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Abstract

In this paper, we propose a fully distributed algorithm for frequency offsets estimation in decen-

tralized systems. The idea is based on belief propagation, resulting in that each node estimates its own

frequency offsets by local computations and limited exchange of information with its direct neighbors.

Such algorithm does not require any centralized information processing or knowledge of global network

topology, thus is scalable with network size. It is shown analytically that the proposed algorithm always

converges to the optimal estimates regardless of network topology. Simulation results demonstrate the

fast convergence of the algorithm and show that estimation mean-squared-error at each node approaches

the centralized Cramér-Rao bound within a few iterations of message exchange.
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I. INTRODUCTION

In wireless communication systems, local oscillators are used in transceivers to generate carrier

signals required for up-conversion and down-conversion. Ideally, carrier frequencies produced

by oscillators of each transceiver pair should be the same. However, in practice, frequencies

synthesized from independent oscillators will be different from each other due to variation of

oscillator circuits. The received signal impaired by carrier frequency offsets (CFOs) between

transmitter and receiver leads to a continuous rotation of symbol constellation, resulting in

degradation of system capacity and bit error rate (BER) [1]–[4]. Consequently, carrier frequency

synchronization has always been a momentous issue in communication systems.

As modern wireless environments become more heterogeneous and decentralized, mobile

terminals in a network engage more and more in cooperative communications and distributed

computations [5]. New scenarios require multiple wireless units to synchronize with each other

arise. For example,

Distributed beamforming: As shown in Fig. 1(a), to improve the range of communications

and save battery power during the transmission, multiple mobile terminals form a virtual antenna

array and cooperatively direct a beam in the desired direction of transmission [6], [7]. Since each

source node in the distributed beamformer has an independent local oscillator, common carrier

frequency among all transmitters is crucial to ensure that a beam is aimed in the desired direction.

Multi-cell cooperation: In fully frequency reuse cellular systems as depicted in Fig. 1(b),

despite different users interfere with each other, multiple base stations could coordinate their

coding and decoding. It was shown that such joint-processing significantly outperforms a network

with individual cell processing [8], [9]. Yet, multiple base-stations cooperation requires frequency

synchronization so that there is no CFO between each pair of communication link [10].

Heterogenous Networks (HetNets): HetNets have attracted much attention from both industry

and academia in the past few years. As shown in Fig. 1(c), in a 3-tier HetNet, a mobile may wish

to be associated with different tier base stations in the uplink and downlink to obtain optimal

performance [11]–[14]. However, multi-tier cooperation is possible only when different tiers of

networks are frequency-synchronized to each other.

The above examples of network-wide synchronization problem can be summarized and reduced

to a multi-node communication systems as shown in Fig. 2. Despite the fact that relative CFO
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between each pair of nodes can be optimally estimated by existing methods [15]–[23], network-

wide CFOs correction is difficult since each node needs to synchronize with multiple neighboring

nodes with different relative CFOs at the same time. Making the problem more challenging is the

fact that synchronization should be accomplished by local operations without knowing the global

network structure since users move around and join different parts of the network randomly.

Pioneering works for network CFOs correction have been proposed in [24], [25]. By gathering

all the information in a central processing unit, CFOs are estimated at the receiver and then

fedback to corresponding transmitters to adjust the offsets. These methods are centralized, which

are not suitable for large-scale network. On the other hand, [26]–[28] investigated methods for

frequency synchronization in distributed beamforming systems. However, these methods require

the formation and maintenance of special network structures (e.g., tree structure in [26], ring

structure in [27] and chain structure in [28]), thus suffer from large overhead and long delay,

and are not scalable with network size. Recently, consensus-type algorithms have been reported

for network-wide synchronization in [29]–[31]. Distributed frequency-locked loops (D-FLL)

algorithm [29] and pulse-coupled oscillator algorithm [30] have been proposed to control and

synchronize the carrier frequencies of autonomous nodes based on average consensus principle.

Notwithstanding the distributed carrier frequency calibration advantage, they suffer from slow

convergence rate. Furthermore, the algorithms in [29], [30] are designed exclusively for single

path channel. Even in a simple point-to-point case with multi-path channel, these approaches

cannot be applied directly.

In this paper, we propose a network-wide fully distributed CFO estimation and compensation

method which only involves local processing and information exchange between direct neigh-

bors. The frequency offset of each oscillator is estimated and corrected locally in each node.

After synchronization, the mean-square-error (MSE) for each frequency offset approaches the

corresponding Cramér-Rao bound (CRB) asymptotically. The proposed algorithm is scalable

with network size, and robust to topology changes. The convergence of the proposed method is

also formally proved.

The rest of this paper is organized as follows. System model is presented in Section II.

Fully distributed frequency offsets estimation and correction based on belief propagation (BP) is

derived in Section III . The convergence property of the proposed method is analyzed in Section

IV. Simulation results are given in Section V and, finally, conclusions are provided in Section
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VI.

Notations: Boldface uppercase and lowercase letters will be used for matrices and vectors,

respectively. E denotes the expectation over the random variables. Superscripts H and T denote

Hermitian and transpose, respectively. The symbol IN represents the N×N identity matrix, while

1K is an all one K dimensional vector. The symbol ⊗ denotes the Kronecker product and ⊙

denotes the Hadamard product. Notation N (x;µ,R) stands for the probability density function

(pdf) of a Gaussian random vector x with mean µ and covariance matrix R. The symbol ∝

represents the linear scalar relationship between two real valued functions. diag{[a1, . . . , aN ]}

corresponds to an N × N diagonal matrix with diagonal components a1 through aN , while

blkdiag{[A1, . . . ,AN ]} corresponds to a block diagonal matrix with A1 through AN as diagonal

blocks. For two matrices X and Y , X ≽ Y means that X−Y is a positive semi-definite matrix.

