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Abstract--Two important requirements for protocol implemen- 
tations to be able to provide quality of service (QoS) guarantees 
within the endsystem are: 1) efficient processor scheduling for 
application and protocol processing and 2) efficient mechanisms 
for data movement. Scheduling is needed to guarantee that the 
application and protocol tasks involved in processing each stream 
execute in a timely manner and obtain their required share of the 
CPU. We have designed and implemented an operating system 
(OS) mechanism called the real-time upcall (RTU) to provide 
such guarantees to applications. The RTU mechanism provides 
a simple real-time concurrency model and has minimal over- 
heads for concurrency control and context switching compared 
to thread-based approaches. To demonstrate its efficacy, we have 
built RTU-based transmission control protocol (TCP) and user 
datagram protocol (UDP) protocol implementations that combine 
high efficiency with guaranteed performance. For efficient data 
movement, we have implemented a number of techniques such 
as: 1) direct movement of data between the application and the 
network adapter; 2) batching of input-output (I/O) operations 
to reduce context switches; and 3) header-data splitting at the 
receiver to keep bulk data page aligned. Our RTU-based user- 
space TCP/Internet protocol (TCP/IP) implementation provides 
bandwidth guarantees for bulk data connections even with real- 
time and “best-effort” load competing for CPU on the endsystem. 
Maximum achievable throughput is higher than the NetBSD ker- 
nel implementation due to efficient data movement. Sporadic and 
small messages with low delay requirements are also supported 
using reactive RTU’s that are scheduled with very low delay. We 
believe that ours is the first solution that combines good data 
path performance with application-level bandwidth and delay 
guarantees for standard protocols and 0%. 

Index Terms- Multimedia communication, networks, operat- 
ing system kernels, processor scheduling, protocols, real-time 
systems, transport protocols. 

I. INTR~IxJCTI~N 

T HERE IS a growing need to provide support for multime- 
dia processing within computer operating systems (OS’s). 

This will enable a variety of exciting applications, such as 
interactive video, customized news services, virtual shopping 
malls, and many others. A large fraction of data handled by 
these applications will be of the continuous media (CM) type. 
The transfer of CM data over the network and its processing 
at the endsystem must be in such a way that its periodic (or 
“real-time”) nature is preserved. Emerging networks such as 
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asynchronous transfer mode (ATM) and the proposed inte- 
grated services Internet [9] with reservation protocols such 
as RSVP [42] can provide guarantees for data transfer by 
managing network resources appropriately. Similarly, the OS 
must manage endsystem resources so that processing needs 
implied by the bandwidth and delay requirements of each 
connection are satisfied. This will complement the guarantees 
provided by the network for data transfer and build upon 
the increasing processing power of the endsystem hardware. 
Thus, multimedia applications are commonly referred to as 
having quality-of-service (QoS) requirements. To support these 
applications networks and endsystems must provide QoS guar- 
antees for the transfer and processing of multimedia streams. 

This paper reports on our experiences in implementing high- 

speed protocol processing with QoS guarantees. Specifically, 
we describe our user-space implementation of the transmission 
control protocol/Internet protocol (TCP/IP) suite that provides 
throughput and delay guarantees to applications. Our imple- 
mentation combines the following two aspects: 

. 

. 

a novel mechanism called the real-time upcall (RTU) that 
serves as a vehicle of concurrency for implementing pro- 
tocols in user space and provides processing guarantees; 
state-of-the-art mechanisms for efficient data movement 
and network input-output (I/O) based on our implemen- 
tation of a user-kernel shared-memory facility. 

The important benefits of RTU mechanism are its ability to 
closely match stream requirements, improvement in runtime 
efficiency, and simplification of protocol code. The shared- 
memory facility allows data to be moved directly between 
application buffers and the network adapter, thereby reducing 
data copying overheads. The focus of this paper is on the 
QoS guarantee aspect. In the next section we summarize the 

key features of the RTU mechanism that make it a suitable 
mechanism to implement protocol processing with QoS guar- 
antees. In addition, we briefly touch upon our data movement 
mechanism and highlight the important experimental results 
that we have obtained. 

A. Summary of Main Ideas and Results 

1) The RTU Mechanism: It is a, well-recognized fact that 
the upcall mechanism allows efficient protocol implemen- 
tations [7]. Our experience suggests that upcalls can also 
be a suitable vehicle of concurrency to implement protocol 
operations such as output, input, and timer processing. An 
RTU is similar to an upcall with the additional feature that 
an RTU handler function gets a guaranteed share of the 
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central processing unit (CPU) over periodic intervals in time. 

Therefore, structuring protocol (and application) code using 
RTU’s provides isolation from other “best-effort” processing 

load on the endsystems. 
Executing protocol code at a high priority (as is done in 

kernel implementations) does not solve the problem of endsys- 

tern QoS guarantees. Instead, both protocol and application 
code for a connection must be scheduled so that network data 
can be processed at the required rate. The RTU mechanism 

can partition aggregate CPU bandwidth among connections 

to meet the above requirement. Scheduling is important even 
when endsystems are faster (relative to the network) if there is 

a need to operate at high utilization. For example, a web server 
provider could support more clients if the server utilization 

could be increased while maintaining QoS guarantees. 

To provide low delay, early demultiplexing (as in fast- 

remote-procedure-call (RPC) systems [34]) is important, but 
not sufficient. It is also necessary to schedule the protocol and 

application code that processes a message with low latency. 
The RTU mechanism provides low-latency user-level handler 

invocation for delay sensitive applications. 
The main motivation for the RTU mechanism is to ob- 

tain efficiency improvements over current implementations 

of user-space protocols that provide QoS guarantees. This 
improvement is obtained by exploiting the fact that protocol 

processing is iterative and operates on (usually) fixed-size 
protocol data units in the following two ways. 

1) RTU handlers track their CPU usage in terms of the 
number of protocol data units (PDU’s) processed (which 

is simple) rather than measuring execution times (which 
can be cumbersome). This is feasible because protocol 

processing such as in TCPAP, for example, is performed 
in terms of (usually fixed-size) PDU’s, each of which 

requires a fixed amount of CPU time in the common 
case. 

2) RTU’s are scheduled using a cooperative scheduling 

mechanism rather than the preemptive style that is used 

for real-time threads. A RTU handler executes periodi- 
cally based on its priority, where each execution consists 

of a sequence of atomic iterations with a scheduling 

opportunity at iteration boundaries. This is a blend of the 
event and thread model which lowers both runtime cost 

and implementation complexity. In particular, unlike 

threads, RTU’s in an address space share a single stack; 
dispatching an RTU does not require execution state to 

be saved (and restored) per context switch, and delaying 
preemption until an iteration boundary simplifies real- 

time concurrency control. Our analysis in [18] derives 
scheduling bounds for real-time scheduling algorithms 

(such as rate-monotonic (RM) and earliest-deadline-first) 

with delayed preemption. 

2) EfJicient Data Movement: The importance of efficient 

data movement is well recognized and several techniques 

have been described in previous work [ll], [14]. Our data 
movement mechanism is comparable to these state-of-the-art 

techniques and is designed to work well with our RTU-based 
user-space protocol implementations. Our implementation is 

based on a user-kernel shared-memory mechanism and has 
support for: 1) direct movement of data between application 
and adapter buffers to avoid data copying; 2) batching of 
network I/O operations to reduce context switches; and 3) 
lock-free receive and transmit queues to avoid synchronization 
overheads. In addition, to enable received data to be remapped 
rather than copied, the network adapter driver has the ability 
to extract application data from incoming packets and store it 
in separate pages. Using these techniques, we have obtained 
better efficiency than the best kernel resident protocol (KRP) 
implementations. 

