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ABSTRACT and Salas (1985) compared kriging with several other
interpolation techniques, including inverse distance, forThe choice of an optimal interpolation technique for estimating
annual precipitation distributions and found kriging tosoil properties at unsampled locations is an important issue in site-
be superior to inverse distance weighting. Warrick etspecific management. The objective of this study was to evaluate

inverse distance (InvD) weighting, ordinary kriging (KO), and lognor- al. (1988) also reported kriging to be better than inverse
mal ordinary kriging (KOlog) to determine the optimal interpolation distance weighting for mapping potato (Solanum tu-
method for mapping soil properties. Relationships between statistical berosum L.) yield and soil properties, such as percent
properties of the data and performance of the methods were analyzed of sand, Ca content, and infiltration rate. Laslett et al.
using soil test P and K data from 30 agricultural fields. For InvD (1987) obtained more accurate pH predictions by using
weighting, we used powers of 1, 2, 3, and 4. The numbers of the closest kriging than by using inverse distance weighting. Lee-neighboring points ranged from 5 to 30 for the three methods. The

naers et al. (1990) found kriging to be superior to inverseresults suggest that KOlog can improve estimation precision compared
distance weighting for the majority of their soil Zn con-with KO for lognormally distributed data. The criteria helpful in
tent data sets. Criteria for comparing the methods weredeciding whether KOlog is applicable for the given data set were the
mean squared error (Warrick et al., 1988), sum ofKolmogorov–Smirnov goodness-of-fit statistic, coefficient of varia-

tion, skewness, kurtosis, and the size of the data set. Careful choice squared errors (Laslett et al., 1987), and correlation
of the exponent value for InvD weighting and of the number of the coefficients between observed and estimated values
closest neighbors for both InvD weighting and kriging (KO or KOlog) (Leenaers et al., 1990).
significantly improved the estimation accuracy (P # 0.05). However, Several other studies, however, found inverse dis-
no a priori decision could be made about the optimal exponent and tance weighting to be more accurate than kriging. Weber
the number of the closest neighbors based on the statistical properties and Englund (1992) found that squared inverse distanceof the data. For the majority of the data sets, kriging with the optimal

weighting produced better interpolation results than anynumber of the neighboring points, a carefully selected variogram
other method, including kriging. Wollenhaupt et al.model, and appropriate log-transformation of the data performed
(1994) compared inverse distance weighting and krigingbetter than InvD weighting. Correlation coefficients between experi-
for mapping soil P and K levels and found inverse dis-mental data and estimated results of kriging were higher than those

of InvD for 57 out of a total of 60 data sets, kriging mean absolute tance to be relatively more accurate. Gotway et al.
errors were lower for 44 data sets, and kriging mean errors were lower (1996) observed the best results in mapping soil organic
than those of InvD weighting for 31 data sets. matter contents and soil NO2

3 levels for several fields
when inverse distance was used as an interpolation tech-
nique. The studies used mean squared error as a main

Precision agriculture applies principles of farming criterion for comparison (Weber and Englund, 1992;
according to the field variability, which creates new Gotway et al., 1996).

requirements for estimating and mapping spatial vari- Kriging performance can be significantly affected by
ability of soil properties. Improvement in estimation variability and spatial structure of the data (Leenaers
quality depends, first, on reliable interpolation methods et al., 1990), and by the choice of variogram model,
for obtaining soil property values at unsampled loca- search radius, and the number of the closest neighboring
tions and, second, on appropriate application of the points used for estimation. The above-mentioned stud-
methods with respect to data characteristics. ies by Weber and Englund (1992), Wollenhaupt et al.