II. SYSTEM MODEL

We consider a network consisting of K nodes distributed in a field as shown in Fig. 2.

The topology of the network is described by a communication graph G = (V , E) of order K,

where V = {1, . . . , K} is the set of graph vertexes, and E ⊆ V × V is the set of graph edges.

In the example shown in Fig. 2, the vertices are depicted by circles and the edges by lines

connecting these circles. The neighborhood of node i is the set of nodes I(i) ⊂ V defined as

I(i) , {j ∈ V|{i, j} ∈ E}, i.e., those nodes that are connected via a direct communication

link to node i. It is also assumed that any two distinct nodes can communicate with each other

through finite hops, such graph is named strongly connected graph.

In general, relative CFOs exist between any pair of neighboring nodes, and can be estimated

by traditional CFOs estimation methods. Let nodes i and j equipped with Ni and Nj antennas,

respectively. Denote the frequency offsets 1 (with respect to a reference frequency) of the qth

antenna on node i as ωi
q, while that of kth antenna of node j as ωj

k. Then, the relative CFO

between the qth and kth antenna of node i and j is ϵi,jq,k , ωi
q − ωj

k. Here we consider the

general case where each antenna can be associated with separate oscillator circuit. Therefore,

for the Multiple Input Multiple Output (MIMO) system between node i and node j, there are

1The frequency offset in this paper is the normalized CFO, defined as 2π∆fTs, where ∆f is the CFO in Hz, while Ts is

the sampling period.
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NiNj relative CFOs denoted as ϵi,j , [ϵi,j1,1, . . . , ϵ
i,j
Ni,1

, . . . , ϵi,j1,Nj
, . . . , ϵi,jNi,Nj

]T . Such relative CFOs

estimation in MIMO systems can be decomposed into Nj parallel Multiple Input Single Output

(MISO) CFOs estimation problem [18]. For example, considering a flat-fading MISO system,

for the kth receive antenna of node j, the received signal can be written as

yi,jk (t) =

Ni∑
q=1

hi,j
q,ke

ȷϵi,jq,ktziq(t) + ξjk(t), t = 1, . . . , N, (1)

where hi,j
q,k is the unknown channel gain between the qth antenna of node i and kth antenna

of node j; ȷ ,
√
−1; {ziq(t)}Nt=1 is the training sequence transmitted from the qth antennas of

node i; and ξjk(t) is the observation noise at the kth antenna of node j. By stacking (1) with

t = 1, . . . , N in vector form and omitting superscript i, j without confusion, the received vector

yk , [yk(1), . . . , yk(N)]T can be written as

yk = Γ k(ϵk)⊙Zkhk + ξk k = 1, . . . , Nj, (2)

where Γ k(ϵk) is an N -by-Ni Vandermonde matrix with its tth row given by [eȷtϵ1,k , eȷtϵ2,k , · · · , eȷtϵNi,k ];

Zk is the N -by-Ni training sequence matrix with its tth row [z1(t), z2(t), · · · , zNi
(t)]; and

ξk = [ξk(1), . . . , ξk(N)]T is the observation noise. The parameters ϵk , [ϵ1,k, ϵ2,k, . . . , ϵNi,k]
T

and hk , [h1,k, . . . , hNi,k]
T are the parameters need to be estimated.

If the noise is white and Gaussian, i.e., ξk ∼ CN (ξk;0, σ
2
kIN), joint relative CFOs and chan-

nels estimation have been extensively studied in the past two decades and the optimal estimates

ϵ̂k and ĥk have been proposed in [17]–[21], with the MSEs approaching the corresponding CRBs

in medium and high signal-to-noise ratio (SNR) ranges. From (2), the CRB of ϵk can be shown

to be [18]

Bϵk(ϵk,hk) =
σ2
k

2

{
Re[Vk − TH

k (ΛH
k Λk)

−1Tk]
}−1

, (3)

where Vk , diag{hk}ΛH
k D

2Λkdiag{hk}, Tk , ΛH
k DΛkdiag{hk}, with Λk , Γ k(ϵk) ⊙ Zk

and D , diag{[1, 2, . . . , N ]}. Since there are Nj independent MISO estimation problems as

in (2), the CRB for frequency estimation in MIMO system between node i and j is given by

B
{i,j}
ϵ ({ϵk}

Nj

k=1, {hk}
Nj

k=1) = blkdiag{[Bϵ1(ϵ1,h1), . . . ,BϵNj
(ϵNj

,hNj
)]}.

After joint estimation of relative CFOs and channels, the relative CFOs between node i and

j can be obtained as

ri,j = Ai,jωi +Aj,iωj + ni,j, (4)
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where ri,j , [ϵ̂T1 , ϵ̂
T
2 , . . . , ϵ̂

T
Nj
]T are the NiNj relative CFOs estimates; Ai,j , INi

⊗ 1Nj
and

Aj,i , −1Ni
⊗INj

; and ni,j is the estimation error. It is known that for the maximum likelihood

(ML) estimates, ri,j is asymptotically Gaussian distributed with mean [ϵT1 , ϵ
T
2 , . . . , ϵ

T
Nj
]T =

Ai,jωi+Aj,iωj and covariance matrix B
{i,j}
ϵ ({ϵk}

Nj

k=1, {hk}
Nj

k=1) [32]. That is, ri,j ∼ N (ri,j; ϵi,j,

B
{i,j}
ϵ ({ϵk}

Nj

k=1, {hk}
Nj

k=1)). Notice that the CRB depends on the true value of {ϵk}
Nj

k=1 and

{hk}
Nj

k=1 , but since we have obtained the ML estimate {ϵ̂}Nj

k=1 and {ĥk}
Nj

k=1, B{i,j}
ϵ ({ϵk}

Nj

k=1, {hk}
Nj

k=1)

can be closely approximated by Ri,j = B
{i,j}
ϵ ({ϵ̂k}

Nj

k=1, {ĥk}
Nj

k=1).