3) Important Experimental Results: The motivation behind 
presenting these results is to show that by combining effi- 
cient data movement and scheduling mechanisms, processing 

bottlenecks in the endsystem can be overcome to provide guar- 
anteed throughput and delay performance for protocols such as 

TCP/IP. Our choice of TCP/IP to evaluate the QoS guarantees 
provided by the RTU mechanism was guided by several 
reasons. TCP/IP has significant computation requirement and 
complexity to evaluate the efficacy of the RTU concurrency 
model. We also needed something that is well known to 
compare against. While real-time transport protocol (RTP) is 
more likely to be used with QoS-sensitive applications, it was 
not mature enough when we began this work. Moreover, we 
are using TCP in an environment where each TCP connection 
has a reserved bandwidth from the ATM network. Thus, 
our results are valid in the regime where congestion control 
mechanisms of TCP are not brought into play. 

We briefly state our important experimental results. The 
experiments were performed on 133-MHz Pentium machines 
running the NetBSD OS connected to a 155-Mb/s local area 
ATM network. To aid comparison with existing kernel protocol 
implementations, we took the existing kernel resident TCPAP 
and user datagram protocol/IP (UDP/IP) code and restrnc- 
tured it in user space using the RTU mechanism. Minimal 
changes to the application code were required to use the RTU 
based protocol implementation. The important results are the 
following. 

l Our RTU-based TCP/IP implementation delivers a maxi- 
mum throughput at the application layer of over 120 Mb/s. 
In comparison the kernel resident TCP implementation 
delivers at most 80 Mb/s.’ The lower maximum through- 
put for kernel TCP is due to the fact that it performs 
an additional copy from kernel buffers to the application 
buffer. On the other hand, RTU-based TCP is able to 
move data directly from the network adapter to applica- 
tion buffers and perform protocol processing “in place.“2 
However, increasing throughput by reducing data copying 
is well known and is mentioned here only to quantify the 
improvement over the standard implementation and to aid 
comparison with the case described below. 

In this case we introduce “best-effort” (i.e. non-RTU) 
processing load on the endsystems. Due to the processing 
guarantees provided by RTU scheduling, there is no 

‘The maximum throughput using a kernel protocol is 105 Mb/s (when UDP 
is used). 

‘Existing socket applications must to changed to allocate network buffers 
in the shared-memory pool. 
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Fig. 1. QoS specification and mapping. 

change in the performance of RTU-based TCP connec- 

tions. Thus, real-time scheduling of RTU’s ensures that 

the amount of CPU allocated for each RTU is independent 

of the amount of “best-effort” load. In contrast, through- 

put provided by kernel resident TCP drops from 80 to 30 

Mb/s due to the UNIX time-sharing scheduling policy. 
l The round-trip time (RTT) for a 4-KB message using TCP 

implemented with reactive RTU’s is 2.3 ms. For kernel 

TCP, the RTT is 4.3 ms. On unloaded systems, the gains 

are due to the ability to move data directly between the 

adapter and user buffers. As before, the benefit of the RTU 

mechanism is mainly realized when “best-effort” streams 

are introduced. In this case kernel TCP connections see a 

fourfold to sixfold increase in RTT with four competing 

streams. In contrast, the delay performance of RTU-based 

TCP remains unchanged even with 16 competing streams. 

From these experiments, we conclude that our implemen- 

tation combines guaranteed processing with efficient data 

movement techniques to provide application to application 

guarantees. Our main contribution is the RTU mechanism 

and the protocols implemented using RTU’s that support 

guaranteed-bandwidth as well as low-latency requirements. 

It must be pointed out that while theories for providing 

processing guarantees, and methods for efficient protocol 

processing, are known, we are not aware of any prior work that 

explores how best to combine these techniques and evaluates 

the performance for standard protocols such as TCP/IP. Our 

use of TCP/IP allows performance comparisons with the 

large installed base of IP implementations. Our performance 
numbers serve as a benchmark for those that provide QoS 

guarantees. 

4) Paper Outline: The outline of the paper is as follows. 

Section II gives the QoS framework that we have developed 

for the endsystem and introduces the periodic processing 

model. Section III describes how the periodic processing 

model is implemented using the RTU mechanism, and the RM 

with delayed preemption (RMDP) scheduling policy that is 

used to schedule RTU’s. Section IV provides a statement of the 

problems that need to be solved and the outline of our solution. 

Section V describes the shared-memory facility that is the basis 

for efficient data movement techniques. Section VI describes 

highlights of our user-space TCP/IP implementation. Section 

VII presents important experimental results with RTU-based 
TCP. Section VIII presents related work and our conclusions. 

II. THE QoS FRAMEWORK 

We have developed a QoS framework [16] from the point 
of view of application processes that run on the endsystem. 
There are four components in our framework. 

1) QoS Specijkation: Specification of QoS requirements is 
essential to provide performance guarantees. To keep speci- 
fications simple, we have identified four application classes 
that encompass isochronous media, bulk data, low-bandwidth 
transaction messages, and high-bandwidth message streams. 

Within each class, we identify quantitative parameters that 
are easy to specify for the user. For example, a video stream 
would have QoS parameters such as frame rate and average 
frame size. 

2) QoS Mapping: The QoS specifications mentioned above 
are at the application level. Since several resources (such 
as CPU, memory, and network connections) are involved in 
communication, the specifications must be mapped to resource 
requirements. The operation of deriving resource requirements 
from QoS specifications is referred to as QoS mapping and is 
illustrated in Fig. 1. From the QoS parameters specified for a 
stream, the mapping operation derives network connection at- 
tributes such as bandwidth and cell delay, processing attributes 
for the protocol code, and ‘memory requirements. We have 
worked out details of the mapping operation for the resources 
mentioned above [ 161. 

3) QoS Enforcement: The mapping operation as mentioned 
above derives resource requirements that are allocated by 
the OS to each application during the setup phase. During 
the data transfer phase, the operating system implements the 

QoS enforcement function, which involves scheduling various 
shared resources to satisfy these allocations. In particular, the 
CPU scheduling policy of the OS largely determines how 
the aggregate processing capacity of the endsystem is shared 
between different network sessions and is therefore crucial in 
determining the QoS provided. We therefore focus on CPU 
scheduling mechanisms for protocol processing that can be 
implemented efficiently in general purpose OS’s. 

4) Protocol Implementation Model: Given these solutions 
for QoS specification, mapping, and enforcement, protocol 

code has to be structured to take advantage of these facilities. 
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Fig. 2. Periodic processing model. 

The protocol implementation model facilitates the mapping of 
protocol services to appropriate implementation components 
provided in the framework. An important objective of the 
model is to provide efficient OS mechanisms to improve the ef- 
ficiency of protocol implementations by reducing the overhead 
associated with data movement and context-switching opera- 
tions that have been shown to dominate protocol processing 

costs [8]. 

A. CPU Requirements for Protocol Processing 

QoS specification and mapping steps are explained in 
greater detail in [19]. This paper mainly deals with QoS 
enforcement and protocol implementation issues. Before 
we explain how the RTU mechanism works, we briefly 
describe how CPU requirements are specified. We use the 
periodic processing model [25] as shown in Fig. 2 to specify 
processing requirements. In this model, protocol processing 
for a stream is regarded as a periodic task with period T. In 
each period, a batch of B PDU’s are processed. Depending 
on the host platform and the amount of processing involved, 

the computation time C required to process the batch of 
PDU’s is also specified in the model. The periodic processing 
requirements are typically derived in the QoS mapping step 
based on the QoS requirements of the stream and knowledge of 
the CPU requirements for protocol processing. Note that such 
a periodic model is widely used in the real-time scheduling 
domain to express processing requirements [38]. An important 
aspect of our model is that the number of PDU’s processed per 
period, rather than time, is used as a measure of computation 
requirement. This is based on the assumption that (common 
case) protocol processing time does not vary much for each 
PDU. For bulk data transfer, this assumption is generally true 
since PDU size is constant during the life of the connection, 
and the time to process a PDU depends mainly on its size. 
The periodic model is also useful in processing CM data that 
is periodic in nature. 

