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Abstract— The optimal power flow problem is nonconvex,
and a convex relaxation has been proposed to solve it. We prove
that the relaxation is exact, if there are no upper bounds on
the voltage, and any one of some conditions holds. One of these
conditions requires that there is no reverse real power flow,
and that the resistance to reactance ratio is non-decreasing as
transmission lines spread out from the substation to the branch
buses. This condition is likely to hold if there are no distributed
generators. Besides, avoiding reverse real power flow can be
used as rule of thumb for placing distributed generators.

I. INTRODUCTION

The optimal power flow (OPF) problem seeks to minimize
a certain objective function, such as power loss or generation
cost, subject to various constraints including power flow con-
straints, voltage regulation constraints, and load constraints.
There has been extensive research on OPF since Carpentier’s
first formulation in 1962 [1], and surveys can be found in,
e.g., [2]-[6]. The OPF problem is in general nonconvex, and
a lot of algorithms have been proposed to approximate OPF
or relax OPF to a convex optimization problem. Relaxation
methods have the potential of providing exact solutions, and
are the focus of this work. A relaxation is exact if every of
its solutions also solves the original problem.

In transmission networks, which are usually mesh net-
works, a semi-definite relaxation (SDR) has been proposed
to solve OPF [7]-[9], but whether or when the SDR is exact
can only be checked after solving the SDR. In distribution
networks, which are usually tree networks, different convex
relaxations [10]-[12] for OPF have been proposed. Reference
[10] proposes a second-order-cone relaxation (SOCR) for
OPF, and proves that the SOCR is exact if there are no upper
bounds on the loads. This condition can be checked before
solving the SOCR. However, upper bounds on the loads
are important for various applications including demand
response [13] and Volt/VAR control [14]. Motivated by this
shortcoming, this paper seeks sufficient conditions for the
exactness of SOCR, in the presence of load upper bounds.

In this paper, we prove that the SOCR is exact, if there are
no upper bounds on the voltage, and any one of the following
conditions holds.
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(1) There is no reverse real or reactive power flow, i.e., on
every transmission line, both real and reactive power
flow from the bus that is closer to the substation
to the bus that is farther from the substation. This
condition holds when there are no shunt capacitors and
no distributed generators in the network.

(2) There is no reverse real power flow, and the resistance to
reactance ratio is non-decreasing as transmission lines
spread out from the substation to the branch buses. As
transmission lines spread out, they are in general getting
thinner, which implies that the resistance to reactance
ratio is non-decreasing. Hence, this condition mostly
requires no reverse real power flow.

(3) There is no reverse reactive power flow, and the re-
sistance to reactance ratio is non-increasing as the
transmission lines spread out from the substation.

(4) The resistance to reactance ratio is identical throughout
the network. This condition holds if transmission lines
are uniform throughout the network.

We ignore voltage upper bounds in this paper. It is reasonable
in at least two cases: 1) there are no distributed generators; 2)
the load is heavy. (The voltage tends to be low in both cases.)
Besides, accepting that the resistance to reactance ratio is
non-decreasing for practical distribution networks, condition
(2) holds if there are no distributed generators (there are
no sources of reverse real power flow). Moreover, avoiding
reverse real power flow can be used as rule of thumb for
placing distributed generators.

In the rest of the paper, we introduce the OPF problem and
its convex relaxation SOCR in Section II, provide sufficient
conditions for the exactness of SOCR in Section III, and
use a practical network to illustrate how to place distributed
generators to avoid reverse real power flow in Section IV.

II. THE OPTIMAL POWER FLOW PROBLEM AND ITS
CONVEX RELAXATION

A. Notation

Consider a tree distribution network that consists of N 41
buses. Index the substation bus by 0 and the branch buses
by 1,...,N.Let N :={0,..., N} denote the set of buses.
Each transmission line in the network connects an ordered
pair (i,7) of buses, where bus i is on the path from bus
0 to bus j. Let £ denote the set of transmission lines. For
each bus ¢« € N, let p; and ¢; denote its real and reactive
load respectively (distributed generation can be considered
as negative loads), let V; denote its voltage, and define v; :=
|Vi|%. Bus 0, the substation, has fixed voltage magnitude,



TABLE I

LIST OF SYMBOLS
N Set of buses.

