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Abstract

We analyse and optimise the completion time for a class
of jobs whose conditional completion time is not always de-
creasing with the time invested in the job. For such jobs,
restarts may speed up the completion. Examples of such
jobs include download of web pages, randomised algo-
rithms, distributed queries and jobs subject to network or
other failures. This paper derives computationally attrac-
tive expressions for the moments of the completion time of
jobs under restarts and provides algorithms that optimise
the restart policy. We also identify characteristics of op-
timal restart times as well as of probability distributions
amenable to restarts.

1. Introduction

This work finds its motivation in a very simple prob-
lem that every Internet user experiences (and solves), of-
ten many times a day: when do I click my browser’s reload
button if a web page takes too long to download? The trade-
off is between waiting a little longer to see if the page still
comes, or terminating the attempt and try again by click-
ing the refresh button.

It turns out that downloading a web page is an exam-
ple of a job which benefits from being retried.1 Mathemati-
cally, for such jobs the completion time conditioned on time
elapsed can not be monotonically decreasing, as we will
make precise. We will see that this situation arises naturally
and increasingly often for Internet applications and for cer-
tain scientific jobs, as well as when one considers the fail-
ure behaviour experienced by jobs.

To analyse and optimise the time at which to restart the
job, we use a simple model that lends itself to elegant anal-
ysis. The model’s core assumptions are that (1) successive

1 We will use retry, restart, reload, refresh and other ‘re’ terms indis-
criminately, as suitable and natural for the application at hand.

tries are statistically independent and identically distributed,
and (2) new tries abort previous tries. It should be noted that
both above assumptions have been found realistic for the de-
scribed use case of downloading web pages [11, 14]. For
this model we obtain the following results:

• An iterative scheme to compute moments of the com-
pletion time from its lower moments (Algorithm 1).

• Simple upper and lower bounds of the completion time
through geometric distributions (Equation (8)).

• A relation between the hazard rate and the optimal
restart time (Theorem 2).

• A demonstration that the cusp point (which minimises
both ‘reward’ and ‘risk’) identified in [11] does not
generally exist (Section 3.1).

• An algorithm that goes backward in time to compute
all moments of completion time for a finite number of
restarts (Algorithm 2).

• An optimisation algorithm for the expected comple-
tion time with finite number of restarts (Algorithm 3).

• A condition on completion time distributions to be
amenable to restart, and a monotonicity relation for
the mean completion time as function of the number
of restarts (Section 5).

We first discuss in Section 2 the appearance of restarts in
systems as well as its relation to other techniques (such as
rejuvenation and preventive maintenance), and review re-
lated modelling literature. Then we discuss optimisation of
moments for unbounded number of restarts (Section 3) and
finite number of restarts (Section 4), respectively. A discus-
sion about the characteristics of distributions amenable to
restarts is given in Sections 2.1 and 5.
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Figure 1. Hyper/hypo-exponential density;
optimal restart times are 0.25 for single
restart and 0.19 for unbounded restarts.

2. Restart and Its Appearance in Systems

2.1. When Does Restart Work?

What characteristics do jobs have that benefit from
restarts? In general terms, the completion time when start-
ing new must be less than the completion time when not
restarting. We can formalise this by letting the random vari-
able T denote the completion time of a job. Assume we
are interested in the mean completion time. Under the as-
sumption of independent identically distributed comple-
tion time of successive tries, one would restart at timeτ
when:

E[T ] < E[T − τ |T > τ ]. (1)

The above intuitive reasoning can be made precise, and in-
deed turns out to be correct. Even stronger, in Section 5 we
will show that (1) is a necessary and sufficient condition for
anynumber of restarts to be useful as well, a result that is
not necessarily obvious at first hand.

The question then becomes, what distributions fulfil re-
quirement (1), for at least one value ofτ . First, distributions
with heavy tails have the required behaviour. For such distri-
butions, the tail decreases in polynomial pace, leaving con-
siderable probability mass at high values ofT . Heavy-tailed
and similar distributions commonly arise when studying In-
ternet applications, see for instance [9]. However, also dis-
tributions with exponentially decaying tails demonstrate the
required behaviour quite often. Considering the three pro-
totypical cases of exponentially decaying distributions [8],
we see the following: for hyper-exponential distributions,
condition (1) isalwaystrue (that is, for anyτ ), for hypo-
exponential distributions including the Erlang distribution
(1) isnevertrue, and for the exponential distribution (1) be-
comes an equality, implying restarts do not help, but also do
not hurt.

