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a b s t r a c t

Muscle cells (fibres) are post-mitotic and thus undergo changes in phenotype by modifying their existing
structure. Hypertrophy is a hallmark change that occurs in response to increased loading and can be
achieved in humans through repeated bouts of resistance exercise (i.e., training). In resistance exercise,
contractions are initiated by neural drive leading to immediate perturbations such as calcium influx,
cross-bridge cycling and tension/stress on the cytoskeleton, sarcolemma and extracellular matrix, as well
as more delayed cellular events such as the production/release of potential local growth factors (e.g., IGF-
1). Resistance exercise can also elevate the systemic concentration of certain hormones (growth hormone,
testosterone, IGF-1) that are hypothesized to drive hypertrophy. However, while these hormones are
clearly anabolic during childhood and puberty, or when given at supraphysiological exogenous doses,
the transient post-exercise elevations in hormone concentration are of little consequence to the either
the acute protein synthetic response or to a hypertrophic phenotype after resistance training. Thus, the
acute post-exercise increases in systemic hormones are in no way a proxy marker for anabolism since

they do not underpin the capacity of the muscle to hypertrophy in any measurable way. In contrast,
the acute activation of intrinsically located signalling proteins such as p70S6K and the acute elevation of
muscle protein synthesis are more reflective of the potential to increase in muscle mass with resistance
training. Ultimately, local mechanisms are activated by the stress imposed by muscle loading and prime
the muscle for protein accretion. Membrane-derived molecules and tension-sensing pathways are two
intrinsic mechanisms implicated in upregulating the synthesis and incorporation of muscle proteins into

to m
the myofibre in response

Cell facts

• Myocytes grow out of a developing myotome that arises
from the somite.

• Muscle cells hypertrophy in response to locally mediated sig-
nals induced by chronic overload (e.g., resistance training).

• Exercise-induced changes in growth hormone and testos-
terone are not proxy markers of muscle cell hypertrophy.

• Muscular dystrophy affects ∼1 in 3 500 male births leading
to cardiac or respiratory failure and early death.
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1. Introduction

Skeletal muscle hypertrophy describes an increase in the cross-
sectional area of muscle cells (fibres). This process is primarily
driven by the accretion of myofibrillar proteins which are predom-
inantly composed of actin and myosin. Myofibrillar proteins are
arranged into sarcomeres which are highly organized structures
that form the basic contractile units of the muscle and which are
assembled in series and in parallel to form the core of a mult-
inucleated skeletal muscle fibre. Resistance exercise can elevate
muscle protein synthesis (MPS) for ≥2 days (Phillips et al., 1997)
and ingesting dietary protein during that post-exercise time period
further potentiates the rise in MPS such that it exceeds the rate of
protein breakdown resulting in a net positive protein balance and
protein accretion (Biolo et al., 1997). Newly synthesized proteins
are incorporated into the contractile apparatus which expands the
mass of the existing protein pool and summates to measurably
expand the myofibre. Resistance exercise activates a number of

anabolic intracellular signalling pathways that increase MPS; this
review will not focus on these intracellular signals per se but rather
will outline several potential upstream mechanisms that initiate
them. One exception is p70S6K which will be discussed in the con-
text of a potential proxy marker for anabolism and hypertrophy.

dx.doi.org/10.1016/j.biocel.2010.05.012
http://www.sciencedirect.com/science/journal/13572725
http://www.elsevier.com/locate/biocel
mailto:phillis@mcmaster.ca
dx.doi.org/10.1016/j.biocel.2010.05.012
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roxy markers of muscle fibre hypertrophy can predict the anabolic
esponse and are likely mediating crucial steps in the sequence of
vents that precede hypertrophy.

There has been confusion surrounding the influence of exercise-
nduced changes in systemic ostensibly ‘anabolic’ hormones such
s growth hormone (GH), insulin-like growth factor-1 (IGF-1),
nd testosterone on muscle hypertrophy. Despite little empiri-
al evidence, it has been hypothesized that the post-exercise rise
n concentration of these hormones is important for inducing
ypertrophy and thus has been used as a surrogate measure of
ypertrophy potential. We contend that there is a complete lack
f merit for purportedly anabolic exercise-induced elevations in
ystemic hormones to be used as proxy markers of hypertrophy.
nstead, we will focus on local mechanisms that are intrinsically
ied to contraction and which are far better candidates for increas-
ng the activity of the cellular anabolic machinery leading to protein
ccretion.