The interpolation techniques commonly used in agri- (1994), and Gotway et al. (1996) used a number of
culture include inverse distance weighting and kriging simplified assumptions in kriging applications. For ex-
(Franzen and Peck, 1995; Weisz et al., 1995). Both meth- ample, the choice of the variogram model was limited
ods estimate values at unsampled locations based on to a spherical model, and a fixed number of the closest
the measurements from the surrounding locations with neighboring points was used for all the data sets. In a
certain weights assigned to each of the measurements. subsequent study, Weber and Englund (1994) noted that
Inverse distance weighting is easier to implement, while judicious selection of the variogram model and of the
kriging is more time-consuming and cumbersome; how- number of the closest neighbors used for the estimation
ever, kriging provides a more accurate description of led to significantly better estimation precision.
the data spatial structure, and produces valuable infor- It has been observed that many of soil properties are
mation about estimation error distributions. The accu- lognormally rather than normally distributed. Numer-
racy of these two procedures has been compared in a ous examples were reviewed by Parkin and Robinson
number of studies. Creutin and Obled (1982) and Tabios (1992), including aggregate size, soil water flux, hydrau-

lic conductivity, content of soil N, and concentration of
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bregts, 1978; Isaaks and Srivastava, 1989), we only brieflysoil pore CO2. Lognormal ordinary kriging has been
describe the methods used in the study. For both inverseproposed as an alternative to ordinary kriging for log-
distance (InvD) and kriging (KO or KOlog) interpolation meth-normally distributed data (Rendu, 1979; Journel, 1980;
ods, the value of variable Z at unsampled location x0, Z*(x0)Rivoirard, 1990). It has been shown that if the distribu-
is estimated based on the data from the surrounding locations,tions of the experimental data are clearly lognormal, log- Z(xi ), as

transformation of the original data can result in better
estimations (Journel and Huijbregts, 1978; Candela et Z*(x0) 5 o

n

i51

wi Z(xi ) [1]al., 1988). However, lognormal ordinary kriging can be
very sensitive to the back-transformation method and

where wi are the weights assigned to each Z(xi ) value and nprone to produce biased estimation results, which makes is the number of the closest neighboring sampled data points
its application a challenge (Journel, 1980; Deutsch and used for estimation. The weights for the inverse distance
Journel, 1998). Our first objective was to compare in- method are
verse distance weighting, ordinary kriging, and lognor-
mal ordinary kriging in order to determine the optimum wi 5

1/dp
i

o
n

i51

1/dp
i

[2]method for mapping soil properties. The second objec-
tive was to analyze relationships between statistical
properties of the data and performance of the interpola-

where di is the distance between the estimated point and thetion technique.
sample and p is an exponent parameter. It has been shown
that the choice of the exponent value can significantly affectMATERIALS AND METHODS
estimation quality (Isaaks and Srivastava, 1989; Weber and
Englund, 1994; Gotway et al., 1996). In our study, we comparedData
InvD estimates with powers of 1, 2, 3, and 4. It is interestingWe used soil test P and K data collected from 30 agricultural to note that most of the commercial software that is availablefields in Illinois, Indiana, and Iowa. The fields were sampled currently for the production of soil fertility maps for guidanceon a regular grid, as is often done in commercial soil sampling, of variable rate application equipment uses default exponenteven though there is no mathematical requirement for grid values of 2 or 4 without checking the appropriateness of thosesampling. The distance between sampling locations varied values (Agris, 1998, p. 147–171).from 25 to 100 m for different fields (Table 1). Statistical The other factor affecting the precision of InvD weightingsummaries of the P and K data, along with the number of is the number of the closest samples used for estimation. Indata points for each field, are shown in Table 1. this study, two cases were considered. In the first case, the
number of the closest samples was fixed at 12, which is consis-Interpolation Techniques tent with traditional approach to InvD weighting. In the sec-
ond case, we applied InvD weighting with the number of theSince detailed information about interpolation procedures

can be found elsewhere in the literature (Journel and Huij- closest samples varying from 5 to 30. The search radius chosen

Table 1. Statistical summary of P and K contents, data collected from 30 agricultural fields in Illinois, Indiana, and Iowa.