Adequacy of the Periodic Model: The periodic model has 
been chosen because it can be easily implemented in an 
endsystem, is concise, and is amenable to analysis. If the 
processing requirements of a stream change over time, the 
period and/or the batch size for the stream can be changed 
accordingly. Typically, this happens when the rate of the 
network connection changes or the processing requirement 
changes. With appropriate support from the QoS infrastructure 
within the endsystem and the network, RTU parameters can 
be chosen in such a way that most bandwidth values could 
be satisfied. This paper does not address these issues, but 
we believe that the periodic model can cope with these 
requirements. 

III. IMPLEMENTINGTHE PERIODIC PROCESSING MODEL 

The existing UNIX scheduling mechanism is inadequate 
to support the periodic processing model. This is because 

the UNIX scheduler is designed for time sharing rather than 
real-time operation. We therefore need the functionality of a 
real-time thread mechanism provided by OS’s such as RT- 
Mach [38] or Solaris [22]. Using a general purpose real-time 
thread mechanism to implement the periodic processing model 
has several drawbacks from the efficiency and implementation 
complexity standpoint. These are the overheads of multi- 
threading itself, the cost of real-time concurrency control, and 
increased context switching due to strict preemption required 
for real-time scheduling. 

Only few OS’s directly support the periodic model for real- 

time processing. Solaris only provides a fixed number of real- 
time priorities. Almost no OS closely integrates protocol pro- 
cessing with real-time scheduling. Thus, there was a real need 
to explore alternative abstractions and scheduling schemes that 
could meet the special needs of protocol processing and exploit 
its features to achieve efficiency. 

A. The RTU Approach 

An upcall is a well-known mechanism [7] to structure 
layered protocol code. Protocol code in a user process can 
register an upcall with the kernel and associate a handler 
function with each upcall. The kernel can then arrange to have 
the handler invoked when an event (such as packet arrival) 
occurs for the upcall. A real-time upcall also has a period and 
a computation requirement. These are expressed in terms of 
milliseconds and number of data units to be processed in each 
period, respectively (derived by the QoS mapping operation). 
An RTU has a priority that depends on its period and the 
scheduling policy used by the RTU scheduler. 

The overall organization of the RTU facility is shown in 
Fig. 3. The RTU facility is layered on top of the normal 
UNIX process-scheduling mechanism. The layering signifies 
that runnable RTU’s take precedence over runnable UNIX 
processes.3 When no runnable RTU’s are present, the sys- 
tem reverts to normal process scheduling. Thus, all kernel 
modifications have been confined to the process dispatcher, 
thereby requiring no changes to the existing UNIX process- 
scheduling policy. 

A process creates an RTU using the system call application 

programming interface (API). Multiple RTU’s can be created 
by a process. The create operation returns ajle descriptor that 
can be used to perform subsequent operations on the RTU. A 
pointer to a data structure can also be associated with each 

RTU during creation. This structure is called the RTU control 
block (RCB) and is in the address space of the user process. 
For protocol code, this typically contains the protocol control 
block (PCB) which encapsulates connection state. When the 
upcall handler is called, the pointer to its RCB is passed as 

an argument. 
The scheduler creates an RTU only if the admission control 

operation (schedulability test) succeeds. This is to ensure that 

3To be fair to normal processes, the admission control policy would not 
allocate 100% of the CPU to RTU’s. 
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each RTU gets its requested time to run in each period [ 181. 

Once created, an RTU can be run using an API call. The 

scheduler inserts a running RTU into the RTU run queue in 

each period. The run queue is ordered by RTU priority. When 

an RTU reaches the head of the run queue, its handler is 
upcalled. The RTU delivery and restoration routines ensure 

that the handler function in the process is invoked with the 

correct arguments, and the system state is restored after the 

handler returns. Runnable RTU’s are scheduled using the 

RMDP policy which is presented in the following section. 

B. The RMDP Scheduling Policy 

RTU’s in the run queue are scheduled according to a 
modified RM scheme called RMDP. In both RM and RMDP 
the priority of a task is inversely proportional to its period. 
The main difference between the two policies relates to the 
way preemption is implemented. In the basic RM policy the 
running task is preempted whenever a higher priority task 
becomes runnable. In RMDP the scheduler informs the running 
task (RTU handler) of the arrival of a higher priority RTU by 
writing into a shared-memory variable. Since RTU handlers 
are written in an iterative fashion, the running RTU checks 
the shared variable after each iteration, and yields the CPU if 
required. Thus, preemption can be delayed for the duration of 
one iteration. We have derived schedulability tests to determine 
if a set of RTU’s are schedulable [ 181 with delayed preemption. 
For most cases, the reduction in the utilization is within a 
few percent. The preemptive yielding mechanism has very 
low overhead since it only involves a memory write-and-read 
operation and does not require interrupts to be turned off. It 
takes advantage of the iterative nature of protocol processing to 
achieve almost the same real-time performance of preemptive 
scheduling algorithms. 

In a protocol implementation an iteration corresponds to 

processing one (or more) PDU’s. For example, an RTU that 

implements the input path of a TCP/IP connection processes 

received packets in every period. Each iteration in the packet 

processing “loop” dequeues a packet from the connection input 

queue, verifies the checksum, checks header fields, and queues 
data (if any) for the application. The application may also set 

up an RTU to process the received data at the desired rate. 

This scheme has the following advantages: 1) since a 
handler completes at least one iteration every time it runs, the 
number of context switches is reduced; 2) Since there is no 
asynchronous preemption, concurrency control operations such 
as locking can be avoided; and 3) there is no need to save (and 
subsequently restore) the runtime stack and register context 
of an RTU on preemption since the handler function returns 
and therefore does not need its stack and local variables. In 

fact, all RTU’s in an address space share the same stack. The 
RTU concurrency model is similar to that of events where 
each iteration corresponds to an event that is processed to 
completion. This is a key difference between real-time threads 
and RTU’s. 

The periodic processing model is not work conserving 
since a fixed amount of work is done in each RTU period. 
However, any leftover CPU bandwidth is allocated to normal 
processes. 4 It is possible to use the RTU mechanism with a 
work-conserving scheduling policy as well. 

An implementation of the RMDP policy must consider two 
security issues. It must ensure that an invocation does not 
run past its stated computation time. This can be achieved 
using timers similar to the way a typical OS enforces the time 
quantum. It must also ensure that an RTU yields the CPU 
when it is requested to do so. Several solutions to this problem 
have been evaluated in the context of implementing atomic 
sequences on a uniprocessor using rollforward [30]. These 
solutions can be directly applied to RMDP since iterations 
correspond to atomic steps, and a preemption check can be 
made after rolling forward to an iteration boundary. At present, 
our implementation assumes cooperative RTU’s that yield at 
iteration boundaries. 