Resistance exercise places a unique stress on muscle fibres that
ctivates a variety of local mechanisms which prime the muscle
or protein accretion in advance of measurable hypertrophy. Read-
rs are referred to the following reviews for detailed descriptions
f sarcomerogenesis (Kontrogianni-Konstantopoulos et al., 2009)
nd remodelling (Bassel-Duby and Olson, 2006), two processes that
re integral to the assembly of newly synthesized proteins into a
unctional hypertrophied muscle fibre.

. Cell origin and plasticity

.1. Cell origin

Muscles cells grow out of the developing myotome that arises
rom the somite. The myotome forms epixial (back muscles) and
ypaxial (abdominal, respiratory and limb muscles) regions. Con-
inued development gives rise to a fully formed musculoskeletal
ystem that continues to grow until shortly after puberty.

.2. Plasticity and hormonal influences

Overt increases in muscle mass that occur during puberty in
oys or following exogenous testosterone administration have led
o the assumption that exercise-induced elevations in systemic
ormones such as testosterone can be optimized to enhance hyper-
rophy (e.g., Gotshalk et al., 1997). Recently our work has focused
n determining the relevance of the acute post-resistance exer-
ise elevation of purportedly anabolic systemic hormones to the
cute and chronic anabolic responses of skeletal muscle. Using
within-subject model, in one condition, participants performed

xercise with a small muscle mass (elbow flexors) that resulted
n no change in basal hormone levels. In the other condition, the
articipants perform the exact same arm exercise followed imme-
iately by a bout of intense leg resistance exercise (i.e., exercised a

arge muscle mass) that elicited a large rise in endogenous hormone
vailability. We report that exercised-induced increases in testos-
erone, growth hormone and IGF-1 are neither necessary for nor do
hey enhance the acute synthesis of myofibrillar proteins (West et
l., 2009b). Furthermore, exercise-induced increases in availability
f these hormones did not enhance muscle strength or hypertro-
hy with training (West et al., 2009a). It should be noted that this
ransient elevation in systemic hormones such as testosterone is
n contrast to the chronic supraphysiological levels of circulating

estosterone that are induced by exogenous testosterone adminis-
ration and which result in obvious muscle hypertrophy (Bhasin et
l., 1996). Thus, the same anabolic mechanisms, such as increased
PS and gene expression and/or satellite cell addition, that are

ctive when testosterone is at supraphysiological levels are not
hemistry & Cell Biology 42 (2010) 1371–1375

activated when testosterone is transiently elevated to level that is
similar to the peak of the normal diurnal range. It is recognized that
a normal physiological concentration of testosterone is required for
a normal adaptive response to resistance exercise (Kvorning et al.,
2006); our data (West et al., 2009a,b) suggests, however, that local
mechanisms that are intrinsic to muscle contraction under load are
of primary importance to protein accretion (Fig. 1) .

2.3. Membrane mechanisms

Resistance exercise leads to deformation of the sarcolemma,
the lipid bilayer encompassing the skeletal muscle cell, which
alters the spatial relationship of enzymes and components of the
membrane. These alterations are sensed by the muscle cell and
conveyed to the translational machinery which regulates mus-
cle protein turnover. It has become increasingly apparent that
phosphatidic acid (PA), a membrane phospholipid released by
phospholipase D (PLD) activation, is important for activating pro-
tein kinases/phosphatases that are involved in mediating muscle
protein synthesis (Wang et al., 2006). For example, O’Neil et al.
(2009) recently demonstrated in an ex vivo electrical stimulation
model that PA concentration and mTOR activation, a key regula-
tory protein involved in protein synthesis, increase in response to
eccentric contractions. Furthermore, blocking the synthesis of PA
with l-butanol, a PLD inhibitor, completely abolished the increase
in p70S6K following eccentric contractions and therefore may also
inhibit MPS. Mechanistically, it appears that PA may be modulating
mTOR via the FKBP12-rapamycin binding (FRB) domain of mTOR
(Hornberger et al., 2006; Vilella-Bach et al., 1999) by binding to FRB
which may elicit a conformational change that promotes autophos-
phorylation (Vilella-Bach et al., 1999). In contrast, rapamycin, an
immunosuppressant drug with anti-proliferative effect, binds to
the FKBP12 receptor protein and the FKBP12-rapamycin complex
binds to the FRB domain on mTOR preventing the interaction of
mTOR with target proteins involved in initiating MPS (Fang et
al., 2001). Drummond et al. (2009) recently demonstrated that
rapamycin administration blocks the normal obligatory rise in MPS
following an acute bout of resistance exercise in humans. Collec-
tively, these data (Drummond et al., 2009; O’Neil et al., 2009) point
to the role of PA as an upstream regulator of mTOR which, in turn,
regulates MPS. Overall, the control of MPS is a complex process with
numerous regulatory points, but these studies (Hornberger et al.,
2006; O’Neil et al., 2009), combined with others (Trappe et al., 2001)
that demonstrate the role prostaglandin-derived pathways, pro-
vide compelling evidence that membrane-derived molecules play
important roles in the regulation of MPS in humans and highlight
an intrinsic pathway responsible for the ability of skeletal muscle
to respond to a loading stimulus (Fig. 2).