L Set of transmission lines.
Di Real load at bus 3.

qi Reactive load at bus 3.
Vi Voltage at bus 4.

v; v = |V42.

Tij Resistance of (i, 7).

x;;  Reactance of (3, j).

P Real power flow from i to j.
Qij  Reactive power flow from 4 to j.
I;; Current flowing from i to j.

bij iy = L[>

i.e., vo is a constant. For each line (i,j) € L, let r;; and
x;; denote its resistance and reactance respectively, let F;;
and ();; denote the real and reactive power flow from bus ¢
to bus j respectively, let I;; denote the current flowing from
bus i to bus j, and define ¢;; := |I;;|?. These notations are
summarized in Table I. We use the letter without subscript to
denote a column vector of the corresponding quantity, e.g.,

ri= (rij, (4,7) er)”, pi=(p1,....pn)",
= (2, (i,5) € £)" q:=(q1,...,an)"
P:= (P”,( Nen)t,  wi=(v,...,on)",
Q= (nga(% )GL-)T’ 0= (zja(Z7J)€£>T-
For k € {1,2,...}, a = (a1,...,ax) € R¥ and b =
(b1, ...,br) € R, define the relations >, =, <, and < as
ax-b &L 4> fori=1,....k
arb &L g > fori=1,...,k
a<b &g <bifori=1,... k,
a=<b &L <bfori=1,....k

) )

B. The Optimal Power Flow Problem

In tree networks, power flow is characterized by (see [15])

Py = rlij+pi+ >, P, (L) €Ly (D)
k:(j,k)EL
Qij = wiylij +q;+ Z Qjr, (1,7) €L; (2
k:(j,k)eL
vj = v = 2(ri Py + 2 Quj) + (13 + 73;) g,
(4,5) € Ly (3)
Pz + Q2
by = —4———2 U_Q”, (i,j))eL (4

The optimal power flow (OPF) problem is to minimize the
power loss, subject to power flow constraints (1)—(4), voltage
regulation constraint (6), and load constraint (7).

OPF:
pa Pl Z rijli 5)
(i,j)eL
S.t. (D)—(4);
V=RV ©)
p2Xp=2Dp q=2q=3q (7)

where vg, T, T, v, p. D, q, and g are given conostants.
Remark 1: The objective function in (5) is the power loss,
and can be generalized to any function of the type

f Z rijli; | +9(p:q)

(i,)€L

where f : R — R is strictly increasing and g : RY x RN —
R is arbitrary.

Remark 2: Tt is claimed in [16] that given substation
voltage vy and load p, ¢, there exists a unique practical P,
Q, ¢, v satisfying power flow equations (1)—(4). In practice,
the control is to find the optimal load p and ¢, and let other
quantities P, @), ¢ and v be determined by physical laws
(1)-(4). Loads p; and ¢; at bus ¢ can be either positive
or negative, depending on whether it represents a load, a
distributed generator, or a shunt capacitor.

Remark 3: The voltage regulation constraintis v < v XU
rather than (6), i.e., there is an upper bound v on v as well
as a lower bound v. We ignore v in the current paper. This is
reasonable in at least two cases: 1) there are no distributed
generators; 2) the load is heavy. (The voltage tends to be low
in both cases.)

Remark 4: In applications including demand response and
Volt/VAR control, load constraint is usually considered to
be box constraint as in (7). Results in this paper extend to
arbitrary load constraint (it does not even need to be convex).

C. Second-Order-Cone Relaxation

Problem OPF is nonconvex due to the non-affine equality
constraint in (4). An approach (see [10]) to convexity OPF
is relaxing (4) to the inequality constraint

2 2
P + Q7

Vi

li; >

ij =

, (i,5) € L. ®)

Constraint (8) can be transformed to a second-order-cone
constraint. Therefore, we call the following convex problem
second-order-cone relaxation (SOCR).

SOCR:
p,q%g,l,v Z Tijgij
(i,5)€L

s.t. (D)=(3), (6)—(8).

Problem SOCR is convex and can be solved efficiently. If its
solution wOPt := (p°Pt ¢OPt POPt QOPY (oPt 4,0Pt) gatisfies
(4), then w°P* also solves Problem OPF.