Notice that traditional CFO estimation for point-to-point link only estimates NiNj relative

CFOs given by ri,j in (4). However, in order to compensate the offset of individual oscillator,

we need to estimate Ni + Nj absolute CFOs in ωi and ωj . For simple MIMO systems, [25]

provides a method to resolve Ni +Nj absolute CFOs from NiNj relative CFOs. In this paper,

we take a significant step further to resolve all absolute CFOs in a distributed network. That is,

to estimate and compensate ωi in each node based on estimation results of local relative CFOs

ri,j .

Remark 1: The system model (2) can be extended to the cases where signals undergoing

frequency selective fading channel and even doubly selective channel. Effective estimators have

been extensively studied and MSE performance of these estimators were shown to approach the

corresponding CRBs [33]–[35]. Thus, we can always establish the relative CFOs relationship as

in (4).

Remark 2: After relative CFOs estimation, each receiver (node j in the example) obtains the

estimate ri,j as well as the covariance matrix Ri,j . By feeding back this information to the

corresponding transmitter, node i also obtains the relative CFOs estimates and estimation error

covariance.

III. DISTRIBUTED CFOS ESTIMATION

A. Distributed CFOs Estimation via Belief Propagation

The optimal CFO estimator at each node is the ML estimator, which finds the maximum

points of the global likelihood function:

[(ω̂ML
2 )T , . . . , (ω̂ML

K )T ]T = arg max
ω2,...,ωK

p
(
{ri,j}{i,j}∈E |ω1,ω2, . . . ,ωK

)
. (5)
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Here, without loss of generality, node 1 is assumed to be the reference node, so ω1 is known.

The global likelihood function is given by

p
(
{ri,j}{i,j}∈E |ω1,ω2, . . . ,ωK

)
∝ δ(ω1)

∏
{i,j}∈E

p(ri,j|ωi,ωj), (6)

where p(ri,j|ωi,ωj) ∼ N (ri,j;Ai,jωi+Aj,iωj,Ri,j) is the local likelihood function. Notice that

since the likelihood function in (6) depends on interactions among all unknown variables, the

computation of ω̂ML
i in (5) requires gathering of all information in a central processing unit.

However, such centralized processing is not favorable in large-scale networks.

In order to compute the optimal estimate (5) in a distributed way, one can exploit the

conditional independence structure of the joint distribution (6), which is conveniently revealed

by factor graph (FG). FG is an undirected bipartite graphical representation of a joint distribution

that unifies direct and undirected graphical models. An example of FG in the context of network-

wide synchronization is shown in Fig. 3. In the FG, there are two distinct kinds of nodes. One

is variable nodes representing local synchronization parameters ωi. If there is a communication

link between node i and node j, the corresponding variable nodes ωi and ωj are linked by the

other kind of node, factor node fi,j = p(ri,j|ωi,ωj) representing the local likelihood function 2.

On the other hand, the factor node f1 = δ(ω1) denotes value of frequency offsets of node 1, and

is connected only to the variable node ω1. Note that the FG is bipartite which means neighbors

of a factor node must be variable nodes and vice versa.

From the FG, two kinds of messages are passed around: One is the message from factor node

f (likelihood function fi,j or prior distribution f1) to its neighboring variable node ωi, defined

as the product of the function f with messages received from all neighboring variable nodes

except ωi, and then marginalized for ωi [36]

m
(l)
f→i(ωi) =

∫
· · ·

∫
f ×

∏
ωj∈B(f)\ωi

m
(l−1)
j→f (ωj)d{ωj}ωj∈B(f)\ωi

, (7)

where B(f) denotes the set of variable nodes that are direct neighbors of the factor nodes f on

the FG and B(f) \ ωi denotes the same set but with ωi removed. In (7), m(l−1)
j→f (ωj) is the other

kind of message from variable node to factor node which is simply the product of the incoming

2Note that fi,j=fj,i.
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messages on other links, i.e.,

m
(l)
j→f (ωj) =

∏
f̃∈B(ωj)\f

m
(l)

f̃→j
(ωi), (8)

where B(ωj) denotes the set of factor nodes that are direct neighbors of the variable nodes

ωj on the FG. It can be seen from (7) and (8) that for both variable nodes and factor nodes,

each outgoing message is a function of all incoming messages in the last round except the

incoming message from the node where the outgoing message will be directed to. This essential

restriction guarantees that for cycle-free FG, incoming and outgoing messages on each edge are

independent, and correct marginal distribution is obtained after convergence.

These two kinds of messages are iteratively updated at variable nodes and factor nodes,

respectively. In any round of message exchange, a belief of ωi can be computed at variable node

i as the product of all the incoming messages from neighboring factor nodes, which is given by

b(l)(ωi) =
∏

f∈B(ωi)

m
(l)
f→i(ωi). (9)

Thereupon, the estimate of ωi in the lth iteration is simply

ω̂
(l)
i =

∫
ωib

(l)(ωi)dωi. (10)

Notice that after convergence, the belief b(l)(ωi) at each variable node corresponds to the marginal

distribution of that variable exactly when the underlying FG is loop free [36]. However, for the

FG with loops, it is generally difficult to know if BP will converge [38]. Even if BP converges to

a fixed point, there is no guarantee on the estimation accuracy. Despite the lack of general results

on BP, in this paper, the convergence and optimality of BP for network-wide CFO estimation

algorithm will be proved in Section IV.