P K
Grid

Data set Samples distance Mean CV SK† KT† Mean CV SK KT

no. m kg ha21 % kg ha21 %
1 64 50 110 63 1.9 4.2 705 41 1.9 4.1
2 144 65 84 54 2.1 6.1 370 38 2.9 11.4
3 106 65 73 58 2.0 6.4 393 31 1.3 2.0
4 64 50 113 33 0.8 0.01 623 20 1.1 0.5
5 120 65 81 42 1.5 4.0 436 30 2.3 10.5
6 43 65 72 35 0.8 0.3 — — — —
7 56 50 60 52 1.4 2.2 373 35 1.7 3.8
8 74 65 151 48 0.7 0.3 360 31 1.3 3.7
9 54 65 104 52 1.8 6.3 496 21 0.6 1.0

10 52 65 105 52 0.9 0.3 418 23 1.1 1.1
11 48 50 83 58 3.7 17.6 451 36 2.9 13.2
12 256 25 71 48 1.3 1.8 271 27 1.9 8.6
13 64 50 43 65 1.8 2.7 355 21 1.7 5.1
14 48 50 88 58 1.4 2.2 494 27 1.1 0.9
15 106 65 74 45 1.9 6.5 429 24 0.6 20.2
16 48 65 110 39 1.4 2.8 497 23 0.8 0.9
17 36 65 130 42 1.0 1.5 271 31 1.0 0.7
18 74 65 119 68 1.6 3.0 431 33 2.6 10.1
19 390 65 105 53 1.7 5.2 488 30 1.5 3.6
20 111 65 72 43 1.7 3.7 386 23 1.1 1.2
21 1752 50 66 70 2.6 8.6 421 45 4.7 32.1
22 132 65 75 64 2.2 9.4 423 18 1.3 3.9
23 75 65 119 63 3.6 16.8 521 50 2.5 7.5
24 78 65 158 69 1.5 0.9 488 34 3.3 16.7
25 64 50 94 48 1.7 4.8 463 23 2.0 7.1
26 72 65 166 28 2.4 11.4 803 19 0.9 3.1
27 125 100 112 46 0.6 20.3 418 38 0.4 0.03
28 61 100 110 26 0.5 0.1 576 24 1.1 2.3
29 64 100 108 38 0.7 20.1 548 29 0.6 1.0
30 72 65 55 28 0.1 20.6 614 18 20.1 20.8

† SK, skewness; KT, kurtosis.
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was large enough to include the required number of the closest where Zm is the sample mean. Geostatistical analysis consisting
of variogram calculation, cross-validation, and kriging wassamples. Cross-validation was used to compare the results

obtained with different number of the closest samples. Each performed using the geostatistical software package GSLIB
(Deutsch and Journel, 1998).value from the data set was eliminated in turn, and then esti-

mated using information from the rest of the data (Kane et al.,
1982; Goovaerts, 1997). The exponent value and the number of

RESULTS AND DISCUSSIONthe closest neighboring points producing the best agreement
between the measured data and the estimates were chosen as A statistical summary of the P and K contents isthe optimal InvD weighting parameters.

presented in Table 1. Mean values of P and K contentsKriging calculates the values of wi by estimating spatial
varied for different fields, with maximums of 166 andstructure of the variable’s distribution represented by a sample
803 and minimums of 43 and 271 kg ha21 for P and K,variogram as
respectively. Variability of K content was less than the
variability of P content for most of the studied fields,g(h) 5 1/2n o

n

i51

[Z(xi 1 h) 2 Z(xi )]2 [3]
with an average coefficient of variation equal to 49%

where xi and xi 1 h are sampling locations separated by a for P and 29% for K. The majority of the data sets
distance h, and Z(xi ) and Z(xi 1 h) are measured values of had high positive skew and kurtosis values (Table 1).
the variable Z at the corresponding locations. The sample Histograms for P and K contents were constructed and
variogram is fitted with a variogram model and adequacy of plotted, along with theoretical normal and lognormal
the chosen model is tested using cross-validation. In this study, probability density functions. Examples of the histo-we considered spherical, Gaussian, and exponential models

grams for four of the data sets are shown in Fig. 1.for the sample variogram fitting. The cross-validation was
Kolmogorov–Smirnov D-statistics were calculated forconducted with varying model parameter values and with num-
fitting normal and lognormal distributions to the experi-bers of the closest neighboring samples ranging from 5 to 30
mental data (Table 2). Since D-values vary with theuntil the highest estimation accuracy was reached. Accuracy
histogram features, such as number of classes and classof the selected variogram model was measured through the

