

Therefore equation (4) reads now

‖~r − ~ri‖ − c ·∆ = c · (τ − ti) (5)

with 4 values unknown (three components of ~r and
∆). Analogously this system of equations is solv-
able by four independent measurements. There-
fore each GPS receiver needs at least four satel-
lites to determine the observer’s position. The term
c · (τ − ti) is called “the pseudorange to satellite i”.
Apart from position information the GPS time can
be determined through the term τ + ∆. For special
applications where one parameter is known (e.g.
the height of a ship’s GPS receiver above main sea
level) only three satellites are needed.

A second approach is to fix the time of transmission
(t′) and to measure the time of reception (t′i). Due

to the rotation of the earth the position of the ob-
server in the ECI changes between the subsequent
measurements, so this fact must to be taken into
account.

2.5 Determining the position

This section shall give a brief overview of the steps
which are performed by the user segment to de-
termine the positioning and timing data as de-
scribed in [3]. For more detailed informations see
[4] as cited in [2].

1. Measure the pseudoranges to the satellites us-
ing the PRN at a chosen time and retrieve the
transmission times and orbital elements.

2. Apply some corrections to the transmission
times (e.g. clock offset, ionospheric propaga-
tion effects, eccentricity correction6).

3. Calculate the satellites’ positions in the ECEF
from the orbital elements.

4. Choose an ECI frame and convert the satel-
lites’ positions to it.

5. Solve the propagation delay equations (5).

6. Convert back the observers position to the
ECEF.

7. Apply equations (2) to get the geographical
coordinates.

3 Theory of Relativity

3.1 Special Relativity

The special theory of relativity (STR or SR) was
first introduced by Albert Einstein 1905 in [6] to
explain some results of experiments related to the
propagation of electromagnetic waves (e.g. light).

The theory of special relativity is based on the two
fundamental postulates mentioned in proposition 1.

6 Described in section 4.4.
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Proposition 1
i) The speed of light in vacuum c is the same,

regardless of the relative motion between the
observer and the light source.

ii) The laws of physics are the same for observer’s
in uniform motion to another.

Whereas item ii complies with practical experience,
item i seems to be counterintuitive at first. This
fact is demonstrated in figure 4. Let there be a
light source which emits light pulses. Now the blue
observer will measure the velocity at which these
light pulses are propagating. The blue observer
rests w.r.t. the light source and will measure c.
Now the red observer which moves with velocity v
towards the light source will perform the same mea-
surement. According to classical mechanics the red
observer would measure c + v but in conformance
with item i he would measure c, too. Direction and
magnitude of this relative motion is immaterial for
this result.

~v

c

c

Fig. 4: Constancy of c

To illustrate item ii for clarity, look at figure 5. A
body is pitched with velocity v0 horizontally by the
thrower. Neglecting air drag, the trajectory will
equal a parabola. This process is observed from
two different points of view. At first, the thrower
is the observer and would measure the trajectory
shown in figure 5a. Next, the thrower is in uniform
motion to a second observer by ~v. This observer
would do the same measurement and get the results
illustrated in 5b.

Both trajectories are solutions of the equation given
by7

∂2~x(t)
∂t2

= m · ~F (t)

with ~x(t) being the position of the body at time t
w.r.t. the observer’s reference frame, m being the
mass of the body, F (t) being the force applied to

7 This equation is only legal in classical mechanics, but
should merely illustrate the principle of relativity.

~v0

(a) Resting Observer

~v

~v0 + ~v

(b) Moving observer

Fig. 5: Principle of relativity

it and the following boundary condition:

∂~x(t)
∂t

∣∣∣∣
t=0

=

{
~v0 case (a)
~v0 + ~v case (b)

3.1.1 Relativity of simultaneity

Now let us consider the consequences of proposi-
tion 1 by the following gedanken experiment. There
are two clocks CA and CB located in A and B. CA
emits a light pulse, when it reads tA. This pulse
propagates to B with velocity c and is reflected to
A instantaneously. At this moment CB reads tB .
When CA reads t′A the reflected pulse arrives A.
Now we can say “CA and CB are synchronous” if
and only if

tB − tA = t′A − tB . (6)

This experiment is illustrated in figure 6. Suppose
CA and CB are justified in a manner that they are
synchronous for the observer which is stationary to
the clocks (fig. 6a). Now, the same clock ensemble
is observed by a second observer moving with ve-
locity v w.r.t. the clocks (fig. 6b). The light pulses
still propagate with velocity c w.r.t. the observer
due to item i of proposition 1. As a consequence
the propagation delay of the pulse from A to B
will be observed larger than the propagation delay
from B to A. This leads to the conclusion that
the second observer will evaluate the clocks to be
asynchronous.