C. Reactive RTU’s 

To support low-delay streams, we have implemented a 
version of the RTU mechanism called reactive RTU’s. A 

reactive RTU does not specify a period or a computation 
time requirement. Instead, all reactive RTU’s are assigned a 
period of zero and are therefore treated by the RM priority 

4The existing process scheduling policy determines how the runnable 
processes share this leftover CPU bandwidth. 
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scheme as having the highest priority. A reactive RTU is 
associated with a connection and is made runnable by the 
network adapter driver in response to packet arrivals on its 
connection. A reactive RTU can also be made runnable by 
an application process using a system call. When a reactive 
RTU is made rnnnable, its handler is called either immediately 
or after the running RTU handler (if any) yields. If more 
than one reactive RTU is runnable, the order of invocation is 
arbitrary. Reactive RTU’s eliminate scheduling delays within 
the endsystem since they run at the highest priority. Since 
reactive RTU’s are not accounted for in the schedulability 
test, they should be used only for low-bandwidth sporadic 
traffic. Techniques such as “limited hijacking” [3] can be used 
to prevent reactive RTU’s from monopolizing the CPU. Our 
experiments in Section VII show the benefit of using reactive 
RTU’s for latency-critical streams. 

Reactive RTU’s are different from low-overhead mecha- 
nisms such as Firefly [34] or [39]. Firefly uses early de- 
multiplexing to identify the target thread for an incoming 
RPC. However, it makes no effort to influence the scheduling 
policy that decides when the thread is to be run. The reactive 
RTU mechanism ensures early demultiplexing as well as 
low-latency scheduling. The application specific safe handler 
(ASH) approach to low latency is to not involve the scheduler 
at all; thus, the handler is run in the context of the interrupt 
in a safe manner. The drawback is that the ASH handler 
can only do a restricted set of operations since it runs in 

interrupt context. 

D. Other Applications of RTU’s 

The RTU mechanism has been applied to other tasks besides 
protocol processing. One example is a multimedia-on-demand 
(MOD) server implementation. The MOD server reads blocks 
of video data from a disk array, does some processing on each, 
and sends it over an ATM virtual circuit (VC) to a client. 
For each outgoing stream, an RTU is used to ensure that the 
processing requirement for the stream are met. Likewise at the 
MOD client, an RTU is associated with each incoming stream 
so that processing guarantees can be provided for MPEG-1 
decoding [5]. However, MPEG decoding does not conform to 
the periodic processing model since the time to process various 
types of frames varies. In this case applications must yield 
based on time spent rather than number of frames processed. 
The use of the RTU mechanism for middleware such as real- 
time CORBA is currently being explored. There is also an 
implementation of kernel RTU’s in which the RTU handlers 
are kernel functions as opposed to being in user processes. 
Kernel RTU’s have been used to restructure existing TCP/IP 
protocol implementation in the kernel. 

IV. PROBLEM STATEMENT AND SOLUTION OUTLINE 

Traditionally, protocols have been implemented in the ker- 
nel [24]. We refer to this as the KRP model. The motivating 
factors for the KRP model are layering considerations, inte- 
gration with the I/O subsystem, ease of demultiplexing data to 
user processes, and security. However, service differentiation 
in the KRP model is problematic since all protocol processing 
occurs at a single priority level. In addition, protocol pro- 

cessing in the kernel takes precedence over all application 
processing. This causes priority inversion where protocol 

processing of low-priority traffic (in kernel space) preempts 
processing of higher priority traffic (in user space). Therefore, 
there is a need to provide a guaranteed share of the CPU to 
both protocol and application code. 

An attractive alternative is to implement protocols in user 
space and use the QoS requirements of a stream to determine 
the priority at which protocol processing and application pro- 
cessing are performed. We refer to this as the application-level 
protocol (ALP) model. While previous efforts in this area have 

looked at issues such as integration with the I/O subsystem 
[26] or security [37], our focus is on implementing protocols 
with QoS guarantees while maintaining high efficiency. In 
our case we use the RTU mechanism to provide processing 

guarantees for protocols implemented in the ALP model and 
integrate it with efficient data movement. Appropriate choice 
of RTU parameters provides service differentiation and avoids 
priority inversion, both of which are necessary for providing 

guarantees. The ALP model enables better resource accounting 
since it allows resources to be allocated and scheduled among 
application-level entities. 

The protocol processing model strongly influences the over- 
heads of data movement and context switching that dominate 
the cost of protocol processing [8] and, hence, determine its 
efficiency. For example, in the KRP model, data has to be 
moved between the application buffers and kernel buffers, 
and between kernel buffers and the network adapter. Data 
is typically moved by copying or, in some cases, by page 
remapping. These operations have different costs in the ALP 
and KRP models. Another significant source of overhead in 
protocol processing is context switching and system calls. 
Context switches occur due to network interrupts, and due 
to priority-based scheduling of protocol processing tasks. 
System calls occur when the data path enters the kernel 
from user space and when control operations during data 
transfer require kernel intervention. Therefore, overheads due 

to data movement, context switches, and system calls must be 
minimized as much as possible. 

A. Protocol Processing Overheads 

In this section we discuss the specific problems that need 
to be solved to realize efficient implementations of protocols 
in user space with QoS guarantees. 

1) System Calls for Network I/O: Applications use system 

calls such as send and recv to move data between user and 
kernel domains. In the ALP model the data units that move 
across the user-kernel boundary are network PDU’s. In the 
KRP model these data units are application buffers. Because 
each application buffer corresponds to multiple PDU’s, the 
number of system calls required to move the same amount of 
data is much higher in the ALP model. Thus, it is important 
to reduce the number of system calls for network I/O in the 

ALP model. 
2) Data Movement: To realize the efficiency benefit of 

moving data directly between protocol buffers in user space 
and the network adapter, the following two problems must 
be addressed: 1) protocol buffers must be located in “wired- 
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down” memory so that they are not paged out while a direct 
memory access (DMA) operation is in progress; a buffer 
management system that takes this into account must be 
implemented, and 2) virtual-to-physical address conversion is 
usually required to setup DMA. Since protocol buffers are 

in user space, this conversion must be done in an efficient 
manner. 

RTU RTU 

APPLICATION 
PROCESS 

SHARED MEMORY 

3) Asynchronous Event Processing: Processing of asyn- 
chronous network and protocol events such as packet arrivals 
and timer expirations are usually triggered by interrupts in the 
KRP model. Using this mechanism in the ALP model will lead 
to excessive context switching because successive events may 
be destined for different processes. In addition, interrupt-driven 
scheduling disrupts priority-based scheduling schemes, leading 
to priority inversions. Therefore, the problem of handling 
protocol events without excessive context switching or delay 
needs to be addressed. 

1 ATM ADAPTOR 

4) Scheduling Concurrent Protocol Activities: Protocol pro- 
cessing for each connection is usually structured as “upper” 
and “lower” halves. The upper half gets control when the 
application process initiates read or write operations to a 
connection. The lower half is driven by network events such 
as packet arrivals and timer expirations. In current KRP 
implementations the upper half does concurrency control by 
preventing the lower half from running by disabling interrupts. 
This leads to priority inversion and highly variable delays in 
message processing and delivery. The lower half can also 
block out the upper half in an uncontrolled manner since 
it runs at interrupt level leading to “livelock.” In the ALP 
model we can use a concurrency mechanism such as the 
RTU to implement each half that allows the CPU to be 
partitioned between the two halves based on their processing 
requirements. In addition, the delayed preemption feature 
removes the need for lock-based concurrency control between 
RTU’s that implement the two halves of a connection. While 
the ALP model does not completely eliminate livelock, it 
reduces it significantly since the amount of work done at 
system priority is less. 

Fig 4. Using shared-memory buffers. 