2.4. Tension sensors

Intramuscular tension has long been identified as a key regu-
lator of muscle mass on the basis of pioneering work in the areas
of muscle hypertrophy and atrophy (Goldberg et al., 1975). Force
produced by the myosin cross-bridge must be transferred through
an extensive cytoskeletal and extracellular matrix in order to pro-
duce tension in the whole muscle and movement of the skeleton.
There are many sites both in the force-generating apparatus and/or
the force-transferring apparatus that may provide mechanosensory
feedback to regulate muscle protein synthesis. These sites include:
the myosin and elastic filaments, the costamere and extracellular

matrix and the myotendinous junction.

The mechanosensory regulation of muscle protein synthesis
has been widely studied at the level of the costamere (adhesion
complexes that connect the Z-disk to the extracellular matrix)
and the myotendinous junction (the connection of the ends of
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ig. 1. Cellular events contributing to muscle protein synthesis, protein accretion and
atterns of force transmission. Tracings of IGF-1 and the satellite cell pathways rely

he myofibrils to the extracellular matrix). The costamere and
he myotendinous junction each permit the transmission of force
rom the force-generating myofibrillar apparatus to the extracel-
ular matrix and the mechanical deformation of transmembrane
eceptors (integrins) at these sites produce conformational changes
n many of the receptor-associated multimodular proteins (Jani
nd Schock, 2009). In particular, mechanically induced conforma-
ional changes of focal adhesion kinase (FAK) proteins can elicit a
hosphotransferase activity that may activate p70S6K via PI3K-Akt-
TOR-dependent (Zanchi and Lancha, 2008) and/or independent

Klossner et al., 2009) pathways. In addition to the reported role
f integrins in upregulating muscle translational efficiency, defor-
ation of the integrin molecule has been proposed to: promote

he formation, expansion and development of adhesions, and to
stablish a scaffold matrix to guide the incorporation of actin and

yosin during sarcomerogenesis (Jani and Schock, 2009). Inter-

stingly, the phosphorylation of FAK has consistently been shown
o be modulated by the activation history of a muscle, whether
t is reduced activation of FAK in animal and human (Glover et al.,

ig. 2. Approximate time courses of selected intrinsic (p70S6K, satellite cells, muscle
rotein synthesis (MPS)) and extrinsic (growth hormone) elements after an acute
out of resistance exercise in humans. Time courses approximate findings from
est et al. (2009a) (growth hormone), Glover et al. (2008a) (p70S6K1), Phillips et al.

1997) (MPS) and McKay et al. (2009) (satellite cells). Note: Elevated phosphorylation
f the p70S6K1 auto-inhibitory domain (T421/S424) but not the T389 site is reported
4 h post-exercise (Mayhew et al., 2009) although increased phosphorylation of the

atter site is elevated 24 h following 12 min of stepping exercise (Cuthbertson et al.,
006).
rtrophy. Dashed arrows with solid heads on left hand side depict broad hypothesized
arily on animal data.

2008b) muscle following a period of unloading, or increased activa-
tion of FAK following increased muscle loading (Fluck et al., 1999).
Thus, in response to mechanical stress, integrins may serve as a
regulatory node for the coordinated up-regulation of the synthesis
and incorporation of muscle proteins into the functional myofibre
(Fig. 3).

