
Speed Scaling on Parallel Processors

Susanne Albers, Fabian Müller and Swen Schmelzer
Department of Computer Science, University of Freiburg

Georges-Köhler-Allee 79
79110 Freiburg, Germany

{salbers, fmueller, sschmelz}@informatik.uni-freiburg.de

ABSTRACT
In this paper we investigate algorithmic instruments leading
to low power consumption in computing devices. While pre-
vious work on energy-efficient algorithms has mostly focused
on single processor environments, in this paper we investi-
gate multi-processor settings. We study the basic problem
of scheduling a set of jobs, each specified by a release time,
a deadline and a processing volume, on variable speed pro-
cessors so as to minimize the total energy consumption.
We first settle the complexity of speed scaling with unit

size jobs. More specifically, we devise a polynomial time
algorithm for agreeable deadlines and prove NP-hardness
results for arbitrary release dates and deadlines. For the
latter setting we also develop a polynomial time algorithm
achieving a constant factor approximation guarantee that
is independent of the number of processors. Additionally,
we study speed scaling of jobs with arbitrary processing re-
quirements and, again, develop constant factor approxima-
tion algorithms. We finally transform our offline algorithms
into constant competitive online strategies.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Scheduling

General Terms
Algorithms, Theory

Keywords
multiprocessor scheduling, energy efficiency, approximation
algorithms, online algorithms, NP-completeness

1. INTRODUCTION
With increasing CPU clock speeds and higher levels of

integration in processors, memories and controllers, power
consumption has become a major concern in computer sys-
tem design over the past years. Power dissipation is critical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’07, June 9–11, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-667-7/07/0006 ...$5.00.

not only in battery operated mobile computing devices but
also in desktop computers and servers. Electricity costs im-
pose a substantial strain on the budget of data and comput-
ing centers, where servers and, in particular, CPUs account
for 50–60% of the energy consumption. In fact, Google en-
gineers, maintaining thousands of servers, recently warned
that if power consumption continues to grow, power costs
can easily overtake hardware costs by a large margin [5]. In
addition to costs, energy dissipation causes a thermal prob-
lem. Most of the consumed energy is converted into heat,
resulting in wear and reduced reliability of hardware com-
ponents.
On an algorithmic level there are two mechanisms to save

energy. (1) Speed scaling: Microprocessors currently sold by
chip makers such as AMD and Intel are able to operate at
variable speed. The higher the speed, the higher the power
consumption is. Speed scaling techniques dynamically ad-
just the speed of a processor executing a set of computing
tasks. The goal is to construct energy-efficient schedules,
using lower processing speeds, while still guaranteeing a de-
termined service. (2) Sleep states: When a system is idle,
it can be put into a low-power sleep state. One has to find
out when to shut down a system, taking into account that
a transition back to the active mode requires extra energy.
This paper focuses on dynamic speed scaling algorithms.

Initiated by a seminal paper of Yao et al. [15] there has re-
cently been considerable research interest in the design and
analysis of speed scaling strategies, see e.g. [1, 2, 3, 5, 6, 7,
8, 11, 13, 15]. While most of the previous work considers
single processor environments, in this paper we study multi-
processor settings. Multi-processor speed scaling is a defi-
nite issue in desktop computers and servers, equipped with
dual or multiple processors. The topic is interesting in lap-
tops as well, as computer manufacturers have just launched
their first dual-processor notebooks. A general trend in
hardware design is to develop architectures with multiple
CPUs. AMD has introduced a “Quad-Core Design” and ar-
chitectures with eight CPUs on one die are being developed.
Furthermore, Intel has recently done experiments with 80
cores on one chip [10].
We will investigate the following basic speed scaling prob-

lem. We are given n jobs that have to be processed on m
identical variable speed processors working in parallel. Each
job i is specified by a release date r(i), a deadline d(i) and
a processing volume p(i). The processing volume represents
the amount of work that must be finished to complete the
job. Each of them processors may independently operate at
variable speed. The power consumption function depending

289

on speed s is given by P (s) = sα, where α > 1 is a constant.
If a processor runs at speed s for δ time units, then a work
of δs is finished and the consumed energy is δsα. At any
time a processor can handle only one job, and each job can
reside on only one processor. We allow preemption of jobs
but disallow migration of jobs among processors. The goal
is to find a feasible schedule that minimizes the total energy
consumed on all the processors.
Both offline and online scenarios are of interest. In the

offline setting all jobs and their characteristics are known in
advance. In the online case, we learn about a job i at its
release date r(i). Following [14] we call an online algorithm
c-competitive if, for any sequence of jobs, the incurred en-
ergy is upper bounded by c times the optimum energy for
that sequence.
Previous work: The single processor variant of the speed

scaling problem defined above was introduced by Yao et
al. [15] and has been investigated the most among the pro-
posed energy management settings [3, 4, 6, 7, 11, 15]. Yao
et al. showed that on a single processor optimal schedules
can be computed in polynomial time. They gave an efficient
algorithm that repeatedly identifies time intervals of high-
est density . The density of an interval I is the total work
released and to be completed in I divided by the length of
I. The algorithm repeatedly schedules jobs in highest den-
sity intervals and takes care of reduced subproblems. Yao
et al. [15] also proposed two online algorithms, called Op-
timal Available and Average Rate, and proved that Aver-
age Rate achieves a competitiveness of αα2α−1. Bansal et
al. [3] analyzed Optimal Available and showed that its com-
petitiveness is exactly αα. Additionally, Bansal et al. devel-
oped a new algorithm with an improved competitive ratio of
2(α/(α−1))αeα. They also gave a lower bound of Ω((4/3)α)
on the competitive factor of any randomized speed scaling
algorithm, demonstrating that the exponential dependence
on α is inherent in the performance guarantees.
Irani et al. [11] studied an extended scenario where, in

addition to speed scaling, a scheduler may take advantage
of a sleep state to save energy. They presented an offline
algorithm that achieves a 3-approximation and developed a
strategy that transforms an online algorithm for the setting
without sleep state into an algorithm for the setting with
sleep state. Energy minimization with several sleep states
was addressed in [2]. Recently, Baptiste [4] considered the
problem of minimizing the number of idle periods when a
set of unit size jobs must be scheduled on a processor with
one sleep state. He showed that the offline variant is poly-
nomially solvable.
Much less is known for multi-processor speed scaling. A

simple reduction from 3-Partition implies that energy min-
imization is an NP-hard optimization problem if the jobs’
processing requirements may take arbitrary values. This
holds even if all release dates and deadlines are identical,
i.e. r(i) = r and d(i) = d, for some r and d and all i. An-
other simple observation is that for this case of identical
release dates and deadlines a polynomial time approxima-
tion scheme can be derived using the PTAS for makespan
minimization on parallel machines developed by Hochbaum
and Shmoys [9]. A faster 1.13-approximation algorithm was
given by Chen et al. [7]. They also showed that if job mi-
gration among processors is allowed, an optimal schedule
can be computed in polynomial time. Pruhs et al. [12] con-
sider speed scaling on parallel processors if there are prece-