Definition 1: The relaxation SOCR is exact if every solu-
tion of SOCR also solves OPF.
When SOCR is exact, we can solve the nonconvex problem
OPF by solving the convex problem SOCR. Reference [10]
proves that SOCR is exact if there are no upper bounds p
and q in (7) (but reference [10] considers upper bounds on
the voltage while the current paper does not). Upper bounds
P and ¢ are important for various applications including de-
mand response and Volt/VAR control. Therefore, the current
paper works on sufficient conditions for the exactness of
SOCR, in the presence of p and .



III. EXACTNESS OF SOCR

Let OPF(p, ¢) denote the OPF problem with p = p = p
and ¢ = § = ¢, and SOCR(p, q) denote the SOCR problem
with p = p = p and ¢ = § = ¢. If SOCR(p, q) is an exact
relaxation of OPF(p, ¢) for every feasible (p, ¢), then SOCR
is an exact relaxation of OPF. Hence, we start by exploring
the exactness of SOCR(p, q).

Let P! (p) and Q' (q) satisfy

Py pit D> P (i) €L ©)
k:(j,k)eL

Qi = ¢+ Y. Qu (,j)eL.  (10)
k:(j,k)EL

Note that equations (9)—(10) ignore the ¢ terms (which bring
nonlinearity) in equations (1)~(2), and P'"(p), Q"*(q) are
linear functions of p, ¢ respectively.

Theorem 1: The relaxation SOCR(p, g) is exact, if any of
the following conditions holds:

() P'™(p) = 0, Q" (q) = 0.

(i1) Phn(p) >0, Tij/wij < rjk/xjk for (’L,]), (]7 k) eL.
(iii) th(q) >0, rij/acij > ’I“jk/.’L'jk for (i,j), (], k‘) eL.
(iv) rij/-fij = rjk/xjk for (iv.j)’ (.77 k) €L.
Since the values P''"(p) and Q""(g) can be computed before
solving the SOCR(p, ¢), all four conditions in Theorem 1 can
be checked before solving the SOCR(p, q).

Condition (i) requires Pji" > 0 and Q}* > 0 for (i, j) €
L, i.e., both real and reactive power flow from bus ¢ to bus j
for every transmission line (i, j). Since bus i is closer to the
substation, this condition can be interpreted as no “reverse”
real or reactive power flow. If there are no distributed gener-
ators (such as photovoltaic on rooftops) injecting real power,
or their real power injection is smaller than the downstream
loads, then there is no reverse real power flow, i.e., Plin =,
If there are no shunt capacitors injecting reactive power, or
their reactive power injection is smaller than the downstream
reactive loads, then there is no reverse reactive power flow,
i.e., Q" > 0. Though distributed generation is insignificant
in current distribution networks, shunt capacitors are widely
used for voltage regulation, and Q'"(q) = 0 is likely to be
violated.

Condition (ii) removes the requirement Q' (q) = 0, but
imposes a new requirement that the resistance to reactance
ratio r/z is non-decreasing as transmission lines spread out
from the substation to the branch buses. The new requirement
on r/x is satisfied in most practical distribution networks
since the transmission lines usually get thinner as they spread
out from the substation. Therefore, condition (ii) holds if
there are no distributed generators in the network, for most
practical distribution networks.

When there is significant distributed generation causing
reverse real power flow, the requirement P'"(p) > 0 in
condition (ii) does not hold. Condition (iv) further removes
the requirement P'"(p) = 0, but imposes a new requirement
that the ratio » /2 should be identical throughout the network.
It follows that SOCR is exact if transmission lines are
uniform throughout the network.

Corollary 1: The relaxation SOCR is exact, if any of the
following conditions holds:
@) P'(p) = 0. Q" (q) = 0.
(i) P"™(p) = 0, r4j/wij <y for (4,5), (5,k) € L.
(iii") Q"™ (q) = 0, rij/mij > rji/ajn for (i,4), (j,k) € L.
@v’) Tij/.’tij = rjk/xjk for (i,j), (j, k/’) eL.
Proof: When conditions (i’)—(iv’) hold, conditions (i)—
(iv) hold respectively, for all (p, ¢) satisfying (7). Let w°P? :=
(p°Pt, qOoPt, POPt (QOPt (OPt 1°Pt) denote an arbitrary solu-
tion to SOCR. It follows from SOCR(p°Pt, ¢°P') being exact
that w°P' satisfies (4). Therefore SOCR is exact. |
Condition (ii’) can be used for, e.g., Volt/VAR control
when there are no distributed generators. In this case, the
voltage v tends to be low, and we can ignore its upper bound
¥ to obtain Problem OPF. Besides, P'"(p) = 0 holds since
there are no distributed generators. We assume that the /2
ratio is non-decreasing as transmission lines spread out from
the substation (this is likely to be true in practical distribution
networks), then condition (ii’) holds. It follows that SOCR
is an exact relaxation of OPF.
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Fig. 1. A one-line distribution network with simplified notations.