To summarize, the following problems need to be solved to 
realize efficient protocol implementations in the ALP model: 
1) perform network I/O with the least amount of system 
calls; 2) move data directly between application buffers and 
the network adapter (zero-copy operation) for both send and 

receive; 3) efficiently process asynchronous events such as 
packet arrivals with minimal priority inversion; and 4) take 
advantage of the RTU mechanism to realize efficient protocol 
implementations that provide bandwidth and delay guarantees. 

given connection. For example, an RTU that does output / 
processing for a connection creates a data structure for 
each PDU in shared memory. It then appends it to the 

output queue (also in shared memory) for the underlying 
VC. The data structure contains control information such 
as the buffer address and the length of the PDU data. 
When the RTU handler gives control to the kernel during 

scheduling context switches, the adapter driver examines 
the output queue and initiates a DMA transfer operation 
to the network adapter. Thus, scheduling and network I/O 
take place in the same system call. An important feature 
of our implementation is that these queues are “lock-free” 
to eliminate the need for synchronization between the user 
and kernel. Fig. 4 shows two queues for a connection, one 

for send and the other for receive. These two queues are 
associated with a VC on the ATM adapter. It also shows 
a generic control data structure between the process and 

the adapter driver to queue commands and return status 
information. 

. 

B. Solution Outline 

The solutions that we have implemented to address the 
problems mentioned above are as follows. 

l We use control structures in user-kernel shared memory 
instead of system calls to perform network I/O. The 
shared memory contains queues of outgoing and incoming 

PDU’s for each connection belonging to the process. 
These queues are accessed by protocol code that runs 
in the context of RTU handlers that are bound to a 

. 

We use a pool of pages in the user-kernel shared- 
memory area to store headers and data for both outgoing 

and incoming PDU’s. Shared memory eliminates the 
need to remap or copy pages between user and kernel 
domains during data movement. This mechanism pro- 
vides zero-copy operation for applications that can work 
with noncontiguous memory buffers. The shared-memory 

pages are also “wired down” so that the adapter can DMA 
the data from the shared buffers. In addition, we have 
implemented the shared-memory pool so that expensive 

virtual memory (VM) table lookups are not required to 
map from virtual to physical addresses during DMA 

operations. 
We use the user-kernel shared memory to also enqueue 
incoming packets and process them in a batch using a 
periodically scheduled RTU. Thus, asynchronous events 

such as packet arrivals are not processed in first-in first- 
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out (FIFO) order, but in an order determined by the 
priority of the RTU associated with the connection. This 
solves the problem of priority inversion. The batching of 
PDU’s also helps reduce the number of context switches. 

l By closely integrating scheduling and protocol processing 
using the RTU mechanism, we have been able to provide 
guaranteed bandwidth for bulk data transfer, and low 
delay for request-response traffic. For example, bulk data 
transfer protocols are implemented using periodic RTU’s 
that get a guaranteed share of the CPU over time. On the 
other hand, low-latency messages are handled using the 
reactive RTU mechanism so that user-level handlers are 
invoked as soon as a message arrives. 

V. USER-KERNEL SHARED-MEMORY FACILITY 

In this section we describe the implementation of the 
“wired-down” shared-memory facility between a user process 
and the kernel that is used by user-space protocol implemen- 
tations to perform network I/O. The shared-memory region 
is called the communication area (CAR) of a process. The 
CAR is very similar to the pool model used in [ 131 and to 
the communication segments in U-Net [ 141 although recent U- 
Net implementations wire memory pages “on the fly.” Unlike 
these, the CAR does not need any support from the network 
adapter hardware. In this sense it resembles cornupped buffers 
used in [40] and is used in a similar manner. The CAR is 
of fixed size and is allocated in a contiguous portion of the 
process address space. The CAR is also mapped to a region 
of the kernel address space. The pages in the CAR are wired 
down so that the kernel can setup DMA between the network 
adapter and memory pages of the CAR in the adapter interrupt 
service routine. All connections within a process share the 
pages in the CAR. The pages in the CAR are partitioned into 
transmit and receive portions. The adapter driver manages 

free buffers of the CAR for receive, and the user process 
manages the free buffers for transmit. Thus, the process and 
the driver can manipulate the free lists without having to make 
system calls to obtain locks. Fig. 5 shows two processes with 
their CAR’s that are also mapped to kernel address space. 
The management page of the CAR contains information about 
transmit and receive queues for each VC owned by the process. 
The VM system secures the CAR of a process from other 
processes. In addition, a process can only modify those pages 
of the kernel address space that are part of its CAR. 

Most of the TCP/IP protocol implementations use the Mbuf 

facility [24]. To use existing TCP/IP code with minimal 
modifications, we ported the Mbuf facility to run in user space. 
The Mbufroutines use the memory in the CAR to allocate the 
buffers used by Mbufs. Accordingly, pages in the CAR are 
allocated among normal Mbufs and cluster Mbufs [24] where 
a cluster is equal to a page size (4 KB). The use of Mbufs does 
not necessarily impose an overhead of copying data from the 
Mbufs to contiguous application buffers. For example, since 
the driver can place data in pages, these pages can be remapped 
to appear contiguous in the application’s address space. In 
addition, some high-performance applications may directly use 
data contained in Mbufs. 

Process 1 Kernel Process 2 
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Fig. 5. Communication area. 
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1) Tradeoffs with Wired Pages: Wiring down pages is nec- 

essary to move data directly between adapter and user space, 

but it comes at the cost of potentially lowering performance 

of other application processes. We do not consider this to be a 

problem in our 32-MB machines. It must be noted that the size 
of transmit area must be at least as big as the bandwidth delay 

product since protocols such as TCP free transmitted data only 

after receiving an acknowledgment (ACK). The receive area 

size for a connection is a function of the connection bandwidth, 

and the maximum duration before the application consumes 

the data. If the application processing is also performed using 

RTU’s, received buffers can be returned back to the free pool 

within a bounded time. Thus, the memory requirements can 
be bounded and can be calculated during connection setup. 

In general, a shared-memory facility has implications for 

security, amount of pinned memory, amount of copying, and 

the semantics of send and receive [4]. In our implementation 

memory is shared pairwise between a process and the kernel 

only. It is therefore fully secure. According to the taxonomy 
in [4], our implementation is categorized as system-allocated 

buffers with move semantics. In [33] a contiguous range 

of shared memory is used, but it is partitioned between 

different processes and these partitions are disjoint. Since 

there is no sharing between partitions, it is equivalent to our 

approach of pairwise sharing in terms of security and amount 
of memory required. If a single pool of pinned memory is to be 

statistically shared among processes to reduce overall memory 
requirement, then either a remapping or a copy operation is 

required. It also has potentially lower security since pages 

can move between processes. However, the shared-memory 
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approach can still save memory compared to kernel protocol 

implementations, since in the latter case buffers must be 
allocated both in the application and the kernel (such as 
Mbufi). The kernel protocol approach also incurs an extra 

copy. 
2) Lock-Free Buffer Operations: All Mbuf network I/O and 

memory management operations that require synchronization 
between the user protocol and the kernel are implemented 
using lock-free data structures [ 111. The basic data structure is 
a one-reader-one-writer FIFO queue to pass buffers between 
the user protocol and the kernel. The management page has 
two such queues-ne used by the ATM driver to return 
transmit Mbufs to the CAR after they have been transmitted 
(txdone_q), and the other for the RTU’s to return receive Mbufi 
to the driver after they have been consumed by the applica- 
tion (rxdone_q). For each virtual circuit identifier (VCI), the 
management page also has a tx_q that contains PDU’s for 
transmission, and an rx_q that contains the received PDU’s. 
A queue consists of an array with a read pointer and a write 
pointer that are indices into this array. The operation of the 
queue is explained in [ll]. Up to six VC’s can be allocated 
in a process. More VC’s can be supported by increasing the 
size of the CAR management page. One important feature of 
our implementation is that we store indices of Mb& rather 
than their addresses in the array. Since the CAR is contiguous 
in memory, these indices can be converted into either user 
addresses or kernel addresses without the need for any VM 
operations. 