B. Message Computation

In the BP framework, messages are passed and updated iteratively. In order to start the

recursion, in the first round of message passing, it is reasonable to set the initial messages from

factor nodes to variable nodes m
(0)
fi,j→i(ωi) as non-informative message N (ωi;v

(0)
fi,j→i,C

(0)
fi,j→i),

where v
(0)
fi,j→i can be arbitrarily chosen and [C

(0)
fi,j→i)]

−1 = 0. On the other hand, the message

from f1 to ω1 is always δ(ω1), which can be viewed as a Gaussian distribution with mean ω1

and covariance 0. Thereupon, based on the fact that the likelihood function fi,j is also Gaussian,
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according to (7), m(1)
fi,j→i(ωi) is a Gaussian function. In addition, m(1)

j→fi,j
(ωj) being the product

of Gaussian functions in (8) is also a Gaussian function [40]. Thus during each round of message

exchange, all the messages are Gaussian functions and only the mean vectors and covariance

matrices need to be exchanged between factor nodes and variable nodes.

At this point, we can compute the messages at any iteration. In general, for the lth (l = 2, 3, · · · )

round of message exchange, factor node fi,j receive messages m
(l−1)
j→fi,j

(ωj) from its neighboring

variable nodes and then compute messages using (7). After some derivations, it can be obtained

that

m
(l)
fi,j→i(ωi) =

∫
p(Ai,j,Aj,i|ωi,ωj)m

(l−1)
j→fi,j

(ωj)dωj

∝ N (ωi;v
(l)
fi,j→i,C

(l)
fi,j→i), (11)

where the inverse of covariance matrix is[
C

(l)
fi,j→i

]−1
= AT

i,j

[
Ri,j +Aj,iC

(l−1)
j→fi,j

AT
j,i

]−1

Ai,j, (12)

and the mean vector is

v
(l)
fi,j→i = C

(l)
fi,j→iA

T
i,j

[
Ri,j +Aj,iC

(l−1)
j→fi,j

AT
j,i

]−1

(ri,j −Aj,iv
(l−1)
j→fi,j

). (13)

On the other hand, using (8), the messages passed from variable nodes to factor nodes can be

computed as

m
(l)
i→fi,j

(ωi) =
∏

f∈B(ωi)\fi,j

m
(l)
f→i(ωi)

∝ N (ωi;v
(l)
i→fi,j

,C
(l)
i→fi,j

), (14)

where [
C

(l)
i→fi,j

]−1 =
∑

f∈B(ωi)\fi,j

[
C

(l)
f→i

]−1
, (15)

and

v
(l)
i→fi,j

= C
(l)
i→fi,j

∑
f∈B(ωi)\fi,j

[
C

(l)
f→i

]−1
v
(l)
f→i. (16)

Furthermore, during each round of message passing, each node can compute the belief for

ωi using (9), which can be easily shown to be b
(l)
i (ωi) ∼ N (ωi;µ

(l)
i ,P

(l)
i ), with the inverse of

covariance matrix [
P

(l)
i

]−1
=

∑
j∈I(i)

[
C

(l)
fi,j→i

]−1
, (17)
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and mean vector

µ
(l)
i = P

(l)
i

∑
j∈I(i)

[
C

(l)
fi,j→i

]−1
v
(l)
fi,j→i. (18)

When the algorithm converges or the maximum number of message exchange is reached, each

node computes the CFOs according to (10) as

ω̂
(l)
i =

∫
ωib

(l)(ωi)dωi = µ
(l)
i . (19)

The iterative algorithm based on BP is summarized as follows. The algorithm is started by

setting the message from factor node to variable node as m(0)
f1→1(ω1) = δ(ω1) and m

(0)
fi,j→i(ωi) =

N (ωi;v
(0)
fi,j→i,C

(0)
fi,j→i) with v

(0)
fi,j→i = 0 and [C

(0)
fi,j→i)]

−1 = 0. At each round of message

exchange, every variable node computes the output messages to factor nodes according to (15)

and (16). After receiving the messages from its neighboring variable nodes, each factor node

computes its output messages according to (12) and (13). Such iteration is terminated when (18)

converges (e.g., when ∥µ(l)
i − µ

(l−1)
i ∥ < η, where η is a threshold) or the maximum number of

iteration is reached. Then the estimate of CFOs of each node is obtained as in (19).

Remark 3: In practical networks, there is neither factor nodes nor variable nodes. The two

kinds of messages m
(l)
i→fi,j

(ωi) and m
(l)
fi,j→j(ωj) are computed locally at node i, and only mean

vector v
(l)
fi,j→j(ωj) and covariance matrix C

(l)
fi,j→j(ωj) are passed from node i to node j during

each round of message exchange of BP. It can be seen the algorithm is fully distributed and

each node only needs to exchange limited information with neighboring nodes.

Remark 4: Since each pair of node has knowledge of relative CFOs and channel between

them, the BP message exchange can be performed as in point-to-point communications.

