
The VLDB Journal
DOI 10.1007/s00778-012-0295-5

REGULAR PAPER

Optimal and efficient generalized twig pattern processing:
a combination of preorder and postorder filterings

Radim Bača · Michal Krátký · Tok Wang Ling ·
Jiaheng Lu

Received: 26 October 2011 / Revised: 6 July 2012 / Accepted: 10 September 2012
© Springer-Verlag 2012

Abstract Searching for occurrences of a twig pattern query
(TPQ) in an XML document is a core task of all XML data-
base query languages. The generalized twig pattern (GTP)
extends the TPQ model to include semantics related to out-
put nodes, optional nodes, and boolean expressions which
are part of the XQuery language. Preorder filtering holistic
algorithms such as TwigStack represent a significant class
of TPQ processing approaches with a linear worst-case I/O
complexity with respect to the sum of the input and out-
put sizes for some query classes. Another important class
of holistic approaches is represented by postorder filtering
holistic algorithms such as Twig2Stack which introduced a
linear output enumeration time with respect to the result size.
In this article, we introduce a holistic algorithm called GTP-
Stack which is the first approach capable of processing a
GTP with a linear worst-case I/O complexity with respect to
the GTP result size. This is achieved by using a combination
of the preorder and postorder filterings before storing nodes
in an intermediate storage. Additionally, another contribu-
tion of this article is an introduction of a new perspective of
holistic algorithm optimality. We show that the optimality

R. Bača (B) · M. Krátký
Department of Computer Science, VŠB—Technical University
of Ostrava, Ostrava, Czech Republic
e-mail: radim.baca@vsb.cz

M. Krátký
e-mail: michal.kratky@vsb.cz

T. W. Ling
Department of Computer Science, National University of Singapore,
Singapore, Singapore
e-mail: lingtw@comp.nus.edu.sg

J. Lu
DEKE, MOE and School of Information,
Renmin University of China, Beijing, China
e-mail: jiahenglu@ruc.edu.cn

depends not only on a query class but also on XML docu-
ment characteristics. This new view on the optimality extends
the general knowledge about the type of queries for which
the holistic algorithms are optimal. Moreover, it allows us
to determine that GTPStack is optimal for any GTP when a
specific XML document is considered. We present a com-
prehensive experimental study of the state-of-the-art holistic
algorithms showing under which conditions GTPStack out-
performs the other holistic approaches.

Keywords XML · Query processing ·
Generalized twig pattern · Holistic algorithms

1 Introduction

Query model There exist several query models which
express the main functionality of query languages such as
XPath or XQuery [37] that are de facto standards among
XML query languages. Twig pattern query (TPQ) is the
most simple model used by many approaches [1,6,24,38,46].
A TPQ is represented by a rooted labeled tree (see the Q1
query in Fig. 1a). We denote each query node by a # prefix
and query nodes with the same tag are determined by apos-
trophes. As a result of a twig query matching, we obtain a set
of occurrences (query matches) of a TPQ in an XML docu-
ment. A query match is a tuple of XML nodes, where every
XML node corresponds to exactly one TPQ’s query node,
and the relationships between XML nodes correspond to the
relationships between query nodes. By processing the TPQ
Q1 in the XML tree in Fig. 2a we obtain sixteen tuples (query
matches), where each tuple contains five nodes, for example:
(a1, c2, f1, b1, a2), (a1, c2, f1, b2, a2), and so on.

TPQ is a query model which does not reflect some impor-
tant XQuery constructs. For example, it lacks the information

123

R. Bača et al.

(a) (b) (c)

Fig. 1 XQuery queries and their corresponding GTP models

(b)(a)

4

4

4

Fig. 2 a XML tree. b DataGuide of the XML tree

about output nodes in the XML query. The XQuery query
Q1 from Fig. 1a contains two query nodes identifying
the output tuples (we call them identifying output query
nodes) and the Q1’s result set consists only of three tuples
(a1, a2), (a1, a3), and (a1, a4) although a TPQ processor
returns sixteen query matches. The information about the
output query nodes can significantly reduce the intermediate
storage size since we can avoid storing and processing unnec-
essary nodes; therefore, it can speed up the query processing.
Semantics related to the identifying query nodes is included
in the generalized twig pattern (GTP) [10]. Every GTP con-
tains also other semantic aspects of XQuery queries such as
optional edges, optional output query nodes, and quantified
expressions which can also be processed holistically as is
shown in the Twig2Stack algorithm [8]. Another challenge
is represented by Boolean expressions (AND, OR, and NOT
operators) which are a part of the GTP model as well; how-
ever, they are not handled by the existing GTP algorithms.
We address all above mentioned constructs of GTP in this
article.

Node filtering Every holistic algorithm has a filtering
mechanism skipping irrelevant input data nodes which are
not a part of any query match before these nodes are stored
in an intermediate storage. Holistic algorithms use stacks dur-
ing the filtering. If the filtering skips irrelevant nodes so that
they are not stored on stacks at all, we speak about the pre-
order filtering. The postorder filtering skips irrelevant nodes
(i.e., they are not stored in the intermediate storage) when

they are popped out from their stacks. The simplest preorder
filtering is represented by PathStack [6] which skips an irrel-
evant node n corresponding to #q when there is no occur-
rence of a path from #root to #q containing n. Advanced
preorder filtering algorithms represent another type of algo-
rithms which use a recursive function such as getNext [6]
or getPart [15] and they skip irrelevant nodes which
are not a part of a whole TPQ occurrence. On the other
hand, a postorder filtering algorithm (e.g., Twig2Stack [8]
or TwigList [33]) skips an irrelevant node n corresponding
to #q if there is no occurrence of a subtree rooted at #q con-
taining n.

We say that a filtering is optimal for a query Q if it skips all
irrelevant nodes during the sequential scan of the input, which
means that an algorithm with such filtering has a linear worst-
case I/O complexity for Q with respect to the TPQ result size.
For example, the TwigStack [6] and TJStrictPre [15] algo-
rithms are optimal for TPQs having only ancestor-descendant
relationships. The postorder filtering algorithms introduce
intermediate storages with a linear output enumeration time
with respect to the result size and they are capable of a
straightforward GTP output enumeration. However, the main
disadvantage of the postorder filtering is that it pushes many
irrelevant nodes into an intermediate storage and no opti-
mality has been proved for it. In order to partially solve this
problem, it is possible to perform the preorder filtering by
PathStack and then to apply the postorder filtering as is shown
in [15]. The TJStrictPre algorithm uses a combination of the
advanced preorder filtering and the postorder filterings; how-
ever, it applies the postorder filtering after storing nodes in an
intermediate storage. Therefore, it uses the postorder filtering
to enable a linear output enumeration time, but its I/O com-
plexity is the same as for the advanced preorder filtering
algorithms such as TwigStack.

Table 1 shows the number of nodes stored in an interme-
diate storage by various filtering algorithms. In this table, we
use three TreeBank queries specified in Sect. 8. The last col-
umn shows the number of nodes which are a part of a GTP
result tuple. Evidently, the combination of PathStack and the

123

Optimal and efficient generalized twig pattern processing

Table 1 Numbers of nodes
inserted into an intermediate
storage and numbers of nodes
relevant to the GTP result

Query Postorder PathStack+Postorder Advanced preorder Nodes in GTP result

Twig2Stack Twig2Stack+PathStack TwigStack

TB1 172,851 92,972 32,012 804

TB2 170,874 49,765 24,834 158

TB3 404,582 187,961 12,126 63

Table 2 Number of the
preorder filtering function calls
corresponding to the inner query
nodes

Query getNext getPart

Calls (103) Unnecessary calls (103) Calls (103) Unnecessary calls (103)

TB1 8,32 184 268 53

TB2 1,658 337 145 15

TB3 3,192 1,954 515 239

postorder filtering can store an enormous number of irrele-
vant nodes; however, it stores less nodes than the postorder
filtering itself. An advanced preorder filtering algorithm such
as TwigStack stores significantly less nodes, but it still typi-
cally stores large number of irrelevant nodes due to the fact
that it filters only according to the TPQ model and no pos-
torder filtering is included.

In this article, we introduce the GTPStack algorithm com-
bining the advanced preorder filtering and postorder filtering
(let us call it a combined filtering) before storing a node in
an intermediate storage and to our best knowledge it is the
first such correct algorithm. The combined approach enables
optimal filtering according to GTP; therefore, only the nodes
relevant to the GTP result are stored in an intermediate stor-
age if the algorithm is optimal. In other words, if GTPStack
is optimal, then it has a linear worst-case I/O complexity with
respect to the GTP result size. The combined approach signif-
icantly reduces number of nodes in an intermediate storage
even if GTPStack is not optimal for a query. Moreover, in
order to speed up the query processing time, we use the fol-
lowing two improvements in the filtering mechanism: (1) we
introduce a novel advanced preorder filtering function called
getMatch which always outperforms the getPart func-
tion, and (2) we avoid storing predicate nodes on stacks.

GTPStack processing time improvements Let us briefly
describe our ideas behind the above improvements on
examples. An advanced preorder filtering function such as
getNext or getPart is typically called many times as is
shown in Table 2. This table gives numbers of the function
calls corresponding to the inner query nodes and numbers
of unnecessary calls for three TreeBank queries specified in
Sect. 8. An unnecessary call of the preorder filtering function
works with exactly the same data nodes as the last function
call; therefore, it returns the same query node. As observed
on the query TB3, there can be almost half of function calls
unnecessary. Our novel getMatch function avoids all these
unnecessary calls. Additionally, as is shown in Sect. 8.1.2,

the efficiency of the advanced preorder filtering function is
significantly dependent on the ability to skip irrelevant nodes.
The getPart and getNext functions sometimes return
irrelevant nodes which are not subsequently stored on stacks.
Another advantage of getMatch is that it skips all these
irrelevant nodes.

We use the term main branch query node to name the
query nodes which are on a query path from the root to an
output node. The rest of the query nodes are called predicate
query nodes. GTPStack separates the node filtering and the
output enumeration which yields the following optimization.
It allows us to avoid storing the nodes corresponding to the
predicate query nodes on stacks. Considering the GTP Q1
and the XML tree in Fig. 2a, the nodes corresponding to
#a, #c, and # f are processed by a preorder algorithm in the
following order: a1, c2, c3, f1, f2, c4, f3. Since the nodes
corresponding to #c and # f are processed only to decide
whether #a’s nodes are relevant or not (it is because they are
the predicate query nodes), then the processing of the nodes
c3, f2, c4, and f3 is unnecessary because the relevance of a1

has already been clarified by c2 and f1. Moreover, as is shown
in Sect. 6, we can avoid storing the nodes corresponding to
the predicate query nodes on stacks at all.

Optimality An important feature of holistic algorithms
using the advanced preorder filtering is that they have a lin-
ear worst-case I/O complexity with respect to the TPQ result
size (i.e., they are optimal) for some query classes. Differ-
ent holistic approaches define their optimality conditions in
a different way; however, all of them specify only the query
requirements. Surprisingly, none of the existing holistic algo-
rithms describes its optimality with respect to the XML doc-
ument. By writing this article we fill this gap and describe the
holistic algorithm optimality conditions which take account
of the XML document characteristics as well. Moreover, we
show that there is an XML document such that the optimal-
ity of the holistic algorithm is guaranteed for any twig query
such as TPQ or GTP.

123

R. Bača et al.

To our best knowledge, GTPStack is the first algorithm
that is optimal for some query classes with respect to the GTP
result size. GTPStack optimality is defined only by XPath
axes and XML document characteristics. In other words,
semantics related to the output nodes, Boolean expressions,
and quantifiers do not influence its optimality.

Contributions The contributions of this article are as
follows: (1) the introduction of the GTPStack algorithm with
two main features: (a) it has a linear worst-case I/O complex-
ity with respect to the GTP result size, and (b) it improves the
existing filtering techniques which makes GTPStack query
processing faster than other state-of-the-art holistic algo-
rithms for a large number of queries, (2) the introduction
of a new perspective of a holistic algorithm optimality since
we show that the optimality depends not only on a query type
but also on an XML document; we show that the knowledge
about the holistic algorithm optimality can be used to speed
up the query processing, (3) thorough experiments compar-
ing state-of-the-art holistic algorithms with GTPStack; our
experiments show under which conditions GTPStack out-
performs the other holistic approaches and they also show
that the intermediate storage size is reduced by one order of
magnitude when GTPStack is used.

The paper is organized as follows. In Sect. 2, we depict
a model of an XML document and the supported query
constructs. Section 3 analyzes the related work. Section 4
describes issues of an algorithm combining a preorder and a
postorder filtering and our solution of them. Section 5 intro-
duces the getMatch advanced preorder filtering function.
Section 6 introduces the GTPStack algorithm and its opti-
mizations. In Sect. 7, we state our new optimality condi-
tion. Section 8 experimentally verifies the advantages of the
GTPStack algorithm and contains results of the analysis of
common XML collections in order to show the scope of our
optimality condition.

2 Preliminaries

2.1 Data model

An XML document can be modeled as a rooted, ordered,
labeled tree, where every tree node corresponds to an element
or an attribute of the document and edges connect elements,
or elements and attributes, having the parent–child relation-
ship. We call such a representation of an XML document an
XML tree. In what follows, we simply write ‘node’ instead
of the correct ‘tree node’ or ‘data node’. An example of the
XML tree is shown in Fig. 2a. The nodes with the same
tag name in this XML tree are preorder numbered for easy
referencing in our examples.