error between the measured data and the estimated values size, we chose the number of classes that produced the
(Zhang et al., 1995). Cross-validation criteria used for sample lowest D-values for fitting data with normal distribution
variogram selection were (Myers, 1991) the correlation coeffi- and, hence, the closest correspondence between experi-
cient between measured and estimated values, mean error (ME), mental and normal distributions. The same number of

classes was also used for fitting lognormal distributions.ME 5 1/n o
n

i51

[Z*(xi ) 2 Z(xi )] [4] For all of the data sets, D for lognormal distribution
(Dln) was smaller than the appropriate table D-value atmean absolute error (MAE) (David, 1988),
0.01 significance level (Table 16 in Kanji, 1993), that
indicated that at 0.01 significance level all of the dataMAE 5 1/n o

n

i51

[|Z*(xi ) 2 Z(xi )|] [5]
could be assumed to be lognormally distributed. For
the majority of the data (21 P data sets and 24 K dataand the reduced kriging variance (Zhang et al., 1992)
sets), D-values from normal distribution (Dn) were

KRE 5 MSE/MKV [6] lower than table values at 0.01 significance level as well,
implying that either assumption of normal or lognormalwhere MSE is the mean squared error and MKV is the mean

kriging variance for the studied data set. We selected the distribution could be used for the data. Although the
variogram model that resulted in the best values of the cross- Kolmogorov–Smirnov test was not sufficient to distin-
validation criteria. Ordinary kriging (KO) was used to estimate guish between normal and lognormal distributions at
weights based on the variogram model, and the variable values P # 0.01, we still used D as a criterion for deciding
at unsampled locations were obtained using Eq. [1]. which distribution, normal or lognormal, is the most

Lognormal ordinary kriging (KOlog) was performed simi- appropriate for a given data set. Data sets were dividedlarly to the previously described ordinary kriging, except that
into two groups. Those with Dn # Dln were placed intonatural logarithms were used rather than the actual data. Back-
normally distributed group; those with Dln # Dn weretransformation of the lognormal estimates was performed us-
placed into lognormally distributed group.ing following equation (Rendu, 1979; Rivoirard, 1990; Weber

Omnidirectional sample variograms for both originaland Englund, 1992):
and log-transformed P and K contents were calculated

Z(xi ) 5 exp[Y(xi ) 1 1/2V(xi ) 2 li ] [7] using Eq. [3] and fitted with variogram models. Direc-
where Y(xi ) is the lognormal kriging estimate, and V(xi ) and tional sample variograms were calculated in the south–
li are corresponding kriging variance and Lagrange multiplier. north and east–west directions. For some of the data
Kolmogorov–Smirnov goodness-of-fit test (Kanji, 1993) was sets, there were not sufficient samples to produce a
used to analyze the data distributions. valid directional variogram; hence, only omnidirectional

To compare different interpolation techniques, we analyzed variograms were considered. For the data sets with suffi-the errors between the measured data and the estimates using
cient samples, the directional variograms were inspectedcriteria such as mean error, mean absolute error, correlation
visually. Since there was no an underlying physical phe-coefficient, and the goodness-of-prediction statistic, G (Agter-
nomenon to cause the data to be anisotropic, and thereberg, 1984; Gotway et al., 1996):
was no apparent anisotropy in directional variograms,

G 5 51 2 o
n

i51

[Z*(xi ) 2 Z(xi )]2/o
n

i51

[Zm only omnidirectional variograms were used in further
analysis (Goovaerts, 1997). Most of the sample vario-
grams were best fitted with spherical models. Gaussian2 Z(xi )]26 3 100 [8]
models were used for 12 P and K data sets, and exponen-
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Fig. 1. Examples of the experimental histograms for (a) Data Set 8, (b) Data Set 12, (c) Data Set 19, and (d) Data Set 30 (see Table 1). The
solid line represents either the theoretical normal distribution (Data Sets 8 and 30) or the theoretical lognormal distribution (Data Sets 12
and 19).

tial models were used for 4 data sets. Ranges of the The most significant difference was observed in mean
error values. Large negative mean errors were obtainedselected variogram models are presented in Table 2.