IV. THEORETICAL ANALYSES OF BP METHOD

It is generally known that if the FG contains cycles, such as the one shown in Fig. 3, messages

can flow many times around the graph, leading to the possibility of divergence of BP algorithm

[37]. A general sufficient condition for convergence of loopy FGs is given in [38]. Unfortunately,

it requires the knowledge of the joint distribution of all unknown variables as shown in (6), and

is difficult to verify for large-scale dynamic networks. Recently, [39] proved the convergence of

BP in the context of distributed clock offset synchronization in wireless sensor network. The

convergence is established for scalar variables in which sub-stochastic and irreducible properties
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of BP message recursion were exploited. However, in vector variable case, the BP messages

involve matrix inverses (see (12), (13), (15) and (16)), and the sub-stochastic and irreducible

properties cannot be easily applied. In the following, we will prove the convergence of BP

messages in vector form, and show that the BP based CFO estimates asymptotically converge

to the optimal ML solution regardless of network topology.

Theorem 1. The covariance matrix P
(l)
i of belief b(l)i (ωi) at each node converges to a positive

definite matrix regardless of network topology.

Proof : We begin with a few properties of positive semi-definite (p.s.d.) matrices and positive

definite (p.d.) matrices. If X , Y , Z are Ni-by-Ni matrices and X ≻ 0, Y ≻ 0, Z ≽ 0, then

we have

Property i): X−1 ≻ 0.

Property ii): X + Y ≻ 0.

Property iii): X +Z ≻ 0.

Property iv): X ≽ Y if and only if Y −1 ≽ X−1 [41].

Property v): AT
i,jXAi,j ≻ 0 and AT

i,jZAi,j ≽ 0, where Ai,j is defined in (4).

Property vi): Aj,iXAT
j,i ≽ 0.

Properties i) to iv) are standard results in matrix analysis. Property v) is true due to the fact that

Ai,j is of full column rank. The proof of vi) follows from the definition of X ≻ 0 which is

yTXy ≥ 0 for any y (including all zeros vector). The result is obtained if we let y = AT
j,ix.

Next, we investigate the updating properties of the message covariance matrix. Substituting

(15) into (12), the covariance update rules from factor nodes to variable nodes are[
C

(l)
fi,j→i

]−1
= AT

i,j

[
Ri,j +Aj,i

[ ∑
f∈B(ωj)\fi,j

[
C

(l−1)
f→j

]−1
]−1

AT
j,i

]−1

Ai,j. (20)

From (20), we can deduce two consequences. First, if all message covariance C
(l−1)
f→j on the right-

hand-side of (20) are non-informative,
[
C

(l)
fi,j→i

]−1 cannot be updated, i.e.,
[
C

(l)
fi,j→i

]−1
= 0. On

the other hand, if some of the [C
(l−1)
f→j ]

−1 on the right-hand-side of (20) are p.d. while the remain-

ing are 0, then
[∑

f∈B(ωj)\fi,j

[
C

(l−1)
f→j

]−1]−1 ≻ 0 according to property iii). Applying property

vi), we have Aj,i

[∑
f∈B(ωj)\fi,j

[
C

(l−1)
f→j

]−1
]−1

AT
j,i ≽ 0. Furthermore, since Ri,j is the relative C-

FO estimation covariance, we have Ri,j ≻ 0. Thus, Ri,j+Aj,i

[∑
f∈B(ωj)\fi,j

[
C

(l−1)
f→j

]−1
]−1

AT
j,i ≻
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0. Then, based on properties i) and v), we obtain
[
C

(l)
fi,j→i

]−1 ≻ 0. We summarize the above

discussion as[
C

(l)
fi,j→i

]−1

 = 0, if all [C(l−1)
f→j ]

−1 = 0,

≻ 0, if some of [C(l−1)
f→j ]

−1 ≻ 0, while others are 0.
(21)

Now we prove that for any node i, if there exists a directed path from node 1→ . . .→j→i

in the network topology, there must be a finite iteration number s such that
[
C

(s+1)
fi,j→i

]−1 ≽[
C

(s)
fi,j→i

]−1 ≻
[
C

(s−1)
fi,j→i

]−1
= 0. Initially, all [C(0)

fk,j→j]
−1 over the FG equal 0 except C−1

f1→1 = ∞I

at the reference node. Hence, the message update starts from the reference node. More explicitly,

∀i: {i, 1} ∈ E , the message covariance is obtained by putting j = 1 into (20), which is[
C

(1)
fi,1→i

]−1
= AT

i,1R
−1
i,1Ai,1 ≻ 0, (22)

where the p.d. property is due to property v). Furthermore, since C−1
f1→1 = ∞I , it will dominate

the sum
∑

f∈B(ωj)\fi,j

[
C

(l−1)
f→j

]−1 in (20), and lead to
[
C

(l)
fi,1→i

]−1
= AT

i,1R
−1
i,1Ai,1. Thus, we have

. . . =
[
C

(l)
fi,1→i

]−1
= . . . =

[
C

(2)
fi,1→i

]−1
=

[
C

(1)
fi,1→i

]−1 ≻
[
C

(0)
fi,1→i

]−1
= 0. (23)

Then, we consider all nodes i with a directed path node 1→j→i. In the 1st iteration, node

j will take the position of node i in (23) implying
[
C

(1)
fj,1→j

]−1 ≻ 0, while
[
C

(1)
fi,j→i

]−1 has not

been updated in the first iteration, i.e.,
[
C

(1)
fi,j→i

]−1
= 0. In the second iteration, from (21), we

have
[
C

(2)
fi,j→i

]−1 ≻ 0. Since
[
C

(1)
fk,j→j

]−1 equals 0, taking inverse on
∑

f∈B(ωj)\fi,j

[
C

(1)
f→j

]−1

gives
[∑

f∈B(ωj)\fi,j

[
C

(1)
f→j

]−1
]−1

≽
[∑

f∈B(ωj)\fi,j

[
C

(2)
f→j

]−1
]−1

. Further applying properties

vi), iv) and v), we obtain

AT
i,j

[
Ri,j +Aj,i

[ ∑
f∈B(ωj)\fi,j

[
C

(2)
f→j

]−1
]−1

AT
j,i

]−1

Ai,j︸ ︷︷ ︸
=
[
C

(3)
fi,j→i

]−1

≽ AT
i,j

[
Ri,j +Aj,i

[ ∑
f∈B(ωj)\fi,j

[
C

(1)
f→j

]−1
]−1

AT
j,i

]−1

Ai,j︸ ︷︷ ︸
=
[
C

(2)
fi,j→i

]−1

. (24)