dence constraints among jobs and the goal is to minimize
the makespan.
Our contribution: We present the first algorithmic study

of multi-processor speed scaling where jobs may have indi-
vidual release dates and deadlines. Most of our paper con-
centrates on the offline scenario. In the first part of the
paper we settle the complexity of the problem with unit size
jobs. We may assume w.l.o.g. that p(i) = 1, for all i. We
prove that if job deadlines are agreeable, an optimal multi-
processor schedule can be computed in polynomial time. In
practice, instances with agreeable deadlines form a natural
input class where, intuitively, jobs arriving at later times
may be finished later. Formally, deadlines are agreeable
if, for any two jobs i and i′, relation r(i) < r(i′) implies
d(i) ≤ d(i′). We then show that if the jobs’ release dates and
deadlines may take arbitrary values, the energy minimiza-
tion problem is NP-hard, even on two processors. For a vari-
able number of processors, energy minimization is strongly
NP-hard. Furthermore, for arbitrary release dates and dead-
lines we develop a polynomial time algorithm that achieves
a constant factor approximation guarantee of αα24α.
In the second part of the paper we address multi-processor

speed scaling where the processing requirements p(i) may
take arbitrary values. (Recall that the problem is NP-hard
even for identical release dates and deadlines.) For agree-
able deadlines we present constant factor approximation al-
gorithms. If all jobs have a common release date or have a
common deadline, the approximation factor is 2(2− 1/m)α.
Otherwise the ratio is αα24α. Finally, we show that our
offline algorithms can be transformed into online strategies
attaining constant competitive ratios.
All of our algorithms are simple and fast, which is an im-

portant aspect in energy-efficient computing environments.
In a first step the algorithms assign jobs to processors, us-
ing classical dispatching rules such as Round Robin or List
scheduling. Once the assignment is done, each processor in-
dependently computes its own service schedule. Hence, our
algorithms can also be applied in fully distributed systems
as well.

2. UNIT SIZE JOBS WITH AGREEABLE
DEADLINES

The polynomial time algorithm we develop is essentially
a Round Robin strategy. We first sort the jobs according to
their release dates and then assign them to processors using
Round Robin. For each processor, given the assigned jobs,
an optimal schedule is computed using the algorithm by Yao
et al. [15].

Algorithm RR:
1. Number the jobs in order of non-decreasing release

dates. Jobs having the same release date are num-
bered in order of non-decreasing deadlines. Ties may
be broken arbitrarily.

2. Given the sorted list of jobs computed in step 1, assign
the jobs to processors using the Round Robin policy.

3. For each processor, given the jobs assigned to it, com-
pute an optimal service schedule.

Theorem 1. For a set of unit size jobs with agreeable
deadlines, algorithm RR computes an optimal service sched-
ule.

290

In the remainder of this section we prove Theorem 1. We
first state a simple fact regarding the execution order of jobs
on processors.

Fact 1. Given a feasible schedule for jobs with agree-
able deadlines, on any processor the assigned jobs can be
reordered such that they are executed in order of increasing
job index. This reordering does not cause a higher energy
consumption.

In this proof, we index the processors from 0 to m−1. We
show that there exists an optimal schedule in which the i-th
job of the sorted list computed in step 1 of RR is assigned
to processor i mod m. This is exactly the job assignment
computed by Round Robin. The theorem then follows since
the algorithm by Yao et al. [15] constructs optimal single
processor schedules. deadline.
Consider an optimal schedule and let SOPT be the cor-

responding optimal schedule where jobs are executed in or-
der of increasing job index on any processor as described in
Fact 1. Let a(i) be the time when processing of job i starts
and let b(i) be the time when processing ends in SOPT . We
show inductively for increasing values of i that the following
invariant holds.

(I) There exists an optimal schedule in which any job k
with 0 ≤ k ≤ i is scheduled on processor k mod m.
Furthermore b(k − 1) ≤ b(k), for 1 ≤ k ≤ i.

For the inductive basis we show that there exists an opti-
mal schedule in which job 0 is scheduled on processor 0. By
Fact 1 we know that job 0 must be the first job executed on
some processor j. If j = 0 there is nothing so show. Other-
wise, we swap the complete work assignment of processors
0 and j and we are done again. Thus the invariant holds for
i = 0.
Suppose the invariant holds for i and let SOPT be the

corresponding schedule. We assume that on each processor
jobs are executed in order of increasing job index; this prop-
erty follows from (I) for jobs indexed at most i and from
Fact 1 for jobs indexed larger than i. We prove that (I)
holds for i + 1 as well. We first show that there exists an
optimal schedule in which job i+1 is executed on processor
(i+ 1) mod m. Assume that i+ 1 is scheduled on processor
j 6= (i + 1) mod m. By (I) and Fact 1 we have that the
first job executed on processor (i+1) mod m with job index
greater than i has to be some job i+k for some k ≥ 2. Note
that if no such job i + k exists, job i + 1 is can obviously
be scheduled on processor (i+1) mod m without increasing
energy consumption since by invariant (I) on all other pro-
cessors the finishing time of the last job with index at most i
must be greater or equal to that on processor (i+1) mod m.
We now distinguish three cases.
Case 1: We first assume a(i + k) ≥ a(i + 1) (see Figure

1a): In this case suppose first that i + 1 ≥ m. We observe
that by (I) job i + 1 −m is the job executed on processor
(i + 1) mod m immediately before i + k. Let l denote the
job with highest job index less than or equal to i executed
on processor j (where i+1 is scheduled in SOPT). Then by
(I) we have a(i + 1) ≥ b(l) ≥ b(i + 1 −m). Therefore, we
can just swap the complete work assignments of processors
(i + 1) mod m and j after time a(i + 1). If i + 1 < m, the
same argument works because job i+k has no predecessor on
processor (i+1) mod m. In either case the schedule remains
feasible and the energy consumption does not increase.

Case 2: In this case we assume a(i + k) < a(i + 1) and
b(i+ k) ≤ b(i+1) (see Figure 1b). Our goal is to swap jobs
i+1 and i+ k. To this end we exchange start and finishing
times of jobs i+1 and i+k as follows. Let a′(i+k) := a(i+1),
b′(i+k) := b(i+1) and a′(i+1) := a(i+k), b′(i+1) := b(i+k).
We can now execute job i + 1 on processor (i + 1) mod m
(where i+k was scheduled earlier) and job i+k on processor
j. The new schedule is feasible since r(i+1) ≤ r(i+ k) and
d(i+ 1) ≤ d(i+ k) by the agreeable deadline property. The
energy consumption did not change because the total energy
consumed by i+1 and i+k remains unchanged for they have
unit size.
Case 3: For the last case we assume a(i+ k) < a(i+ 1)

but b(i + k) > b(i + 1) (see Figure 1c). We can now ex-
change the start times of jobs i + 1 and i + k by setting
a′(i + 1) := a(i + k) and a′(i + k) := a(i + 1). Since start
times are exchanged, we can now swap the complete work
assignment on processor (i + 1) mod m after (and includ-
ing) job i+ k with the work assignment on processor j after
(and including) job i+ 1. The schedule is feasible since (by
agreeable deadlines) r(i + 1) ≤ r(i + k). The power con-
sumption of jobs i + 1 and i + k in the original schedule is
(b(i+ 1)− a(i+ 1))1−α + (b(i+ k)− a(i+ k))1−α while we
have (b(i+1)−a(i+k))1−α+(b(i+k)−a(i+1))1−α in the
modified schedule. By the convexity of the power function
the latter expression is smaller because a(i+ k) < a(i+ 1).
Note that the invariant (I) was not violated by any of the

above manipulations since we never modified the location
or finishing time of any job with index smaller than i + 1.
Moreover in the resulting schedule, as desired, job i + 1 is
scheduled on processor (i + 1) mod m. It remains to show
that b(i+ 1) ≥ b(i).
Assume on the contrary that b(i + 1) < b(i) in SOPT .