Table 3 presents correlation coefficients, mean errors, by applying KOlog to the data from the normally distrib-
uted group for 12 out of total 14 data sets, with themean absolute errors, and goodness-of-prediction G-val-

ues obtained by comparing measured data with esti- maximum observed mean error of 217.7. The negative
bias in KOlog estimations was attributed to the deviationmates of ordinary kriging (KO) and lognormal ordinary

kriging (KOlog), averaged for the data sets. For the data from lognormality in the data distributions (David,
1988). Link and Koch (1975) showed that negative biasfrom the lognormally distributed group, KOlog produced

overall better results than KO. Correlation coefficients is possible when lognormal transformation was used for
positively skewed but not exactly lognormal distribu-and G-values from KOlog were higher then those from

KO for 42 and 41 data sets, respectively (out of total tions. For such data sets, either KO or KOlog would be
appropriate, depending on the objectives of the investi-45 lognormally distributed P and K data sets). Mean

absolute errors of KOlog were lower than those of KO gation.
We observed that the improvement in estimation pre-for 30 out of 45 data sets. Mean errors of KOlog also

were lower than or close to those of KO for the majority cision due to using lognormal kriging for the data from
the lognormally distributed group could be related toof the data, although some relatively high negative val-

ues were observed. For the data from the normally dis- the number of samples in the studied data sets. Three
large data sets had positively skewed data that weretributed group, KO produced better results than KOlog.

Correlation coefficients for 9 out of total 14 normally significantly better fitted by lognormal than normal dis-
tribution (Data Sets 21, 19, and 12, with 1752, 390 anddistributed data sets were higher for KO. G-values from

KO were higher for 8 normally distributed data sets. 256 samples, respectively; Table 1); however, KOlog did
not considerably improve estimation precision com-Mean absolute errors of KO were lower than those of

the KOlog for all except 3 normally distributed data sets. pared with KO. The relative improvement in the corre-
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Table 2. Kolmogorov–Smirnov D-statistics for fitting the soil P and K data with normal (Dn ) and lognormal (Dln ) distributions, the
inverse distance optimum exponent value (p ), and the actual correlation length (R ).

P K

Data set Dist.† Dn Dln p R Dist.† Dn Dln p R

m m
1 ln 0.137 0.040 4 152 ln 0.173 0.091 2 182
2 ln 0.141 0.043 4 213 ln 0.147 0.062 4 213
3 ln 0.099 0.026 1 152 ln 0.108 0.047 1 253
4 ln 0.098 0.039 1 82 ln 0.091 0.061 4 182
5 ln 0.082 0.014 1 608 ln 0.062 0.027 2 395
6 ln 0.093 0.056 1 82 — — — —
7 ln 0.090 0.055 1 91 ln 0.060 0.020 4 143
8 ln 0.073 0.061 4 228 n 0.030 0.052 4 167
9 ln 0.088 0.051 3 600 ln 0.044 0.040 3 182
10 ln 0.107 0.026 1 182 n 0.027 0.030 4 152
11 ln 0.208 0.100 4 91 ln 0.136 0.091 4 106
12 ln 0.106 0.019 4 304 ln 0.072 0.018 4 85
13 ln 0.176 0.054 4 144 ln 0.094 0.051 4 129
14 ln 0.104 0.039 4 182 n 0.021 0.036 4 91
15 ln 0.096 0.013 3 274 ln 0.033 0.016 2 274
16 ln 0.078 0.023 1 152 n 0.025 0.035 1 179
17 ln 0.062 0.031 1 182 ln 0.086 0.044 3 243
18 ln 0.099 0.030 1 426 ln 0.101 0.034 1 304
19 ln 0.057 0.011 3 608 ln 0.062 0.030 2 152
20 ln 0.111 0.030 1 82 ln 0.092 0.051 1 213
21 ln 0.137 0.022 3 395 ln 0.122 0.050 3 334
22 ln 0.073 0.021 4 219 ln 0.076 0.070 2 243
23 ln 0.182 0.058 4 198 ln 0.196 0.099 4 426
24 ln 0.256 0.155 4 122 n 0.076 0.098 4 122
25 ln 0.098 0.032 1 304 n 0.025 0.041 4 122
26 n 0.034 0.051 1 228 n 0.039 0.068 3 213
27 n 0.051 0.056 1 380 n 0.079 0.110 2 532
28 ln 0.040 0.033 4 137 n 0.029 0.042 1 258
29 ln 0.055 0.021 1 152 n 0.018 0.062 1 152
30 n 0.043 0.058 1 243 n 0.024 0.061 1 204