For ease of presentation, we prove Theorem 1 in a one-
line network, and the proof can be extended to general tree
networks. In a one-line network, we can abbreviate 75, ;;,
Pij, Qij, and eij by ri, x;, P, Q; and /; respectively,
as shown in Figure 1. We re-state Problem OPF(p, ¢) and
SOCR(p, q) with the simplified notations as follows.

OPF-line:

N-1
min Tigi
PQlv
s.t. y = 1ili + pit1 + Pitq,
i=0,...,N—1, 11
Qi =zl + qit1 + Qiy1,
i=0,...,N—1, (12
v; = Vg1 + 2(ri P + 2,Q;) — (7"22 + x?)gi»
i=0,...,N—1, (13
P2 2
=BHQ 0 N—1 4
Vi
where Py :=0, Qy :=0.
SOCR-line:
N-1
i il
A, X
s.t. (11)—(13), (15);
P2 2
g >t T J’_Q’,z':o, LN—1. (16)

Vg



Note that p and q are given constants in OPF-line and SOCR-
line. Quantities P (p) and Q""" (g) can be calculated by

Pl (p Zp], =0,...,N—1;
Jj=i+1

Q™ (q) Zq], =0,...,N—1.
J=i+1

Lemma I: The relaxation SOCR-line is exact, if any of
the following conditions holds:

N Plin(p) =0, Qlin(q) = 0.

o P(p) =0, ri/z; <rip1/wigy fori=0,...,N—2.

] Qlin(q) i 0, ’I"i/SCZ‘ Z Ti+1/xi+1 for: = 0, AN .,N -2

] Ti/l'i = 7’1‘+1/£L'i+1 for i = 07,N—2

Proof: According to (11)—(13), P, and v are linear

functions of ¢. Therefore, we can rewrite SOCR-line as

min
0
1=0
(2 p\2
st 0> M7 i=0,....N—1;(17)
’Uz'(é)
Uz(é)zgmzzlav]\] (18)

Associate the Lagrangian multipliers A; > 0 with (17) and
w; > 0 with (18). Then the Lagrangian of SOCR-line is

N-1

L(tAu) = Zmé +Z)\( 2+Q2 éi)
+Zui(yi—vi).
i=1

If SOCR-line is infeasible, then OPF-line is also infeasible.
If SOCR-line is feasible, then its optimal solution £°P*
exists according to Lemma 2 in the appendix. Hence, there
exists dual variable (A\°P*, y°Pt) = ( such that w°P' :=
(£oPt \oPt 4Pt is primal dual optimal for SOCR-line,
therefore w°P! satisfies the KKT conditions [17, Chap. 5]. If
any of the four conditions in Lemma 1 holds, then A°P* = 0
according to Lemma 3-6 in the appendix. It follows from
complementary slackness (one of the KKT conditions) that
the equality in (17) is attained, therefore ¢°P' is feasible
for OPF-line. Furthermore, ¢°P! is optimal for OPF-line
since £°P* solves the relaxed problem SOCR-line. Therefore
SOCR-line is exact. [ ]

19)

IV. CASE STUDY

As already stated, the sufficient condition (ii) in Theorem
1 is likely to be satisfied in practical distribution networks
if there are no distributed generators. In this section, we
demonstrate through a practical network, that condition (ii)
may be used as rule of thumb to place distributed generators
(so that SOCR is guaranteed to be exact). The network we
study is a distribution network in the service area of Southern
California Edison [18], with high penetration of distributed
generation. The network is shown in Figure 2, and its line
impedances, peak spot loads, and nameplate ratings of shunt

capacitors and distributed generators are shown in Table II.
Bus 1 represents the substation, and there are 5 photovoltaic
(PV) generators located at bus 13, 17, 19, 23 and 24.