Now determine job k with minimum value b(k) such that
b(i+1) < b(k). The index k satisfies 1 ≤ k ≤ i. Let j be the
processor handling job k. We argue that a(k) ≤ a(i + 1).
This obviously holds if job k is the first job processed on
processor j because r(k) ≤ r(i+1) and job k can be started
as early as job i+1. If job k has a predecessor on processor
j, then by the inductive hypothesis, this is job k −m while
the predecessor of job i + 1 on processor (i + 1) mod m is
indexed i + 1 −m. Again the inductive hypothesis implies
b(k −m) ≤ b(i + 1 −m) and job k can be started as early
as a(i + 1). We now exchange the finishing times of jobs
i + 1 and k, i.e. b′(i + 1) := b(k) and b′(k) := b(i + 1),
and simultaneously swap the complete work assignments of
processors i+1 and j after time b(i+1) and b(k), respectively
(this is depicted as first step in Figure 2). The resulting
schedule is feasible because d(k) ≤ d(i + 1). The power
consumption of jobs k and i + 1 in the original schedule is
(b(k)− a(k))1−α + (b(i+1)− a(i+1))1−α while that in the
modified schedule is (b(i+1)−a(k))1−α+(b(k)−a(i+1))1−α.
By the convexity of the power function the latter expression
is smaller because a(k) ≤ a(i+1) and b(k) > b(i+1). Note,
that the invariant (I) is not violated by this manipulation
since we chose the smallest job k such that b(k) > b(i+1) for
exchanging finishing times. So the ordering of the finishing
times of any two jobs excluding job i+ 1 is not affected.
It is still possible that b(i + 1) is smaller than b(i), but

the value of b(i + 1) has increased and is equal to a former
finishing time. Hence iterating the above exchanges finitely
often (in fact, at most m times), we obtain a schedule satis-
fying b(i+1) ≥ b(i). Two steps of this procedure are shown

291

i + 1

i + 1
B

A

i + k

Initial optimal schedule:

no job here by (I)

i + 1
i + 1

B

A

i + k

New schedule:

j

j

(a) Case 1

i + k

i + 1 A

B

i + 1

i + k A

B

(b) Case 2

i + k

i + 1 A

B

A

B

i + 1

i + k

(c) Case 3

Figure 1: Distinction of cases. Processor numbers are modulo m.

i + 1

A

B

C

i + 1

k B

A

C

i + 1

k

i + 1

A

C

Bk

Initial schedule Schedule after first step Schedule after second step

j

j′
k′ k′ k′

Figure 2: We adjust the finishing time of job i+ 1 step by step.

in Figure 2, where some job k′ ≤ i on some processor j′ has
strictly greater finishing time than job i+ 1.

3. UNIT SIZE JOBS WITH ARBITRARY
RELEASE DATES AND DEADLINES

We consider unit size jobs with arbitrary release dates and
deadlines. We first show that the problem of minimizing the
total consumed energy on parallel processors is NP-hard.
We then develop a polynomial time algorithm that achieves
a constant factor approximation guarantee independent of
m. The proofs of the following NP-hardness results are given
in the appendix.

Theorem 2. Given a set of unit size jobs with arbitrary
release dates and deadlines, the problem of minimizing the
total energy on two processors is NP-hard.

Theorem 3. Given a set of unit size jobs with arbitrary
release dates and deadlines, the problem of minimizing the
total energy on m processors is strongly NP-hard.

We next develop a constant factor approximation algo-
rithm. The algorithm, called Classified Round Robin (CRR),
first divides the given jobs into classes and then, when as-
signing jobs to processors, applies the Round Robin strat-
egy independently to each class. Once the job assignment
is done, for each processor, an optimal schedule is com-
puted. Recall that each job has a processing requirement
of p(i) = 1. Let δi = 1/(d(i) − r(i)) be the density of
job i, which corresponds to the minimum average speed
necessary to process the job in time if no other jobs were

present. Let J be the set of all jobs and ∆ = maxi∈J δi
be the maximum density of the jobs. We partition J into
classes Ck, k ≥ 0, such that class C0 contains all jobs of
density ∆ and Ck, k ≥ 1, contains all jobs i with density
δi ∈ [∆2−k,∆2−(k−1)). Thus in each class job densities dif-
fer by a factor of at most 2.

Algorithm CRR:

1. For each class Ck, first sort the jobs in non-decreasing
order of release dates and then assign them to proces-
sors according to the Round Robin policy, ignoring job
assignments done for other classes.

2. For each processor, given the jobs assigned to it, com-
pute an optimal service schedule.

We start with a lemma that relates energy consumptions
in single-processor and m-processor schedules.

Lemma 1. For any set of jobs, the energy of an optimal
schedule on m processors is at least 1/mα−1 times that of
an optimal schedule on one processor.

Proof. For the given set of jobs, let SmOPT be an optimal
schedule on m processors. We partition the time horizon
of SmOPT into a set I of intervals such that for any I ∈
I, the speed does not change on any of the m processors
throughout I. Let sI,j be the speed of processor j in I
and let sI =

∑m
j=1 sI,j be the total summed speed in that

interval. The energy consumption of SmOPT is

292

EOPT =
∑

I∈I

m
∑

j=1

|I|(sI,j)α

≥
∑

I∈I

|I|m(sI/m)α =
1

mα−1

∑

I∈I

|I|sαI , (1)

where the inequality follows from the convexity of the power
consumption function.
Now consider the single processor schedule S1 in which the

speed in interval I is set to sI , Always processing the avail-
able job with the earliest deadline gives a feasible schedule:
At any time the total amount of work that can be finished in
S1 is exactly equal to that actually completed in SmOPT . In
S1 we never run out of available jobs because there are jobs
available in SmOPT at that time. Thus the work completed
by S1 is exactly equal to that of SmOPT . Always sequenc-
ing available jobs according to the Earliest Deadline policy
yields a feasible schedule. The energy consumption of S1

is
∑

I∈I |I|s
α
I ≥ E1

OPT , where E
1
OPT denotes the optimum

energy of a single processor schedule. Combining the last
inequality with (1) we obtain the lemma.