Labeled path�p is a sequence of tag names tagroot/ . . . /

tagn from the root to a node n in the XML document. In such

case, we say that the node n corresponds to the labeled path
�p. The XML tree in Fig. 2a includes several labeled paths,
e.g., a/b/a, a/b/b, a/b/b/a, etc. The DataGuide tree [14]
is a labeled tree which contains all labeled paths from the
XML tree and every labeled path occurs only once there.
Figure 1b depicts an example of a DataGuide for the XML
document in Fig. 1a.

We assign a label to every node of an XML tree. Node
labels allow us to resolve basic XPath relationships between
two nodes during the query processing. There are two types
of labeling schemes: (1) element scheme (e.g., containment
scheme [46] or Dietz’s scheme [12]), and (2) path scheme
(e.g., Dewey order [35]). The main feature of labels using a
path labeling scheme is that we can extract all ancestor labels.
Note that the GTPStack algorithm described in Sect. 6 can
be utilized with any labeling scheme which is capable of
resolving ancestor-descendant (AD) and parent–child (PC)
relationships between two nodes.

2.2 Query language

A twig pattern query (TPQ) can be modeled as an ordered
rooted tree. Single and double edges between two query
nodes represent PC and AD relationships, respectively. By
#q we denote a query node q. For the sake of simplicity,
by writing n#q we mean an XML document (or data) node
corresponding to #q. In our algorithm, we use the following
notation: subtree(#q) is a set of query nodes in the TPQ
subtree rooted at #q; parent(#q) is a query node being a
parent of #q in the TPQ; parentRel(#q) stands for the
〈#q,parent(#q)〉 relationship; and children(#q) is a
set of query nodes which are children of #q in the TPQ.

Given a query node #q, a query match of #q is a tuple qm
of nodes, for which the following conditions hold: (1) the
size of qm is equal to the size of subtree(#q), (2) each
node of qm corresponds exactly to one query node, and (3)
each node n#q ′ ∈ qm satisfies the relationship

〈
#q ′

child , #q ′〉

(if there is any) with all nodes n#q ′
child

∈ qm. A full query
match is a query match of the root query node. Note that
a node can be a part of a query match of a non-root query
node, but not a part of a full query match at the same time.
We say that a node n#q is matched if it belongs to a query
match of #q.

Note that the query match is defined only with respect to
TPQs without NOT and OR operators since it is sufficient for
this article. We kindly refer to articles [18,45] which contain
a precise definition of a query match for a TPQ with these
operators.

Example 1 Consider the query //a//b[./a]//c and the
XML tree in Fig. 2a. Then the tuple (b4, a4, c4) is a query
match of #b, the tuple (a1, b4, a4, c4) is a full query match.

123

Optimal and efficient generalized twig pattern processing

A generalized tree pattern (GTP) is an extension of TPQ,
which enables expressing the XQuery semantics more accu-
rately [10]. Edges of GTP can be mandatory and optional and
they are denoted by solid and dashed lines in a tree, respec-
tively. A mandatory edge connects a subexpression corre-
sponding to the FOR and WHERE clauses with the rest of
the query. An optional edge connects a subexpression corre-
sponding to the LET and RETURN clauses with the rest of
the query. The GTP model contains two types of output query
nodes: (1) identifying output query nodes, and (2) optional
output query nodes. A GTP query node is an identifying
query node if it corresponds to the last query node in the FOR
path expression. The nodes corresponding to the identifying
query nodes form a so-called GTP result tuple identifier. An
output of an XQuery query contains only result tuples with
unique result tuple identifiers. In other words, query matches
with the same identifier are represented by one GTP result
tuple. An output query node is optional if it corresponds to
the last query node of the LET or RETURN path expression.
Optional nodes are grouped together for every GTP result
tuple identifier; therefore, optional nodes of query matches
corresponding to the same tuple identifier are stored in one
GTP result tuple. GTP enables to model logical expressions
in a query. Any query node having more than one child has a
corresponding logical expression. The AND logical operator
is an implicit connector for the twig query branches; there-
fore, we explicitly write only expressions with the NOT and
OR operators as in the case of #b in the GTP Q3 in Fig. 1c.

Example 2 Consider the GTP Q2 in Fig. 1b and the XML
tree in Fig. 2a. The node pairs corresponding to the
identifying query nodes a and d form three result tuple
identifiers: (a1, d1), (a1, d2), and (a1, d3). We can find query
matches corresponding to one GTP result tuple identifier,
e.g., the query matches (a1, b1, b4, d3), (a1, b3, b4, d3), and
(a1, b4, b4, d3) correspond to the (a1, d3) result identifier.
These query matches form one result tuple (a1, d3, b1,

b3, b4). We can observe that the nodes corresponding to the
optional output query node #b are grouped together in this
result tuple. The GTP result of Q2 is a set of three tuples
since we have three tuple identifiers. On the other hand, the
TPQ result of Q2 is a set of twelve query matches.

2.3 Holistic algorithms

Holistic approaches use an abstract data type (ADT) called a
stream which is an ordered set of node labels with the same
schema node label. There are many options how to create the
schema node labels (also known as streaming schemes [9]
or partitions of data nodes [19]). A cursor pointing to the
first node label is assigned to each stream at the beginning
of a query processing. Given a stream T , let us define the
following operations:

– NodeLabel H(T)—returns the node label at the cursor’s
position,

– Booleof(T)—returns true if the cursor is at the end of T ,
– advance(T)—moves the cursor to the next node label

in T .

Two important assumptions ensuring the linear I/O com-
plexity are that we can access only a single node from each
stream in every step of a holistic algorithm and cursors can
be only forwarded. Note that a stream ADT can be easily
implemented by an inverted list.

In the following text, we use methods x .preceding(y),
x .following(y), x .ancestor(y), and x .descendant
(y) returning true if the corresponding relationship between
the nodes x and y is satisfied. We write x < y if the node x
has a lower document order than the node y.

2.4 DataGuide search

The TwigStack algorithm [6] utilizes the Tag streaming
scheme. In [9], the authors propose an extension of this
algorithm by using various streaming schemes and introduce
Tag+level and Prefix path streaming schemes. The Prefix
path streaming scheme is basically a utilization of labeled
paths [21,44]. For the sake of simplicity, let us use the abbre-
viation LPS for ‘Labeled path streaming scheme’ or ‘Prefix
path streaming scheme’ and T+LS instead of ‘Tag+Level
streaming scheme’. Moreover, we use the terms ‘labeled
path’ and ‘tag+level’ instead of labeled path and tag+level
scheme node labels, respectively.

The content of a stream depends on the streaming scheme
used. For example, in the case of LPS, the stream Ta/b/c

includes all nodes corresponding to the labeled path a/b/c.

Example 3 Consider the XML document in Fig. 2a. Then,
for instance, Ta/b = {b1, b3, b4} and Ta/b/c/c/ f = { f1} in
the case of LPS, Tb,2 = {b1, b3, b4} and Tb,3 = {b2} in the
case of T+LS.

In any algorithm using LPS or T+LS, we must first
find labeled paths and tag+levels, respectively, matching the
query in the DataGuide tree [3]. Searching for the matching
labeled paths or tag+levels is called a stream pruning in [9].
By P RU#q we denote a set of streams corresponding to #q.
In other words, P RU#q is a set of streams which can contain
nodes that are a part of a full query match.

Example 4 Consider the XML document in Fig. 2a and
the query //b[./c]//d. Under LPS, P RU#b = {Ta/b},
P RU#c = {Ta/b/c}, and P RU#d = {Ta/b/b/d , Ta/b/d}. Note
that Ta/b/b is not a part of P RU#b since the necessary
a/b/b/c labeled path is not in the DataGuide; therefore,
a/b/b cannot contain a fully matched node.

The isEnd(#q) function returns true if all streams from
P RU#q are completely read (i.e., eof(T) returns true for

123

R. Bača et al.

all T ∈ P RU#q). A holistic algorithm needs only a stream
T ∈ P RU#q with the smallest H(T) label. Therefore, we use
the H(#q) and advance(#q) operations as follows: (1) we
simply keep the set of streams T ∈ P RU#q sorted accord-
ing to their H(T) and H(#q) then returns the head node of
the first stream in the sorted set, and (2) advance(#q) calls
advance(T) on the first stream T and sorts the P RU#q

set. This approach was proposed in [2] and it allows us to
easily process any streaming scheme together with any holis-
tic algorithm. Otherwise said, this approach makes the usage
of streaming schemes orthogonal to holistic algorithms.

3 Related work

Many different TPQ and GTP processing approaches with
various features have been developed recently [1,6,8,9,24,
26,38,46].

Two major types of approaches are represented by holistic
joins [6,8,9,24,26] and binary structural joins [1,44,46,16].
Structural joins can be easily integrated in a full-fledged
XQuery processor in order to support all XPath axes [5,10,
32]; however, they can produce a large intermediate result
when compared to the query result. Holistic joins can sig-
nificantly reduce the intermediate result size without sophis-
ticated query optimizations which are necessary in the case
of structural joins [31]. Holistic joins can be integrated into
XQuery algebra as well [30] and we can even combine
them with structural joins in the same XQuery processing
plan [40].

An appropriate join algorithm for a query should be picked
by a cost-based optimizer as is proposed in Weiner and
Härder [39]. The authors of Weiner and Härder [39] consider
the selectivity of an XPath location step to be a major parame-
ter for this cost-based optimization. However, the selection of
an appropriate join is dependent on many other parameters as
well. For example, we should consider the characteristics of
available indices, labeling scheme, streaming scheme, gran-
ularity and accuracy of the result size estimation used, and
many other details specific for each implementation. How-
ever, this is beyond the scope of this article since a meaningful
cost-based comparison of structural and holistic joins should
be discussed in a separate article.

In this article, we focus on holistic algorithms and push
forward their theoretical frontiers and processing time capa-
bilities. Our major motivation is the existence of the worst-
case I/O complexity of holistic algorithms which is further
improved by this article.

The TPQ or GTP holistic query processing consists of
three phases: (1) reading nodes of an XML document from an
index, (2) node filtering, and (3) storing nodes in an interme-
diate storage and an output enumeration. The existing opti-
mization of the first phase includes: (a) indexed streams such

as XB-tree [6] allowing a quick skipping of irrelevant input
nodes, (b) compression of input data [4,17], (c) utilization of
a path labeling scheme [25,26,28,43], and (d) utilization of
a refined streaming scheme [9,11,20,44]. These first phase
optimization techniques are special in the sense that they
are orthogonal to the techniques used in the second and the
third phase. Therefore, all these techniques are compatible
with GTPStack as well. Moreover, we show that the holis-
tic algorithm optimality is dependent on the XML document
characteristics if a refined streaming scheme is used.

The GTPStack algorithm improves the node filtering
phase (i.e., the second phase) which is described in detail
in Sects. 5 and 6. The choice of an intermediate storage and
an output enumeration algorithm is also important. Many
holistic algorithms use the intermediate storage and the out-
put enumeration proposed by TwigStack [6]. However, the
TwigStack intermediate storage can contain many duplicate
and irrelevant nodes and the whole intermediate storage is
sequentially read regardless of the result size. Twig2Stack [8]
proposes a DOM-like intermediate storage which overcomes
most of the TwigStack intermediate storage problems and
enables a fast GTP enumeration in the linear time with respect
to the GTP result size even though the intermediate storage
contains many irrelevant nodes. The main disadvantage is
that Twig2Stack cannot be combined with an advanced pre-
order filtering function. The TwigList algorithm [33] pro-
poses another fast intermediate storage with the linear time
complexity of the output enumeration with respect to the
TPQ result size which stores nodes in simple arrays minimiz-
ing the intermediate storage maintenance. TJStrictPre’s and
TJStrictPost’s [15] intermediate storage (called the level split
vectors) improves the TwigList intermediate storage, so that
it can handle PC relationships more efficiently. We compared
the above described features of the intermediate storages in
Sect. 8.1.1 and decided to use the level split vectors interme-
diate storage since it has a comparable performance with the
Twig2Stack intermediate storage, but the level split vectors
can be easily combined with an advanced preorder filtering
whereas the Twig2Stack intermediate storage cannot.

There are also algorithms dealing with other aspects
of the XML queries such as processing content queries
[41,42] or ordered queries [25,27]. All these approaches can
be combined with GTPStack as well; however, it is beyond
the scope of this article.

4 Analysis of node processing order

The usage of an advanced preorder filtering function causes
nodes to be pushed and popped out in an order not corre-
sponding to the document order. This is a problem if we
intend to use a combined approach (i.e., a combination of the
preorder and postorder filterings) since all postorder filtering

123

Optimal and efficient generalized twig pattern processing

Table 3 Classification of the holistic approaches according to their
push order

Holistic algorithm

Global push order Twig2Stack [8], TwigList [33],
TJStrictPost [15], PathStack [6,15]

Local push order TwigStack [6], iTwigJoin [9],
TJStrictPre [15]

algorithms require the nodes to be popped out in the docu-
ment postorder for their correct functionality [8,15,23]. Our
solution of this problem consists of two parts: (1) modifi-
cation of the order of the pop operation when an advanced
preorder filtering is used (it is described in this section as a
relaxed pop order and represented by the popExtension
procedure), and (2) usage of a postorder filtering algorithm
which correctly processes the query if the relaxed pop order
is used (see Sect. 6.2).