Thus
[
C

(3)
fi,j→i

]−1 ≽
[
C

(2)
fi,j→i

]−1 ≻
[
C

(1)
fi,j→i

]−1
= 0. In general, for any node i, if there exists a

directed path from node 1→ . . .→j→i in the network topology, there must be a finite iteration

number s such that [
C

(s+1)
fi,j→i

]−1 ≽
[
C

(s)
fi,j→i

]−1 ≻
[
C

(s−1)
fi,j→i

]−1
= 0. (25)
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Finally, we divide the discussion into three cases, covering all possible relationships between

two neighboring node i and j:

a) there exists a path from node 1→ . . .→j→i and j ̸= 1;

b) there exists a path from node 1→i;

c) there is no path from node 1→ . . .→j→i.

For the first case, suppose
[
C

(l)
fi,j→i

]−1 ≽
[
C

(l−1)
fi,j→i

]−1 holds for l > s. Since j ̸= 1, there

must be a node k, such that
[
C

(l)
fk,j→j

]−1 ≽
[
C

(l−1)
fk,j→j

]−1. Then, it can be easily shown that∑
fk,j∈B(ωj)\fi,j

[
C

(l)
fk,j→j

]−1 ≽
∑

fk,j∈B(ωj)\fi,j

[
C

(l−1)
fk,j→j

]−1. Following the same arguments above

(24), it can be obtained that
[
C

(l+1)
fi,j→i

]−1 ≽
[
C

(l)
fi,j→i

]−1. Hence, by induction we have[
C

(l)
fi,j→i

]−1 ≽ . . . ≽
[
C

(s+1)
fi,j→i

]−1 ≽
[
C

(s)
fi,j→i

]−1 ≻ 0, for l > s. (26)

For the second case, if there exists a path node 1→i, the corresponding result is in (23). For the

third case, if the path node 1→ . . .→j→i does not exist,
[
C

(l)
fi,j→i

]−1 never gets updated, and is

always equal to
[
C

(0)
fi,j→i

]−1
= 0.

Since strongly connected network is considered, there is at least one j̃ ∈ I(i) such that the

first case is true, therefore, we obtain

. . . ≽
∑
j∈I(i)

[
C

(l+1)
fi,j→i

]−1 ≽
∑
j∈I(i)

[
C

(l)
fi,j→i

]−1 ≽ . . .
∑
j∈I(i)

[
C

(s)
fi,j→i

]−1 ≻ 0, for l > s. (27)

Applying matrix inverse to (27) and using the definition of P (l)
i in (17), we have

P
(s)
i ≽ . . . ≽ P

(l)
i ≽ P

(l+1)
i ≽ . . . ≻ 0, for l > s, (28)

where the p.d. property of P
(l)
i is due to property i). Consequently such non-increasing p.d.

matrix sequence converges to a p.d. matrix [42]. �
The importance of Theorem 1 is that if a reference node exists, the belief covariance matrices

always converge. Next, we investigate the convergence of belief mean vectors.

Theorem 2. The mean µ
(l)
i of the belief b(l)(ωi) converges to a fixed vector regardless of the

network topology.

Proof : From the proof of Theorem 1, there are three cases of relationships between node i and

node j (above (26)). For the first and second cases, the evolution of
[
C

(l)
fi,j→i

]−1 are described by

(26) and (23), respectively. Taking matrix inverse of (23) and (26), we can readily see that C(l)
fi,j→i

is a monotonically decreasing matrix sequence and bounded by 0. Thus, C(l)
fi,j→i is convergent.
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For the third case, C(l)
fi,j→i is never updated, and thus can also be viewed as convergent. On

the other hand, computation of C
(l)
j→fi,j

depends on C
(l)
fi,j→i as shown in (15). So, if C

(l)
fi,j→i is

convergent, then C
(l)
j→fi,j

is also convergent. In this proof, it is assumed that C(l)
fi,j→i and C

(l)
j→fi,j

have already converged to C
(∗)
fi,j→i and C

(∗)
j→fi,j

, respectively, as the convergence of message

covariance matrices do not depend on the message mean vectors.

Substituting (16) into (13), we obtain the mean update rules from factor nodes to variable

nodes as

v
(l)
fi,j→i = C

(∗)
fi,j→iA

T
i,j

[
Ri,j +Aj,iC

(∗)
j→fi,j

AT
j,i

]−1

︸ ︷︷ ︸
,Mi,j

(29)

{
ri,j −Aj,iC

(∗)
j→fi,j︸ ︷︷ ︸

,Fi,j

∑
f∈B(ωj)\fj,i

[
C

(∗)
f→j

]−1
v
(l−1)
f→j

}
.