In the following we analyze CRR for an arbitrary set J
of jobs. In a first step we transform J into a set J ′. More
specifically, for any job i ∈ J belonging to class Ck we
introduce a unit size job i′ ∈ J ′ with release date r(i′) = r(i)
and deadline d(i′) = r(i′)+2k/∆. Hence the job’s density is
δi′ = 1/(d(i′)− r(i′)) = ∆/2k, which is the smallest density
in class Ck. We have d(i) ≤ d(i′) because d(i) = r(i)+1/δi ≤
r(i′) + 2k/∆ = d(i′). Thus J ′ can be viewed as a relaxed
problem instance in which jobs have larger deadlines. Under
the described transformation jobs do not change class and
keep their original release date. Thus, CRR assigns jobs
of J ′ to exactly the same processors as jobs of J . We will
analyze CRR on the schedule for J ′ and show that its energy
consumption E′CRR is bounded by αα23α times the optimum
energy E′OPT for J ′. Obviously, the optimum energy EOPT

for the original set J is at least E′OPT . In a final step we
will argue that the energy used by CRR on J ′ is at most
2α times that spent by CRR on J . This establishes an
approximation ratio of αα24α.
We concentrate on job set J ′. The relevant scheduling

horizon is [0, T), where T = max{d(i′) | i′ ∈ J ′}. For any
t ∈ [0, T), call a job i′ active at time t if r(i′) ≤ t ≤ d(i′).
Let ck(t) be the number of jobs of J ′ that belong to Ck
and are active at time t. The next lemma shows that CRR
constructs balanced processor assignments with respect to
each job class.

Lemma 2. For any time t, CRR assigns to each processor
at most dck(t)/me jobs i′ ∈ J ′ from Ck active at time t.

Proof. Fix a time t and a class Ck. All jobs of J ′ be-
longing to Ck are active for exactly 2k/∆ time units. When
CRR has sorted the class Ck jobs in order of non-decreasing
release dates, the jobs active at time t form a consecutive
subsequence in the sorted job list. When the subsequence is
assigned to processors using Round Robin, every m-th job
is placed on a fixed processor. Thus each processor receives
at most dck(t)/me jobs.

When analyzing CRR on J ′, rather than the optimal
schedules constructed in step 2 of the algorithm, we will

consider schedules generated according to the Average Rate
(AVR) algorithm by Yao et al. [15]. This algorithm sets pro-
cessor speeds according to job densities. For any processor
j and time t, where 1 ≤ j ≤ m and t ∈ [0, T), let ckj(t)
be the number of jobs from class Ck active at time t that
have been assigned by CRR to processor j. Set the speed of
processor j at time t to

sj(t) =
∑

k≥0

ckj(t)∆/2
k. (2)

Sequencing available jobs on processor j according to the
Earliest Deadline policy yields a feasible schedule. Let S′AV R,j
be the resulting schedule on processor j and E′AVR,j the en-
ergy consumption of S′AV R,j . As CRR computes an opti-
mal schedule for each processor, its total energy E′CRR is
bounded by

E′CRR ≤
m
∑

j=1

E′AVR,j .

We next estimate the energy volumes E′AVR,j , 1 ≤ j ≤
m. To this end we consider two energy bounds. Firstly,
suppose that job i′ ∈ J ′ is processed at speed 1/(d(i′) −
r(i′)) throughout its active interval. The minimum energy
necessary to complete the job is (d(i′)− r(i′))1−α and hence
the minimum energy necessary to complete all jobs i′ ∈ J ′
is at least

E′min =
∑

i′∈J ′
(d(i′)− r(i′))1−α =

∑

k≥0

∑

i′∈Ck

(2k/∆)1−α. (3)

Secondly, we consider the single processor schedule S′AV R
constructed by AVR for J ′. More specifically, at time t the
speed is set to

s(t) =
∑

k≥0

ck(t)∆/2
k. (4)

A result by Yao et al. [15] implies that the energy E′AV R
of S′AV R is at most αα2α−1 times the energy of an optimal
single processor schedule. Using Lemma 1 we obtain that

E′AV R ≤ αα2α−1mα−1E′OPT . (5)

We will prove

m
∑

j=1

E′AVR,j ≤ 22α(E′min +m1−αE′AV R). (6)

Fix a processor j and a time t. Let K1 be the set of job
class indices k such that exactly one job i′ ∈ J ′ from Ck
active at time t is assigned by CRR to processor j. Set
k1 = min{k | k ∈ K1}. Similarly, let K2 be the set of
job class indices k such that at least two jobs i′ ∈ J ′ from
Ck active at time t are assigned by CRR to processor j.
Using (2) and Lemma 2 we obtain

sj(t) =
∑

k∈K1

∆/2k +
∑

k∈K2

ckj(t)∆/2
k

≤ ∆/2k1−1 +
∑

k∈K2

dck(t)/me∆/2k

≤ ∆/2k1−1 +
∑

j∈K2

(2ck(t)/m)∆/2k.

293

Using (4) we find

sj(t) ≤ 4max{∆/2k1 , 1
m
s(t)}. (7)

Note that ∆/2k1 is the minimum average speed necessary
to complete the job i′ ∈ J ′ from class Ck1 active at time t
that was assigned by CRR to processor j. Let J ′j be the set
of jobs assigned by CRR to processor j. We integrate sj(t)α,
first over all t where the first term of (7) is dominating, and
then over all t where the second term of (7) is dominating.
Integration of the first term gives an upper bound on the
energy consumption that is at most 4α times the minimum
energy necessary to complete jobs assigned to processor j,
which is 4α

∑

k≥0
∑

i′∈Ck∩J ′j
(2k/∆)1−α. Integration of the

second term gives an upper bound of 4α 1
mα

E′AV R. Hence

E′AV R,j ≤ 4α(
∑

k≥0

∑

i′∈Ck∩J ′j

(2k/∆)1−α +
1

mα
E′AV R).

Summing over all j and applying (3) we obtain (6). Com-
bining (5) and (6) and using the fact that E′min ≤ E′OPT , we
conclude E′CRR ≤

∑m
j=1 E

′
AV R,j ≤ αα23αE′OPT . We finally

observe that a job i ∈ J has a density that is at most twice
as high as that of the corresponding job i′ ∈ J ′. Hence
a doubling of the speeds in the schedules SAV R,j yields a
feasible schedule for J .

Theorem 4. For unit size jobs, algorithm CRR achieves
an approximation ratio of αα24α.

4. JOBS WITH ARBITRARY PROCESSING
REQUIREMENTS

In this section we study the problem that the jobs’ pro-
cessing requirements p(i)may take arbitrary values. We first
assume that all jobs are released at time 0 but have individ-
ual deadlines. We present a polynomial time algorithm that
achieves an approximation factor of 2(2 − 1

m
)α. The strat-

egy can also be used to handle jobs with individual release
dates and a common deadline. We then study the scenario
of arbitrary agreeable deadlines.
Suppose that we are given jobs with r(i) = 0, for all i.

