
Input Selection for ANFIS LearningJyh-Shing Roger Jang (jang@cs.nthu.edu.tw)Department of Computer Science, National Tsing Hua University Hsinchu, TaiwanAbstractWe present a quick and straightfoward way of inputselection for neuro-fuzzy modeling using ANFIS. Themethod is tested on two real-world problems: the non-linear regression problem of automobile MPG (milesper gallon) prediction, and the nonlinear system identi-�cation using the Box and Jenkins gas furnace data [1].1. IntroductionFor a real-world modeling problem, it is not uncom-mon to have tens of potential inputs to the model underconstruction. An excessive number of inputs not onlyimpair the transparency of the underlying model, butalso increase the complexity of computation necessaryfor building the model. Therefore, it is necessary todo input selection that �nds the priority of each can-didate inputs and uses them accordingly. Speci�cally,the purposes of input selection include:� Remove noise/irrelevant inputs.� Remove inputs that depends on other inputs.� Make the underlying model more concise andtransparent.� Reduce the time for model construction.In this paper, we present a quick and staightfor-ward way of input selection for neuro-fuzzy modelingusing ANFIS (Adaptive Neuro-Fuzzy Inference Sys-tems) [2, 3], a previously proposed neuro-fuzzy networkstructure. The input selection method is tested on tworeal-world problems: the nonlinear regression problemof automobile MPG (miles per gallon) prediction, andthe nonlinear system identi�cation using the Box andJenkins gas furnace data [1].This paper is organized into six sections. In thenext section, the basics of ANFIS are introduced. Sec-tion 3 explains how to proceed input selection for AN-

FIS modeling. Application to the problems of automo-bile MPG prediction and gas furnace identi�cation aredemonstrated in section 4 and 5, respectively. Section5 gives concluding remarks.2. ANFISThis section introduces the basics of ANFIS networkarchitecture and its hybrid learning rule. A detailedcoverage of ANFIS can be found in [2, 3, 6].The Sugeno fuzzy modelwas proposed by Takagi,Sugeno, and Kang [16, 15] in an e�ort to formalize asystematic approach to generating fuzzy rules from aninput-output data set. A typical fuzzy rule in a Sugenofuzzy model has the formatIf x is A and y is B then z = f(x,y),where A and B are fuzzy sets in the antecedent; z =f(x; y) is a crisp function in the consequent. Usuallyf(x; y) is a polynomial in the input variables x andy, but it can be any other functions that can appro-priately describe the output of the system within thefuzzy region speci�ed by the antecedent of the rule.When f(x; y) is a �rst-order polynomial, we have the�rst-order Sugeno fuzzy model, which was originallyproposed in [16, 15]. When f is a constant, we thenhave the zero-order Sugeno fuzzy model, which canbe viewed either as a special case of the Mamdanifuzzy inference system [9] where each rule's consequentis speci�ed by a fuzzy singleton, or a special case ofTsukamoto's fuzzy model [17] where each rule's conse-quent is speci�ed by a membership function of a stepfunction centered at the constant. Moreover, a zero-order Sugeno fuzzy model is functionally equivalent toa radial basis function network under certain minorconstraints [5].Consider a �rst-order Sugeno fuzzy inference systemwhich contains two rules:Rule 1: If X is A1 and Y is B1, thenf1 = p1x+ q1y + r1;Rule 2: If X is A2 and Y is B2, thenf2 = p2x+ q2y + r2:1
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Figure 1. (a) First-order Sugeno fuzzy model; (b)corresponding ANFIS architecture.Figure 1 (a) illustrates graphically the fuzzy reasoningmechanism to derive an output f from a given inputvector [x; y]. The �ring strengthsw1 and w2 are usu-ally obtained as the product of the membership gradesin the premise part, and the output f is the weightedaverage of each rule's output.To facilitate the learning (or adaptation) of theSugeno fuzzy model, it is convenient to put the fuzzymodel into the framework of adaptive networks thatcan compute gradient vectors systematically. The re-sultant network architecture, calledANFIS (AdaptiveNeuro-Fuzzy Inference System), is shown in Figure 1(b), where node within the same layer perform