Therefore the term “simultaneity” depends to the
reference frame there the measurements are made.
Further it is not possible to define a global time.
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x

t

CA CB

CA CB

CA CB

A B

tB − tA =
AB

c

t′A − tB =
BA

c

(a) Stationary clocks w.r.t. the observer

x

t

CA ~v CB ~v

CA CB

CA CB

A B

tB − tA =
AB

c− v

t′A − tB =
BA

c+ v

(b) Clocks in motion w.r.t. the observer

Fig. 6: The relativity of simultaneity

3.1.2 Time dilatation and length contraction

Due to lack of global time, as seen in the last
section, we have to extend the common three-
dimensional space to the four-dimensional space
time. For further considerations we define two ref-
erence frames

I(x, y, z, t) and I ′(x′, y′, z′, t′).

Let (x, y, z, t) and (x′, y′, z′, t′) denote the space
time coordinates of the same event measured in
both reference frames. Assume the axes of I and
I ′ match pairwise at t = t′ = 0 and the origin of
I ′ moves with velocity v along the x-axis of I. An
observer resting in I ′ would assign (x′, y′, z′, t′) to
(x, y, z, t) according to the Lorentz transforma-

tion

x′ = γ · (x− vt)
y′ = y

z′ = z

t′ = γ ·
(
t− v

c2
x
) (7)

with

γ =
1√

1− v2

c2

(8)

called the Lorentz factor. As consequence of
item ii of proposition 1 the equations (7) hold for
(x, y, z, t) and (x′, y′, z′, t′) interchanged, too, re-
garding the change of the sign of v. Applying the
Lorentz transformation to distances ∆x, ∆x′ and
time differences ∆t, ∆t′ measured in I and I ′ we
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get:

∆x′ = γ · (∆x− v∆t)

∆t′ = γ ·
(

∆t− v

c2
∆x
) observer in I ′

∆x = γ · (∆x′ + v∆t′)

∆t = γ ·
(

∆t′ +
v

c2
∆x′

) observer in I

Consider a clock resting in I ′ (∆x′ = 0). Then an
observer in I would get

∆t = γ ·∆t′. (9a)

Due to the principle of relativity the observer in I
would realize the time difference of a clock resting
in I ′ as following

∆t′ = γ ·∆t. (9b)

Keeping in mind that γ ≥ 1, this leads to the fol-
lowing corollary.

Corollary 2 (Time dilatation)
Moving clocks seems to tick slower than identical
stationary clocks.

Now consider a measuring rod of length ∆x′ resting
along the x′-axis of I ′. The observer in I doing an
instantaneous measurement (∆t = 0) of the rod
would get ∆x as following

∆x =
1
γ
·∆x′. (10a)

Analogous the observer in I ′ would measure ∆x′

to
∆x′ =

1
γ
·∆x. (10b)

Corollary 3 (Length contraction)
Moving bodies seems to be shorter then identical
stationary bodies in direction of relative movement.

3.2 General Relativity

In contrast to the special theory of relativity the
general theory of relativity (GR or GTR) takes the
effects of mass and gravity into account [7]. The
laws of GR are expressed by methods of differ-
ential geometry. These methods allow to migrate

from classical coordinate systems to curvilinear co-
ordinate systems. The core statement of GR is,
that all forms of energy8 curve the 4-dimensional
space time. Light propagates with velocity c along
geodesic lines in this curved manifold. Thus gravity
could be explained as geometric feature.

Figure 7 illustrates a curved 2-dimensional man-
ifold embedded into a 3-dimensional space. This
curved manifold shows two spatial dimensions of
an equatorial plane of the space time curved by a
massive non-rotating spherical body with homoge-
neous density and no charge.9 The green and red
lines are the coordinate lines. The third spatial di-
mension and the dimension in time are not shown.

Fig. 7: Curved 2-dimensional manifold in
3-dimensional space with coordinate lines
and a geodesic line.

Due to the complex structure of general relativity,
we will only focus on the effects relevant for the
GPS, namely the gravitational time dilatation and
gravitational blue- or redshift, respectively.