The deadlines d(i) may take arbitrary values. Our strategy
combines Earliest Deadline and List scheduling to assign
jobs to processors. At any time, let the load of a processor
be the sum of the p(i)’s currently assigned to it.

Algorithm EDL:
1. Number the jobs in order of non-decreasing deadlines,

i.e. d(1) ≤ . . . ≤ d(n).
2. Consider the jobs one by one in the order computed in

step 1. Assign each job to the processor that currently
has the smallest load.

3. For each processor, given the jobs assigned to it, com-
pute an optimal speed sequence using the optimal of-
fline algorithm for a single processor.

In the following we evaluate EDL and first give an out-
line of the analysis. For any processor j, we define a speed
function and prove that using this speed function all jobs
assigned by EDL to processor j can be completed by their
deadline. As EDL computes an optimal schedule for the jobs

on processor j, its energy on processor j cannot be larger
than the energy Ej used by our speed function. In a second
step we show that

∑m
j=1 Ej is upper bounded by 2(2− 1

m
)α

times the total energy incurred by an optimal solution.
We assume that every processor in EDL’s schedule pro-

cesses at least one job since otherwise every processor pro-
cesses at most one job and the global schedule is optimal.
For any job i, let L(i) =

∑i
i′=1 p(i

′) be the total processing
volume up to job i. Fix a processor j and let Sj be the
set of jobs scheduled by EDL on processor j. In order to
define the speed function, we have to consider load densities
over the entire time horizon. The load density of an inter-
val is the total work to be completed during that interval
divided by the length of the interval. We identify an integer
sequence λj1 < λj2 < . . . < λjlj such that the highest density

occurs in interval [0, d(λj1)) among all [0, d(i)) with i ∈ Sj ,
the second highest density occurs in interval [d(λj1), d(λ

j
2))

among all [d(λj1), d(i)) with i ∈ Sj and so on. Formally, let
λj0 = 0, d(0) = 0 and L(0) = 0. Suppose that λj0 < . . . < λjl
have been defined and that λjl is not equal to the highest
job number in Sj . Then λjl+1 identifies a highest density
interval after d(λjl) assuming that a load of exactly L(λjl) is
completed by d(λjl), i.e.

λjl+1 = argmax
k∈Sj ,k>λ

j
l

L(k)− L(λjl)
d(k)− d(λjl)

.

Assuming that a load of exactly L(λjl−1) is finished by
time d(λjl−1), a load of L(λjl)−L(λ

j
l−1) has to be processed

on the m processors between time d(λjl−1) and d(λjl) and,
for l = 1, . . . , lj , we define

sjl =
1

m

L(λjl)− L(λ
j
l−1)

d(λjl)− d(λ
j
l−1)

(8)

as the minimum average speed to accomplish this. We ob-
serve that

sj1 ≥ s
j
2 ≥ . . . ≥ s

j
lj
, (9)

for, if there were an index l with sjl < sjl+1, then
L(λjl+1)−L(λ

j
l)

d(λjl+1)−d(λ
j
l)
>

L(λjl)−L(λ
j
l−1)

d(λjl)−d(λ
j
l−1)

and hence

L(λjl+1)− L(λ
j
l−1)

d(λjl+1)− d(λ
j
l−1)

=
L(λjl+1)− L(λ

j
l) + L(λjl)− L(λ

j
l−1)

d(λjl+1)− d(λ
j
l) + d(λjl)− d(λ

j
l−1)

>
L(λjl)− L(λ

j
l−1)

d(λjl)− d(λ
j
l−1)

,

contradicting the choice of λjl . We are now ready to specify
the speed function.
Speed function for processor j:

1. Initial setting: For any l = 1, . . . , lj , set the speed in
interval [d(λjl−1), d(λ

j
l)) to (2− 1

m
)sjl .

2. Adjustment: For any i ∈ Sj with p(i) > L(i)/m
consider the time interval [0, d(i)). For any interval
I ⊆ [0, d(i)) in which the speed is strictly lower than
(2− 1

m
)p(i)/d(i) raise the speed to that value.

294

Lemma 3. Using the above speed function, all jobs in Sj
are completed by their deadline.

Proof. On processor j we schedule the jobs in Sj in in-
creasing order of job number. Thus the jobs are scheduled
in non-decreasing order of deadlines. We first consider any
job i ∈ Sj with p(i) ≤ L(i)/m and then any i ∈ Sj with
p(i) > L(i)/m. In both cases we will prove that the job is
finished by its deadline.
Fix any i ∈ Sj with p(i) ≤ L(i)/m. We will show that

after the initial speed setting in step 1 of the speed function
definition, the job is finished by d(i). As the speed can only
increase in the adjustment step 2, the lemma then holds for
this job i. Let k be the largest integer such that λjk ≤ i. By
time d(λjk) a total load of

k
∑

l=1

(

2− 1

m

)

sjl (d(λ
j
l)− d(λ

j
l−1))

=

(

2− 1

m

) k
∑

l=1

1

m

L(λjl)− L(λ
j
l−1)

d(λjl)− d(λ
j
l−1)

(d(λjl)− d(λ
j
l−1))

=

(

2− 1

m

)

L(λjk)/m (10)

is completed on processor j. If i > λjk, then between time
d(λjk) and d(i) a load of

(

2− 1

m

)

sjk+1(d(λ
j
k+1)− d(λ

j
k))

=

(

2− 1

m

)

1

m

L(λjk+1)− L(λ
j
k)

d(λjk+1)− d(λ
j
k)

(d(i)− d(λjk))

≥
(

2− 1

m

)

1

m

L(i)− L(λjk)
d(i)− d(λjk)

(d(i)− d(λjk))

=

(

2− 1

m

)

(L(i)− L(λjk))/m (11)

is completed. The inequality follows from the definition
of λjk+1. Combining (10) and (11) we find that a total
load of at least (2 − 1

m
)L(i)/m is finished on processor j

by time d(i). It remains to argue that the total process-
ing requirement of jobs scheduled on processor j before job
i and including p(i) is at most (2 − 1

m
)L(i)/m. To this

end consider the event when EDL assigns job i to proces-
sor j. As the job is placed on the least loaded processor,
just after the assignment processor j has a load of at most
1
m

∑

i′<i p(i
′) + p(i) ≤ (2 − 1

m
)L(i)/m, and we are done

because jobs assigned to processor j at a later stage are
scheduled after job i.
Next we examine a job i with p(i) > L(i)/m. After the

speed adjustment in step 2 of the speed function definition,
processor j runs at a speed of at least (2 − 1

m
)p(i)/d(i)

throughout [0, d(i)). Thus a total work of at least (2− 1
m
)p(i)

gets finished by d(i). Again, when EDL assigns job i to pro-
cessor j, the total load on the processor is upper bounded
by 1

m

∑

i′<i p(i
′) + p(i) ≤ (2 − 1

m
)p(i) and this is indeed

the total work of jobs scheduled on processor j up to (and
including) job i.

We compare the energy incurred by the speed function to
the energy of an optimal solution. Let

E1
j =

lj
∑

l=1

(sjl)
α(d(λjl)− d(λ

j
l−1)).