2.5. Proxy markers of hypertrophy

The common observation that type II fibres tend to hypertro-
phy to a greater extent than type I fibres (e.g., Staron et al., 1990)
provides the opportunity to examine differences in their anabolic
signalling profile in response to loading. For example, it has been
demonstrated that p70S6K is activated to a greater degree in type II
fibres (Koopman et al., 2006), which may lead to a greater ampli-
tude or duration of translation initiation and a subsequent rise
in protein synthesis and account, at least in part, for the greater
hypertrophy found in type II fibres. This observation is in agree-
ment with a number of studies (e.g., Kumar et al., 2009; Terzis
et al., 2008) that demonstrate that the acute activation of p70S6K

can be indicative of the anabolic response. The phosphorylation
sequence and kinetics of multiple serine and threonine residues on
p70S6K by PI3-kinase-dependent and -independent regulatory pro-
tein kinases continue to be elucidated. It is thought that the p70S6K

carboxy-terminal tail is auto-inhibitory in its unphosphorylated
state, restricting phosphorylation by PDK1, preventing phosphory-
lation of a Thr252 residue and decreasing p70S6K activity (Alessi et
al., 1998). Phosphorylation of multiple sites on the non-catalytic tail
exposes key Ser/Thr residues to be phosphorylated which increases
p70S6K catalytic activity. Interestingly, it appears that amino acids
extend initial exercise-induced phosphorylation changes leading
to phosphorylation of the Thr389 residue and full p70S6K activa-
tion (Karlsson et al., 2004). The observation that p70S6K activation
is stimulated by resistance exercise alone (Eliasson et al., 2006) but
also potentiated by the provision of amino acids (Karlsson et al.,
2004) may explain why its level of activation after an acute bout is
in good agreement with increases in muscle mass. It is also impor-

tant to note that the dynamic measurement of acute post-exercise
protein synthesis (West et al., 2009b; Wilkinson et al., 2007), which
is acutely related to activation of p70S6K, is reflective of a long-term
hypertrophy response (Hartman et al., 2007; West et al., 2009a) a
point we have discussed elsewhere (Burd et al., 2009).
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Fig. 3. (A and B) Correlations between the fold increase of growth hormone and
testosterone (respectively) after resistance exercise and the increase in elbow flexor
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ross-sectional area after training (West et al., 2009a). (C) Correlation between the
ncrease in p70 activation after an acute bout of exercise and the increase in type
I fibre area after training redrawn with permission using data from Terzis et al.
2008).

.6. Function

Skeletal muscle cells are bundled into fasicles and are con-
ected to bone via myotendinous junctions. Muscle contractions
an move the skeletal system in a coordinated fashion, generat-
ng locomotion. Among other functions, skeletal muscle: produces
eat, protects organs, facilitates respiration, acts as a reservoir of
mino acids and interacts with other organs (e.g., liver) through the
irculatory system to regulate metabolism.

.7. Associated pathologies

Skeletal muscle cells are associated with both pathologies of

uscle tissue itself but also with systemic chronic diseases (e.g.,

iabetes, sarcopenia). Within the cell itself, muscular dystrophy is
disease that is characterized by a disruption of the complex that

onnects the cytoskeleton of the muscle cell to the extracellular
atrix. This results in repeated cycles of degeneration and regen-
hemistry & Cell Biology 42 (2010) 1371–1375

eration, connective tissue and fat infiltration, calcium dysregulation
and muscle weakness among other effects.

3. Conclusions

Membrane-derived and tension-sensing mechanisms are excel-
lent candidates to initiate anabolic intracellular signals to increase
MPS prior to the more latent events of de novo myofibrillar syn-
thesis, myofibril remodelling and ultimately hypertrophy. Proxy
markers such as acute p70S6K phosphorylation or the acute increase
MPS can predict a hypertrophy response whereas exercise-induced
rises in hormones clearly do not. It is worth noting that recent
refinement in the methodology used to determine fractional syn-
thetic rates allows for the synthetic rates of specific protein
sub-fractions (e.g., myofibrillar) to be determined which may prove
to be a better predictor of hypertrophy. In summary, loaded con-
tractions stimulate multiple local mechanisms that work in concert
to mount the overall anabolic response. These intrinsic mecha-
nisms, which govern the pathways that elevate MPS and which lead
to hypertrophy, appear to reach some convergence at p70S6K; how-
ever, the basis for the sustained elevation of MPS after resistance
exercise (e.g., 16–48 h) requires further attention.
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