The hyper-exponential distribution, which thus always
performs better with restarts, is a distribution of a particu-

lar type that seems to be typical for restarts to succeed [15].
These distributions take values from different random vari-
ables with different probabilities, that is, with probabilityp1

it is distributed asX1, with probabilityp2 distributed asX2,
etc.2 It then is useful to perform a restart when it gets more
likely one drew one of the slower distributions, since then a
restart provides a chance to draw one of the faster distribu-
tions instead.

Take for example the mixed hyper/hypo-exponential dis-
tribution, which we use as example throughout this paper
(see Appendix A for the precise mathematical characterisa-
tion). It draws with probabilityp = 0.9 from an Erlang dis-
tribution with two phases and mean0.1 and with probability
0.1 from an Erlang distribution with two phases and mean
1.0. Figure 1 shows the density of the mixed hyper/hypo-
exponential distribution. It turns out that for a single restart,
the optimal restart time is about0.25, while for unbounded
number of repeated restarts, the optimal restart time is about
0.19. Both values are indeed not too far above the mean
0.1 of the first Erlang distribution. The expected completion
time decreases with a single restart from0.190 to0.136, and
for unbounded restarts to0.127, see also Figure 5.

2.2. Restart in Systems

The literature on restart in a strict sense is relatively
young, about a decade. The first application we know of is
scientific computations with random seeds, termed Las Ve-
gas algorithms [1, 10]. Using such algorithms, one some-
times is unlucky and runs into computations that take long
to produce results. A systematic restart policy then often
produces results faster.

A follow-up application is that of distributed queries us-
ing search algorithms that have a random aspect. This has
recently been studied in, e.g., [15], and on-line algorithms
have been derived to set the restart time if dependencies be-
tween successive tries can be exploited. Note the difference
with the black-box restart approach we follow in this pa-
per, in which the only information a restart policy can ex-
ploit is the time the current job (query) has been running.

The third area in which restart has been applied is that
of web agents [4, 11]. Internet agents carry out varying
tasks, using possibly randomised algorithms, over networks
with failures and unpredictable delays, and it may there-
fore be smart to interrupt and restart an agent’s job when a
task takes too long to complete. The Internet application we
opened this paper with (clicking the browser’s refresh but-
ton) relates to this form of restart. In [9] it is discussed in

2 [4] mistakenly provides a distribution as counter-example of multi-
modality, which can be constructed as the sum of two random vari-
ables. Also note that the example in the introduction of [4] has arith-
metic errors, and that some other analysis in that paper may be better
approached as discussed in this paper.



detail that clicking the reload button ‘overrules’ the TCP re-
transmission timer, potentially improving the overall down-
load time. This has been studied in more detail in [14, 16].

In a more general sense, however, restart has been
around in computing systems since their inception.
Time-out schemes that retry an attempt once a thresh-
old has been reached, can be seen as restarts. The
above-mentioned TCP retransmission timer is but one ex-
ample. Results from this paper may therefore be use-
ful for the general issue of setting time-out values, but it
should be noted that the modelling assumptions in this pa-
per (independence of subsequent attempts and abortion of
the preceding request at retry), although reasonable for In-
ternet jobs [11, 14], may not be suitable for every time-out
problem.

2.3. Related Work in Modelling and Analysis

The analysis of restart touches on many areas, from port-
folio theory in economics [11], to typical computer science
issues such as optimisation of rejuvenation and checkpoint-
ing policies [3], and mathematical foundations of decision
and control theory [10]. There are too many connections to
cover them all, but it is clear from the various mistakes or in-
correct claims in recent papers on restart that the area needs
a derivation of the main results, as provided in this paper.

Of particular interest is the relation with rejuvenation.
Rejuvenation is concerned with the ‘aging’ of a system
(e.g., memory leaks), which slows down the processing of
jobs. The solution is to halt the job, refresh the system, and
then continue the job. Rejuvenation is therefore often anal-
ysed in combination with checkpointing, and often explic-
itly models the aging aspect of the system. Although such
approaches may not suit restart (which is not concerned
about aging of the underlying system), one can abstract out
this difference, and approach restart as a special case of re-
juvenation, namely one in which the system is always reju-
venated back to the original state. It is possible that this spe-
cial case is implicitly included in earlier rejuvenation anal-
ysis, but typically the completion time analysis for rejuve-
nation models a different level of system detail than we do
[2, 3, 6].

Also important is the relationship between restart and
preventive maintenance [7], since, like rejuvenation, restart
can be considered a preventive maintenance approach. In
particular, one can imagine a dual problem of the com-
pletion time problem studied in this paper. Namely, max-
imise the time to failure through preventive maintenance
policies, instead of minimise the completion time through
restart policies. Resulting schemes that optimise the timing
of preventive maintenance are known as age replacement
policies, and the policies discussed in this paper and in [10]
are in fact age replacement policies. Interesting enough, it

is not easy to find results in the preventive maintenance lit-
erature on the dual of our model (we have only found one in
[7], bounding the first moment of time to failure, see Sec-
tion 3). In general, preventive maintenance is analysed in
terms of cost of preventive versus required maintenance,
thus complicating the model, but this is necessary to over-
come trivial optimal preventive maintenance solutions.