This expression represents the energy used by our speed
function on processor j after the initial setting when speeds
are reduced by a factor of 2− 1

m
.

Lemma 4. An optimal solution uses a total energy on the
m processors of at least mE1

j .

Proof. Given an optimal schedule, let sl,opt be the av-
erage speed of the m processors during the time interval
[d(λjl−1), d(λ

j
l)), for l = 1, . . . , lj . By the convexity of the

power function, the total energy used by the optimal solu-
tion is

EOPT ≥ m
lj
∑

l=1

(sl,opt)
α(d(λjl)− d(λ

j
l−1)).

The speeds sl,opt must satisfy the constraint that at time
d(λjk) a load of at least L(λjk) is completed, for k = 1, . . . , lj .
In the following let δjl = d(λjl) − d(λjl−1). We next show
that the speeds sjl , with 1 ≤ l ≤ lj , defined in (8) minimize
the function f(x1, . . . , xlj) = m

∑lj
l=1 x

α
l δ
j
l subject to the

constraint

m
k
∑

l=1

xlδ
j
l ≥ L(λ

j
k), (12)

for k = 1, . . . , lj . Suppose (y1, . . . , ylj) with (y1, . . . , ylj) 6=
(sj1, . . . , s

j
lj
) is an optimal solution. Note that

m
k
∑

l=1

sjl δ
j
l = L(λjk), (13)

for k = 1, . . . , lj . Thus there must exist a k with yk > sjk:
If yl ≤ sjl held for l = 1, . . . , lj , then there would be a k′

with yk′ < sjk′ and hence m
∑k′

l=1 y
α
l δ

j
l < L(λjk′), resulting

in a violation of constraint (12) for k = k′. Let k1 be the
smallest index such that yk1 > sjk1 . We have yl = sjl , for
l = 1, . . . , k1−1 since otherwise, using the same argument as
before, constraint (12) would be violated for k = k1−1. Let
k2 with k2 > k1 be the smallest index such that yk1 > yk2 .
Such an index exists because otherwise invariant (9) implies
yl > sjl , for l = k1, . . . , lj , and we findm

∑lj
l=1 ylδ

j
l > L(λjlj).

In this case we could reduce ylj , achieving a smaller objective
function value f and hence a contradiction to the optimality
of the yl, 1 ≤ l ≤ lj .
We now decrease yk1 by ε and increase yk2 by εδk1/δk2 ,

where ε ≤ min{yk1 − s
j
k1
, (yk1 − yk2)/(1 + δk1/δk2)}. We

argue that constraints (12) are still satisfied. There is noth-
ing to show for k = 1, . . . , k1 − 1. Also for k = k2, . . . , lj
there is nothing to show because the work reduction in in-
terval [d(λjk1−1), d(λ

j
k1
)) is εδk1 while the work increase in

interval [d(λjk2−1), d(λ
j
k2
)) is δk2εδk1/δk2 = εδk1 , yielding a

net change of 0. By the choice of ε we have yk1 − ε ≥
sjk1 , and yl ≥ yk1 > sjk1 as well as (9) imply yl > sjl
for l = k1 + 1, . . . , k2 − 1. Using the fact that equations
(13) hold we obtain that constraints (12) are satisfied for
l = k1, . . . , k2 − 1.

295

We finally show that the modification of yk1 and yk2 leads
to a strict reduction in the value of f . The reduction is given
by g(ε) = δk1(y

α
k1−(yk1−ε)

α)−δk2((yk2+εδk1/δk2)α−yαk2).
This function is strictly positive for the considered range of
ε because g(0) = 0 and g(ε) is increasing since the first
derivative g′(ε) = αδk1((yk1 − ε)α−1 − (yk2 + εδk1/δk2)

α−1)
is positive for ε < (yk1 − yk2)/(1 + δk1/δk2). We conclude
that (y1, . . . , yll) is not optimal.

We now combine the speed functions for all processors j.

Lemma 5. An optimal solution uses a total energy of at
least

∑m
j=1 E

1
j .

Proof. Using Lemma 4 and summing over all j, we find
mEOPT ≥ m

∑m
j=1 E

1
j , where EOPT is the energy of an op-

timal solution. Dividing by m we obtain the desired state-
ment.

For any j, let S′j be the set of jobs i with i ∈ Sj and
p(i) > L(i)/m. Define E2

j =
∑

i∈S′j
(p(i)/d(i))αd(i).

Lemma 6. An optimal solution uses a total energy of at
least

∑m
j=1 E

2
j .

Proof. Consider an optimal solution and suppose that
it processes job i ∈ S′j , with 1 ≤ j ≤ m, at speed s. Then
the energy used to complete the job is sαp(i)/s = sα−1p(i)
and this expression is increasing in s. The minimum speed
necessary to finish the job in time is p(i)/d(i) and hence
the energy used for job i is at least (p(i)/d(i))α−1p(i) =
(p(i)/d(i))αd(i) and the lemma follows by summing the lat-
ter expression for all i ∈ Sj and all processors j.

Theorem 5. For arbitrary size jobs released at time 0,
EDL achieves an approximation ratio of at most 2(2− 1

m
)α.

Proof. We first evaluate the total energy ESF used by
the speed functions on all m processors. For any processor
j, the initial step 1 of the speed function definition requires
a speed of (2 − 1

m
)αEj1. The adjustment step 2 requires a

total energy of at most (2− 1
m
)αEj2 in the intervals modified.

Thus ESF ≤ (2− 1
m
)α
∑m
j=1(E

1
1 +E

j
2) and, using Lemmas 4

and 5, we find ESF ≤
(

2− 1
m

)α
2EOPT, where EOPT is the

total energy of an optimal solution. In Lemma 3 we showed
that the speed functions give feasible schedules for any Sj .
Algorithm EDL computes a feasible schedule with minimum
energy for any Sj . We conclude that the total energy of EDL
is bounded by ESF .

Obviously, by interchanging release dates and deadlines,
EDL can also handle the case of jobs with individual release
dates but a common deadline.

Corollary 1. For arbitrary size jobs with individual re-
lease dates that have to be finished by a common deadline,
EDL achieves an approximation ratio of at most 2(2− 1

m
)α.

We next consider the scenario where jobs have general
agreeable deadlines. Again the jobs’ processing require-
ments may take arbitrary values. It turns out that we can
apply the algorithm CRR presented in Section 3. We only
have to generalize the definition of job densities. Here, for
any job i, the density is δi = p(i)/(d(i) − r(i)), which rep-
resents again the minimum speed to finish the job in time.

Let J be the set of all jobs and ∆ = maxi∈J δi be the maxi-
mum density. We partition J into job classes as before. We
can then apply CRR to a given job instance, where within
each class Ck jobs having the same release date are sorted
in order of non-decreasing deadlines.

Theorem 6. For arbitrary size jobs with agreeable dead-
lines, algorithm CRR achieves an approximation ratio of
αα24α.