† Within P or K, the data set is assumed to normally (n) or lognormally (ln) distributed.

lation coefficient for these data seems to decrease as Data statistics such as coefficient of variation, skew-
ness, and kurtosis can be used along with the Kolmo-the number of samples in the data set increases. Relative

improvement (RI) in the correlation coefficient value gorov–Smirnov parameter D as an approximate indica-
tor of how much better KOlog will perform than KO. Asdue to using lognormal kriging was calculated as
a general trend for lognormally distributed data, largerRI 5 (RKOlog 2 RKO)/RKO [9]
RI values were observed for data with larger differences

where RKOlog and RKO are correlation coefficients be- between the values of Dn and Dln. Higher values of
tween measured data and estimates of KOlog and KO, skewness and kurtosis also frequently corresponded to
respectively. Apparently, the influence of outliers that the higher RI values. Significant positive correlation
cause the data distribution being positively skewed de- (R 5 0.506, P 5 0.05) was observed between mean
creases with an increase in the size of the data set and errors of KOlog and coefficients of variation. Coefficients
the data distribution behaves more like a normal distri- of variation for P and K data plotted versus mean error
bution. Hence, the advantage of using log-transforma- values are shown in Fig. 3. The plot suggests that KOlog is
tion disappears with an increase in the size of the data more likely to produce biased estimates (large negative
set. The plot of RI versus the number of samples for mean errors) for the data sets with low coefficients of
three largest data sets, along with the average RI and variation, while more accurate estimates can be ex-
average sample size for the remaining data sets, is shown pected for those with high coefficients of variation.

After we chose the best estimation procedure (eitherin Fig. 2.

Table 3. Comparison of the ordinary kriging (KO) and lognormal ordinary kriging (KOlog) for normally and lognormally distributed
data sets (P and K data collected from 30 agricultural fields).

Corr. coef. G‡ ME§ MAE¶
Data sets
with N† KO KOlog KO KOlog KO KOlog KO KOlog

lognormal P 27 0.520 0.548 25.9 29.2* 0.48 20.97* 28.2 27.7
normal P 3 0.544 0.541 33.1 31.9 0.56 23.37* 24.8 25.3
lognormal K 18 0.532 0.554 27.8 30.7* 1.19 23.08* 77.8 76.3
normal K 11 0.495 0.486 26.7 25.7 0.63 28.64* 82.0 84.4

* Within statistics, the difference between KO and KOlog was significant at the 0.05 probability level.
† Values are the average for N data sets.
‡ G, goodness-of-prediction statistic (Eq. [8]).
§ ME, mean error (Eq. [4]).
¶ MAE, mean absolute error (Eq. [5]).
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Fig. 2. Relative improvement (RI) in the correlation coefficient for lognormally distributed data as a function of data set size. The first point
represents average sample size and average RI for the data sets, with the number of data points varying from 36 to 144. Vertical bars denote
standard error of the RI.

KO or KOlog) for each data set, we compared it with and kurtosis. In this study, we observed that the majority
of the data with high skewness (.2.5) were the bestthe estimations produced by InvD weighting. Average

values of G goodness-of-prediction criteria, correlation estimated with a power of 4 (5 out of 8 data sets). For
most of the data with low skewness (,1), a power of 1coefficients, mean errors, and mean absolute errors for

the studied data are shown in Table 4. A noticeable yielded the most accurate estimates (9 out of 15 data
sets). The numbers of the closest neighboring pointsdifference in estimation precision was observed for dif-

ferent exponent values of InvD weighting and different varied with field and exponent. No correlation was ob-
served between the numbers of the closest neighborsnumbers of the closest neighboring points. For the ma-

jority of the studied data, a power of 4 produced the and data statistics for the studied fields.
Optimum kriging (either KO or KOlog) with an opti-best estimations, while for some data sets (22 out of