func-tions of the same type, as detailed below. (Note thatOji denotes the output of the i-th node in j-th layer.)Layer 1 Each node in this layer generates a member-ship grades of a linguistic label. For instance, thenode function of the i-th node may be a general-ized bell membership function:O1i = �Ai(x) = 11 + ���x�ciai ���2bi ; (1)where x is the input to node i; Ai is the linguis-tic label (small , large, etc.) associated with thisnode; and fai, bi, cig is the parameter set thatchanges the shapes of the membership function.Parameters in this layer are referred to as thepremise parameters.Layer 2 Each node in this layer calculates the �ringstrength of a rule via multiplication:O2i = wi = �Ai (x)�Bi(y); i = 1; 2: (2)

Layer 3 Node i in this layer calculates the ratio of thei-th rule's �ring strength to the total of all �ringstrengths:O3i = wi = wiw1 + w2 ; i = 1; 2: (3)Layer 4 Node i in this layer compute the contributionof i-th rule toward the overall output, with thefollowing node function:O4i = wifi = wi(pix+ qiy + ri); (4)where wi is the output of layer 3, and fpi, qi, rigis the parameter set. Parameters in this layer arereferred to as the consequent parameters.Layer 5 The single node in this layer computes theoverall output as the summation of contributionfrom each rule:O51 = overall output =Xi wifi = PiwifiPi wi (5)The constructed adaptive network in Figure 1(b)is functionally equivalent to a fuzzy inference systemin Figure 1(a). The basic learning rule of ANFIS isthe backpropagation gradient descent [18], which cal-culates error signals (the derivative of the squared errorwith respect to each node's output) recursively fromthe output layer backward to the input nodes. Thislearning rule is exactly the same as the backpropaga-tion learning rule used in the common feedforward neu-ral networks [13].From the ANFIS architecture in Figure 1, it is ob-served that given the values of premise parameters, theoverall output f can be expressed as a linear combina-tions of the consequent parameters:f = w1f1 +w2f2= (w1x)p1 + (w1y)q1 + (w1)r1+ (w2x)p2 + (w2y)q2 + (w2)r2: (6)Based on this observation, we have proposed a hybridlearning algorithm [2, 3] which combines the gradientdescent and the least-squares method for an e�ectivesearch of optimal parameters; both on-line and o�-linelearning paradigms were developed and reported in [3].Moreover, other advanced techniques in nonlinear re-gression and optimization, such as the Gauss-Newtonmethod, the Levenberg-Marquardt method [8, 10], andthe extended Kalman �lter algorithm [14, 12] can alsobe applied here directly.The original ANFIS C codes and several examplescan be retrieved via anony-mous ftp in user/ai/areas/fuzzy/systems/anfis at



ftp.cs.cmu.edu (CMU Arti�cial Intelligence Reposi-tory). For MATLAB users, ANFIS is also available inthe Fuzzy Logic Toolbox used with MATLAB [4].Following the concept of ANFIS, we have also pro-posed the CANFIS (Coactive ANFIS) architecture [11,7] that has multiple outputs and nonlinear outputequations. Details of ANFIS/CANFIS and their ap-plications can be found in [7].3. Input SelectionAs mentioned earlier, a real-world modeling prob-lem usually involves tens (or even hundreds) of poten-tial inputs to the model under construction. Thereforewe need to have a heuristic way to quickly determinethe priorities of these potential inputs and use themaccordingly. In this section, we propose a quick andstraightfoward way to do input selection for ANFISmodeling.As described in the previous section, ANFIS is anetwork structure that facilitates systematical compu-tation of gradient vectors, the derivative of the outputerror with respective to each modi�able parameters. Inparticular, ANFIS employs an e�cient hybrid learningmethod that combines gradient descent and the least-squares method. The least-squares method is, actually,the major driving force that leads to fast training, whilethe gradient descent serves to slowly change the under-lying membership functions that generates the basisfunctions for the least-squares method. As a result,ANFIS can usually generate satisfactory results rightafter the �rst epoch of training, that is, only after the�rst application of the least-squares method. Since theleast-squares method is