Proof. The proof is similar to that of Theorem 4 and
we just sketch the difference. Again we introduce a job set
J ′. Here we just scale the job densities without changing
release dates or deadlines. More specifically, for any J of
class Ck we introduce a job i′ with r(i′) = r(i), d(i′) =
d(i) and density δi′ = ∆/2k. Lemma 2 carries over. The
proof of Lemma 2 for unit size jobs made use of the fact
that, for J , job deadlines are agreeable within each class
Ck. In our considered scenario with arbitrary size jobs the
deadlines are agreeable anyway. In the further analysis we
also consider schedules constructed by Average Rate (AVR).
Let S′AVR,j be the schedule generated by AVR on the job
set J ′j that is assigned to processor j by CRR. Let S′AVR be
the single processor schedule of AVR on the entire set J ′.
The corresponding energy volumes of AVR’s schedule are
denoted by E′AVR,j and E′AVR, respectively. We can prove
∑m
j=1 E

′
AVR,j ≤ 22α(E′min +m1−αE′AV R), where

E′min =
∑

i′∈J ′
(p(i)/(d(i′)− r(i′)))1−α =

∑

k≥0

∑

i′∈Ck

(2k/∆)1−α

is the minimum energy to complete all jobs in J ′. We then
derive E′CRR ≤

∑m
j=1 E

′
AV R,j ≤ αα23αE′OPT . Since δi and

δi′ differ by a factor of at most 2, a doubling of the speeds
in S′AVR,j yields optimal schedules for J . The theorem fol-
lows.

5. ONLINE ALGORITHMS
The algorithms we have presented in the previous sec-

tions can be modified so that they work in an online sce-
nario where jobs arrive over time. More specifically, a job i
together with its characteristics d(i) and p(i) becomes avail-
able at its release date r(i). The job must be assigned to a
processor without knowledge of future jobs arriving at times
t > r(i).
All of our offline algorithms first assign jobs to processors

and then, on each processor, construct an optimal sched-
ule for the job set assigned to it. In the online setting,
we keep the assignment of jobs to processors but, instead
of constructing optimal schedules, apply a single processor
online algorithm. For unit size jobs with agreeable dead-
lines, we again assign the incoming jobs to processors using
Round Robin. On each processor we apply an online algo-
rithm by Bansal et al. [3] that achieves a competitive ratio
of 2(α/(α− 1))αeα. Let RR-ON be the resulting algorithm.

Theorem 7. For unit size jobs with agreeable deadlines,
CRR-ON achieves a competitive ratio of 2(α/(α− 1))αeα.

As for the algorithm CRR, we generate jobs classes dy-
namically as jobs arrive. The classes are centered around
δ1, the density of the first incoming job. As usual, job den-
sities within each class differ by a factor less than 2. More
precisely, we open a new job class of smaller densities when,

296

for the first time, a job of density at most 2−k3δ1/2 arrives,
where k ≥ 1. We open a job class of higher densities when,
for the first time, a job of density greater than 2k3δ1/2 ar-
rives, where k ≥ 0. After jobs have been assigned to pro-
cessors, instead of computing optimal schedules, we apply
the Average Rate algorithm [15]. Let CRR-ON denote the
resulting strategy. Our analyses of CRR in Sections 3 and
4 in fact assumed that Average Rate is executed on each
processor. Thus the proven approximation ratios do not in-
crease.

Theorem 8. For unit size jobs with arbitrary release dates
and deadlines and for arbitrary size jobs with agreeable dead-
lines, algorithm CRR-ON achieves a competitive ratio of
αα24α.

6. REFERENCES
[1] S. Albers and H. Fujiwara. Energy-efficient algorithms

for flow time minimization. Proc. 23rd Annual
Symposium on Theoretical Aspects of Computer
Science (STACS), Springer LNCS 3884, 621–633,
2006.

[2] J. Augustine, S. Irani and C. Swamy. Optimal
power-down strategies. Proc. 45th Annual IEEE
Symposium on Foundations of Computer Science,
530-539, 2004.

[3] N. Bansal, T. Kimbrel and K. Pruhs. Dynamic speed
scaling to manage energy and temperature. Proc. 45th
Annual IEEE Symposium on Foundations of
Computer Science, 520–529, 2004.

[4] P. Baptiste. Scheduling unit tasks to minimize the
number of idle periods: A polynomial time algorithm
for offline dynamic power management. Proc. 17th
Annual ACM-SIAM Symposium on Discrete
Algorithms, 364–367, 2006.

[5] L.A. Barroso. The price of performance. ACM Queue,
3(7), September 2005.

[6] N. Bansal and K. Pruhs. Speed scaling to manage
temperature. Proc. 22nd Annual Symposium on
Theoretical Aspects of Computer Science (STACS),
Springer LNCS 3404, 460–471, 2005.

[7] J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang,
A.-C. Pang and T.-W. Kuo. Multiprocessor
energy-efficient scheduling with task migration
considerations. Proc. 16th Euromicro Conference of
Real-Time Systems, 101–108, 2004.

[8] J.-J. Chen, T.-W. Kuo, H.-I. Lu. Power-saving
scheduling for weakly dynamic voltage scaling devices.
Proc. 9th International Workshop on Algorithms and
Data Structures, Springer LNCS 3608, 338–349, 2005.

[9] D.S. Hochbaum and D.B. Shmoys. Using dual
approximation algorithms for scheduling problems:
Theoretical and practical results. Journal of the
ACM , 34:144–162, 1987.

[10] Intel pressroom. http://www.intel.com/pressroom/
kits/teraflops/
or http://download.intel.com/pressroom/kits/
Teraflops/Teraflops_Research_Chip_Overview.pdf

[11] S. Irani, S. Shukla and R. Gupta. Algorithms for
power savings. Proc. 14th Annual ACM-SIAM
Symposium on Discrete Algorithms, 37–46, 2003.

[12] K. Pruhs, R. van Stee, P. Uthaisombut. Speed scaling
of tasks with precedence constraints. Proc. 3rd

International Workshop on Approximation and Online
Algorithms (WAOA), Springer LNCS 3879, 307–319,
2005.

[13] K. Pruhs, P. Uthaisombut and G. Woeginger. Getting
the best response for your erg. Proc. 9th Scandinavian
Workshop on Algorithm Theory (SWAT), Springer
LNCS 3111, 15–25, 2004.

[14] D.D. Sleator und R.E. Tarjan. Amortized efficiency of
list update and paging rules. Communications of the
ACM, 28:202-208, 1985.

[15] F. Yao, A. Demers and S. Shenker. A scheduling
model for reduced CPU energy. Proc. 36th Annual
Symposium on Foundations of Computer Science,
374–382, 1995.

APPENDIX
In this appendix we establish the NP-hardness results stated
in Theorems 2 and 3. We will present a reduction from the
problem Multi-Partition, which contains Partition and
3-Partition as special cases.

Definition 1. Given a finite set A ⊂ Z+ and a number
m ∈ N we say (A,m) ∈ Multi-Partition if and only if
there are subsets A1, A2, . . . , Am such that

⋃m
i=1Ai = A and,

for all i 6= j,

Ai ∩Aj = ∅ and
∑

a∈Ai

a =
∑

a∈Aj

a.