total 60) a power of 1 was the best (Table 2). For 14 mal number of neighboring points produced signifi-
cantly better results than the 12-point InvD weightingdata sets, a power of 2 or 3 produced the most accurate

results. Gotway et al. (1996) noted that the coefficient with a power of 4, which is the traditional approach to
InvD applications. Correlation coefficients and G-val-of variation of the data can be an indicator of which

exponent value to use. They observed that InvD ues from kriging were higher than those of InvD
weighting for all of the studied data sets, and krigingweighting with a power of 1 performed the best for data

with high coefficients of variation, while InvD weighting MAEs were lower than those of InvD weighting. Kriging
MEs for the majority of the data were lower than thosewith a power of 4 performed better for the less variable

data. In this study, no significant correlation was found of InvD weighting; however, a few relatively large nega-
tive kriging mean errors were observed. Kriging withbetween the exponent value and the coefficient of varia-

tion of the studied data. Weber and Englund (1994) an optimal number of neighboring points and an optimal
exponent also produced more accurate estimations thanfound that InvD weighting with a power of 1 resulted

in higher estimation quality for the data with high skew- the InvD method for the majority of the studied data.
Kriging correlation coefficients were higher than thoseness and kurtosis, while greater values for the exponent

produced better estimations for data with low skewness of InvD weighting for 57 data sets, kriging G-values
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Fig. 3. Coefficients of variation for P and K data vs. mean errors between experimental data and estimates of lognormal ordinary kriging.

uted data than ordinary kriging. For some data sets,were higher for 59 data sets, kriging MAEs were lower
however, lognormal ordinary kriging can result in biasedfor 44 data sets, and kriging MEs were lower for 31
estimations, with relatively high negative mean errordata sets.
between measured data and estimates. The Kolmo-
gorov–Smirnov goodness-of-fit parameter D can beSUMMARY AND CONCLUSIONS used as an indicator of which kriging procedure will

Data for P and K from 30 experimental fields were result in better estimation quality. If D obtained by
used to compare performance of three interpolation fitting data with lognormal distribution is lower than D
techniques: inverse distance weighting, ordinary kriging, from using normal distribution (i.e., Dln , Dn), lognor-
and lognormal ordinary kriging. Our results indicate mal ordinary kriging can be expected to produce results
that lognormal ordinary kriging can be expected to pro- with higher correlation coefficients and lower mean ab-

solute error between measured data and estimates. Induce overall better estimations for lognormally distrib-

Table 4. Comparison of the optimal kriging method (i.e., KOlog for the lognormally distributed data and KO for the normally distributed
data), the inverse distance method with an exponent value of 4 and with 12 closest neighboring points (InvD12), and the inverse
distance method with an optimal exponent value and the optimal number of the closest neighboring points (InvDopt). P and K data
collected from 30 agricultural fields.

Corr. coef. G‡ ME§ MAE¶
Data sets
with N† Kriging InvD12 InvDopt Kriging InvD12 InvDopt Kriging InvD12 InvDopt Kriging InvD12 InvDopt

lognormal P 27 0.547 0.483* 0.495* 29.2 20.6* 24.5* 20.97 1.02* 0.96* 26.8 32.7* 30.6
normal P 3 0.544 0.493 0.547 33.1 26.4 30.9 0.50 0.54 0.30 22.1 26.3 24.8
lognormal K 18 0.554 0.432* 0.518 30.7 23.4* 25.6* 23.08 2.01* 2.51* 76.3 79.8 78.2
normal K 11 0.495 0.440 0.460 26.7 18.4* 23.6 0.63 1.76 1.64 82.0 85.7 83.9

* Within statistics, the difference between optimal kriging and InvD12 or InvDopt was significant at the 0.05 probability level.
† Values are the average for N data sets.
‡ G, goodness-of-prediction statistic (Eq. [8]).
§ ME, mean error (Eq. [4]).
¶ MAE, mean absolute error (Eq. [5]).
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Deutsch, C.V., and A.G. Journel. 1998. Geostatistical software librarycases when D from normal distribution is smaller or the
and user’s guide. Oxford Univ. Press, New York.difference between D-values is relatively small, ordinary

Franzen, D.W., and T.R. Peck. 1995. Field soil sampling density forkriging should be preferred. Statistical properties of the variable rate fertilization. J. Prod. Agric. 8:568–574.
data can also be useful in deciding between ordinary and Goovaerts, P. 1997. Geostatistics for natural resources evaluation.