3.2.1 Gravitational time dilatation

One effect of GR is the gravitational time dilata-
tion. This effect is simply demonstrated in figure 8.
A light ray emitted towards a massive body will
gain energy due to the stronger gravitational po-
tential and be shifted to higher frequencies. In

8 As shown by Einstein in [5] mass can be regarded as a
form of energy.

9 The so called Schwarzschild solution.
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contrast a light ray propagating to a weaker gravi-
tational potential will lose energy and therefore be
shifted to lower frequencies.

Fig. 8: Gravitational time dilatation

As summarized by corollary 4 it should be paid
attention that this effect is not symmetric like the
time dilatation due to relative movement.

Corollary 4
Gravitational stronger bounded clocks tick slower.
Gravitational weaker bounded clocks tick faster.

The amount of time dilatation ∆t
t for an observer

resting at gravitational potential Φ0 to a clock at
gravitational potential Φ is given by equation (11).

∆t =
Φ− Φ0

c2
· t (11)

4 Relativity in the GPS

Now let us apply the laws of the theory of relativity
to the global positioning system. For GPS it is suit-
able to neglect terms of order o(c−2) [2]. Further we
assume that the GPS receiver moves slowly across
the surface of the earth and is located in low alti-
tudes. For receivers in high altitudes and/or with
high ground speed, special considerations have to
be done.

Figure 9 illustrates the state vectors of a satellite
vehicle. The satellite is accelerated towards the
center of earth due to effects of gravity resulting
in acceleration. The vector of acceleration ~a is per-
pendicular to the velocity vector ~v at any time. So
only the direction of ~v changes over time. The mag-
nitude vS = ‖~v‖ is constant and can be estimated
by equation (12).

vS =

√
GM♁
rS

(12)

Fig. 9: State vectors of a GPS satellite

The magnitude of the range vector in circular orbits
is constant too and for GPS

‖~r‖ = rS = a = 26562 km.

The factor GM♁ is defined to

GM♁ = 3.986005 · 1014 m3s−2 (13)

by WGS84 [11]. So vS can be evaluated to

vS = 3874 m · s−1.

4.1 Special Relativity

As seen in the last section the satellite vehicles
move with a speed of 3874 m · s−1 w.r.t. the ECI.
Although this motion is not uniform, it is in compli-
ance with item ii of proposition 1, because the ac-
celeration10 applied to the satellite vehicles only af-
fects the direction of movement. Due to this motion
an observer resting in the ECI will see the satellites’
clocks beat with a slower rate by the factor

1− 1
γ′

= 1−
√

1− v2
S

c2

≈ −1
2
· v

2
S

c2

≈ −8.349 · 10−11.

10 The effects of gravity which causes this acceleration has
still to be discussed separately.
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We have to keep in mind that an observer resting
on the surface of the earth moves w.r.t. the ECI
too, unless he is located at the North or South Pole.
The magnitude of this relative speed is maximal at
the equator, namely

ω♁ · re ≈ 465 m · s−1.

Consequently the time dilatation between clocks
resting in the ECEF and clocks resting in the ECI
has to be taken into account. At the equator the
amount of time dilatation will read

1− 1
γ′′

= 1−

√
1−

(ω♁re)2

c2

≈ −1.203 · 10−12.

Therefore at the equator, the amount of time
dilatation between satellite clocks and terrestrial
clocks is given by

1− 1
γ

=
1
γ′
− 1
γ′′

≈ −8.229 · 10−11

= −7109 ns · d−1.

(14)

We will see in the next section that clocks on the
surface of the earth (more precise “on the geoid”)
beat at the same rate despite their relative motion
w.r.t. the ECI. Because the terrestrial time scale
is realised at the equator [8, 2] the factor γ is legal
for the whole geoid.

4.2 General Relativity

As mentioned in the last section we will discuss the
influence of the gravitational field of the earth now.
The effective gravitational potential Φ at a specific
point of the surface of the earth is approximately
given by equation (15).