The checkpointing and rejuvenation models typically
aim at obtaining (moments of) the completion time distribu-
tion, and we do the same in this paper. An excellent survey
of the vast amount of literature related to completion time
analysis for checkpointing can be found in [13]. The nov-
elty of the work in this paper does not lie in deriving gen-
eral expressions for completion time, but in obtaining com-
putationally attractive expressions for a specific case rele-
vant to restart, and exploit these expressions in algorithms
that compute and optimise the moments of completion time
for unbounded as well as finite number of restarts.

3. Unbounded Number of Restarts

Let the random variableT represent the completion time
of a job without restarts,f(t) its probability density func-
tion, andF (t) its distribution. For convenience, but with-
out loss of generality,3 we assume thatF (t) is a contin-
uous probability distribution function defined over the do-
main[0,∞), so thatF (t) > 0 if t > 0. Assumeτ is a restart
time,4 and the overhead associated with restarting isc time
units for each restart (we also refer toc as the ‘cost’ of a
restart). We introduce the random variableTτ to denote the
completion time when anunboundednumber of restarts is
allowed. That is, a restart takes place periodically, everyτ
time units, until completion of the job. We writefτ (t) and
Fτ (t) for the density and distribution ofTτ , and we are in-
terested in the moments ofTτ , and in the optimal value of
the restart timeτ itself.

To formally derive an expression for the moments, we
need an expression for the distribution and density of the
completion time with restarts. As we mentioned in the in-
troduction, we assume that a restart preempts the previous
attempt, and that the completion times for consecutive at-
tempts are statistically identical and independent. One can
then reason about completion of a task in a restart inter-
val as a Bernoulli trial with success probabilityF (τ). That
is, the completion time with restarts relates to that without

3 At the cost of heavier notation, and with a proper discussion for spe-
cial cases, the results in this paper also apply to distributions defined
over finite domains, distributions with jumps and defective distribu-
tions.

4 At times we also refer toτ as the as restartinterval.
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Figure 2. The completion time density fτ with
restarts (for hyper/hypo-exponential distribu-
tion, restart time τ = 0.1 and cost c = 0.02).

restarts as:

Fτ (t) =




1 − (1 − F (τ))k(1 − F (t − k(τ + c))),
if k(τ + c) ≤ t < k(τ + c) + τ

1 − (1 − F (τ))k+1,

if k(τ + c) + τ ≤ t < (k + 1)(τ + c)

(2)

for k = 0, 1, 2, . . .. For the density we obtain, also for any
integer valuek = 0, 1, 2, . . .:

fτ (t) =




(1 − F (τ))kf(t − k(τ + c)),
if k(τ + c) ≤ t < k(τ + c) + τ

0,

if k(τ + c) + τ ≤ t < (k + 1)(τ + c)

(3)

It is worth visualising the density ofTτ , see Figure 2
for a mixed hyper/hypo-exponentially distributedT , with
parameters as in Appendix A, restart timeτ = 0.1, and
c = 0.02. In what follows, we also need the partial mo-
mentsMn(τ) at τ of the completion time, which is defined
as:

Mn(τ) =
∫ τ

0

tnf(t)dt =
∫ τ

0

tnfτ (t)dt.

The equality of partial moments ofT andTτ follows from
the fact that their respective densities are identical between
0 andτ (see (3) fork = 0).

In what follows we exploit the structure of (3) to obtain
computationally attractive expressions for the moments of
Tτ , and to gain further insight into optimal restart policies.

Theorem 1. The momentsE[T n
τ ] =

∫ ∞
0 tnfτ (t)dt, n =

1, 2, . . . , of the completion time with unbounded number of
restarts, restart interval lengthτ > 0, and timec consumed

by a restart, can be expressed as:

E[T n
τ ] =

Mn(τ)
F (τ)

+

+
1 − F (τ)

F (τ)

n−1∑
l=0

(
n

l

)
(τ + c)n−lE[T l

τ ], (4)

whereE[T 0
τ ] = 1.