Every holistic algorithm uses stacks during the query
processing. There are two types of the push operation
sequences used by holistic algorithms: (1) global push order
– a node ni is pushed onto a stack earlier than a node n j

if ni ≤ n j , and (2) local push order – if #q is a parent
of #q ′, then a node ni corresponding to #q is pushed onto
a stack earlier than any node n j corresponding to #q ′ if
ni ≤ n j . Table 3 summarizes holistic approaches accord-
ing to their push order. There are also other approaches such
as TwigStackList [24], where nodes are not pushed on stacks
in the document order even if they correspond to the same
query node. In these cases, we cannot pop nodes in the order
required by a postorder filtering; therefore, we omit them in
this paper.

There are several types of the pop operation sequences as
well. The node pop order is determined by the push order and
by the pop algorithm since the nodes are popped out before
we push the following nodes on stacks. The definition of a
global pop order is analogous to the definition of the global
push order. A local pop order pops nodes in postorder only in
the case of the nodes corresponding to the same query node.
The global and local pop orders correspond to algorithms
having the global and local push orders, respectively. The
most important thing is that if an algorithm pushes nodes in
the local push order, then it cannot pop nodes in the global
pop order. Moreover, if we use the local push order and try
to pop nodes from stacks in the global pop order, then an

Algorithm 1: Extension of the pop procedure

Procedure: popExtension(#q)
1 forall #child ∈ children(#q) do1
2 while ¬S#child .empty ∧2

S#child .top.descendant(S#q .top) do
3 pop(#child);3

intermediate storage can be in an incorrect state and some
results can be lost as is shown in [15].

Therefore, as a part of our solution, we introduce a relaxed
pop order which can be a pop order of a holistic algorithm
having the local push order if we slightly modify the pop pro-
cedure of this algorithm. Nodes are popped out in the relaxed
pop order if a node ni corresponding to #q is removed from
the stack only after we pop all descendant-or-self nodes being
in a query match of #q with ni . Even though nodes are not
popped out in the global pop order, the relaxed pop order
is sufficient when deciding whether a node is matched or
not.

Let us recall that there is a pop(#q) procedure used
by all holistic algorithms which removes a node from the
stack S#q . In Algorithm 1, we introduce a procedure called
popExtensionwhich pops nodes in the relaxed pop order
even though nodes are pushed in the local push order. The
popExtension procedure has to be called at the begin-
ning of the pop procedure. The popExtension proce-
dure checks all stacks of child query nodes of #q and pops
all nodes which are the descendants of the node n#q that we
want to pop out. The usage of popExtension allows us to
combine an advanced preorder filtering with our GTPStack
postorder filtering.

Example 5 Consider the TPQ Q4 and the XML tree in Fig. 4.
The sequence of the push and pop operations during the
query processing using an advanced preorder filtering func-
tion is shown in Fig. 3. The last row displays the pop oper-
ation sequence with the relaxed pop order. Even though it
is close to the global pop order, there are still situations
when the global pop order is not followed. We can see that
b2 is popped out before a2. Due to this behavior we can-
not directly combine the advanced preorder filtering with
the postorder filtering such as TwigList or Twig2Stack even
though popExtension is used. In Sect. 6.2, we describe
a postorder filtering technique which works correctly when
the relaxed pop order is used.

Fig. 3 Example of the push
and pop operation sequences
during the holistic processing of
Q4

123

R. Bača et al.

(a) (b) (c)

Fig. 4 XML tree and two GTPs

5 GetMatch advanced preorder filtering function

The existing getNext and getPart advanced preorder
filtering functions have two shortcomings: (1) they often per-
form unnecessary recursive calls, and (2) they return a query
node #q even if there is no ancestor of H(#q) on Sparent (#q).
As a result, they both cause many unnecessary computations
which are completely avoided by the getMatch function
introduced in this section.

The getMatch function is given in Algorithm 2. If lines
of code with underlined numbers are removed, we obtain the
getNext function originally introduced in TwigStack [6].
In other words, the underlined lines represent our novel ideas
when compared to the existing algorithms. We use this nota-
tion in all algorithms of this article.

The getMatch function introduces three improvements
of the existing advanced preorder filtering functions: (1) a
mapping Matched: Query node �→ Bool, which is imple-
mented by means of an array called Matched so that
a flag Matched[#q] is true if the streams’ cursors in
subtree(#q) are not moved from the last call of
getMatch(#q), (2) a descendantForward procedure
which forwards the cursor according to the bottom node of
the parent’s stack (called bottomItem in Algorithm 2),
and (3) a cycle for the inner nodes (Lines 4–25) which does
not terminate the getMatch call until all streams are ended
or a node n#q being possibly the root of a query match of
#q is found. The usage of the parent’s stack and the above
cycle cause a more progressive forward movement of the
streams’ cursors which is a major parameter influencing the
processing time of an advanced preorder filtering function as
is shown in Sect. 8.1.2.

A fwdToAncOf function depicted in Algorithm 2 cor-
rectly forwards H(#q) according to #q’s child query nodes
only if the AND operator is used. An extension of
fwdToAncOf for logical expressions with the OR and NOT
operators can be found in Algorithm 5 in “Appendix 1”.

Algorithm 2: getMatch adv. preorder filtering function

Function : QueryNode getMatch(#q)
1 if isRoot(#q) ∨ #q.isEnded then1
2 descendantForward(#q);2

if isLeaf(#q) then return #q ;3
4 while true do4

foreach #child ∈ children(#q) do5
6 if ¬Matched[#child] then6

#node = getMatch(#child);7
if #node �= #child then8

Matched[#q] = false;9
return #node ;10

if all streams corresponding to non-optional query nodes11
returned by getMatch() are ended then

#q.isEnded = true;12
return #q ;13

#minChild = child of #q with the minimum head;14
fwdToAncOf(#q);15
if H(#q) < H(#minChild) then16

Matched[#q] = true;17
return #q ;18

else19
20 if S#q .empty ∨20

H(#minChild).following(S#q .bottomItem) then
21 Pop all nodes from S#q ;21
22 advance(#minChild);22
23 Matched[#q] = false;23

24 else24
return #minChild ;25

Procedure: descendantForward(#q)
1 # par = parent(#q);1
2 if S# par .empty then2
3 if # par.isEnded then #q.isEnded = true;3
4 fwdToDescOf(#q, H(# par));4

5 else5
6 fwdToDescOf(#q, S# par .bottomItem);6
7 if ¬S# par .bottomItem.AncestorOrSelf(H(#q))7

then
8 if # par.isEnded then #q.isEnded = true;8
9 fwdToDescOf(#q, H(# par));9

Procedure: fwdToAncOf(#q)
#maxChild = child of #q with the maximum head;1
while H(#q).preceding(H(#maxChild)) do2

advance(#q);3

Procedure: fwdToDescOf(#q, label)
while H(#q) < label do advance(#q);1

An important issue of the evaluation of queries with the NOT
operator is that the optimality of GTPStack is necessary for
skipping irrelevant nodes.

Example 6 (getMatch Function) Consider the TPQ Q5
and the XML document in Fig. 4. The first and the second
call of getMatch returns #d and #c, respectively, and then
their cursors are forwarded. The third call of getMatch

123

Optimal and efficient generalized twig pattern processing

returns the root query node #a and a1, b1, c2, e1, and d2

are the head nodes of their streams T#a, T#b, T#c, T#e, and
T#d , respectively. Clearly, c2 is a descendant of b1 and d2

is not, which corresponds to #b’s logical expression. The
Matched flag is set to true for all query nodes since every
recursive getMatch call ends at Line 18. The cursor of T#a

is advanced by a holistic algorithm and a2 is now the head
of T#a . The fourth call of getMatch skips all unnecessary
recursive calls of getMatch(#b) since the Matched[#b]
flag is true (see Line 6 of the getMatch algorithm). In
other words, all head nodes corresponding to query nodes
in subtree(#b) remain unchanged since the last call of
getMatch(#b); therefore, it is clear that b1 is still the root
of the same query match of #b.

5.1 Optimality of preorder filtering with getMatch

An advanced preorder filtering function has the following
property for a specific (see below) class of queries: it returns
only a query node #q such that there is a query match
of #q containing H(#q). Therefore, the preorder filtering
removes all nodes irrelevant to the TPQ. The getPart
andgetNext procedures guarantee this property for queries
having only AD relationships [6,15]. Since getMatch only
avoids unnecessary function calls and skips irrelevant nodes
having no ancestor on parent’s stack, its optimality properties
are the same as for getPart and getNext. This means
that getMatch is optimal for queries having only AD rela-
tionships. Let us note that in Sect. 7 we prove that a holistic
algorithm with an advanced preorder filtering function (e.g.,
getMatch) can be optimal even for a query containing any
combination of PC and AD relationships depending on XML
document characteristics.

An extension of getMatch for logical expressions does
not change the preorder filtering optimality which is influ-
enced only by query nodes relationships and the XML
document characteristics.

6 GTPStack

In this section, we introduce the GTPStack algorithm
containing our novel postorder filtering that can be combined
with any advanced preorder filtering function. This combi-
nation of filterings subsequently enables an optimization of
predicate nodes reducing the GTP processing time and allows
an optimal GTP processing with a linear worst-case I/O com-
plexity with respect to the GTP result size.

The GTPStack pseudocode in Algorithm 3 shows a com-
mon holistic algorithm loop and (analogously togetMatch)
we underline the lines’ numbers with novel ideas. This
algorithm performs the following steps during each itera-

Algorithm 3: Main loop of GTPStack

Procedure: GTPStack()
#q = getMatch(#root);1
while not all streams are ended do2

if ¬isRoot(#q) then3
popPreceding(parent(#q), H(#q));4

5 if isMainBranch(#q) then5
push(#q);6

7 else7
8 processPredicate(#q);8

advance(#q);9
#q = getMatch(#root);10

Pop the remaining items from stacks;11

Procedure: popPreceding(#q, label)
while ¬S#q .top.ancestor(label) do1

pop(#q);2

Procedure: push(#q)
if hasPrefixMatch(#q, H(#q)) then1

popPreceding(#q, H(#q));2
S#q .push(H(#q), Sparent (#q).top);3

Function : Bool hasPrefixMatch(#q, label)
if isRoot(#q) then return true;1
switch parentRel(#q) do2

case AD: return ¬Sparent (#q).empty ;3
case PC: return ¬Sparent (#q).empty ∧4
Sparent (#q).top.parent(H(#q));

Procedure: processPredicate(#q)
1 if isSubtreeOptimal(#q) then1
2 if isMainBranch(parent(#q)) ∨2

¬isSubtreeOptimal(parent(#q)) then
3 propagateBits(#q, true);3

4 else4
5 if bit of the Sparent (#q).top blocking info corresponding to5

#q is false then
6 push(#q);6

tion: (1) it calls the getMatch advanced preorder filtering
function (Lines 1 and 10 of GTPStack), (2) it pops useless
nodes from stacks (Line 4 of GTPStack and Line 2 of push),
(3) on stacks it stores nodes having an ancestor on the par-
ent stack (Line 3 of push). We introduce an optimization
of the nodes corresponding to a predicate query node (Line
8 of GTPStack) in the holistic loop. These nodes (i.e., the
nodes processed by the processPredicate procedure)
are pushed on stacks only if we do not know yet whether
the nodes stored on their parent stack are matched or not.
By avoiding storing nodes corresponding to predicate query
nodes on stacks we speed up the query processing of GTP-
Stack as is shown in Sect. 8.1.3.

Stacks represent a core data structure for the node filtering
and also for the preparation for the output enumeration. An
item on a stack is represented by a node, a pointer to a node
on the parent’s stack (referred as a pointerToParent in our

123

R. Bača et al.

algorithms), a blocking info, a (prev:next) pair, and a set of
(start:end) pairs. The blocking info is a bit array used during
the postorder filtering (see Sect. 6.1), the (prev:next) pair
prevents an intermediate storage sorting (see Sect. 6.2.1), and
the (start:end) pairs are used during the output enumeration
(see Sect. 6.2.2).

6.1 Postorder filtering

In this section, we depict thepop procedure which represents
our novel postorder filtering used by the GTPStack algorithm.
The postorder filtering represented by Algorithm 4 is mainly
based on an array of bits called a blocking info assigned to
every node on a stack.

The blocking info array of a node n#q is the same size as
the number of #q’s child query nodes. The bit bi is true iff
there is a matched node n#child satisfying the 〈#child, #q〉
relationship with n#q . When a node is pushed onto a stack, all
bits of its blocking info are set to false. The only exception is
a bit corresponding to the query node #qchild , where the rela-
tionship between #q and #qchild corresponds to the every
quantifier. The testBits function (Line 2 of pop) is a
simple function evaluating the query node’s logical expres-
sion, where the blocking info’s bits determine values of the
logical variables.

Bits of the node’s blocking info are set by the
propagateBits function when the holistic algorithm
pops some of its matched children. Due to the fact that nodes
are popped out in the relaxed pop order, thetestBits func-
tion has the following property: when the pop procedure is
prepared to pop a node nq (Line 3 of pop), the testBits
function returns true if nq is matched, otherwise it returns
false.