Oxford Univ. Press, New York.lognormal ordinary kriging. High values of coefficient of
Gotway, C.A., R.B. Ferguson, G.W. Hergert, and T.A. Peterson. 1996.variation, skewness, and kurtosis can be an indication

Comparison of kriging and inverse-distance methods for mappingthat lognormal ordinary kriging will be a better choice. soil parameters. Soil Sci. Soc. Am. J. 60:1237–1247.
Lognormal ordinary kriging is more likely to produce Isaaks, E.H., and R.M. Srivastava. 1989. An introduction to applied
large negative mean errors between measured and esti- geostatistics. Oxford Univ. Press, New York.

Journel, A. 1980. The lognormal approach to predicting local distribu-mated values for data sets with relatively low coeffi-
tions of selective mining unit grades. Math. Geol. 12:285–303.cients of variation (CV , 40%), than for those with

Journel, A.G., and C. Huijbregts. 1978. Mining geostatistics. Academichigh coefficients of variation. Ordinary kriging seems Press, New York.
to be a safer choice of interpolation technique than Kane, V., C. Begovich, T. Butz, and D.E. Myers. 1982. Interpretation

of regional geochemistry. Comput. Geosci. 8:117–136.lognormal ordinary kriging for data sets with more than
Kanji, G.K. 1993. 100 statistical tests. SAGE Publ., London.200 data points. For such data sets, regardless of whether
Laslett, G.M., A.B. McBratney, P.J. Pahl, and M.F. Hutchinson. 1987.data are normally or lognormally distributed, improve- Comparison of several spatial prediction methods for soil pH. J.

ment in estimation precision due to lognormal ordinary Soil Sci. 38:325–341.
kriging was negligible. Leenaers, H., J.P. Okx, and P.A. Burrough. 1990. Comparison of

spatial prediction methods for mapping floodplain soil pollution.Comparing kriging with inverse distance weighting
Catena 17:535–550.revealed that kriging with the optimal number of neigh-

Link, R.F., and G.S. Koch. 1975. Some consequences of applyingboring points, a carefully selected variogram model, and lognormal theory to pseudolognormal distributions. Math. Geol.
appropriate log-transformation of the data produces 7:117–128.

Myers, D.E. 1991. Interpolation and estimation with spatially locatedmore accurate estimations than the inverse distance
data. Chemometr. Intell. Lab. Syst. 11:209–228.method for the majority of the data. If inverse distance

Parkin, T.B., and J.A. Robinson. 1992. Analysis of lognormal data.weighting is used as an interpolation technique, a signifi- Adv. Soil Sci. 20:191–235.
cant improvement in estimation precision can be Rendu, J.-M.M. 1979. Normal and lognormal estimation. Math.
achieved by selecting an optimal number of the closest Geol. 11:407–422.

Rivoirard, J. 1990. Teacher’s aid: A review of lognormal estimatorsneighboring points and an optimal exponent value.
for in situ reserves. Math. Geol. 22:213–221.However, it seems that no exact recommendation about

Tabios, G.Q., and J.D. Salas. 1985. A comparative analysis of tech-the choice of exponent value and the optimal number niques for spatial interpolation of precipitation. Water Resour.
of neighboring points can be provided by analyzing the Bull. 21:365–380

Warrick, A.W., R. Zhang, M.K. El-Harris, and D.E. Myers. 1988.data statistics. Hence, the choice of the estimation pa-
Direct comparisons between kriging and other interpolators. In P.J.rameters, such as optimal exponent and the number of
Wierenga and D. Bachelet (ed.) Validation of flow and transportthe closest neighbors for inverse distance weighting, and models for the unsaturated zone. Proceedings. New Mexico State

the number of the closest neighbors and the variogram Univ., Las Cruces, NM.
parameters for kriging, should be based on a compre- Weber, D., and E. Englund. 1992. Evaluation and comparison of

spatial interpolators. Math. Geol. 24:381–391.hensive analysis of a wide range of parameter values.
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