Proof. The derivation is particularly elegant if one exploits
the recursive structure of (3). First, by definition, we have:

E[T n
τ ] =

∫ ∞

0

tnfτ (t)dt

=
∫ τ

0

tnfτ (t)dt +
∫ ∞

τ+c

tnfτ (t)dt

= Mn(τ) +
∫ ∞

τ+c

tnfτ (t)dt. (5)

Then, we use that from (3) it follows that for anyt ≥ 0,

fτ (t + τ + c) = (1 − F (τ))fτ (t),

and thus:∫ ∞

τ+c

tnfτ (t)dt =
∫ ∞

0

(t + τ + c)nfτ (t + τ + c)dt

= (1 − F (τ))
∫ ∞

0

(t + τ + c)nfτ (t)dt. (6)

Combining (5) and (6) we obtain:

E[T n
τ ] = Mn(τ) + (1 − F (τ))

∫ ∞

0

(t + τ + c)nfτ (t)dt,

which we write out as:

E[T n
τ ] =

Mn(τ) + (1 − F (τ))
∫ ∞

0

n∑
l=0

(
n

l

)
(τ + c)n−ltlfτ (t)dt =

Mn(τ) + (1 − F (τ))
n∑

l=0

(
n

l

)
(τ + c)n−lE[T l

τ ].

One then solves this equation forE[T n
τ ], cancelling out the

highest moment within the sum, to obtain:

E[T n
τ ] =

Mn(τ)
F (τ)

+
1 − F (τ)

F (τ)

n−1∑
l=0

(
n

l

)
(τ + c)n−lE[T l

τ ].

For example, the expected completion time is given by:

E[Tτ ] =
M1(τ)
F (τ)

+
1 − F (τ)

F (τ)
(τ + c). (7)
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Figure 3. Restart time versus the normalised
difference between unbounded restarts and
no restarts, for first three moments.

The expression for the variance can be found in [11]. The re-
sult for the first moment is indeed as it should be: (7) must
account for the interval in which the task completes, as well
as for the occasions the job fails to complete. The first term
in (7) is the expected download time conditioned on suc-
cess within a restart interval. The second term equals inter-
val lengthτ + c times the expected value of a modified geo-
metric distribution [8] with parameterF (τ), since, indeed,
in every interval the probability of successful completion is
F (τ).

Finally, note that by requiring thatτ > 0 in Theorem 1,
the denominatorF (τ) in (4) is positive, since we assumed
continuous distributions defined over[0,∞). Forτ ↓ 0 and
c = 0, we can apply l’Hospital’s rule, to see thatE[Tτ ] →
f−1(0), which tends to infinity for our running example.

Equation (4) directly yields an algorithm to iteratively
compute all moments up to some specified valueN . We re-
format it here as an algorithm for completeness of the pre-
sentation:

Algorithm 1 (Computation of all Moments, Unbounded
Restarts).

Set E[T 0
τ ] = 1 for chosen τ > 0;

For n = 1 to N {
compute E[T n

τ ] = Mn(τ)
F (τ) +

+ 1−F (τ)
F (τ)

∑n−1
l=0

(
n
l

)
(τ + c)n−lE[T l

τ ];
}

Using this basic algorithm we obtained the results of Fig-
ure 3 through 7. Figure 3 provides the relative gain using
restarts for the first three moments. Notice that the gain in-
creases rather dramatically with the order of the moment.
Also, notice the wide range of restart times which perform
well, which suggests that rough estimates may often suf-
fice to set a restart time. An important engineering rule is
to not take the restart time too small, since for many real-
istic distributions, the completion time will then tend to in-
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Figure 4. Approximation of expected comple-
tion time using geometric distributions.

finity (the hyper-exponential distribution being one excep-
tion). In general, it may be safer to take the restart time too
large than too small.

As a corollary of Theorem 1 we state a fundamental re-
sult, which was also observed by [5] for failure detectors.
Corollary 1. Under unbounded restarts, the expectation (as
well as higher moments) of the completion timeTτ with
restart timeτ > 0 (for which F (τ) > 0), is alwaysfi-
nite, even if the moments of the original completion time
are not.
This is an important observation, stressing the value of
restarts for situations in which there is a (strictly) positive
probability that a task can fail (thus making the moments of
completion time infinite).

Geometric approximation. The results obtained above
also suggest bounds for the moments by using the (modi-
fied) geometric distribution (see also expression (4.2.12) in
[7] for the dual result in terms of mean time between fail-
ures). To bound the first moment, one replaces the first term
in (4), which refers to the interval in which the job com-
pletes, by its upper and lower bounds0 andτ, respectively.
This can be generalised to all moments, using two discrete
random variablesAτ andBτ , with, for k = 0, 1, . . .,

Aτ = k(τ + c), w. prob.(1 − F (τ))kF (τ),
Bτ = k(τ + c) + τ, w. prob.(1 − F (τ))kF (τ). (8)

Since we know from (2) that

k(τ + c) ≤ Tτ ≤ k(τ + c) + τ, with probability

(1 − F (τ))kF (τ), k = 0, 1, . . . ,

we have thatE[An
τ ] ≤ E[T n

τ ] ≤ E[Bn
τ ], for n = 1, 2, . . ..