In applying condition (ii) to place distributed genera-
tors, we ignore the requirement on r/x, and try to satisfy
P'"(p) >= 0. The load p is chosen assuming that every
bus is drawing its peak spot load at power factor 1, and
every PV generator is generating real power at its nameplate
capacity, e.g., load at bus 22 is absorbing 2.23MW real power
(p22 = 2.23MW), and PV generator at bus 24 is generating
2MW real power (p24 = —2MW). Noting that line (2,13)
has zero impedance, we consider bus 2 and 13 as a single
bus. Similarly, bus 16 and 17, bus 18 and 19, bus 21 and 24,
and bus 22 and 23 can be considered as a single bus.

It can be checked that Pln (p) = 0 does not hold, e.g.,

Pélolfm(f)) D21 + P22 + P23 + P2a
= 0454223-1-2=-0.32MW <0.

However, if we move the PV generators at bus 17,19, 24 to
bus 15, 3, 20 respectively, then P! (p) = 0 holds.! Therefore
SOCR (with p = p = p) will be an exact relaxation of OPF
(with p = p = p), if the r /x ratio is non-decreasing.

The way we change the placement of PV generators is as
follows. Starting from the leaves to the root (substation) of
the network, whenever P}i* < 0 for some (i,7) € £, move
the distributed generator at bus j to bus 7. For example, since
P, (p) < 0, we move the PV generator at bus 24 (recall
that bus 24 and 21 are considered as a single bus) to bus 20,
then P35, (p) becomes

P21 + P22 + P23
0.45+223 —-1=1.68MW > 0.

Péiorfm (p)

Iterate this procedure for all (i,5) € L, from the leaves to
the root, and we will end up moving the PV generators at
bus 17, 19, and 24 to bus 15, 3, and 20 respectively.

In summary, condition (ii) is likely to hold in practical
distribution networks if there are no distributed generators.
Besides, the requirement P““(p) > 0 in condition (ii) offers
a simple rule of thumb for placing distributed generators.

V. CONCLUSION

We have studied the exactness of convex relaxation SOCR
for an OPF problem in tree networks. We proved that
the SOCR is exact, if there are no upper bounds on the
voltage and any one of some conditions holds. One of these
conditions requires that there is no reverse real power flow,
and that the resistance to reactance ratio is non-decreasing
as transmission lines spread out from the substation. This
condition is likely to hold in practical distributed networks if
there are no distributed generators. Besides, avoiding reverse
real power flow can be used as rule of thumb for placing
distributed generators.

! Actually, PZ}}“ > 0 holds for (4, j) where 7;; and x;; are not both zero.
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Fig. 2. A schematic diagram of a distribution feeder with high penetration of distributed generation (photovoltaics). Bus 1 is the substation and the 6

loads attached to it model other feeders on this substation.

TABLE II
NETWORK OF FIGURE 2: LINE IMPEDANCES, PEAK SPOT LOAD KVA, CAPACITORS AND PV GENERATION’S NAMEPLATE RATINGS.