If we utilize the blocking info, we do not have to use an
intermediate storage by the postorder filtering as it is done
by the Twig2Stack, TwigList, TJStrictPost, and TJStrictPre
approaches. In other words, we do not have to read an inter-
mediate storage content in order to decide whether a node is
useless or not. As a result, we never store nodes correspond-
ing to predicate query nodes in an intermediate storage (since
they are useless for the enumeration).

Example 7 Figure 5 depicts operations of the postorder
filtering operations during the query processing of the
//a[not(./a) and ./c]//b XPath query. This
example shows how the blocking infos of the nodes a1 and a2

are set by propagateBits during the pop operation
(Algorithm 4). We observe that the nodes corresponding to #a
and #c are not pushed into an intermediate storage since they
are the nodes corresponding to the predicate query nodes.
The blocking info of a2 is (0,1,1) after the steps displayed
in Fig. 5 which means that the boolean expression of #a is
satisfied and a2 is pushed into an intermediate storage. On

Algorithm 4: Postorder filtering

Procedure: pop(#q)
1 popExtension(#q);1
2 Bool matched = isSubtreeOptimal(#q) ∨ isLeaf(#q)2

∨ testBits(#q);
3 StackItem popItem = S#q .pop ;3
4 if parentRel(#q) is labeled by the every quantifier then4
5 if ¬matched then5
6 propagateBits(#q, false);6

7 else7
8 if ¬isRoot(#q) ∧ matched ∧8

¬isSubtreeOptimal(parent(#q)) then
9 propagateBits(#q, true);9

10 if isEnumerateQueryNode(#q) then10
11 if matched then11
12 Add popItem into its interm. storage list;12
13 Setting of ancestor’s (prev:next) (Sec. 6.2.1);13
14 Setting of (start:end) (Sec. 6.2.2);14

15 else15
16 Setting of ancestor’s (prev:next) (Sec. 6.2.1);16

Procedure: propagateBits(#q, Bool bit)
1 StackItem parentItem = S#q .top.pointerToParent ;1
2 foreach i tem in Sparent (#q) where the relationship between item2

and parentItem corresponds to parentRel(#q) do
3 i tem.setBit(#q, bi t);3

the other hand, the blocking info of a1 is (1,1,0); therefore,
a1 is skipped.

6.1.1 GTP postorder filtering

Note that when GTPStack is ready to pop n#q , then it has
already popped out all descendants of n#q due to the relaxed
pop order (see Sect. 4). Therefore, we can easily decide
whether n#q is relevant or not according to the GTP seman-
tics of the query node. We consider logical expressions,
mandatory and optional edges, and quantified expressions
(Lines 2-9 of pop). That is possible regardless of whether
the advanced preorder filtering is optimal or not.

6.2 Intermediate storage

GTPStack uses a modification of the level split vectors inter-
mediate storage (LIS) proposed in [15] which is an enhanced
variant of the TwigList’s intermediate storage (TIS) [33].
A shortcoming of both LIS and TIS is that if we push
nodes into the intermediate storage in postorder, the enu-
meration outputs the result tuples unordered (which rep-
resents a problem of the TwigList and TJStrictPost algo-
rithms). We describe a solution of this problem in Sect. 6.2.1.
Section 6.2.2 depicts a new technique which is one of

123

Optimal and efficient generalized twig pattern processing

Fig. 5 Example of the postorder filtering steps which perform the bits propagation during the query processing

the GTPStack parts that enables a linear worst-case I/O
complexity of GTPStack with respect to the GTP result size.

6.2.1 Sorting avoidance

Our improvement of LIS simply uses a list instead of an
array as the main intermediate storage structure. The list data
structure enables a concatenation of nodes according to the
document order in a constant time and it avoids excessive
sorting of the output.

For the purpose of the concatenation, we store a (prev:next)
pair as a part of each stack item. The prev and next items are
pointers to the list’s node. Their values are set when we pop
out a node and the detailed description of the (prev:next) pair
settings is given in “Appendix 2”. Note that this concatenation
is necessary only when a query node has the AD relationship
with its parent, because in the case of the PC relationship and
LIS the nodes are pushed into the intermediate storage in the
document order.

6.2.2 Preparation for enumeration

For the purpose of an output enumeration, we have a set of
(start:end) pairs corresponding to a node n#q , where every
(start#child :end#child) pair corresponds to exactly one child
of #q. If we consider a set S of nodes stored in an intermediate
storage which correspond to #q and which are descendants of
n parent (#q), then the start#q of n parent (#q) points to n′

#q ∈ S
having the lowest document order among all nodes in S and
the end#q of n parent (#q) points to n′′

#q ∈ S having the highest
document order among all nodes in S.

The TwigList, TJStrictPost, and TJStrictPre algorithms
read the last node stored in the intermediate storage in order
to set the (start:end) pairs. However, as is described in Sect. 4,
we can pop nodes in an order not corresponding to the
global pop order in the case of GTPStack. Therefore, GTP-

Stack needs to set the (start:end) pairs in a different way.
We use a simple propagation technique analogous to the
propagateBits procedure. Every time we pop a matched
node n#q from a stack, we set the (start#q :end#q) pairs of all
nodes n parent (#q) satisfying the parentRel(#q) relation-
ship.

Moreover, we propose an optimization which allows us
to store only the nodes corresponding to output nodes in
the intermediate storage. If a main branch query node #q
is not an output query node and the GTPStack algorithm is
optimal for a subtree rooted at its parent query node, then
nodes corresponding to #q do not have to be stored in the
intermediate storage. In Example 8, we illustrate this idea and
explain why the parent query node optimality is important
when we want to avoid storing nodes corresponding to non-
output main branch query nodes in the intermediate storage.
Therefore, GTPStack does not store nodes corresponding to
non-output query nodes if it is optimal for the whole query.

Example 8 Consider the XML tree in Fig. 6b, two GTPs Q5
and Q6 from Fig. 6a, c, respectively, and their intermediate
storages. A gray triangle in the intermediate storage figures
represents a (start:end) pair of its top corresponding node.
Since the GTPStack preorder filtering is optimal for Q5, we
easily avoid storing the nodes corresponding to #b since each
node corresponding to #a can have a (start:end) pair pointing
directly to the nodes corresponding to #c. In this case, a1 can
have the (c1:c3) pair instead of (b1:b3). That is not possible in
the case of Q6 for which the preorder filtering is not optimal.
We see that the lists corresponding to #b can contain useless
nodes and if we replace a1’s pair (b1:b3) by the (c1:c3) pair,
the interval contains the irrelevant c2 node.

Once the intermediate storage contains nodes and their
corresponding (start:end) pairs, it is straightforward to
enumerate the output. The new output enumeration algorithm
is given in “Appendix 3”.

123

R. Bača et al.

(a)

(b) (c)

Fig. 6 Examples of GTPs and their corresponding intermediate
storages

6.3 Analysis of GTPStack

The correctness of the filtering used in GTPStack follows
from the correctness of both the relaxed pop order described
in Sect. 4 and the postorder filtering discussed in Sect. 6.1.
Furthermore, the GTPStack output enumeration is correct
due to the correctness of the TwigList output enumeration
algorithm. The GTPStack output enumeration only requires
nodes to be in preorder in the intermediate storage, which is
achieved by a list concatenation (see Sect. 6.2.1).

Although GTPStack is correct for any GTP with any
combination of PC and AD relationships, we can prove the
GTPStack optimality only for some types of GTPs (as in the
case of any other holistic algorithm). The GTPStack optimal-
ity for a GTP corresponds to the optimality of the preorder
filtering optimality for a TPQ which is discussed in Sect. 5.1.
This comes from the fact that if the preorder filtering used by
GTPStack is optimal, then the only irrelevant nodes stored on
stacks are those corresponding to some query matches, but
not corresponding to any output query nodes. As is described
in Sects. 6.1 and 6.2.2, GTPStack’s postorder filtering skips
nodes not corresponding to any output query nodes, so that
only the nodes relevant to the GTP result are stored in the
intermediate storage. Therefore, GTPStack is optimal for any
GTP having only the AD relationships or satisfying the con-
ditions described in Sect. 7. When GTPStack is optimal, its
worst-case I/O complexity is linear with respect to the sum of
input list sizes and the size of the GTP result. The space com-
plexity of GTPStack is linear with respect to the maximum
depth of the XML tree. This follows from the utilization of
stacks which store nodes with the AD relationship in each
phase of the algorithm.

6.4 Summary of GTPStack

GTPStack is the first algorithm with a linear worst-case I/O
complexity with respect to the sum of the input and GTP
result sizes (in this case, GTPStack is optimal for the GTP).
This is mainly achieved by the combination of the advanced
preorder and postorder filterings and, to our best knowl-
edge, GTPStack is the first correct holistic algorithm using
a combined filtering before storing a node in an interme-
diate storage. The combined approach used in GTPStack
has the following advantages: (1) it allows us to avoid stor-
ing nodes corresponding to predicate query nodes on stacks
which speeds up the query processing, and (2) it significantly
decreases the number of nodes in the intermediate storage
even when GTPStack is not optimal for a query. GTPStack
uses our novel advanced preorder filtering function called
getMatch, which avoids unnecessary function calls and
improves cursor forwarding which furthermore speeds up the
query processing. All these features make GTPStack supe-
rior to the state-of-the-art holistic approaches as is shown
experimentally in Sect. 8.

7 Preorder filtering optimality

Optimality of a preorder filtering algorithm for a query or
at least subquery has several important impacts: (1) we can
guarantee that we skip all nodes irrelevant to a TPQ during the
preorder filtering, (2) the algorithm optimality is necessary
for a more efficient preorder node filtering of a query with
the NOT operator (Line 10 of isUseless in Algorithm 5),
(3) we store only nodes corresponding to the output query
nodes in the intermediate storage (see Sect. 6.2.2), and (4) we
avoid storing all nodes corresponding to the predicate query
nodes on stacks (Lines 1 and 2 of processPredicate in
Algorithm 3).

Every preorder filtering algorithm has its specific query
classes, for which the algorithm optimality is proved. The
most common preorder algorithm optimality is the AD query
(a query having only the AD relationships) optimality which
is also GTPStack’s optimality if the tag streaming scheme
is used. However, we show that the preorder algorithm opti-
mality can be significantly extended using the T+LS or LPS
scheme.

We define the optimality of the algorithm for the TPQ
model in Sect. 7.1, since the optimality of the algorithm is
not influenced by the GTP model semantics. In other words,
GTPStack is optimal for a GTP if it is optimal for the corre-
sponding TPQ (see Sect. 6.3).

When we speak about a holistic algorithm, we mean a
holistic algorithm using an advanced preorder filtering such
as TwigStack, TJStrictPre, or GTPStack.

123

Optimal and efficient generalized twig pattern processing

Fig. 7 Example of three TPQs and their corresponding checking query
nodes (underlined)

7.1 Query optimality condition

We show that we can determine the algorithm optimality
after the DataGuide search even for a query not belonging
to any common holistic algorithm query class. Our new con-
dition extends a known set of queries for which the current
holistic algorithms are optimal. This optimality condition can
be applied to any holistic algorithm using an advanced pre-
order filtering, since the usage of different streaming schemes
is orthogonal to all holistic approaches as is mentioned in
Sect. 2.4.

Let us define several terms related to the query nodes of a
TPQ:

– Query node with PC in its subtree is a query node #q
having the PC relationship between some two nodes from
the subtree(#q) set.

– A checking query node #q is a query node with PC in its
subtree and the AD relationship as parentRel(#q). It
is an important query node type from the optimality point
of view.Checkingnodes(Q) is a set of checking query
nodes in the query Q.

– A tag is called single level if all nodes in the XML tree
with this tag are on the same level.

Example 9 (Checking Query Nodes) Fig. 7 shows three
TPQs, where the checking query nodes are underlined. The
query node #a is the single checking node of Q7 since the
second query node #b with PC in its subtree has the PC
relationship with its parent query node. Furthermore, for the
TPQs Q8 and Q9 we have checkingnodes(Q8)={#a, #c}
and checkingnodes(Q9) = {#a}, respectively.

Definition 1 (Query Node Optimality) Let Q be a TPQ. We
say that #q ∈ Q is an optimal query node if:

– when T+LS is used - P RU#q contains one stream,
– when LPS is used - there is no labeled path �p′ �= �p such

that T�p′ ∈ P RU#q and �p′ is an ancestor (i.e., prefix) of
�p.

Our novel optimality condition for holistic algorithms is—
roughly speaking—as follows: an algorithm is optimal for
a TPQ if all checking query nodes are optimal after the
DataGuide search. In the case of the T+LS scheme, every
checking query node contains exactly one stream. In the case
of the LPS scheme, no checking query node contains two
labeled paths, where one is a prefix of the other. If this condi-
tion is satisfied, then a holistic algorithm using an advanced
preorder filtering is optimal.

Now let us state these two lemmas:

Lemma 1 (Streams after DataGuide Search) Let #q be a
non-root node of a TPQ Q. Then, for every stream T ∈
P RU#q , there exists at least one stream T ′ corresponding
to parent(#q), where the streams T and T ′ satisfy the
parentRel(#q) relationship.