Note thatAτ has a modified geometric distribution [8] and
that Bτ = Aτ + τ . Figure 4 showsE[Tτ ] as well as the
bounds for the mixed hyper/hypo-exponential distribution.
The bounds, whose summed error equals exactlyτ , are ex-
cellent approximations as long as the restart timeτ is small
relative to the mean completion timeE[Tτ ]. For the area
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Figure 5. Extrema for the mean completion
time are found at restart times τ for which the
inverse hazard rate equals E[Tτ ].

around the optimal restart time the bounds are not par-
ticularly tight. Nevertheless, the geometric approximation
may prove very useful for determining a conservative restart
time. For instance, for Figure 4, the optimal restart time
for the upper bound is 0.09, and for the lower bound 0.31,
while the real optimum lies in between (namely at 0.20).
Moreover, Figure 3 shows that forτ = 0.31, the expected
completion time is still close to optimal. Using0.31 as a
conservative restart time is also consistent with the above-
mentioned engineering rule that it is better to restart too late
than too early.

3.1. Optimal Restart Times for Unbounded Num-
ber of Restarts

We give an implicit relation for the optimal restart time
τ∗ for the first moment ofTτ . These implicit expressions
provide us with interesting insight in how the hazard rate of
a distribution determines the optimal completion time un-
der restarts. It also allows us to refute the claims on the ex-
istence of a cusp point in [11].

Theorem 2. The optimal restart timeτ ∗ > 0 that min-
imises the expected completion timeE[Tτ ] is such that:

1 − F (τ∗)
f(τ∗)

= E[Tτ∗ ] + c. (9)

That is, ifc = 0, the inverse of the hazard rate atτ ∗ equals
the expected completion time under unbounded restarts.

Proof. To obtain this result, we equate to zero the derivative
with respect toτ of E[Tτ ] = M1(τ)

F (τ) + 1−F (τ)
F (τ) (τ + c) (the

base relation (7)):

d

dτ
E[Tτ ] = 0 ⇐⇒ τf(τ)F (τ) − f(τ)M1(τ)

F 2(τ)
+

+
1 − F (τ)

F (τ)
− f(τ)(τ + c)

F 2(τ)
= 0,
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Figure 6. Mean and variance of the comple-
tion time, parameterised by restart time τ , as
Figure 2 of [11].
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Figure 7. As Figure 6, zoomed in at ‘cusp
point.’

which after some manipulation, in which we again apply
(7), results in:

d

dτ
E[Tτ ] = 0 ⇐⇒ 1 − F (τ)

f(τ)
= E[Tτ ] + c.

It is important to realize that (9) may hold for many
restart values, includingτ → ∞, since it not only holds
for the global optimum, but also for local minima and max-
ima. For instance, in Figure 5, the inverse hazard rate in-
deed crossesE[Tτ ] in its minimum, which givesτ ∗ ≈ 0.2,
but also meets at point0, where the maximum of the com-
pletion time under restarts is reached.

Cusp Point. In [11] the authors point to the existence of
a ‘cusp point’, in which both the expected completion time
and its variance are minimised. In terms of [11] ‘reward’
as well as ‘risk’ are then optimised jointly. Figure 2 in [11]
suggests that such a cusp point exists; we have redone this
in Figure 6 for our example, and indeed two curves seem
to come together in a cusp point, where it reaches the min-
imum for both mean and variance. (Note that the curve is



parameterised overτ , plotting mean versus variance of the
completion time for a range of restart times.) However, it
turns out that the restart time that minimises the higher mo-
ments of the completion time is typically not identical to
τ∗. Since it is easy to see that if the second moment is min-
imised by a different restart time thanτ ∗, the variance is
also not minimised inτ ∗, it follows that the cusp point iden-
tified in [11] does not exist–at least, not in general.

One way to show that the cusp point does not exist
is to derive for higher moments the counterpart to Theo-
rem 2, so that a relation is established between the haz-
ard rate and the optimal restart time for higher moments.
Then it is possible to show that ifτ ∗ is the restart time that
minimises the completion time forE[Tτ ], . . . , E[T N

τ ], then
E[T n

τ∗] = n!(1−F (τ∗)
f(τ∗) )n, for n = 1, . . . , N . We can cer-

tainly construct probability distributions with partial mo-
mentsMn(τ) such that this relation holds when filling in
(4), but in general the relation will not hold true. Instead
of providing the proof for this negative result, we demon-
strate numerically that the cusp point does not exist for our
running example. Figure 7 zooms in at the ‘cusp point’ of
Figure 6 and demonstrates that there is no point that min-
imises the curve with respect to both the x and y-axis (mean
and variance of completion time). In particular, for our ex-
ample, the minimum expected completion time is for restart
time τ∗ = 0.198, for the second moment the minimum is
for τ = 0.192, and for the variance the minimum is reached
atτ = 0.188.