computationally e�cient, wecan construct ANFIS models for various combinationsof inputs, train them with a single application of theleast-squares method, and then choose the one with thebest performance and proceed for further training.The proposed input selection method is based onthe assumption that the ANFIS model with the small-est RMSE (root mean squared error) after one epochof training, has a greater potential of achieving a lowerRMSE when given more epochs of training. This as-sumption is not absolutely true, but it is heuristicallyreasonable.For instance, if we have a modeling problem with 10candidate inputs and we want to �nd the most inuen-tial 3 inputs as the inputs to ANFIS, we can constructC103 = 120 ANFIS models (each with di�erent combi-nation of 3 inputs), and train them with a single pass ofthe least-squares method. The ANFIS model with thesmallest training error is then selected for further train-ing using the hybrid learning rule to tune the member-

ship functions as well. Note that one-epoch trainingof 120 ANFIS models in fact involves less computa-tion than 120-epoch training of a single ANFIS model,therefore the input selection procedure is not really ascomputation intensive as it looks.Another reason for input selection is to facilitate theinput-space grid partitioning for ANFIS; this is furtherexplained in Section 4, where ANFIS is used for auto-mobile MPG (miles per gallon) prediction.For certain types of problems, the candidate inputsare divided into groups and, due to physical proper-ties of the target system, one or several members ofeach group has to be in the set of �nal inputs to themodel under consideration. These physical propertiesallow us to build less potential ANFIS models initially.One such example is the nonlinear system identi�cationproblem discussed in Section 5.4. Automobile MPG PredictionThis section describes the use of the proposed inputselection method for ANFIS modeling, with applicationto nonlinear regression. We shall use automobile MPG(miles per gallon) prediction as a case study, in whichan automobile's fuel consumption in terms of MPG ispredicted by ANFIS based on several given characteris-tics, such as number of cylinders, weight, model years,and so on.The automobile MPG prediction problem is a typ-ical nonlinear regression problem where several at-tributes (input variables) are used to predict anothercontinuous attribute (output variable). In this case,the six input attributes includes pro�le informationabout the automobiles:No. of cylinders: multi-valued discreteDisplacement: continuousHorsepower: continuousWeight: continuousAcceleration: continuousModel year: multi-valued discreteThe attribute to be predicted in terms of the abovesix (6) input attributes is the fuel consumption inMPG. Table 1 is a list of seven instances selected atrandom from the data set. After removing instanceswith missing values, the data set was reduced to 392entries. Our task was then to use this data set and AN-FIS to construct a fuzzy inference system that couldbest predict the MPG of an automobile given its sixpro�le attributes.Before training a fuzzy inference system, we dividethe data set into training and test sets. The training set



Table 1. Samples of the MPG training data set. (The last column is used for reference only and not forprediction.) The data set is available from the UCI Repository of Machine Learning Databases and Do-main Theories ( FTP address: ftp://ics.uci.edu/pub/machine-learning-databases/auto-mpg). Morehistorical information about the data set can be found there.No. of Cylinders Displacement Horse Power (HP) Weight Acceleration Year MPG Car name8 307 130 3504 12 70 18 Chevrolet Chevelle Malibu6 198 95 2833 15.5 70 22 Plymouth Duster4 90 75 2108 15.5 74 24 Fiat 1288 260 110 4060 19 77 17 Oldsmobile Cutlass Supreme4 89 62 2050 17.3 81 37.7 Toyota Tercel4 107 75 2205 14.5 82 36 Honda Accord4 120 79 2625 18.6 82 28 Ford Ranger