Φ0 =−
GM♁
r(θ)

(
1− J2 · r2

e

r2(θ)
· 1

2
(3 sin2 θ − 1)

)
︸ ︷︷ ︸

Φstatic

−1
2
(
ω♁r(θ) cos θ

)2︸ ︷︷ ︸
Φcentripetal

(15)

The angle θ is measured from the equator to the
north or south and r(θ) is the radius of the earth

at this latitude. J2 denotes the quadrupole moment
coefficient of the earth which is defined by WGS84
[11] as

J2 = 1.08263 · 10−3. (16)

Φstatic is the part of the potential caused by the
mass of the earth, whereas Φcentripetal arises from
centripetal forces due to the earths rotation. Now
we see the last term will compensate the effects of
time dilatation due to the motion of resting clocks
on the surface of the earth in the ECI.

At the equator (θ = 0) equation (15) reads

Φ0 = −
GM♁
re

(
1 +

J2

2

)
− 1

2
(
ω♁re

)2
. (17)

For the satellites the quadrupole moment could be
neglected. Additional the satellite vehicles are in
free fall and so there is no centripetal gravitational
field. So the gravitational potential ΦS for the
satellites is given by

ΦS = −
GM♁
rS

. (18)

Combining equations (17) and (18) with (11) we
will get

∆t
t

=
ΦS − Φ0

c2

≈ 5.288 · 10−10

≈ 45685 ns · d−1.

(19)

4.3 Sagnac delay

Whereas the speed of light is constant in local iner-
tial frames (proposition 1 item i) the constancy of
c is not longer given for rotating reference frames.
This phenomenon is called Sagnac effect. The
Sagnac effect makes it possible to determine the
absolute rotation to an inertial frame and is used
by laser navigation instruments for example.

For measurements in the ECI (e.g. the solution of
the propagation delay equations (5)), which is non
rotating by convention, the Sagnac effect becomes
irrelevant. However the Sagnac effect must be ac-
counted for when synchronising GPS clocks from a
fixed point on earth or comparing clocks resting on
the earth using GPS signals.
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In 1984 four GPS satellites were used for a world
wide experiment ([1] as cited in [2]). The pairwise
signal offsets of these satellites in common view
were measured by three ground stations all over
the world simultaneously. In a non rotating refer-
ence frame these differences would cancel out, but
due to the rotation of the earth Sagnac delays up
to 350 ns were measured.

4.4 Eccentricity correction

Until now we have assumed that the satellite vehi-
cles move in circular orbits (e = 0). Due to slight
perturbations these orbits are merely near circu-
lar in reality, with eccentricity e < 0.02.11 On ec-
centrical orbits the satellite’s velocity vS and the
gravitational potential ΦS varies periodically due
to changes of rS . The error applying to the effects
discussed in sections 4.1 and 4.2 is given by

∆e(t) = 2 · ~v(t) · ~r(t)
c2

(20)

as shown in [2], with satellites velocity ~v and posi-
tion ~r measured in the ECI at time of transmission
t. These vectors are computable by the broadcasted
orbital elements. ∆e(t) could be approximated by

∆e(t) ≈ 2 ·

√
GM♁a

c2
e · sinE(t) (21)

with eccentric anomaly E at GPS time t and semi-
major axis a of the orbit. For e = 0.02 this would
lead to a maximum error of 46 ns.

The correction of this error must be done by the
user segment, because the computing power of the
first GPS satellites was strongly limited. Both, the
user segment and the control segment use the value
defined by WGS84 for GM♁ (see equation (13)) to
get consistent results [11].

4.5 Conclusion

Combining the results of sections 4.1 and 4.2 for
an observer on the earth’s surface the clocks on
board the GPS satellites would gain approx. 39µs

11 http://www.navcen.uscg.gov/gps/current/current.

alm

per day. When using three satellites for position
determination (equation (4)) this corresponds to an
error up to 12 km per day. For measurements based
on four satellites, only the term ∆ of equation (5)
is affected by clock drifts. To correct this error, the
time base of the GPS satellites is modified.

GPS clocks are based on a 10.23 MHz reference sig-
nal [9]. To account for relativistic effects, the refer-
ence oscillators are adjusted by the so called “fac-
tory offset” given by

4.465 · 10−10 ≈ 39µs · d−1.

The oscillators are therefore tuned to

10.22999999543 MHz

thus the GPS clocks beat the correct rate for
observers on the earth’s surface. Hence precise
time determination is possible with GPS receivers.
Other effects like the eccentricity correction or non
relativistic corrections are applied by the receiver
software.
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The earth texture used in the illustrations was taken from
the Blue Marble: Next Generation project with friendly
permission of NASA Goddard Space Flight Center (http://
earthobservatory.nasa.gov/Features/BlueMarble/).
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