An important advantage of RTU scheduling is that there 
is no need for synchronization among RTU’s in a process 
for updating queues that are shared among all connections. 
These include the txdone_q, rxdone_q, and the free list of 
transmit Mb@ and cluster Mbufpages. Thus, the use of lock- 
free queues eliminates locking between user and kernel, and 
the cooperative scheduling implemented by RMDP eliminates 
locking between RTU’s that share CAR resources. 

3) Data Movement Without Copying and System Calls: 
Using the user-level Mbuf facility, data movement can occur 
as part of the scheduling system call, and without cross domain 
copying or VM operations. We consider a send operation on 
application data contained in an Mbuf chain.5 The protocol 
code appends other control information needed to create a 
packet. It then places the index of the head of the chain in the 
send queue corresponding to its VCI. Once a batch of packets 
have been placed in the queue, the sending RTU yields the 
CPU by making a system call. For each Mbuf index in the 
queue, the kernel converts it into the corresponding kernel 

virtual address using simple pointer arithmetic. The resulting 
Mbuf chain is then enqueued at the adapter for transmission. 
The transmission completion interrupt returns the Mbuf chain 
in the txdone_q. It should be clear from the description that 

the send operation does not require any copy operations. 
In the receive direction, essentially a similar operation is 

performed except that the ATM driver has the ability to 
separate headers from data. The header size (typically 52 for 

5 Typically, the sender allocates send buffers from its CAR to hold its data. 
These buffers can be converted to an Mbuf chain at the protocol interface 
without requiring copying. 

TCP/IP with the TCP timestamp option) is looked up based on 
the incoming VCI. If the data portion is a multiple of the page 
size, it is placed in pages using DMA and is associated with 
a cluster Mbuf. Again, no data copying is required. Received 
data can be made contiguous in the application’s address space 
using remapping. 

From the above description, we can see that the use of 
shared memory along with batching eliminates system calls 
to initiate data movement in both the transmit and receive 
directions. In addition, data movement and scheduling can 
occur in a single context switch. Our use of indices rather 
than addresses also obviates the need for VM operations in 
the critical path. Finally, we make an observation regarding 
zero-copy operation. Since the ATM adapter supports cache- 
coherent DMA into Mbufs, zero-copy operation comes for free 
if the application can accept data in the Mbuf format. If there 
is a need to place data in contiguous memory, then we must 
either incur one extra copy or remap data pages. If page-size 
segment sizes and header-data separation are used, remapping 

can be done without any further copying. 

VI. PROTOCOL IMPLEMENTATION 

USING RTU’s-TCP/IP EXAMPLE 

In this section we illustrate how protocols are structured 
using RTU’s, taking the example of our RTU-based TCP im- 
plementation. It incorporates all of the techniques for efficient 

data movement introduced in the previous section. We took 
the existing NetBSD kernel code for TCP/IP and ported it 
as a user-space library. This section focuses on the TCP data 
path implemented by RTU’s. The connection setup mechanism 
maps each TCP connection to an ATM VC with the required 
QoS parameters and sets up the adapter to pace data out at 
the negotiated rate. Other details of connection setup may be 
found in [ 151. In the data transfer phase each concurrent task in 
a protocol is typically implemented as an RTU. For TCP, three 
RTU’s are created as part of connection setup-one each for 
output, input, and timer processing. Periodic RTU’s are used 
for guaranteed-bandwidth connections, and reactive RTU’s are 
used for low-latency connections. We describe the periodic 
RTU case below. 

The TCP/IP input and output paths are depicted in Fig. 6. 
The application layer reads and writes data using a socket-layer 
[24] interface. The socket layer mainly implements buffering 
functions. The TCP and IP layers implement the transport- and 
network-layer functions. The link layer communicates with the 
network adapter driver to send and receive data over VC’s. 

1) TCP Input Processing: In the input direction the input 
RTU handler ipintr processes IP datagrams enqueued by the 
network adapter driver in the VC queue for the connection. 
Although the figure shows the input RTU in the IP layer, TCP 
and socket-layer input processing also occurs in the context 
of this RTU. The computation requirements of the input RTU 
depend on the throughput requested-typical values for the 
period are 10 ms, and the batch size can be up to 20 PDU’s 

(with size up to 8 KB). In each invocation ipintr dequeues 
an IP packet from its VC queue and does IP processing. It 
then calls the tcp_input function that does the TCP header 
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Fig. 6. RTU-based TCP/IP organization. 

processing and checksum computation. The data (in the form 
of an Mbuf chain) are then enqueued at the socket queue to be 
consumed by the application. The ipintr function checks for 
yield requests after each packet is processed. If the check is 
positive, the RTU yields (ipintr returns). Control is transferred 
to the RTU scheduler, which reassigns the CPU to a higher 
priority RTU. The RTU that yields will be resumed later (ipintr 
will be upcalled again) and it can process the remaining PDU’s 
for the current period. An invocation completes when a batch 
of PDU’s is processed or when the input queue is empty. 
This behavior repeats in each period until the input RTU exits 
(typically when the TCP connection is closed). 

2) TCP Output Processing: The description is similar to 
the input case. In the output direction the RTU handler looks at 
the send queue in the socket structure and calls the tcp_output 
function with the number of segments to send in the batch.6 
This calls ip_output, which then enqueues each PDU for 
transmission on the VC output queue. Unlike kernel TCP, 
output handlers are triggered by the RTU scheduler and not 
by packet arrivals. Yield requests are handled as before. 

3) TCP Timer Processing: The timer processing RTU is 
upcalled every 100 ms. It calls the functions required to 
process the six TCP timers as in the BSD TCP implementation 
[36]. Whereas in the kernel the timer functions process all 
TCP connections, in our case they process only a single TCP 
connection. While this is more accurate in terms of timing, 
it has the overhead of a context switch to process timers for 
each TCP connection. However, it is possible to eliminate this 

6The number of packets actually sent depends on the state of the TCP 
connection and is decided by the tcp_oufputfunction. 

extra context switch by doing timer processing as part of the 
output or input RTU invocation. 

For guaranteed-bandwidth streams, the input and output 
RTU’s are periodic. Thus, they are invoked periodically by 
the kernel and process data in the VC and socket queues. For 
low-delay TCP streams, both of these RTU’s are reactive. The 
input RTU is called on packet arrival and the output RTU is 
invoked using a system call. 

4) Comparison to Kernel TCP Implementation: When 
packet processing is triggered by periodic RTU invocations 
as opposed to packet arrivals (as in typical kernel protocols), 
there potentially can be half a period of delay on average 
before the packet is processed by TCP. Thus, ACK generation 
is also delayed by this amount, causing an increase in RTT. 
For streams that require throughput guarantees, this is not a 
problem since the periodic RTU’s ensure that packets will be 
processed at the negotiated rate. As far as the RTT estimate 
at the sender is concerned, the effect is again minimal since 
standard kernel TCP implementations use 500-ms timers to 

estimate RTT, whereas typical RTU periods are only a few 
tens of milliseconds. Another effect of the increase in RTT is 
a moderate increase in buffer requirements at the sender since 
a packet buffer can be freed only after its ACK is received. 
One can limit the impact of this by chqosing smaller RTU 
periods for high-bandwidth connections. Overall, memory 
requirements for our implementation are comparable to kernel 
implementations since separate buffering is not required for 
application and protocol data. Scheduling packet processing at 
the priority of the receiver is an approach that is taken in other 
works such as “lazy” receiver processing [ 121 and has benefits 
such as overload control and service ‘guarantees. 