4. Finite Number of Restarts

There may be cases in which one is interested in afinite
number of restarts. For example, in our mixed hyper/hypo-
exponential example, too low a restart time is very detri-
mental for the completion time if there is no bound on the
number of restarts. Although this need not generally be the
case (the hyper-exponential distribution is a counter exam-
ple), for many distributions it may be wise to limit the num-
ber of restarts, or increase the period between restarts with
the restart count. This leads to a situation with finite and
non-identical restart intervals. Perhaps one would expect
that restarts should take place with fixed-length intervals be-
tween them, but we will see that this is often not optimal.
We provide an algorithm to compute all moments of com-
pletion time and the optimal restart times for the first mo-
ment. We explain why the first moment is considerably sim-
pler to optimise than higher moments, which we resolved in
a later paper [12].

For our discussion it is convenient to label the restarts
‘backward.’ Figure 8 shows this. We assume the total num-
ber of restarts isK, and the restart intervals have length
τK , τK−1, . . . , τ1, respectively. Thek-th interval starts at
time sk. So, we getsK = 0, sK−1 = τK + c, sK−2 =

s

}}}

ττ

}

s

cτK

K K−1

c

s2

2 c 1 c

s1s 0
time

Figure 8. Labelling restarts backward, total of
K restarts.

τK +c+τK−1+c, etc., untils0 =
∑K

k=1 τk+Kc. The com-
pletion time withK restarts is represented by the random
variableTτK ,...,τ1 . The completion time probability distri-
butionFτK ,...,τ1 and densityfτK ,...,τ1 for the scenario with
K restarts can be derived in the same way as (2) and (3). If
we introduceτ0 = ∞ for notational purposes we can de-
fine the density and distribution function piece-wise over
every restart intervalk = 0, . . . , K:

FτK ,...,τ1(t) =




1 − ∏K
i=k+1(1 − F (τi))(1 − F (t − sk)),

if sk ≤ t < sk + τk, k ≥ 0
1 − ∏K

i=k+1(1 − F (τi)),
if sk + τk ≤ t < sk−1, k ≥ 1

fτK ,...,τ1(t) =




∏K
i=k+1(1 − F (τi))f(t − sk),
if sk ≤ t < sk + τk, k ≥ 0

0,

if sk + τk ≤ t < sk−1, k ≥ 1

(10)

As for the unbounded case, we express the moments in the
following theorem in a manner convenient for computa-
tional purposes. This time, we express the moments of the
completion time withK restarts in that with one restart less.

Theorem 3. The moments E[T n
τK,...,τ1

] =∫ ∞
0

tnfτK ,...,τ1(t)dt, n = 1, 2, . . . , of the completion time
with K restarts, restart interval lengthsτK , τK−1, . . . , τ1,
and timec consumed by each restart, can be expressed as:

E[T n
τK,...,τ1

] = Mn(τK) + (1 − F (τK))·

·
n∑

l=0

(
n

l

)
(τK + c)n−lE[T l

τK−1,...,τ1
],

whereE[T 0
τK−1,...,τ1

] = 1.

Proof. The derivation is similar to that of Theorem 1. Start
from the fact that from (10) it follows that fort ≥ 0:

fτK ,...,τ1(sK−1 + t) = (1 − F (τK))fτK−1,...,τ1(t),

and then follow the same derivation as in Theorem 1. Only
the last step, in whichE[T n

τ ] is solved, has no counterpart
in the current proof.

As an illustration, we get for the first moment:

E[TτK,...,τ1 ] = M1(τK)+
+ (1 − F (τK))(τK + c + E[TτK−1,...,τ1 ]). (11)



The above theorem implies that ifτK , . . . , τ1 are known be-
forehand, one can iteratively computeE[T N

τK ,...,τ1
] for any

N > 0 by going ‘backward in time.’ That is, starting from
the momentsE[T n

τ1
], n = 1, . . . , N, one obtainsE[T n

τ2,τ1
],

until E[T N
τK,...,τ1

]. The algorithm thus goes as follows:

Algorithm 2 (Backward Algorithm, first N Moments, K
Restarts).