Proof Since we search for the query matches of Q in
a DataGuide in order to obtain the P RU#q set, every T ∈
P RU#q must be a part of a query match. Therefore, every
stream T must have a parent stream T ′ in the query match.

�

Lemma 2 (PC Relationship for Optimal Query Nodes)
Consider a TPQ Q and a set S ⊆ Q of query nodes with PC
in their subtrees. Moreover, assume that every #q ∈ S is opti-
mal. Consider query nodes #q, parent(#q) ∈ Q with the
PC relationship. Then, any node n in a stream T ∈ P RU#q

having the AD relationship with a node n′ from a stream
T ∈ P RUparent (#q) must also have the PC relationship
with n′.

Proof We prove this lemma by contradiction. Let us assume
that there is a node n in a stream T ∈ P RU#q having the AD
relationship with a node n′ in a stream T ′ ∈ P RUparent (#q),
where the query nodes #q and parent(#q) have the PC
relationship and the node n does not have the PC relationship
with the node n′. Consequently, by Lemma 1, there exists a
stream T ′′ �= T ′ belonging to P RUparent (#q). The query
node parent(#q) contains only optimal streams since it
has PC in its subtree. Obviously, in both streaming schemes
the existence of the stream T ′′ is in contradiction with the
optimality of parent(#q). �

In other words, Lemma 2 says that if #q is optimal, then we
can replace the PC relationship between #q andparent(#q)
by the AD relationship without modifying the query result.

If two query nodes #q and parent(#q) are connected
with a PC relationship, then both have the same number of
labeled paths after the DataGuide search. This is caused by
the fact that these labeled paths in such query nodes have
a one-to-one relationship. Due to this simple observation, it
holds that #q is optimal iff parent(#q) is optimal and these
query nodes have the PC relationship. As a result, we do not
have to check query nodes with PC in a subtree if the parent

123

R. Bača et al.

(a) (b)

Fig. 8 a XML tree b TPQ Q10

relationship is PC and we only need to verify the optimality
of streams corresponding to the checkingnodes(Q) set.

Definition 2 (Optimality Condition) We say that the opti-
mality condition is satisfied under an XS streaming scheme
for a TPQ Q and an XML document if every #q ∈
checkingnodes(Q) is optimal under XS.

Theorem 1 (Holistic Algorithm Optimality) Consider an
XML document and a TPQ Q, where the optimality condi-
tion is satisfied under an XS streaming scheme. Then, under
the XS streaming scheme, the advanced preorder filtering
algorithm removes all irrelevant nodes.

Proof Our proof supposes that the advanced preorder filter-
ing can remove all irrelevant nodes when Q has only the AD
relationships. This was shown many times (see, e.g., [6,9]).
If we replace all PC relationships in the query Q by AD rela-
tionships, we get a query Q′. We know that Q and Q′ have
the same output due to Lemma 2. The advanced preorder
filtering is optimal for Q′; therefore, it is optimal for Q as
well. �

We define the query optimality only for the T+LS and
LPS streaming schemes, however, our optimality condition
can be applied even to a new streaming scheme. We only
have to specify the stream optimality satisfying Lemma 2.

Example 10 (Stream Optimality Condition) Consider the
XML tree and the TPQ Q10 in Fig. 8. In the case of
TwigStack, the PC relationships in the subquery
Q#c //c[./a and ./f]of the query Q10 cause the main
problem. Let us have a configuration, where c1, a2, and f1

are the head nodes of their streams T#c, T#a′ , and T# f , respec-
tively. The node a2 is not in the query match of #c with the
node c1, but some nodes in the rest of the T#a′ stream can be
in this query match. Furthermore, there is no query match of
#c with c1 and the nodes a2 and f1 cannot be skipped since
we are not sure whether they are useless or not. To resolve
this problem, c1 is pushed onto the stack S#c and the algo-
rithm continues. However, c1 is an irrelevant node as we can
see in Fig. 2a.

In the case of LPS scheme, checkingnodes(Q10) =
{#a, #c}, and, after the DataGuide search, we get P RU#a =

{Ta} and P RU#c = {Ta/c/c}. Here, all checking query nodes
are optimal, therefore, a holistic algorithm using the LPS
scheme is optimal for this query. Note that the query does
not belong even to the most general iTwigJoin+PPS query
class [9]. Consequently, the above described TwigStack issue
does not occur during the query processing with an arbitrary
LPS holistic algorithm. This is caused by the fact that the
stream Ta/c with the node c1 is pruned during the DataGuide
search.

7.2 XML document and algorithm optimality

There are characteristics of XML documents which lead to
a situation that a holistic algorithm is optimal for any TPQ
(or at least for a set of TPQs). In such case, we say that a
holistic algorithm is optimal for the XML document. To our
best knowledge, this article is the first one defining a holistic
algorithm optimality for an XML document type.

Let us introduce a basic definition concerning the stream
optimality of tree tags:

Definition 3 (Optimal Tree Tag)

– In the case of the T+LS scheme, a tree tag is called optimal
if it is a single level tag or if it corresponds only to a leaf
node.

– In the case of the LPS scheme, a tree tag tagX is called
optimal if every tagX non-leaf node never has a tagX

node as an ancestor.

7.2.1 Optimality for XML document

Lemma 3 Consider a TPQ Q. Then, for every #q ∈ Q with
an optimal tree tag tag#q , it holds that #q is optimal.

Proof The lemma follows easily from Definitions 1 and 3.
�

Theorem 2 (Optimal Set of Tree Tags) A holistic algorithm
under an XS streaming scheme is optimal for any TPQ Q, for
which it holds that every tag of #q ∈ checkingnodes(Q)
corresponds to an optimal tree tag under XS.

Proof Since every query node #q ∈ checkingnodes(Q) has
the optimal tree tag under XS, every #q is optimal (see
Lemma 3). Therefore, the stream optimality condition is sat-
isfied and, by Theorem 1, a holistic algorithm using XS is
optimal. �

We say that a holistic algorithm is optimal under an XS
streaming scheme for an XML document if the XML docu-
ment contains only optimal tree tags under XS. In such case,
we guarantee the holistic algorithm optimality under XS for
any TPQ and in the case of GTPStack for any GTP.

Example 11 (Optimal XML Document) The XML docu-
ment in Fig. 9 serves as an example of an XML document

123

Optimal and efficient generalized twig pattern processing

Fig. 9 Example of an optimal XML document under the LPS scheme

containing only optimal tree tags under the LPS scheme. Note
that the definition of an optimal tree tag is specified only for
inner nodes, and thus, the tree tag section is optimal.

Considering T+LS, the set of optimal tags is as follows:
year_2005, year_2004, article, year, surname,
title, and text. The tree tag title corresponds only
to the leaf nodes; therefore, it is optimal under T+LS, even
though it is not a single level tag.

7.3 Summary of optimality

Let us summarize the novel optimality conditions introduced
in this section. Having an XML document D and a TPQ Q,
a holistic algorithm is optimal for Q under XS if at least one
of the following conditions is satisfied:

– The holistic algorithm is optimal for D under XS.
– Every tag of #q ∈ checkingnodes(Q) is an optimal

tree tag under XS (Theorem 2).
– For every #q ∈ checkingnodes(Q) it holds that

every stream T of class #q is optimal under XS after
the DataGuide search (Theorem 1).

Note that the first condition implicates the second and
the second condition implicates the third. All conditions are
sufficient but not necessary.

8 Experimental results

We implemented five state-of-the-art holistic algorithms
in C++: TwigStack [6], TwigList [33], TJStrictPre [15],
TJStrictPost [15], and Twig2Stack+PathStack [8] (abbrevi-
ated to T2PS). We do not include experimental results of
the TwigList algorithm since both TJStrictPost and TJStrict-
Pre use an improved version of TwigList. In our experi-
ments, we use more than one version of GTPStack. We
combine GTPStack with existing advanced preorder filter-
ing functions; therefore, we use the following simple nota-
tion, where GTPStack+N, GTPStack+P, and GTPStack+M
stand for GTPStack combined with getNext, getPart,
and getMatch, respectively. By writing GTPStack we
mean any of the above versions of GTPStack. Since GTP-

Table 4 ZIPF query templates for XPath queries

Query template Number of generated queries

1. //τ [/υ and /ω] 147

2. //α/β[//χ and //δ] 26

3. //α/α[//β]/χ //χ[//δ and //ε] 82

4. //α[/τ and //υ and //ω] 105

5. //α/β[//χ/δ] 81

Stack+N always outperforms TwigStack, we include the
results for the TwigStack query processing only in Sect. 8.1.1.
The main shortcoming of TwigStack is represented by its
redundant intermediate storage and inefficient output
enumeration.

We use one own synthetic XML document called ZIPF
and three real-world XML collections. The ZIPF document
contains seven different elements named from a to g spread
randomly using the Zipfian distribution, where a has the
highest occurrence (≈ 50 %) and g has the lowest occurrence
(≈ 1 %). Every element of ZIPF has exactly two children and
the depth of the collection is 24 which means that all paths
in ZIPF have the same length. The real-world collections
are XMark [34] with factor 10, INEX 1.9 [13], and Tree-
Bank [36]. Note that the schema of every collection is signif-
icantly different. Whereas the XMark collection is shallow
and data oriented, the INEX collection is document oriented
and TreeBank has a very recursive structure with many dif-
ferent labeled paths. Basic statistics of these collections are
shown in Table 9.

Queries for the XMark and TreeBank collections are
selected from several existing articles on TPQ process-
ing [8,24,22]. Queries for the INEX collection were selected
in order to show differences between the algorithms. A list
of the selected real-world collections’ queries can be found
in “Appendix 5”.

The largest number of queries were generated for the ZIPF
collection. The ZIPF queries are generated according to five
query templates shown in Table 4. A template only specifies
relationships between query nodes, output query node, and
predicate query nodes. For each template, we generated all
XPath queries such that α, β, χ, δ ∈ {a,d,g} and τ, υ, ω ∈
{a,b,c,d,e,f,g}. Table 4 gives the number of XPath
queries corresponding to each template.

We run our experiments on a PC with Intel Xeon 2.93 GHz
CPU, and Windows Server 2008 operating system.

When measuring the processing time, each query is
processed fifteen times in the main memory, and then, we
compute the average result omitting the two worst and the
two best results. The raw data of query processing time for
the real-world collections can be found in “Appendix 5”.
If we want to compare processing times Tx and Ty of two
approaches x and y for a set of queries, we first compute a

123

R. Bača et al.

Table 5 GTPStack+M compared to all tested approaches for all queries

Filtering approach RPTI (%) RFTI (%) Number of queries

Faster Slower

T2PS 77 172 401 65

TJStrictPost 88 222 461 9

TJStrictPre 12 43 279 0

GTPStack+N 68 150 340 73

GTPStack+P 13 46 346 0

geometric mean of ratios Ty/Tx of each query. Subsequently,
since we want to have the value in percents, we simply sub-
tract one from the calculated geometric mean and multiply
it by 100. We call it a relative processing time improvement
(RPTI) of approach x compared to approach y for a set of
queries. For example, if we have the result of the geometric
mean 1.68, we write that RPTI of x has a 68 % improvement
compared to y.

Since GTPStack’s improvements of processing time relate
only to the filtering part of holistic algorithms, we also mea-
sured the filtering time of the algorithms (i.e., the processing
time without the time spent on reading the input data), and
therefore, we also compute the relative filtering time improve-
ment (RFTI) of approach x compared to approach y for a set
of queries. In order to minimize the processing time mea-
surement error, we say that a method is faster than the other
one for a query Q if its RPTI for Q is at least 2 % and their
processing time difference for Q is at least 10 ms.

8.1 Processing time

Table 5 gives RPTI and RFTI of GTPStack+M compared to
all tested approaches for all queries. Table 5 also contains
the number of queries for which GTPStack+M is faster and
slower.

Clearly, GTPStack+M outperforms both approaches
TJStrictPre and GTPStack+P using the getPart function
for all queries since the getMatch function is always
faster or equally fast compared to getPart. This comes
from the fact that getMatch improves getPart without
any additional overhead. The remaining approaches (T2PS,
TJStrictPost, and GTPStack+N) perform significantly worse
in average than GTPStack+M (RFTI of GTPStack+M ranges
from 150 to 222 % when compared to these approaches).

To better understand the differences among the algo-
rithms and the advantages of GTPStack+M, we need to com-
pare their corresponding parts separately. In Sect. 8.1.1, we
compare only the result enumeration time; in Sect. 8.1.2,
we compare the preorder filterings; in Sect. 8.1.3, we show
how GTPStack optimizes its processing time for queries with
many predicate nodes; and, in Sect. 8.1.4, we compare the
postorder filterings.

Fig. 10 Performance of the output enumeration

8.1.1 Test of intermediate storages for TPQs

Let us start with a test showing the properties of various inter-
mediate storages and mainly the performance of the output
enumeration. Note that the LIS intermediate storage is used
by the TJStrictPost, TJStrictPre, and GTPStack algorithms.
Results in this section serves as a hint for a selection of the
most appropriate intermediate storage for our approach.

In this test, we present only the XMark queries since the
results for other collections are similar. However, we ignore
the GTP semantics (i.e., we consider all query nodes as output
ones) since TwigStack cannot enumerate GTPs. As a result,
queries 8 and 13 did not finish since their TPQ result sizes
were over one billion and the available main memory was
not sufficient.