VII. EXPERIMENTS AND RESULTS 

The reported set of experiments bring out the overall perfor- 
mance of our implementation. Thus, we do not present results 
that measure the contribution of individual optimizations. 
Wherever appropriate, we identify the main reason for the 
observed performance improvement. Our experimental setup 
is as follows. The hosts are a pair of 133-MHz Intel Pentium- 
based machines. Each host is equipped with a 155-Mb/s ATM 
interface card from Efficient Networks, Inc. (ENI) to connect 
to a Baynetworks ATM switch port. Several permanent virtual 
circuits (PVC’s) are set up between the hosts through the 
switch. The OS used is NetBSD, with our additions to the 
kernel that include the RTU mechanism, the “wired-down” 
shared-memory facility, and modifications to the network 
adapter driver. Table I summarizes the experiments and states 

their main conclusions. Only the starred experiments are 
described in this paper. A more comprehensive account may 

be obtained from [ 151. 

A. Multiple TCP Connections 

In this experiment we have six TCP connections active 
simultaneously between the two hosts. In one case we had 
six processes, each with a RTU-based TCP connection, and 
in the other case we ran six copies of the t t cp program that 
uses the regular kernel TCP. Fig. 7(a) is a scatter plot that 
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Fig. 7. RTU-based TCP performance. (a) Throughput sharing (no competition for CPU). (b) Throughput sharing (with competing processes). 

TABLE I 
EXPERIMENTAL RESULTS AT A GLANCE 

Expt. 1 Brief Description Comments 
Guaranteed Bandwidth Class 

1 / Compares throughput of 1 RTU based TCP delivers higher throughput than 
kernel and user TCP (single kernel TCP. It also provides bandwidth guaran- 
connection case) tees whereas kernel TCP does not. 

through- No reduction in aggregate bandwidth of RTU 
based TCP connections; Bandwidth guarantees are 
provided per connection. Kernel TCP does not 
provide bandwidth guarantees. 
User space TCP connections get guaranteed band- 

kernel TCP. In addition user space TCP delays do 
not increase when best effort load is introduced. 

width streams on low delay introduced by the guaranteed bandwidth streams. 
streams 1 However the increase is bounded and predictable. 

Coexistence of Different Classes 
6* 1 Coexistence of multiple Both guaranteed bandwidth streams and low de- 

/ stream types 1 lay streams coexist in a manner that their indi- 
vidual QoS requirements are satisfied. 

Loss Performance of TCP/IP 
7 Throughput Performance of Using a combination of periodic and reactive RTus 

TCP with packet loss in the graceful degradation in performance is obtained 
network with increasing packet loss. 

shows the throughput measured at each of the six receiving 
processes in the two cases when there is no competition for 
the CPU from other processes. The x-axis is the number of 

packets sent. Socket buffer sizes for each connection are 200 
KB. In fact, ttcp throughput tops out at socket buffer sizes 

in the 100~KE4 range. In this case we see that the throughput 
seen by each RTU-based TCP connection is 20 Mb/s giving an 
aggregate of 120 Mb/s. The aggregate throughput of the t t cp 
processes is only 80 Mb/s. This difference in performance is 
solely due to eliminating the extra copy operation that kernel 
TCP does to move data from user to kernel buffers. 

To demonstrate the benefit of protocol processing using 

RTU’s, we repeat the same experiment but with four com- 
peting processes on both machines that do prime number 
calculation. This case is shown in Fig. 7(b), where the ag- 
gregate throughput for ttcp falls to 50 Mb/s. In contrast, 

there is no change in the throughput of RTU-based TCP 
connections. This experiment shows that RTU-based TCP 
provides bandwidth guarantees to connections in different 
processes even when there is competition for the CPU. More 
importantly, the extra work involved in the RTU scheduling 
mechanism does not degrade data path performance. 

The experiment also reveals that to obtain guaranteed 
throughput for a TCP connection, the application-level 
processing of received data must also be guaranteed. 
Otherwise, due to the window-based flow control mechanism 
of TCP, the sender will run out of window space and data 
transfer will stall. In our experiment the receiving application 
function simply frees the data buffers without any additional 
processing. Thus, the TCP input RTU handler is able to call 
the application function directly, thereby ensuring guaranteed 
processing for the entire data path. In general, the application 
function can be called either from the input RTU or from 
a separate application-level RTU that only does application 
processing. This reiterates the importance of using the RTU 
to provide application-level guarantees. It must be noted that 
we have not changed the TCP/IP control mechanisms in any 
way. For example, packet loss triggers conventional TCP 
congestion control mechanisms such as slow-start. This can 
cause a short-term reduction in throughput until the congestion 
window opens up. Thus, the throughput guarantee will not be 
maintained during loss periods. 

B. TCP Delay Petiormance 

This experiment measures the delay performance of RTU- 
based TCP. It consists of a sender program that sends a 
message to a receiver on the remote host, which reflects 
the message back to the sender. The RTT for the message 
is measured at the sender. This experiment is performed on 
unloaded machines and then repeated with a different number 
of background streams at the sending and receiving hosts. 
In one case the sender and receiver programs use RTU- 

based TCP, and in the other case they use kernel TCP. 
Fig. 8 shows the measured RTT’s for different message sizes. 
The left half is for the RTU-based TCP case. We see that 
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Fig. 8. Delay performance of (a) RTU-based TCP and (b) kernel TCP. 

the effect of best-effort streams on the delay experienced 
by RTU-based TCP is negligible and is not noticeable in 
the plot. The maximum delay for 4-KB message size is 
2.3 ms for the unloaded case and 2.4 ms with 16 “best- 
effort” streams. In contrast, the corresponding figures for 
kernel TCP are 4.3 and 34 ms, respectively. These numbers 
remain consistent over several runs with very little variance. 
In the unloaded case the extra delay in the case of kernel 
TCP is due to the extra copy. However, for the loaded case, 
the increase in delay is entirely due to scheduling delays 
introduced by the OS scheduling policy. Thus, the use of 
reactive RTU’s eliminates scheduling delays caused due to 
contention by “best-effort” streams. The main conclusion of 
this experiment is that the use of reactive RTU’s provides 
delay guarantees on message transfer to the application. We 
observe that the delay due to process scheduling dominates 
the time taken for protocol processing. Thus, for good de- 
lay performance, it is more beneficial to provide real-time 
scheduling support rather than to reduce protocol processing 
overheads such as additional copying. We also observe that 
the improvement in delay is not due to the fact that we do 
early demultiplexing into separate IP queues. Having separate 
queues in itself does not imply low delays unless packets are 
processed in priority order using mechanisms such as RTU’s. 
It must be noted that recent work on low-latency message 
handling does not deal with methods to reduce scheduling 
delays. For example, [39] describes an ASH mechanism that 
allows message handling code to be loaded in the kernel 
to avoid changing the process scheduler. This trades off 
flexibility for reduced latency. Another effort studies the 
effect of code structure on latency [31] but does not consider 
scheduling delays. 
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TABLE II 
STREAM PARAMETERS AND MEASUREMENTS FOR EXPERIMENT 6 

C. Coexistence of Multiple Stream Types 

In this experiment we combine bandwidth-guaranteed 

streams and low-delay streams and measure how they affect 

each other. We set up six streams with the attributes shown in 
Table II. The first five are bandwidth-intensive streams with 

an aggregate bandwidth of 120 Mb/s. The experiment consists 

of running the six streams simultaneously. The throughput 

seen by the first five streams is measured. For stream six, 
the message size is varied from 32 to 4096 B and the RTT 

is measured for each size. The measured throughput for the 
first five streams is shown in Table II. It can be seen that the 

measured and requested values are very close. 