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Figure 2. Fifteen two-input fuzzy models for au-tomobile MPG prediction.is used to train (or tune) a fuzzy model, while the testset is used to determine when training should be ter-minated. to prevent over�tting. The 392 instances arerandomly divided into training and test sets of equalsize (196).Grid partitioning is the most frequently used inputpartitioning method for ANFIS. However, for a prob-lem with six inputs, grid partitioning leads to at least26 = 64 rules, which results in (6+1)�64 = 448 linearparameters if we want to stick to the �rst-order Sugenofuzzy model. This implies that we have too many �t-ting parameters and the resultant model is not reliablefor unforeseen inputs. To deal with this, we can eitherselect certain inputs that have more prediction powerinstead of using all the inputs, or choose tree or scatterpartitioning [6, 7] instead. Here we consider only in-put dimension reduction and apply the input selectionmethod described in Section 3.If we only want to select the two most relevant in-
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Figure 3. Error curves obtained by training afuzzy inference system to predict MPG.puts as predictors, we can cycle through all the inputsand build C62 = 15 ANFIS models. As described inSection 3, the performance of an ANFIS model afterthe �rst epoch is usually a good index of how wellthe model will perform after further training. Basedon this heuristic observation, we built 15 fuzzy mod-els each with a single epoch of ANFIS training; ittook about 16 seconds on a 486-DX100 PC with 16MB RAM. The results are shown in Figure 2 withtwo curves representing training and test RMSE (root-mean-squared errors). We reordered these 15 modelsaccording to their training errors. Obviously, the bestmodel takes \weight" and \model year" as the inputvariables, which is quite reasonable. In this case, botherror curves are more or less consistent; this impliesthat the training and test data were evenly distributedacross the original data set. In particular, we will endup with the same model if we pick the one with thesmallest test error. Note that Figure 2 is based onlyon one epoch of training; more reliable results can be
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Figure 4. ANFIS surface and data distributionin MPG prediction: (a) ANFIS surface for MPGprediction; (b) training and checking data distri-bution.obtained if more training epochs are allotted to each ofthe 15 models.Once we have selected the model with \weight" and\model year" as inputs, we can re�ne its performancevia extended ANFIS training. Figure 3 shows the errorcurves for 100 epochs of training. The training errordecreases all the way, but the test error, after decreas-ing initially, reaches a plateau, oscillates a little bit,and then increases. Usually we use the test error as atrue measure of the model's performance; therefore thebest model we can achieve occurs when the test erroris minimal. This corresponds to the circle in Figure 3;though further training beyond this point decreases thetraining error, it will degrade the performance of thefuzzy inference system on unforeseen inputs.As a comparison, we now look at the result of linearregression, where the model is expressed asMPG = a0 + a1 � cyl + a2 � disp + a3 � hp+a4 �weight + a5 � accel + a6 � year;with a0, a1, � � �, a6 being seven modi�able linear pa-rameters. The optimum values of these linear pa-rameters were obtained directly by the least-squaresmethod; the training and test errors are 3.45 and 3.44,respectively. In contract, after 100 epochs of training,the minimal test error is 2.98, at which the trainingerror is 2.61. It is worth noting that the linear modeltakes all six inputs into consideration, but the errormeasures are still high since MPG prediction is nonlin-ear. On the other hand, our input selection techniqueof choosing the two most relevant inputs can result ina nonlinear mapping with lower error measures.Figure 4 (a) is a three-dimensional surface of thefuzzy model with the smallest test error. This is asmooth nonlinear surface, but it raises a legitimate