Figure 10 shows the results of this experiment. As
expected, TwigStack performs very poorly which corre-
sponds to the results published in [8]. Inefficiency of the
TwigStack intermediate storage comes from the duplicate
work with nodes and the sequential scan of the whole
intermediate storage during the output enumeration. If we
compare the output enumeration times of T2PS and LIS, the
difference is not significant. This result comes from the fact
that they use the postorder filtering; therefore, their output
enumeration time is linear with respect to the result size.

Finally, we decided to use the LIS storage since the
Twig2Stack intermediate storage requires global pop order
for its correct functionality. LIS can work with our postorder
filtering and its enumeration time performance is comparable
to the Twig2Stack intermediate storage.

8.1.2 Analysis of preorder filtering

We can find three major types of preorder filtering approaches:
(1) the PathStack algorithm which filters only according to
the node query path from the root query node and does not
perform any cursor forward movement, (2) the getNext

123

Optimal and efficient generalized twig pattern processing

(a) (b)

Fig. 11 Number of queries violating the properties for different k values a for all ZIPF queries b for queries corresponding to the first and to the
fourth ZIPF template

function which performs a cursor forward movement accord-
ing to the query node descendants (Line 15 in getMatch in
Algorithm 2), and (3) getPart and getMatchwhich per-
form a cursor forward movement according to the query node
descendants and ancestor (Line 2 in getMatch in Algo-
rithm 2). We ignore getPart in the following text since
getMatch always outperforms this function for our queries
as is shown in Sect. 8.1.

The PathStack algorithm is very simple and fast and
its processing time is linear with respect to the input size
(the correlation coefficient between the PathStack process-
ing time and the input size for the ZIPF queries is 0.98).
Since PathStack does not use any advanced cursor forward-
ing, its processing time is not influenced by the query result.
On the other hand, an advanced preorder filtering function
(i.e., getNext or getMatch) can skip irrelevant nodes
more quickly using the cursor forward movement. There-
fore, these functions outperform PathStack if they forward
the cursor sufficiently often; this is discussed further in this
section.

The main attribute indicating the efficiency of an advanced
preorder filtering is the average cursor forward move-
ment (denoted as AvgFwd) during one FwdToAncOf or
FwdToDescOf function call. Since the getMatch func-
tion uses both forwarding functions while getNext uses
only the FwdToDescOf function, we also define: (1) an
average cursor forward movement during oneFwdToAncOf
function call, and (2) an average cursor forward during one
FwdToDescOf function call. Let us call them an aver-
age ancestor forward movement and an average descen-
dant forward movement and denote them AvgAncFwd and
AvgDescFwd, respectively.

We first compare the getNext and getMatch func-
tions (i.e., we compare GTPStack+N and GTPStack+M).
The getNext function uses only FwdToAncOf, and there-
fore, getMatch performs better if its AvgDescFwd is

sufficiently large. Our goal is to find a threshold value k with
the following two properties:

– if AvgDescFwd > k, then Tget Next > Tget Match ,
– if AvgDescFwd < k, then Tget Next < Tget Match .

Figure 11a shows how many queries violate the above
properties for all queries in our ZIPF query set for a dif-
ferent k value. As we can see, there is no optimal k value
for which all queries satisfy both properties since the sum
of violations never reaches zero. In other words, we can-
not find any exact threshold value of AvgDescFwd which
would say whether to use getNext or getMatch. The
reason for this is that various query nodes in a query can
have significantly different AvgDescFwd values; therefore,
selection of the same advanced preorder filtering function for
all query nodes is not always the best solution. Figure 11b
shows the number of violations for the ZIPF queries gen-
erated by templates 1 and 4. These queries are very simple
and the descendant forwarding is always performed in the
relation to the same parent query node. We can observe that
the threshold value k = 0.03 is a good selection for many of
them since the sum of violations is less than 5 %. Based on
the above heuristics, we evaluated a simple combination of
the getMatch and the getNext functions which works as
follows:

– We first process a query using getMatch and col-
lect the statistics about AvgDescFwd in each query
node.

– Secondly, we use the getMatch function for a query
node with AvgDescFwd larger than 0.03 and use the
getNext function in the other cases.

This combination of getMatch and getNext always
performs better than or equally to any other advanced pre-
order filtering function.

123

R. Bača et al.

Fig. 12 Variants of the TB12 query with different number of output nodes

(a) (b)

Fig. 13 a Processing time of GTPStack+M and b number of nodes stored on stacks by GTPStack for each variant of TB12

Similarly, we looked for another two threshold values
which would indicate that an algorithm using PathStack per-
forms better than algorithms usinggetNextor getMatch.
Both algorithms have the threshold value of AvgFwd
approximately equal to 0.3, where only 5 % of the ZIPF
queries corresponding to the first and fourth template violate
the corresponding processing time properties. In other words,
if AvgFwd is lower than 0.3, then PathStack performs better
in many cases.

8.1.3 Optimization of predicate query nodes

None of the existing holistic algorithms can optimize the
query processing time with respect to the number of nodes
corresponding to predicate query nodes; therefore, their
processing time is the same regardless of the GTP semantics.
Their performance is mainly dependent on their preorder fil-
tering as is shown in Sect. 8.1.2. If GTPStack is optimal,
then it stores only the nodes corresponding to main branch
query nodes on stacks, and thus, it saves some time during
the postorder filtering.

In Fig. 12, we can observe seven variants of the TB12
query with a different number of output nodes. We selected
the TB12 query because GTPStack+M is optimal for it.

Figure 13a shows how the processing time of GTP-
Stack+M decreases with the decreasing number of nodes
stored on stacks. The AvgDescFwd and AvgAncFwd val-
ues are equal to 0.09 and 0.14, respectively, for the TB12
query which indicates (according to the results of Sect. 8.1.2)

that getMatch should be slower than T2PS and TJStrict-
Post having the processing times 0.219 and 0.202, respec-
tively. However, for the last query variant, where the number
of nodes corresponding to predicate query nodes is six times
larger than the number of the other nodes, GTPStack+M
performs equally to both algorithms (its processing time is
0.216).

8.1.4 Test of postorder filtering

In this section, we compare three basic postorder filter-
ing techniques: (1) those used by T2PS, (2) those used by
TwigList, TJStrictPost, and TJStrictPre, and (3) those used
by GTPStack. The purpose of GTPStack’s postorder filter-
ing is not to speed up the query processing, but to enable the
combined filtering before storing a node in the intermediate
storage. Therefore, by this experiment we want to show that
GTPStack’s postorder filtering does not bring any overhead.
An interesting result of this comparison is that T2PS and
TJStrictPost perform very similar. Note that the TJStrictPost
algorithm is an improved version of TwigList; therefore, our
results are in the contrast with the results presented in [33],
where TwigList significantly outperforms the Twig2Stack
algorithm. In order to get meaningful results, we have to
compare algorithms with the same preorder filtering. There-
fore, we compared T2PS with TJStrictPost and TJStrictPre
with GTPStack+P.

Table 6 shows the summary of the results for the real-
world collections. T2PS performs better than TJStrictPost if

123

Optimal and efficient generalized twig pattern processing

Table 6 Relative processing/filtering time improvements of different
postorder filterings for the real-world collections

Filtering
approach

RPTI (%) RFTI (%) Number
of queries

Faster Slower

T2PS versus TJStrictPost 0 1 12 4

GTPStack+P versus TJStrictPre 0 0 6 5

Table 7 Relative Ratio of the number of nodes stored in various inter-
mediate storages and the number of relevant nodes for each collection

Method ZIPF TB XM INEX

T2PS, TJStrictPost 50 527 8.1 90

TJStrictPre 27 163 3.7 10.5

GTPStack 1.3 15 1.4 1.82

it does not have to merge a lot of descendants in its interme-
diate storage. Otherwise said, it usually performs better than
TJStrictPost if a query does not contain any AD relationships.
This issue can be observed on the queries TB12 and TB15.
TJStrictPost outperforms T2PS for TB12, however, when we
replace most of the AD relationships by the PC relationships
(the TB15 query), then T2PS outperforms TJStrictPost.

The postorder filtering times of TJStrictPre and GTP-
Stack+P are comparable for three quarters of the real-world
queries. The GTPStack+P postorder filtering usually per-
forms better than TJStrictPre if we skip many predicate nodes
during the query processing as is described in Sect. 8.1.3.

8.2 Intermediate storage size

Another important property of every algorithm related to the
I/O complexity is the intermediate result size. We evaluate the
intermediate result size in terms of the number of nodes stored
there. For each method we compute a ratio of the number
of nodes stored in the intermediate storage and the number
of relevant nodes for each collection and filtering method.
Table 7 shows this ratio for all queries in each collection
computed using the geometric mean. Table 8 shows us the
median value of nodes stored in an intermediate storage for
each collection.

Generally, GTPStack stores one order of magnitude less
nodes than the rest of the tested approaches due to the fact
it uses the combined approach. The intermediate result size
does not have a significant relationship to the processing time
during the main memory run since every algorithm has to
perform some extra operations if it wants to avoid storing
useless nodes. However, the difference will be huge if an
intermediate storage is larger than the main memory, and, in
this case, I/O operations have to be included.

Table 8 Relative Median values of nodes stored in an intermediate
storage for each collection

ZIPF (103) TB (103) XM (103) INEX (103)

T2PS, TJStrictPost 471 257 725 583

TJStrictPre 296 164 507 98

GTPStack 9 37 130 14

Relevant nodes 8 7 127 9

Table 9 Characteristics of the tested XML collections

Collection Tag count Labeled path count Node count Size (MB)

TreeBank 251 338,749 2,437,667 86

XMark 77 548 20,532,805 1,192

INEX-wiki 3,608 114,870 98,992,060 4,706

INEX-1.9 217 16,018 16,104,992 945

DBLP 41 170 14,971,785 535

Nasa 69 110 530,528 25

SwissProt 99 264 5,166,890 114

Protein 70 97 22,358,588 716

8.3 Test of optimality of XML documents

In this test, we show that the number of queries satisfying the
optimality condition is not negligible. We analyzed several
XML documents with different properties and computed the
number of optimal tree tags under T + LS and LPS. A large
number of optimal tree tags implies a better chance that an
advanced preorder filtering algorithm is optimal for a TPQ
according to Theorem 2.

In Table 9, we see basic characteristics of the XML col-
lections used in our experiments. The TreeBank [36] col-
lection includes over 300 thousand different labeled paths
and the average depth of the XML documents is quite high.
On the other hand, the XMark [34] collection includes only
548 labeled paths. We also analyzed DBLP [29], INEX-1.9,
and INEX-wiki released by the INEX initiative [13], and
also three collections in XML Data Repository [36] (Nasa,
SwissProt, and Protein Sequence Database).

8.3.1 Statistics for T+LS and LPS

In Table 10, we see the number of optimal tree tags in each
XML collection. Optimality under T+LS of the tested XML
documents is high in the cases of the DBLP, Nasa, SwissProt,
and Protein collections (the ratio of optimal tree tags exceeds
80 %). On the other hand, the INEX-1.9 and TreeBank col-
lections have quite irregular structure; therefore, their ratio
of optimal tags is low.

Under LPS, all collections have more than 80 % of tags
optimal. The Nasa, SwissProt, and Protein collections are

123

R. Bača et al.

Table 10 Number of optimal tree tags

Collection T + LS LPS

Count Ratio (%) Count Ratio (%)

TreeBank 84 33.47 234 93.33

XMark 60 77.92 75 97.40

INEX-wiki 2,712 75.17 3,435 95.21

INEX-1.9 42 19.35 190 87.56

DBLP 38 92.68 39 97.56

Nasa 60 87.0 69 100

SwissProt 98 98.99 99 100

Protein 57 81.43 70 100

even optimal XML documents under LPS. The XMark col-
lection has only two tree tags (parlist and listitem) which
are not optimal. Similarly, the DBLP collection has only one
such tree tag. The INEX-wiki collection includes a very small
number of non-optimal tree tags. TreeBank includes only
seventeen tree tags which are not optimal and we see that
even an XML document with such a recursive structure has
many optimal tree tags which can form optimal TPQs. The
worst result from the labeled path streaming point of view
occurs in the case of the INEX-1.9 collection, however, the
number of optimal tree tags is still large.

The above statistics illustrate that holistic algorithms are
often optimal for XML documents under LPS according to
Theorem 2. Let us point out that the optimality determined
by Theorem 2 is only a sufficient condition. Evidently, there
are many queries that do not satisfy the assumptions of Theo-
rem 2, but a holistic algorithm is optimal for them according
to Theorem 1.

9 Conclusion

In this article, we introduce the first algorithm capable of
processing GTPs optimally, which means that only the nodes
relevant to the GTP result are stored in the intermediate stor-
age. It is particularly important since GTP includes semantics
of XQuery (in the contrast to well researched TPQ model).
This is achieved by using the first correct combination of the
preorder and postorder filterings before storing nodes in an
intermediate storage. This new algorithm is called GTPStack.
We also introduce other novel techniques related to the GTP-
Stack algorithm. GTPStack significantly reduces the inter-
mediate storage size (even if the algorithm is not optimal) by
one order of magnitude as well as minimizing the number of
nodes stored on stacks. We present thorough experiments for
four common XML collections and 484 queries and show the
conditions under which GTPStack outperforms other state-
of-the-art holistic methods.