For n = 0 to N
Set E[T n

τ0,...,τ1
] = E[T n];

For k = 1 to K {
For n = 0 to N {

E[T n
τk,...,τ1

] = Mn(τk)+
+(1 − F (τk))

∑n
l=0

(
n
l

)
(τk + c)n−lE[T l

τk−1,...,τ1
];

}
}

A nice feature of the backward algorithm is that it com-
putes moments of subsets{τk, . . . , τ1} along the way. One
should be careful to interpret those correctly: the moments
E[T l

τk,...,τ1
] are forsk = 0, that is, for the case that comple-

tion time starts counting at thek-th interval, not before. This
feature of the backward algorithm turns out to be its pitfall
as well, if we try to use the algorithm for optimisation pur-
poses. The issue is that for higher moments optimisation of
thek-th restart time depends onall other restart times. Only
for the first moment, the optimal value of thek-th restart
is insensitive to what happensbeforethe k-th restart (that
is, to the restarts we labelledk + 1, , . . . , K). As a conse-
quence, for the first moment, we can optimise the restart
intervals concurrently with computing moments using the
backward algorithm, but for higher moments this does not
work.

The above is more formally dealt with in [12], where we
also derive efficient algorithms for optimising restart times
that minimise higher moments of completion time. These
algorithms are iterative, while the following algorithm for
the first moment only requires a single run ofK steps;
it works backward in time and finds optimal restart times
τ∗
1 , . . . , τ∗

K , in that order.

Algorithm 3 (Backward Optimisation Algorithm, First
Moment, K Restarts).

Set E[Tτ∗
0 ,...,τ∗

1
] = E[T ];

For k = 1 to K {
Set τ∗

k to τk > 0 that minimises
M1(τk) + (1 − F (τk))(τk + c + E[Tτ∗

k−1,...,τ∗
1
]);

Set E[Tτ∗
k ,...,τ∗

1
] =

M1(τ∗
k ) + (1 − F (τ∗

k ))(τ∗
k + c + E[Tτ∗

k−1,...,τ∗
1
]);

}
As an illustration, we apply the backward optimisation

algorithm to our mixed hyper/hypo-exponential distribu-
tion, with parameters as given in Appendix A, to obtain the

interval indexk optimal lengthτk of k-th interval
1 0.249
2 0.209
3 0.200
4 0.199
5 0.1983
6 0.198265
7 0.198256
8 0.198254
...

...
unbounded 0.198254

Table 1. Optimal restart intervals for finite and
unbounded number of restarts.

optimal restart times given in Table 1. Note that the values in
the table imply that, for instance, fork = 2, the two restart
times will be after0.209 and0.209 + 0.249 = 0.458 time
units, respectively. As one sees from Table 1, the restart in-
tervals have different lengths, longer if it is closer to the last
restart. Furthermore, the more restarts still follow, the closer
the interval length is to the optimum for unbounded restarts,
which is0.198254. This is as expected.

5. Characteristics of Probability Distributions
and Optimal Restart Policies

The backward algorithm provides us with machinery to
further characterise necessary and sufficient conditions for a
random variableT to benefit from restarts. We will see that
for the mean completion time, the intuitive condition we de-
rived in Section 2 for a single restart is necessary and suf-
ficient for any number of restarts to be useful. We will also
show that if a single restart improves the mean completion
time, multiple restarts perform even better, and unbounded
restarts perform best.

We use the random variableTτK to denote
the completion time underK restarts at times
τ + c, 2(τ + c), . . . , K(τ + c), and for technical rea-
sons use the notationTτ0 = T, for the case without
restarts.

Theorem 4. The mean completion time under zero (E[T ]),
K ≥ 1 (E[TτK ]) and unbounded restarts (E[Tτ ]) interre-
late as follows:

E[Tτ ] < . . . < E[TτK+1 ] < E[TτK ] < . . . < E[T ]
⇐⇒ E[Tτ ] < E[T ], (12)

and

E[T + c] < E[T − τ |T > τ ] ⇐⇒ E[Tτ ] < E[T ]. (13)



Proof. The first result follows from the backward algo-
rithm, which uses (11) for the first moment. (Note thatT τK

is in fact identical toTτK,...,τ1 with τK = . . . = τ1 = τ .) If
we introduce

Cτ = M1(τ) + (1 − F (τ))(τ + c),

then from (11) we obtain that for anyK ≥ 0,

E[TτK+1] = Cτ + (1 − F (τ))E[TτK ], (14)

and from (7) that for unbounded restarts:

E[Tτ ] =
Cτ

F (τ)
. (15)

Combining (14) and (15) it is easy to show that

E[TτK+1 ] < E[TτK ] ⇐⇒ Cτ

F (τ)
< E[TτK ]

⇐⇒ E[Tτ ] < E[TτK ].

Since this holds for anyK ≥ 0, it follows thatE[Tτ ] <
E[T ], proving (12).