Network Data
Line Data Line Data Line Data Load Data Load Data PV Generators
From| To R X From| To R X From| To R X Bus | Peak| Bus Peak Bus Nameplate
Bus. | Bus.| (2) | (2) | Bus.| Bus.| (©) | (©) | Bus. | Bus.| (©2) | (€2) | No. | MVA| No. MVA No. Capacity
1 2 0.259| 0.808| 8 41 0.107| 0.031] 21 22 0.198| 0.046| 1 30 34 0.2
2 13 0 0 8 35 0.076| 0.015| 22 23 0 0 11 0.67 36 0.27 13 1.SMW
2 3 0.031| 0.092| 8 9 0.031| 0.031| 27 31 0.046| 0.015| 12 0.45 38 0.45 17 0.4MW
3 4 0.046| 0.092| 9 10 0.015| 0.015| 27 28 0.107| 0.031| 14 0.89 39 1.34 19 1.5 MW
3 14 0.092| 0.031| 9 42 0.153| 0.046| 28 29 0.107| 0.031| 16 0.07 40 0.13 23 1 MW
3 15 0.214| 0.046| 10 11 0.107| 0.076| 29 30 0.061| 0.015| 18 0.67 41 0.67 24 2 MW
4 20 0.336| 0.061| 10 46 0.229| 0.122| 32 33 0.046| 0.015] 21 0.45 42 0.13
4 5 0.107| 0.183| 11 47 0.031| 0.015| 33 34 0.031] 0 22 2.23 44 0.45 Shunt Capacitors
5 26 0.061| 0.015] 11 12 0.076| 0.046| 35 36 0.076| 0.015| 25 0.45 45 0.2 Bus Nameplate
5 6 0.015| 0.031| 15 18 0.046| 0.015| 35 37 0.076| 0.046| 26 0.2 46 0.45 No. Capacity
6 27 0.168| 0.061| 15 16 0.107| 0.015| 35 38 0.107| 0.015| 28 0.13
6 7 0.031| 0.046| 16 17 0 0 42 43 0.061| 0.015| 29 0.13 | Base Voltage (KV) = 12.35 1 6000 KVAR
7 32 0.076| 0.015| 18 19 0 0 43 44 0.061| 0.015| 30 0.2 Base KVA = 1000 3 1200 KVAR
7 8 0.015| 0.015| 20 21 0.122| 0.092| 43 45 0.061| 0.015] 31 0.07 | Substation Voltage = 12.35 37 1800 KVAR
8 40 0.046| 0.015| 20 25 0.214| 0.046 32 0.13 47 1800 KVAR
8 39 0.244| 0.046| 21 24 0 0 33 0.27
APPENDIX OL/Oln_1 = 0 at (£°P*, \°Pt 4,°PY) Tt follows that
J opt opt
J 7 opt 1
i=0 Y
Lemma 2: If SOCR-line is feasible, then there exists an N-1 ( pZ_OPt)2 + (Q?Pt)z - N opt OV
optimal solution (£°Pt POPt (QOPt 4,°Pt) 1o SOCR-line. + Z opt2 %Ai + Z Ui oy
i=0 v, J i=1 J
Proof: The set F of feasible ¢ for problem SOCR-line
is closed, and lies in the non-negative orthant (¥ C R¥). If for j = 0,...,N — 1. We are now going to prove that

SOCR-line is feasible, then F is non-empty. Pick an arbitrary
feasible ¢/ € F , and consider the set O := {{ € F : rTe <
rTé}. The set O is non-empty (since /e 0), closed, and
bounded (since r» > 0), therefore a compact set. Define

APt~ () if either condition in Lemma 1 holds. Define
T = Zfzori, Ty = Zf:oxi fork =0,...,.N —1. It
can be checkd that

eopt = argmin ,,,T& then (Eopt’P(éopt%Q(Eopt)7v(£opt)) gpi _ Tj ) S] ZQZ _ Zj ) SJ
teo 0; 0 i>j+1" 9 0 i>j+1’
is an optimal solution to SOCR-line. ] ! b2I ! r=IT
v, ST — 12 2T — 2 P> 41
The Lagrangian L(¢, A, u) for Problem SOCR-line is given 2 i CJ L0 _ T Z _ J
_ _ 5‘61 *2?”]'7’1'_1 — 2l’j£€i_1 1 S J

in (19). Its partial derivatives satisfy OL/d¢y



fort =0,...,N and j = 0,...,N — 1. For brevity, we
assume that SOCR-line is feasible, and drop the superscript
“opt” (which stands for optimal) if there is no confusion.
Lemma 3-6 show that \°P* = 0 under each of the conditions
in Lemma 1 respectively.
Lemma 3: If P"(p) = 0 and Q"*(q) = 0, then \ > 0.
Proof: Tt follows from (11)—(13) and (16) that
e P, Q, v are affine functions of ¢ and GP‘ >0, %Cg >0,
3”’<0forz—0 .,Nand j=0,...,N —1;
. (Plln Q") is the (P Q) correspondlng to £ = 0;
e L =0.
Therefore P = P = 0 and Q = Q““ > 0. Since A = 0 and
u = 0, it follows from (20) thatr; < A; forj =0,..., N—1,
therefore A\ > 0. u
Lemma 4: If P™(p) = 0 and r;/z; < 7ri11/zip1 for
i=0,...,N —2, then X\ > 0.
Proof: If A\ > 0 does not hold, then there exists indices
i such that A; = 0. Define k£ := min{i > 0 A = 0}
as the smallest one of such indices. Then k > 1 since by
substituting j = 0 into (20), we have