GTPStack utilizes the new preorder filtering function
getMatch, which removes unnecessary computations of
existing advanced preorder filtering functions. In our exper-
iments, we show that the relative improvement of the
getMatch filtering time is 43–222 % in average when com-
pared to the other up-to-date methods. Moreover, we put
forward that our new method outperforms other existing
methods for the most test queries (from 84 to 100 %).

A further contribution of this article is an introduction of
a new perspective of holistic algorithm optimality. We show
that the optimality depends not only on a query class but also
on XML document characteristics. We show that the holistic
algorithm can be optimal for any GTP for a document without
recursive nodes. In our experiments, we put forward that the
number of optimal tree tags in common XML collections is
rather large up-to 100 %.

Acknowledgments This work is supported by the Grant of GACR
No. GAP202/10/0573. Jiaheng Lu is partially supported by National
Science Foundation in China (NO. 61170011).

Appendix 1: Logical expression in getMatch

In Algorithm 5, we show an extended version of the
fwdToAncOf function for logical expressions with NOT
operators. The function is based on the preorder filtering
functions for Boolean expressions introduced in [7,18]. The
algorithm uses a logical tree which is a rooted tree, where
the leaf nodes are the query nodes and the non-leaf nodes are
the bool nodes. A logical tree represents a logical expression
corresponding to a query node #q, where the logical vari-
ables of the expression are the child query nodes of #q. The
function ltree(#q) returns the root node of #q’s logical
tree. Our algorithm supposes that every NOT bool node has
exactly one child and this child is a query node. We can eas-
ily rewrite every logical expression so that every NOT bool
node has exactly one query node using DeMorgan’s laws. The
isUseless function, which represents the core function-
ality of fwdToAncOf, evaluates the logical tree and returns
true if the head node of the current query node is useless.

Appendix 2: Node concatenation

For the purpose of the concatenation, we store a (prev:next)
pair as a part of each stack item, where the prev and next
items are pointers to nodes. If we consider a set R of nodes
stored in an intermediate storage which correspond to #q
and which are descendants of n#q , then when we pop n#q ,
the prev item of n#q points to n′

#q ∈ R having the lowest
document order among all nodes in R and the next item of
n#q points to n′′

#q ∈ R having the highest document order
among all nodes in R.

Each pair is set to (empty:empty) when a node is pushed
onto a stack. When a node n#q is popped out from a stack, then

123

Optimal and efficient generalized twig pattern processing

Algorithm 5: Ancestor forward with the NOT bool node

Procedure: fwdToAncOf(QueryNode #q)
while ¬isEnd(#q) ∧ isUseless(ltree(#q), H(#q))1
do advance(#q);

Function : Bool isUseless(AbstractQueryNode #q, NodeLabel
label)

if #q is query node then1
return label.preceding(H(#q)) ∨ #q.isEnded ;2

if #q is bool node then3
if #q is AND/OR bool node then4

foreach #child ∈ mandatoryChildren(#q) do5
isUseless (#child, label);6

return true if any/all isUseless call returns true;7

if #q is NOT bool node then8
#child = child query node of #q ;9
if isEnd(#child) ∨10
¬isSubtreeOptimal(#child) then

return false;11

return label.ancestor(H(#child));12

we set up the (prev:next) pair of nanc
#q , where nanc

#q is a top node
of S#q . If S#q is empty, then we set the (prev:next) pair corre-
sponding directly to S#q . A procedure setting the (prev:next)
pair values runs in a constant time since it accesses only the
top item of S#q . The (prev:next) pairs provide enough infor-
mation to set up lists’ pointers in an intermediate storage;
therefore, the nodes are sorted in preorder even though they
are added in postorder.

Appendix 3: GTP enumeration

In Algorithm 6, we depict the GTP enumeration used by
GTPStack. It is a slight modification of the TwigList enu-
meration, which works with the enumeration query nodes.
Enumeration query nodes are those main branch query nodes
which are a part of the intermediate storage as is described in
Sect. 6.2.2. An enumeration parent relationship of an enu-
meration query node #q is AD if any relationship between
#q and its enumeration parent query node is AD.

There are three pointers to the intermediate storage list
corresponding to every #q: start[#q], end[#q], and move[#q].
The start[#q] and end[#q] pointers specify an interval in the
list and the move[#q] pointer is always within this interval.

Appendix 4: Early enumeration

The Twig2Stack algorithm introduces an early enumeration
algorithm, which starts when we pop the last node from a

Algorithm 6: The output enumeration

Procedure: Enumeration()
start[#enumRoot] = first item in the #enumRoot list;1
end[#enumRoot] = last item in the #enumRoot list;2
openList(#enumRoot);3
#actual = traverse the GTP tree in postorder and find the first4
query node #q, where move[#q] �= end[#q];
while #actual �= NULL do5

start[#actual] = move[#actual].next List Node ;6
openList(#child);7

8 if ¬isEnumerationRoot(#actual) then8
9 resetParents(enumerationParent(#actual),9

#actual);

#actual = traverse the GTP tree in postorder and find the first10
query node #q, where move[#q] �= end[#q];

Procedure: openList(#q)
move[#q] = start[#q];1
foreach #child ∈ enumerationChildren(#q) do2

start[#child] = move[#q].getSEPair(#child).start ;3
end[#child] = move[#q].getSEPair(#child).end ;4
openList(#child);5

Procedure: resetParents(#q, #child Stop)
1 foreach #child ∈ enumerationChildren(#q), where #q1

< #child Stop do
2 openList(#child);2

3 if ¬isEnumerationRoot(#q) then3
4 resetParents(enumerationParent(#q), #q);4

stack S# f br corresponding to the first branching node. In this
way, we can significantly reduce the intermediate storage
size. However, this approach has a limitation: if any top stack
(i.e., any stack corresponding to a query node between the
root and the first branching query node) contains more than
one node, then the early enumeration outputs an unordered
result. To detect this problem we keep a switch E for each
top stack, which is set to true when the stack is empty and
false when the stack contains more than one node. Note
that if the top stack contains exactly one node, then E pre-
serves the current value. The early enumeration can start
only if all E switches corresponding to the output nodes are
true.

Appendix 5: Real-world queries and processing time

A list of the selected real-world collections’ queries together
with some important statistics can be found in Tables 11,
12 and 13. The raw data of query processing times for
the real-world collections can be seen in Tables 14, 15
and 16.

123

R. Bača et al.

Table 11 The XMARK queries

Query Result size Source

XM1 //item[//location]//name 217,500 –

XM2 //address[//street]//city 127,306 –

XM3 //item[//location]/description//keyword 273,340 Qin et al. [33]

XM4 //person[//address/zipcode]/profile/education 31,676 Qin et al. [33]

XM5 //item[//location and //mailbox/mail//emph]/description//keyword 173,832 Qin et al. [33]

XM6 //person[//address/zipcode and //id]/profile[//age]/education 15,998 Qin et al. [33]

XM7 //open_auction[//annotation[//person]//parlist]//bidder//increase 282,468 Qin et al. [33]

XM8 //site/open_auctions[//bidder/personref]//reserve 59,348 Chen et al. [8]

XM9 //people//person[//address/zipcode]/profile/education 31,676 Chen et al. [8]

XM10 //item[//location]/description//keyword 273,340 Chen et al. [8]

XM11 //person[//profile[//age and //interest and //education and //gender 24,420 Li et al. [22]

and //business] and //address]//emailaddress

XM12 //person[//emailaddress and //homepage and //name] 63,904 Li et al. [22]

//address[//country]//city

XM13 //site[//person[//homepage and //emailaddress] and //open_auction 97,500 Li et al. [22]

[//bidder and //reserve]]//closed_auction[//annotation]//price

XM14 //closed_auction[//annotation[//description] and //price 97,500 Li et al. [22]

and //date and //buyer]//seller

XM15 //open_auction[//bidder[//personref and //time and //date] 291,140 Li et al. [22]

and //quantity and //reserve]//current

Table 12 The TreeBank queries

Query Result size Source

TB1 //S/VP//PP[//NP/VBN]/IN 804 Qin et al. [33]

TB2 //S/VP/PP[//IN]/NP/VBN 158 Qin et al. [33]

TB3 //S/VP//PP[//NN and //NP[//CD]/VBN]/IN 63 Qin et al. [33]

TB4 //S[//VP and //NP]/VP/PP[//IN]/NP/VBN 158 Qin et al. [33]

TB5 //EMPTY[//VP/PP//NNP and //S[//PP//JJ]//VBN]//PP/NP//_NONE_ 1,589 Qin et al. [33]

TB6 //S[//MD]//ADJ 8 Lu et al. [24]

TB7 //S/VP/PP[/NP/VBN]/IN 151 Lu et al. [24]

TB8 //VP[/DT]//PRP_DOLLAR_ 3 Lu et al. [24]

TB9 //S[//VP/IN]//NP 10,675 Lu et al. [24]

TB10 //S[/JJ]/NP 5 Lu et al. [24]

TB11 //S//NP[//PP//TO and //VP//_NONE_]//JJ 2,775 Li et al. [22]

TB12 //S[//NP and //DT and //NN]//PP[//IN]//NN 83,194 Li et al. [22]

TB13 //S[/VP and //NN and /VBD]/NP[/IN]/DT 0 Li et al. [22]

TB14 //S[/NP and /NONE]/VP//PP[/IN]/DT 15 Li et al. [22]

TB15 //S[/NP and /DT and /NN]//PP[/IN]/NN 0 Li et al. [22]

123

Optimal and efficient generalized twig pattern processing

Table 13 The INEX queries

Query Result size Source

I1 //books//article[/fm/hdr//crt[/issn and //onm] and //sec/p]/doi 12,388 –

I2 //article/bdy/sec/ss1/ss2[//theorem//head] 451 –

I3 //books/journal[/article[//issn and //sec/st and /bm//bib/bibl] and //doi]/title 16,308 –

I4 //article[//bdy//fig and //bm//vt and//footnote//list//item]//hdr//ti 4676 –

I5 //bdy[//tbl]//sec[/st and /p]//fig/no 21,145 –

I6 //books//article[/fm/hdr//crt[/issn and //onm] and //sec/p]/doi 266,272 –

I7 //books/journal[/article[//issn and //sec/st and /bm//bib/bibl and /doi]]/title 10,264 –

I8 //sec[/ss1//tbl and //ss2[/ip1 and //tf] and /st] 527 –

I9 //article[//bdy//fig and //bm//vt and //hdr//ti] 8,990 –

I10 //article[//fm[/hdr and /au]]//sec/ss1[//theorem//head] 2,361 –

I11 //bdy[//tbl]//sec[//fig/no and /p]/st 4,578 –

I12 //sec[/p//it]/st 28,806 –

I13 //sec[/p[//it or //ref]]/st 48,390 –

I14 //sec[/ss1//tbl and //ss2[/ip1 and //tf]]/st 527 –

Table 14 Processing times for the XMARK queries

XM1 XM2 XM3 XM4 XM5 XM6 XM7 XM8 XM9 XM10 XM11 XM12 XM13 XM14 XM15

T2PS 1.045 0.369 1.157 1.520 1.296 0.879 2.230 0.749 0.153 0.198 1.048 0.587 0.683 1.220 1.508

TJStrictPost 1.010 0.357 1.024 1.434 1.202 0.822 1.937 0.688 0.156 0.202 0.972 0.572 0.654 0.978 1.382

TJStrictPre 0.654 0.355 0.655 0.490 0.826 0.49 2.200 0.867 0.097 0.199 0.700 0.629 0.718 1.308 1.387

GTPStack+N 1.038 0.297 1.029 0.514 1.244 0.819 2.966 0.693 0.095 0.22 0.831 0.494 0.498 1.251 1.487

GTPStack+P 0.635 0.402 0.656 0.527 0.888 0.495 2.291 0.736 0.099 0.212 0.691 0.658 0.655 1.331 1.320

GTPStack+M 0.640 0.349 0.651 0.448 0.773 0.450 2.300 0.587 0.071 0.178 0.674 0.567 0.452 1.252 1.129

Table 15 Processing times for the TreeBank queries

TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 TB10 TB11 TB12 TB13 TB14 TB15

T2PS 0.125 0.109 0.163 0.219 0.206 0.019 0.105 0.028 0.112 0.063 0.145 0.219 0.160 0.194 0.161

TJStrictPost 0.125 0.128 0.160 0.216 0.200 0.019 0.123 0.033 0.113 0.086 0.140 0.202 0.182 0.218 0.194

TJStrictPre 0.050 0.049 0.051 0.094 0.077 0.005 0.048 0.015 0.171 0.085 0.044 0.322 0.134 0.271 0.286

GTPStack+N 0.057 0.054 0.094 0.172 0.127 0.006 0.056 0.019 0.162 0.077 0.063 0.243 0.151 0.253 0.243

GTPStack+P 0.049 0.047 0.050 0.088 0.077 0.004 0.047 0.014 0.183 0.085 0.043 0.280 0.128 0.262 0.279

GTPStack+M 0.043 0.040 0.047 0.069 0.061 0.005 0.041 0.014 0.159 0.084 0.039 0.216 0.097 0.175 0.216