To show that (13) holds, we derive:

E[T − τ |T > τ ] =

∫ ∞
τ

(t − τ)f(t)dt

1 − F (τ)

=

∫ ∞
τ

tf(t)dt − τ(1 − F (τ))
1 − F (τ)

=
E[T ]− M1(τ)

1 − F (τ)
− τ.

Then (13) follows using (7):

E[T ] + c < E[T − τ |T > τ ]

⇐⇒ E[T ] + c <
E[T ] − M1(τ)

1 − F (τ)
− τ ⇐⇒

(1 − F (τ))E[T ] < E[T ] − M1(τ) − (1 − F (τ))(τ + c)

⇐⇒ E[T ] >
M1(τ)
F (τ)

+
1 − F (τ)

F (τ)
(τ + c)

⇐⇒ E[Tτ ] < E[T ].

Note that the above proof shows that the backward algo-
rithm is a fixed-point iteration of the form

xK+1 = Cτ + (1 − F (τ))xK ,

with initial guessx0 = E[T ] and fixed-point solution
E[Tτ ]. The consequence of the first result of Theorem 4 is
depicted in Figure 9. The straight line is the expected com-
pletion timeE[T ] without restarts, and the curve with the
highest maxima and lowest minima isE[Tτ ] for unbounded
restarts. Because of Theorem 4, any number of restarts im-
prove the completion time over the same range of restart
times, and the more restarts, the better. Similarly, when the
completion time increases with restarts, fewer restarts are
less detrimental for the completion time.

0.05 0.1 0.15 0.2
restart
time

0.125

0.15

0.175

0.2

0.225

0.25

0.275

mean completion time

unbounded restarts
no restart
1 restart
5 restarts

Figure 9. Expected completion time for vary-
ing number of restarts.

0.05 0.1 0.15 0.2
restart
time

0.05

0.1

0.15

0.2

0.25

second moment
completion time

unbounded restarts
no restart
1 restart
5 restarts

Figure 10. Second moment of completion
time for varying number of restarts.

Another consequence of Theorem 4 is that if the com-
pletion time distribution is such that there exist restart times
that improve expected completion time, as well as restart
times that increase expected completion time, then there
must also exist at least one point in whichall curves cross,
that is, in which it is immaterial if and how many restarts
one executes. Figure 9 shows this, atτ ≈ 0.05.

The results from Theorem 4 do not extend to higher mo-
ments. Figure 10 shows that there exist values for which one
or two restarts improve the second moment, but unbounded
restarts do not. There also is no point in which any num-
ber of restarts provides the same completion time. The rea-
son higher moments are more problematic is the same as
why the backward optimisation algorithm does not work for
higher moments: whether a restart time improves the com-
pletion time’s higher moments is sensitive to the starting
point of a restart interval. Repeated restarts may therefore
not always keep improving the completion time’s higher
moments. Nevertheless, one can follow a similar condi-
tional argument as in Section 2 to obtain the condition un-
der which a single restart is beneficial for higher moments,
namelyE[(T + c)n] < E[(T − τ)n|T > τ ]. However,
from this we can not conclude anything about the success



for multiple or unbounded number of restarts.

6. Conclusion

Restart has the potential to speed up tasks such as In-
ternet agent interactions and randomised scientific compu-
tations. From studying the literature it is clear that a solid
and/or accessible mathematical analysis of the restart mech-
anism has been sorely missing. This paper tries to fill this
gap by providing expressions and associated algorithms to
compute the moments of completion time under restart. It
also provides optimisation algorithms for the restart pol-
icy, as well as various engineering rules for setting restart
times. In addition, we identified characteristics of distribu-
tions amenable to restarts and of optimal restart policies.
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Appendix A: Running Example

As a running example we use a mixed hyper/hypo-
exponential distribution, which, depending on the chosen
parameters can be made to be never, always or sometimes
amenable to restart. The mixed hyper/hypo-exponential ran-
dom variable takes with probabilitypi a value from an Er-
lang distribution withNi phases and parameterλi > 0,
i = 1, 2, . . . , M, and

∑M
i=1 pi = 1. So, we get for the dis-

tributionFM and densityfM (refer, for instance, to [8]):

FM (t) =
M∑
i=1

pi(1 −
Ni−1∑
j=0

(λit)j

j!
e−λit),

fM (t) =
M∑
i=1

piλ
Ni

i

tNi−1

(Ni − 1)!
e−λit.

In the paper we apply the following parameter values:M =
2, with p1 = 0.9, p2 = 0.1; N1 = N2 = 2, with λ1 = 20,
λ2 = 2; andc = 0, unless otherwise stated. This mixed dis-
tribution has neither monotonically increasing or decreas-
ing hazard rate, see Figure 5, which implies that it depends
on the chosen restart time whether restart improves comple-
tion time.