Without loss of generality, define v(l) as a vector containing all v(l)
fi,j→i with ascending index3

first on i and then on j. We can write (29) as

v
(l)
fi,j→i = Mi,jri,j −Mi,jFi,jΓi,jv

(l−1), (30)

where Γi,j is a block matrix containing
[
C

(∗)
fj,k→j

]−1 as component blocks such that (30) is

satisfied. Stacking (30) for all i and j, and writing v(l) ,
[
(v

(l)
x )T , (v

(l)
y )T

]T , where v(l)
x containing

v
(l)
fi,j→i with j = 1, while v

(l)
y containing the remaining part of v(l), we obtain v
(l)
x

v
(l)
y


︸ ︷︷ ︸

,v(l)

=

 X Y

Q1 Q2


︸ ︷︷ ︸

,Q

 v
(l−1)
x

v
(l−1)
y


︸ ︷︷ ︸

,v(l−1)

+

 ξx

ξy


︸ ︷︷ ︸

,ξ

. (31)

On the other hand, putting j = 1 into (29) and notice that Cf1→1 = 0 and C
(∗)
1→fi,1

= 0, we

have

v
(l)
fi,1→i =

[
AT

i,1R
−1
i,1Ai,1

]−1
AT

i,1R
−1
i,1 (ri,1 −A1,iω1). (32)

which shows that v(l)
fi,1→i never changes with iteration number l. Since v

(l)
x containing v

(l)
fi,1→i as

3The order of v(l)
fi,j→i arranged in v(l) in fact can be arbitrary as long as it does not change after the order is fixed.
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components, v(l)
x is fixed and independent of l. Hence, we can write (31) equivalently as vfix

v
(l)
y


︸ ︷︷ ︸

v(l)

=

 I 0

Q1 Q2


︸ ︷︷ ︸

Q

 vfix

v
(l−1)
y


︸ ︷︷ ︸

v(l−1)

+

 0

ξy


︸ ︷︷ ︸

ξ

(33)

where vfix = v
(l)
x represents the stacked messages for j = 1. Notice that [Q1,Q2] depends on

−Mi,jFi,jΓi,j , while ξy depends on Mi,jai,j . It is obvious that Q1, Q2 and ξy are independent

of iteration number l. Next, we will show a property of Q2.

Since Eωi,ωj ,ni,j
{ri,j} = E{Ai,jωi +Aj,iωj + ni,j} = 0, taking expectation on both sides of

(33), we have  v̄fix

v̄
(l)
y


︸ ︷︷ ︸

,v̄(l)

=

 I 0

Q1 Q2


︸ ︷︷ ︸

Q

 v̄fix

v̄
(l−1)
y


︸ ︷︷ ︸

,v̄(l−1)

(34)

or equivalently

v̄(l) = Qlv̄(0), (35)

where x̄ denotes the expectation of x. Since there is always a positive value η, satisfying η >∑
i̸=j |[Q]i,j| for all i, we have ηI + Q is strictly diagonally dominant and then ηI + Q is

nonsingular [43]. Hence, arbitrary initial value v̄(0) can be expressed in terms of the eigenvectors

of ηI + Q as v̄(0) =
∑D

d=1 cdqd, where q1, q2,· · · , qD are the eigenvectors of ηI + Q. Since

the eigenvectors of ηI +Q is the same as that of Q, and the eigenvalues of ηI +Q are η+ λd

(1 6 d 6 D), where λd is the eigenvalue of Q, we have

v̄(l) = Qlv̄(0) =
D∑

d=1

cdλd
lqd. (36)

Without loss of generality, suppose λd are arranged in descending order as below

|λ1| ≥ |λ2| ≥ · · · ≥ |λD|. (37)

Let the eigenvalue with the largest magnitude has a multiplicity of d0. Then λd/λ1 < 1 for

d > d0 and (λd/λ1)
l = 0 if l is large enough. We then obtain

v̄(l) = λl
1

d0∑
d=1

cdqd, (38)

for large l. Taking expectation on (32), we have v̄
(l)
fi,1→i = −

[
AT

i,1R
−1
i,1Ai,1

]−1
AT

i,1R
−1
i,1A1,iω1. It

is obvious that v̄(l)
fi,1→i never change with the iteration number l. Hence, the first element of v̄(l)
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is v̄(l)(1) , γc, which is a constant, and according to (38), we have λl
1 =

γc∑d0
d=1 cdqd(1)

for l large

enough. Substituting it back to (38) yields

v̄(l) =
γc

∑d0
d=1 cdqd∑d0

d=1 cdqd(1)
. (39)

It is obvious that v̄(l) does not change when l is large enough, and therefore, v̄(l) in (35) converges.

Since (34) and (35) are equivalent, v̄(l)
y in (34) also converges. With iteration equation in (34)

rewritten as

v̄(l)
y = Q2v̄

(l−1)
y +Q1v̄fix, (40)

and since (40) converges, the spectrum radius ρ(Q2) < 1 [44].

Now rewriting (33) as

v(l)
y = Q2v

(l−1)
y +Q1vfix + ξy. (41)

With Q1vfix being a constant vector, and ρ(Q2) < 1, we also have (41) converges. Thus, the

sequence v
(l)
fi,j→i in (29) is convergent for any initial vectors v(0)

fi,j→i [44]. Finally, with µ
(l)
i defined

in (18), since P
(l)
i , C(l)

fi,j→i and v
(l)
fi,j→i converge, we can draw the conclusion that the vector

sequence {µ(1)
i ,µ

(2)
i , . . .} converges. �

Although Theorem 2 states that the proposed iterative message mean µ
(l)
i converges to a

fixed point, we still need to answer the important question that how accurate the converged

µ∗
i = liml→+∞ µ

(l)
i is?