Table 16 Processing times for the INEX queries

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14

Twig2Stack 0.134 0.028 0.053 0.067 0.169 0.135 0.053 0.091 0.046 0.073 0.169 0.281 0.394 0.091

TJStrictPost 0.150 0.030 0.059 0.057 0.184 0.153 0.059 0.088 0.043 0.063 0.179 0.295 0.370 0.087

TJStrictPre 0.304 0.009 0.102 0.033 0.076 0.321 0.103 0.029 0.046 0.029 0.075 0.245 0.252 0.029

GTPStack+N 0.240 0.012 0.066 0.093 0.209 0.275 0.075 0.087 0.060 0.062 0.200 0.216 0.278 0.086

GTPStack+P 0.278 0.009 0.087 0.032 0.078 0.330 0.095 0.029 0.041 0.029 0.075 0.223 0.252 0.029

GTPStack+M 0.103 0.009 0.032 0.027 0.072 0.180 0.061 0.027 0.032 0.028 0.068 0.159 0.257 0.027

123

R. Bača et al.

References

1. Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M., Srivastava,
D., Wu, Y.: Structural joins: a primitive for efficient XML query
pattern matching. In: Proceedings of ICDE 2002, pp. 141–152.
IEEE CS (2002)

2. Bača, R., Krátký, M.: On the Efficiency of a prefix path holistic
algorithm. In: Proceedings of Database and XML Technologies,
XSym 2009, vol. LNCS 5679, pp. 25–32. Springer (2009)

3. Bača, R., Krátký, M., Snášel, V.: On the efficient search of an XML
twig query in large dataGuide trees. In: Proceedings of the Twelfth
International Database Engineering & Applications Symposium,
IDEAS 2008, pp. 149–158. ACM Press (2008)

4. Bača, R., Walder, J., Pawlas, M., Krátký, M.: Benchmarking the
compression of XML node streams. In: Database Systems for
Advanced Applications: 15th International Conference, DASFAA
2010, International Workshops, vol. 6193, pp. 179–190. Springer
(2010)

5. Brantner, M., Helmer, S., Kanne, C.-C., Moerkotte, G.: Full-
fledged algebraic XPath processing in Natix. In: Proceedings of
Data Engineering, 2005. ICDE 2005, pp. 705–716. IEEE (2005)

6. Bruno, N., Srivastava, D., Koudas, N.: Holistic twig joins: optimal
XML pattern matching. In: Proceedings of ACM SIGMOD 2002,
pp. 310–321. ACM Press (2002)

7. Che, D., Ling, T.W., Hou, W.-C.: Holistic boolean-twig pattern
matching for efficient XML query processing. IEEE Trans. Knowl.
Data Eng. 99, 2008–2024

8. Chen, S., Li, H.-G., Tatemura, J., Hsiung, W.-P., Agrawal, D.,
Candan, K.S.: Twig2Stack: bottom-up processing of generalized-
tree-pattern queries over XML documents. In: Proceedings of
VLDB 2006, pp. 283–294 (2006)

9. Chen, T., Lu, J., Ling, T.W.: On boosting holism in XML twig pat-
tern matching using structural indexing techniques. In: Proceedings
of ACM SIGMOD 2005, pp. 455–466. ACM Press (2005)

10. Chen, Z., Jagadish, H.V., Lakshmanan, L.V.S., Paparizos, S.: From
tree patterns to generalized tree patterns: on efficient evaluation of
XQuery. In: Proceedings of the 29th International Conference on
Very Large Data Bases, VLDB 2003, pp. 237–248 (2003)

11. Cooper, B., Sample, N., Franklin, M.J., Hjaltason, G.R., Shadmon,
M.: A fast index for semistructured data. In: Proceedings of VLDB
2001, pp. 341–350 (2001)

12. Dietz, P.F.: Maintaining order in a linked list. In: Proceedings of
14th annual ACM symposium on theory of computing (STOC
1982), pp. 122–127 (1982)

13. Fuhr, N., Gvert, N., Malik, S., Lalmas, M., Kazai, G.: INEX (2007)
https://inex.mmci.uni-saarland.de/

14. Goldman, R., Widom, J.: DataGuides: enabling query formula-
tion and optimization in semistructured databases. In: Proceedings
of the 23rd International Conference on Very Large Data Bases,
VLDB 1997, pp. 436–445 (1997)

15. Grimsmo, N., Bjørklund, T.A., Hetland, M.L.: Fast optimal twig
joins. In: Proceedings of the 36th International Conference on Very
Large Data Bases, VLDB 2010, pp. 894–905. VLDB Endowment
(2010)

16. Grust, T., van Keulen, M., Teubner, J.: Staircase join: teach a rela-
tional DBMS to watch its (Axis) steps. In: Proceedings of VLDB
2003, pp. 524–535 (2003)

17. Härder, T., Haustein, M., Mathis, C., Wagner, M.: Node labeling
schemes for dynamic XML documents reconsidered. Data Knowl.
Eng. 60, 126–149 (2007)

18. Jiang, H., Lu, H., Wang, W.: Efficient processing of XML
twig queries with OR-predicates. In: Proceedings of the 2004
ACM SIGMOD International Conference on Management of data,
pp. 59–70. ACM New York (2004)

19. Kaushik, R., Bohannon, P., Naughton, J., Korth, H.: Covering
indexes for branching path queries. In: Proceedings of ACM SIG-
MOD 2002, pp. 133–144. ACM Press (2002)

20. Krátký, M., Bača, R., Snášel, V.: On the efficient processing reg-
ular path expressions of an enormous volume of XML data. In:
Proceedings of DEXA 2007, vol. 4653 of LNCS, pp. 1–12. Springer
(2007)

21. Krátký, M., Pokorný, J., Snášel, V.: Implementation of XPath axes
in the multi-dimensional approach to indexing XML data. In: Cur-
rent Trends in Database Technology, EDBT 2004, vol. 3268 of
LNCS. Springer (2004)

22. Li, G., Feng, J., Zhang, Y., Zhou, L.: Efficient holistic twig joins in
leaf-to-root combining with root-to-leaf way. In: Proceedings of the
12th International Conference on Database systems for Advanced
Applications, DASFAA ’07, pp. 834–849. Springer (2007)

23. Li, J., Wang, J.: TwigBuffer: avoiding useless intermediate solu-
tions completely in twig joins. In: The 13th International Confer-
ence on Database Systems for Advanced Applications, DASFAA
2008, vol. 4947, pp. 554–561. Springer (2008)

24. Lu, J., Chen, T., Ling, T.W.: Efficient processing of XML twig
patterns with parent child edges: a look-ahead approach. In: Pro-
ceedings of ACM CIKM 2004, pp. 533–542. ACM Press (2004)

25. Lu, J., Ling, T.W., Bao, Z., Wang, C.: Extended XML tree pattern
matching: theories and algorithms. IEEE Trans. Knowl. Data Eng.
23, 402–416 (2011)

26. Lu, J., Ling, T.W., Chan, C.-Y., Chen, T.: From region encoding
to extended Dewey: on efficient processing of XML twig pattern
matching. In: Proceedings of the 31st International Conference on
Very Large Data Bases, VLDB 2005, pp. 193–204 (2005)

27. Lu, J., Ling, T.W., Yu, T., Li, C., Ni, W.: Efficient processing of
ordered XML twig pattern. In: Proceedings of DEXA 2005, vol.
3588 of LNCS, pp. 300–309. Springer (2005)

28. Lu, J., Meng, X., Ling, T.W.: Indexing and querying XML using
extended Dewey labeling scheme. Data Knowl. Eng. 70(1), 35–59
(2011)

29. Ley, M.: The DBLP computer science bibliography, http://www.
informatik.uni-trier.de/~ley/db/

30. Michiels, P., Mihaila, G., Siméon, J.: Put a tree pattern in your
algebra. In: Proceedings of the 23th International Conference on
Data Engineering, ICDE 2007, pp. 246–255 (2007)

31. Moro, M.M., Vagena, Z., Tsotras, V.J.: Tree-pattern queries on
a lightweight XML processor. In: Proceedings of the 31st Inter-
national Conference on Very Large Data Bases, VLDB 2005,
pp. 205–216 (2005)

32. Paparizos, S., Wu, Y., Lakshmanan, L.V.S., Jagadish, H.V.: Tree
logical classes for efficient evaluation of XQuery. In: Proceedings
of the 2004 ACM SIGMOD International Conference on Manage-
ment of data, pp. 71–82. ACM (2004)

33. Qin, L., Yu, J.X., Ding, B.: TwigList: make twig pattern matching
fast. In: The 12th International Conference on Database Systems
for Advanced Applications, DASFAA 2007, vol. 4443 of LNCS,
pp. 850–862. Springer (2007)

34. Schmidt, A.R. et al.: The XML benchmark. Technical Report INS-
R0103, CWI, The Netherlands (April 2001), http://monetdb.cwi.
nl/xml/

35. Tatarinov, I., Viglas, S.D., Beyer, K., Shanmugasundaram, J.,
Shekita, E., Zhang, C.: Storing and querying ordered XML using
a relational database system. In: Proceedings of ACM SIGMOD
2002, pp. 204–215. New York, USA (2002)

36. University of Washington Database Group: The XML Data Repos-
itory http://www.cs.washington.edu/research/xmldatasets/ 2002

37. W3 Consortium: XQuery 1.0: An XML Query Language, W3C
Working Draft, 12 November 2003, http://www.w3.org/TR/
xquery/

123

https://inex.mmci.uni-saarland.de/
http://www.informatik.uni-trier.de/~ley/db/
http://www.informatik.uni-trier.de/~ley/db/
http://monetdb.cwi.nl/xml/
http://monetdb.cwi.nl/xml/
http://www.cs.washington.edu/research/xmldatasets/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/

Optimal and efficient generalized twig pattern processing

38. Wang, H., Park, S., Fan, W., Yu, P.S.: ViST: a dynamic index method
for querying XML data by tree structures. In: Proceedings of the
ACM SIGMOD 2003, pp. 110–121. ACM Press (2003)

39. Weiner, A.M., Härder, T.: Using structural joins and holistic twig
joins for native XML query optimization. In: Advances in Data-
bases and Information Systems, vol. 5739 of LNCS, pp. 149–163.
Springer, Berlin Heidelberg (2009)

40. Weiner, A.M., Härder, T.: An integrative approach to query
optimization in native XML database management systems. In:
Proceedings of the Fourteenth International Database Engineering
& Applications Symposium, IDEAS ’10, pp. 64–74. ACM, New
York, NY, USA (2010)

41. Wu, H., Ling, T.W., Chen, B., Xu, L.: TwigTable: using semantics in
XML twig pattern query processing. In: Journal on Data Semantics
XV, vol. 6720 of LNCS, pp. 102–129. Springer, Berlin Heidelberg
(2011)

42. Wu, H., Ling, T.W., Dobbie, G.: TP+Output: modeling complex
output information in XML twig pattern query. In: Database and
XML Technologies, pp. 128–143. Springer (2010)

43. Yang, B., Fontoura, M., Shekita, E., Rajagopalan, S., Beyer, K.: Vir-
tual cursors for XML joins. In: Proceedings of the thirteenth ACM
International Conference on Information and Knowledge Manage-
ment, CIKM 2004, pp. 523–532. ACM (2004)

44. Yoshikawa, M., Amagasa, T., Shimura, T., Uemura, S.: XRel: a
path-based approach to storage and retrieval of XML documents
using relational databases. ACM Trans. Internet Technol 1(1), 110–
141 (2001)

45. Yu, T., Ling, T.W., Lu, J.: TwigStackList¬: a holistic twig join
algorithm for twig query with not-predicates on XML data. In: The
11th International Conference on Database Systems for Advanced
Applications, DASFAA 2006, vol. 3882, pp. 249–263. Springer
(2006)

46. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On
supporting containment queries in relational database management
systems. In: Proceedings of ACM SIGMOD 2001, pp. 425–436
(2001)

123

	Optimal and efficient generalized twig pattern processing: a combination of preorder and postorder filterings
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Data model
	2.2 Query language
	2.3 Holistic algorithms
	2.4 DataGuide search

	3 Related work
	4 Analysis of node processing order
	5 GetMatch advanced preorder filtering function
	5.1 Optimality of preorder filtering with getMatch

	6 GTPStack
	6.1 Postorder filtering
	6.1.1 GTP postorder filtering

	6.2 Intermediate storage
	6.2.1 Sorting avoidance
	6.2.2 Preparation for enumeration

	6.3 Analysis of GTPStack
	6.4 Summary of GTPStack

	7 Preorder filtering optimality
	7.1 Query optimality condition
	7.2 XML document and algorithm optimality
	7.2.1 Optimality for XML document

	7.3 Summary of optimality

	8 Experimental results
	8.1 Processing time
	8.1.1 Test of intermediate storages for TPQs
	8.1.2 Analysis of preorder filtering
	8.1.3 Optimization of predicate query nodes
	8.1.4 Test of postorder filtering

	8.2 Intermediate storage size
	8.3 Test of optimality of XML documents
	8.3.1 Statistics for T+LS and LPS

	9 Conclusion
	Acknowledgments
	Appendix 1: Logical expression in getMatch
	Appendix 2: Node concatenation
	Appendix 3: GTP enumeration
	Appendix 4: Early enumeration
	Appendix 5: Real-world queries and processing time
	References