question: why does the surface increase toward theright upper corner? This is an apparently spurious re-sult that states that heavy old cars have higher MPGratings. The anomaly can be explained by the scatterplot of the data distribution in Figure 4 (b), in which itis obvious that the lack of data (due to the tendency ofautomobile manufacturers to begin building small com-pact cars instead of big heavy ones during mid 70s) isresponsible. In other words, our trained fuzzy inferencesystem is good at interpolation, but not at extrapola-tion. Without input selection, it is hard to visualize thedata qualify the scope of its validity before interpretingANFIS output correctly.5. Nonlinear System Identi�cationThis section applies ANFIS to nonlinear systemidenti�cation, using the well-known Box and Jenkinsgas furnace data [1] as the training data set. This isa time-series data set for a gas furnace process withgas ow rate u(t) as the furnace input and CO2 con-centration y(t) as the furnace output. We want toextract a dynamic process model to predict y(t) us-ing ten candidate inputs to ANFIS: y(t � 1), y(t � 2),y(t � 3), y(t � 4), u(t� 1), u(t� 2), u(t� 3), u(t� 4),u(t � 5), and u(t � 6). The original data set contains296 [u(t); y(t)] data pairs; converting the data so thateach training data point consists of [y(t� 1); � � � ; y(t�4); u(t�1); � � � ; u(t�6); y(t)] (the last one is the desiredoutput) reduces the number of e�ective data points to290. We use the �rst 145 data points as the trainingset, the remaining 145 as the test set.Since we have ten candidate input variables for AN-FIS, it is reasonable to do input selection �rst to ratevariable priorities and reduce the input dimension. Fordynamic system modeling, the inputs selected for AN-FIS must contain elements from both the set of histori-cal furnace outputs fy(t�1), y(t�2), y(t�3), y(t�4)gand the set of historical furnace inputs fu(t � 1),u(t� 2), u(t� 3), u(t� 4), u(t� 5), u(t� 6)g. For sim-plicity, we assume that there are two inputs for ANFIS,one is from the historical furnace outputs, the otherfrom the historical furnace inputs. In other words, wehave to build 24 (= 4 � 6) ANFIS models with vari-ous input combinations, and then choose the one withthe smallest training error for further parameter-level�ne-tuning. We could have chosen the ANFIS with thesmallest test error, but this would have led to \indirecttraining on test data". The input selection proceduretook about 40 seconds on a 486-DX100 PC with 16MB RAM. Figure 5 shows the performance of these 24ANFIS models, they are listed according to their train-ing errors. Note that each ANFIS has four rules, and
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Figure 5. Input selection for Box-Jenkins data. .the training took only one epoch each to identify linearparameters. If computing power is not a problem, wecould then assign more training epochs to each ANFIS.In Figure 5, we can see that the ANFIS with y(t�1)and u(t � 3) as inputs has the smallest training error,so it is reasonable to choose this ANFIS for furtherparameter tuning. Figure 6 shows the result of train-ing this ANFIS for 100 epochs. In particular, Figure 6(a) displayed the training and test error curves; theoptimal ANFIS parameters were obtained at the timewhen the test error reached the minimum indicated bya small circle. Figure 6 (b) shows the data distribution;it demonstrates that the training and test data do notcover the same region. Better performance can be ex-pected if they cover roughly the same region; this canbe achieved by using other schemes to divide the orig-inal data set. (For instance, the training and test setscan be interleaved in the original data set.) Figure 6(c) displays the desired curve and ANFIS prediction;the performance for time index from 1 to 145 is bettersince this is the domain from which the training datawas extracted. Figure 6 (d) is the ANFIS surface; it iscut o� at the maximum and minimum of the desiredoutput.6. Concluding RemarksIn this paper, we present a quick and staightfor-ward way of input selection for neuro-fuzzy modelingusing ANFIS (Adaptive Neuro-Fuzzy Inference Sys-tems) [2, 3]. The proposed method was tested on tworeal-world problems: the nonlinear regression problemof automobile MPG (miles per gallon) prediction, andthe nonlinear system identi�cation using the Box andJenkins gas furnace data [1]. For the automobile MPGprediction problem, we also compared the ANFIS ap-proach with input selection to the common linear re-gression method, and found that a nonlinear ANFISmodel with two inputs performed better than a linear
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