2(ro P
- 2Pt eoQo)] vy,
Vo Vo

ro < Ao

Define 7); := r;/x;, and note that 7); is non-decreasing in 4.
It follows from (20) that

k-1
Tk 20k P 4+ Qi _
T ;;——E——M ()
! p? + PP Qv Y o,
+ Z 1 xkafk + ; U 00’
Th—1 Ak—1 2np—1 P + Qs
= — = —_ N\ 22
Tl—1 Tk—1 ; Vi ( )
N—-1 2 2 N
P+ Q; Ov; Ov;
+ Ai + -y
2 T M amens T o
Since 1 > nr—1 > 0 and P > Plin > 0, we have
k—1 k—1
,ZMMS,ZM)W (23)
° (3 ° (%
1=0 1=0
It is not difficult to verify that
8vi 8vi
l‘kaek xk_laék_l
fort=0,...,Nand k=1,..., N — 1. Hence,
sz Pf"‘Q?)\. 0v; +§:u- 0v;
P U? Zxkafk P Zxka€k7
= p2 g ov; v
< S e S
=1 v; Tp_100,_1 =1 Tl 1004
Then, it follows from (21) and (22) that
Tk o The1 A=t _ TRt
T Th—1 Tk—1 Tr—1

which contradicts with the condition 7/ > rp—1/Tk—1.
Hence, we must have A > 0. [ |

Lemma 5: If Q" (q) = 0 and r;/x; > 7ri41/xip1 for
1=0,...,N —2, then A > 0.
Proof: The proof of Lemma 5 is similar to that of
Lemma 4, and omitted for brevity. |
Lemma 6: If r;/x; = riy1/xi4q for i = 0,...,N — 2,
then A > 0.
If r;/x; = rip1/xi41 for @ = 0,...,N — 2, then the
inequality in (23) attains equality, and we can apply the proof
of Lemma 4. We present another proof here.
Proof: Write (20) in a vector form to obtain

r=X\— A\~ BONX — Bu,
A= (Nose..,

(24)

Av-1)T, u =

where r = (rg,...,rn_1)7,

T
(u1,...,un)",
2(rg Po+r9Qo)
o
Ai
2(rny—1Po+=N_1Q0) 2(rN—1PN_1+eN_1QN—1)
vo UN -1
vy vy 0
oL oL
0 0 1 0
B=-— : , N=
vy vy
OlN 1 9N 1 1 0
PZ+Q%
"
and c=
PR+Q%
N
Define

w:=CNX+u =0, n:=x9/ro,

and note that n = x;/r; for i = 0,..., N — 1. Left multiply
both sides of (24) by the inverse of the diagonal matrix

To
1

'N-1
and then use (13) to simplify, we obtain

1=LR '\— EX— R 'Buw,

where 1 = (1,...,1)7,
U1
Vo
V1 —g Vo
Vo V1
L= ,
V1—vo V2 —v1 UN
Vo v1 e UN-—1
rolo
v
TO%O r1é1
Vo V1
and E = (14 7°) .
rofo r1fq rN—1fN_1
Vo v UN-1
Hence,

RIN=L""14+L'Ex+L 'R 'Buw. (25)



By Claim 1-3 proven below, it follows from (25) that

R~X\ = 0. Consequently, A = R(R~1)\) > 0. ]
We first give an important lemma. Define

1

J = ,
1 - 1

ay

N al — Al as

L = ,
a1;A1 QQ;AQ anN

where a; #0, A; € Rfori=1,...,N.
Lemma 7: The matrix D := L~'J is given by
i—1 A, s
Dy = Vv
0 1<
fori,7=1,...,N.
Proof: The proof is based on Gaussian elimination. B
It follows from Lemma 7 that

vo
v1
Yo CiN
D=L"'y=| 7 7
Vo V1 UN-—1
O R

Claim 1: L™'1 = 0.

Proof: L7'1 is the first column of the matrix D. ®
Claim 2: L~'E is pointwise nonnegative.

Proof: Since

Tolo
vo

L'E=Q1+7*D

rN—14N-1
UN-—1

it is pointwise nonnegative. [ ]
Claim 3: L~'R™!B is point-wise nonnegative.

Proof: Since L'R7'B = (1 + n?)L7'J( +
N)RJT = (1 + n?>)D(I + N)RJT, it is pointwise non-
negative. [ ]
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