Fig. 9 plots the RTT values for different message sizes. The 
lower curve is the RTT value when the first five streams are 

not present. The upper curve is the measured RTT with the 

bandwidth intensive streams present. We notice that the RTT 
increases at most by 1.2 ms. This increase is due to preemption 

delays, interrupt overheads, and the fact that the network 

adapter uses a FIFO DMA channel to transfer reassembled 
packets to the host. Nevertheless, the increase is not substantial 

and is bounded. In contrast, the delays experienced by kernel 
TCP (not shown in the plot) were an order of magnitude larger. 
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We conclude that the RTU-based protocol implementations 
can concurrently support guaranteed-bandwidth and low-delay 
streams. This is mainly because of the close integration 
of scheduling and protocol processing. Thus, guaranteed- 
bandwidth streams use periodic RTU’s that ensure a certain 
share of the CPU, and low-delay streams use the reactive 
RTU’s that guarantee response time. In addition, the schedul- 
ing mechanisms required to enforce the QoS for each stream 
does not diminish absolute performance. 

VIII. RELATED WORK 

While there are several studies that measure performance 
of user-space TCP/IP implementations [26], [ll], 131, [14], 
they do not consider the dimension of QoS guarantees. This 
paper provides the first set of TCP/IP throughput and delay 
benchmarks with a focus on the QoS guarantee aspect. 

We begin with some recent work in scheduling support 
to provide QoS guarantees for application-layer protocols for 
audio and video streaming. While these streams have strict 

timing requirements, the bandwidth requirement and transport- 
layer processing requirement for these streams is modest. A 
user-space protocol implementation model is advocated in 
[40] and its implementation in Solaris is described. They 
implement a user-kernel shared-memory facility for efficient 
data movement. Solaris real-time threads are used to do 
application and protocol processing. The results show that the 
scheduling support meets the delay and jitter requirements of 
multimedia streams. However, the performance gains of effi- 
cient data movement and scheduling have not been evaluated 
in comparison to the existing Solaris implementation. A user- 
space protocol approach is also used in the RT-Mach in [23] 

OS to provide QoS guarantees. A processor reserve mechanism 
has been implemented to schedule the CPU among different 
protocol sessions. A video phone application is implemented 
based on this architecture and it is shown that the delay 
jitter for audio and video streams is lower than in the case 
where protocol processing is done by a central protocol server. 
However, the bandwidth requirement for this application was 

only 1.4 Mb/s, and more work is needed to evaluate the 
performance with multiple streams, higher rates, and TCP-like 
protocols. 

We now review user-space protocol implementations [26], 
[37], [13], [ 141 that mainly focus on efficient data movement. 
Most of them share common features such as using a con- 
nection server for connection setup and tear-down, avoiding 
copying of data by using memory “pools” to locate network 
data, and demultiplexing packets at the adapter level. Most 
previous efforts have focused on the TCP/IP protocol stack. 
The first implementation was for the Mach OS using Mach 
threads for concurrency and Mach interprocess communication 
(IPC) for data movement [37]. This implementation was shown 
to perform better than the standard TCP implementation in 
Mach. However, it did not perform as well as a monolithic 
kernel implementation. We expect the performance to be even 
lower if the overhead of real-time scheduling and real-time 
concurrency control were factored into the above implemen- 
tation. Implementations of TCP in HP-UX [ 131 and of U-Net 

in SunOS [ 141 are representative user-space implementations 
in UNIX. The HP implementation used real-time priorities 
to speedup protocol processing, although it was not intended 
to provide bandwidth guarantees. U-Net does not deal with 
concurrency issues in protocol processing. For instance, it 
focuses on tuning the data path for lower latency but ignores 
scheduling latency due to competing processes. It provides 

very good throughput performance, partly because it uses 
the CPU on the adapter to implement functions that would 
otherwise be done by the network adapter driver. 

The Scout OS uses the notion of a path to expose the 
state and resource requirements of all processing components 
of a flow. In many ways our implementation methodology 
also reflects the path principle and incorporates it into the 
NetBSD OS. For instance, in our system, resources (such 
as CPU, memory, network interface, and network connection 
bandwidth) are allocated to a connection/application at the 
time of connection setup and, thus, it is similar to binding 

resources to a path in Scout. We also demonstrate that by 
locating all processing components of a data path in the same 

domain, we can schedule protocol and application functions in 
a single RTU invocation, thus obtaining end-to-end guarantees. 
In addition, since part of a data path (i.e., the VC queues) is 
in the kernel, we locate its state in shared memory so that 
the protocol code can initiate optimizations such as dropping 
packets at the VC queue when the socket buffer corresponding 
to it is full. At present, we are only aware of the use of paths 
in Scout for MPEG video decoding and display [32] and not 
for protocol processing. 

Another approach that has been taken to provide scheduling 
support in the endsystems has been to take existing fair 
queueing schemes and adapt them for CPU scheduling. One 
such approach is adaptive rate-controlled (ARC) scheduling 
[41]. ARC scheduling [41] ensures that each thread makes 
progress by incrementing the tag value of a running thread and 
favoring threads with lower tags when the CPU is reassigned. 
While it represents a uniform approach to process scheduling, 
results relating to the design and performance of typical 
protocols using ARC scheduling have not been reported. A 
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possible drawback of ARC scheduling is that the amount of 
data processed in a period is not fixed but depends on the 
load on the system. This does not match well with a fixed- 
rate network connection and requires additional mechanisms 
in the endsystem to compensate. Another approach along 
similar lines is the one based on the start-time fair-queueing 
algorithm [21]. The focus is mainly on hierarchical partitioning 
of CPU between different scheduling classes. Our remarks 
about ARC scheduling apply to this case as well. In general, 
previous efforts have concentrated either on improving data 
path performance or on scheduling, but the two have not been 
treated in an integrated manner. 

IX. CONCLUSIONS 

We have presented a new mechanism to implement pro- 
tocols in user space with QoS guarantees. We observe that 
current process scheduling is inappropriate for providing QoS 
guarantees. We also discuss why general-purpose mechanisms 
such as real-time threads will lead to inefficiencies. Our 
approach is to tradeoff the generality of real-time threads 
for efficiency and simplicity of our real-time upcall model. 
We have argued that the RTU mechanism is both necessary 
(from an efficiency standpoint) and sufficient (as an OS 
abstraction) for providing QoS guarantees for applications 
as well as protocol processing. We have implemented the 
RTU mechanism and the RMDP scheduling scheme in the 
NetBSD OS and demonstrated its efficient performance. We 
also highlight important performance issues in user-space 
protocol implementations. We show that system support is 
required to reduce the high cost of data movement and 
context switching in user-space protocol implementations. 
Using, our implementation framework, we have eliminated 
system calls, VM operations, and data-copying operations in 
the packet processing path, while providing QoS guarantees. 
Our experimental results show that: 1) RTU-based protocol 
implementations deliver higher throughput than their kernel 

counterparts by keeping data movement overheads low; 2) the 
RTU mechanism provides throughput guarantees, bandwidth 

sharing, and partitioning among connections, even in the pres- 
ence of background system load; and 3) the close integration of 
protocol processing and scheduling allows us to support both 
guaranteed-bandwidth as well as low-delay streams. To the 
best of our knowledge, our user-space protocol implementation 
is the first of its kind to combine both high efficiency as well 
as end-to-end QoS guarantees. 
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