We describe the reduction from an instance of theMulti-
Partition problem to an instance of the scheduling prob-
lem under consideration. To this end we consider an in-
stance A = {a1, a2, . . . , an} ⊂ Z+ and (A,m) of Multi-
Partition. We construct a set J of unit size jobs as fol-
lows. For every ai ∈ A we generate a job i. We assign i a
release date r(i) =

∑

j<i aj and a deadline d(i) = r(i) + ai.
Additionally we create m jobs n+1, n+2, . . . , n+m, where
r(n + 1) = r(n + 2) = . . . = r(n +m) = 0 and d(n + 1) =
d(n+ 2) = . . . = d(n+m) = 3d(n).
In the following, for any job i with 1 ≤ i ≤ n + m, let

l(i) = d(i) − r(i) be the length of i. Given a schedule S,
let lS(i) be the total length of intervals in S where job i
is executed. The energy consumption of job i is at least
(1/lS(i))

α−1. Furthermore, for a set S of jobs (or intervals
in S) let l(S) (lS(S), respectively) denote the sum of the
lengths of all jobs (intervals) in S.
We will determine the minimum energy necessary to sched-

ule J on m processors. To this end we need two lemmas on
the structure of an optimal schedule for J .

Lemma 7. In an optimal schedule S for J no two jobs
with index larger than n are executed on the same processor.

Proof. Consider an optimal schedule S and assume for
the sake of contradiction there were jobs i > n and i′ >
n running on the same processor j. Then one of the two
jobs, say job i, is executed in intervals of total length at
most 3d(n)/2 and incurs an energy consumption at least
(2/3d(n))α−1. Furthermore, there must exist one processor
where no job is executed in the interval [d(n), 3d(n)] as we
have only m jobs with deadline greater than d(n) and two
jobs are executed on processor j. We can now schedule job
i in this idle period, generating an energy consumption of
at most (1/2d(n))α−1 for job i. This is less than the initial

297

consumption, contradicting the optimality of the considered
schedule.

In order to establish the second lemma we need a technical
property.

Lemma 8. Let c > 0 and α > 1, then the function

f(x) =

(

1

x

)α−1

+

(

1

c− x

)α−1

.

with x ∈ (0, c) takes its global minimum at x = c/2. The
function is strictly decreasing for x < c/2 and strictly in-
creasing for x > c/2.

Proof. Computing the derivate of f we find

f ′(x) = (1− α)
((

1

x

)α

−
(

1

c− x

)α)

and x = c/2 is indeed a global minimum.

Lemma 9. In an optimal schedule S for J the energy
consumption of any jobs i with 1 ≤ i ≤ n is (1/l(i))α−1.

Proof. Assume that in S some job i is not executed over
its full possible interval I = [r(i), d(i)], i.e. l(i) = lS(i) + ε
for some 0 < ε < l(i). Since the execution intervals of all
jobs i′ with 1 ≤ i′ ≤ n are pairwise disjoint, no such job i′

can be scheduled in I. We now investigate two cases.
Case 1: No job besides i is executed in interval I on the

processor where i is processed. Then the schedule is not
optimal since it would obviously be cheaper to execute i
over its full interval I.
Case 2: Job n+ k, with 1 ≤ k ≤ m, is partially executed

in I on the processor where i is processed. As shown in
Lemma 7 only this one job can overlap I. Furthermore,
lS(n+ k) > 2d(n). Now we can construct a better schedule
by executing job i over its full possible length l(i), reducing
the execution interval of job n+ k by ε since

(

1

lS(i)

)α−1

+

(

1

lS(n+ k)

)α−1

︸ ︷︷ ︸

energy consumption of initial schedule

>

(

1

lS(j) + ε

)α−1

+

(

1

lS(n+ k)− ε

)α−1

︸ ︷︷ ︸

energy consumption of new schedule

.

This follows from Lemma 8 setting c = lS(n+k)+ lS(j) and
x = lS(i). We note that lS(i) < lS(i) + ε = l(i) < c/2 as
lS(i) < d(n) and lS(n + k) > 2d(n). This contradicts the
assumption that schedule S was optimal and we conclude
that (1/l(i))α−1 is the energy consumption of job i in an
optimal schedule.

Let EOPT denote the energy of an optimal schedule for J .

Theorem 9. Let A ⊂ Z+, m ∈ N and B =
(∑

a∈A a
)

/m.
(A,m) ∈Multi-Partition if and only if

EOPT =
n
∑

i=1

(

1

l(i)

)α−1

+m

(

1

3d(n)−B

)α−1

.

Proof. By Lemma 9 in an optimal schedule the execu-
tion of all jobs i ∈ {1, 2, . . . , n} requires an energy volume
of exactly

∑n
i=1(1/l(i))

α−1. Thus the energy consumption
of an optimal solution depends only on the execution en-
ergy consumed by jobs n + 1, n + 2, . . . , n + m. Let k ∈
{1, 2, . . . ,m}. By Lemma 7, all these jobs are executed on
separate machines. We assume w.l.o.g. that job n+ k is ex-
ecuted on processor k. Let Jk ⊆ {1, 2, . . . , n} be the set of
jobs scheduled on processor k. We can now easily compute
the energy used by n+ k as

(

1

lS(k)

)α−1

=

(

1

3d(n)−
∑

i∈Jk
l(i)

)α−1

.

By Lemma 8 we find that the sum of the energy con-
sumptions of n+ 1, n+ 2, . . . , n+m is minimal if and only
if lS(n+ 1) = lS(n+ 2) = . . . = lS(n+m). This is the case
if and only if

∑

i∈J1 l(i) =
∑

i∈J2 l(i) = . . . =
∑

i∈Jm l(i) =

d(n)/m. Note that the value asserted in the theorem is
taken at this point. By our construction this is possible
if and only if there exist sets A1, A2, . . . , Am ⊆ A with
⋃m
i=1Ai = A and for all i 6= j it holds Ai ∩ Aj = ∅ and

∑

a∈Ai a =
∑

a∈Aj a. Finally, this is the case if and only if
(A,m) ∈Multi-Partition.

We are now ready to derive the first desired NP-hardness
result. Setting m = 2, the NP-hard Partition problem is
a special case of our Multi-Partition problem. Theorem
9 gives the following result.

Theorem 2. Given a set of unit size jobs with arbitrary
release dates and deadlines, the problem of minimizing the
total energy on two processors is NP-hard.

Another special case of Multi-Partition is 3-Partition.
In this case A underlies the restriction that there exists a
B ∈ Z+ such that for all a ∈ A we have B/4 < a < B/2 and
∑

a∈A a = 3B. If any of these conditions is not satisfied,
the input can be rejected in polynomial time. Otherwise,
we can use Multi-Partition to solve the problem on input
(A,B). Since 3-Partition is strongly NP-hard, we obtain
the second desired NP-hardness result as a consequence of
Theorem 9.

Theorem 3. Given a set of unit size jobs with arbitrary
release dates and deadlines, the problem of minimizing the
total energy on m processors is strongly NP-hard.

298