Theorem 3. The converged BP message mean vector µ∗
i equals the centralized ML estimate

ω̂ML
i . Furthermore, the estimation MSE of µ∗ = [(µ∗

2)
T , . . . , (µ∗

K)
T ]T asymptotically (in high

SNR or large training length N or both) equals the centralized CRB of ω = [ωT
2 , . . . ,ω

T
K ]

T :

CRB(ω) =
(
ATR−1A

)−1
, (42)

where A is obtained from stacking (4) into the form of r = Aω + n, with r being a vector

containing ri,j with ascending index first on i and then on j; R is a block diagonal matrix with

Ri,j as block diagonal and with the same order as ri,j in r.

Proof : Since the likelihood function in (6) is multivariate Gaussian and it is known that if

Gaussian BP converges, the mean of the beliefs computed by BP equals the centralized ML

estimate [37] from

r = Aω + n, (43)
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where r is a vector containing ri,j with ascending indexes first on i and then on j; and n

containing ni,j with the indexes i, j ordered in the same way as in r. Since n ∼ N (n;0,R),

where R is a block diagonal matrix with Ri,j as block diagonal and with the same order as ri,j

in r, and (43) is a standard linear model, the ML estimator and thus µ∗ =
[
(µ∗

2)
T , . . . , (µ∗

K)
T
]T

asymptotically approach the CRB for ω given by CRB(ω) =
(
ATR−1A

)−1 [32]. �

V. SIMULATION RESULTS

This section presents numerical results to assess the performance of the proposed algorithm.

Estimation MSE are presented for CFO estimation over the whole random network, which

consists of 14 nodes randomly located in a [0, 100] × [0, 100] area. The communication range

for each node is 38. In each trial, the normalized CFO of each antenna on each node (except

node 1 where CFO is zero) is generated independently and is uniformly distributed in the range

2π[−0.2, 0.2]. Besides, the channel between each pair of nodes is Rayleigh flat-fading. The

relative CFOs and channels are first estimated based on the algorithm in [19], with training length

N . Then the BP algorithm is executed for network-wide CFOs estimation and compensation.

5000 simulation runs were performed to obtain the average performance for each point in the

figures.

First, consider the network shown in Fig. 2 and each node equipped with two antennas. We

employ training with length N = 16 for relative CFOs estimation. The SNR during training stage

and BP message passing are the same. Fig. 4 shows the sum MSE4 of ωi for i = {6, 2} as a

function of BP iteration number l. These two nodes are chosen to represent nodes close to (node

2) and far away (node 6) from the reference node. It can be seen that for both SNR= 10dB and

30dB, the MSEs decrease quickly and approach the corresponding CRBs in only a few iterations.

Furthermore, a close inspection reveals that convergence is slightly faster at SNR = 30dB than

that at SNR = 10dB, but the difference is very small.

Fig. 5 shows the average sum MSE of {ωi}i∈V versus SNRs for different training length N .

The network is randomly generated within the [0, 100]× [0, 100] area in each trial, and each node

is equipped with 2 antennas. As shown in the figure, the MSEs of proposed distributed algorithm

achieve the best performance as the MSEs touch the corresponding CRBs. This verifies Theo-

rem 3. Furthermore, with increasing N , the approximation of Ri,j to B
{i,j}
ϵ ({ϵk}

Nj

k=1, {hk}
Nj

k=1)

4Sum MSE over the two antennas.
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becomes better at lower SNR, and thus the estimation MSEs of ωi achieves the corresponding

CRBs earlier.

Finally, we compare the performance of the proposed algorithm with that of the consensus

based D-FLL approach in [29] and pulse-coupled oscillator method in [30], where CFOs are

adjusted to an average common value in each iteration based on consensus principle. The

estimation error of consensus method at the lth iteration is measured by the total mean-square

deviation of the individual variables from their average, which is

MSE(l)
consensus =

1

K

K∑
i=1

E
{∥∥µ(l)

i − 1

K

K∑
i=1

µ
(l)
i

∥∥2
}
. (44)

On the other hand, the proposed algorithm estimates the absolute CFO values, therefore, the

network estimation MSE at the lth iteration is

MSE(l)
BP =

1

K − 1

K∑
i=2

E
{∥∥µ(l)

i − ωi

∥∥2
}
. (45)

We consider the 14 nodes randomly located within the [0, 100] × [0, 100] area and for fair

comparison with D-FLL and pulse-coupled oscillator method, each node is equipped with a

single antenna. For D-FLL method, pilots of length 16 are transmitted by each node in each

iteration, while for the pulse-coupled oscillator method, in each iteration, one pilot symbol is

sent from each node for consensus updating. For the proposed method, 16 pilots are used in

the joint CFO and channel estimation at the initial phase. The convergence performance of the

three algorithms at different SNRs are shown in Fig. 6. It is apparent that convergence speed of

the consensus based algorithms decrease with SNRs, and in general takes several hundreds of

iterations to converge. For example, for D-FLL method at SNR = 5dB, around 800 iterations are

required. While the proposed method requires only a few iterations to approach the corresponding

CRBs, the fast convergence comes from the exchanges of slightly more information (two real

numbers represnting the mean and variance) compared to consensus methods.

VI. CONCLUSIONS

In this paper, a fully distributed CFOs estimation algorithm for cooperative and distributed

networks was proposed. The algorithm is based on BP and is easy to be implemented by

exchanging limited amount of information between neighboring nodes, thus is scalable with

network size. Furthermore, it was shown analytically that the proposed distributed algorithm
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converges to the optimal solution with estimation MSE coinciding with the centralized CRB

asymptotically regardless of network topology. Simulation results showed that the MSE of the

proposed method approaches the CRB within only a few iterations.
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