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Abstract1

This paper proposes a novel method of on-line 
modeling via the Takagi-Sugeno (T-S) fuzzy-neural 
model and robust adaptive control for a class of gen-
eral unknown nonaffine nonlinear systems with ex-
ternal disturbances. Although studies about adaptive 
T-S fuzzy-neural controllers have been made on some 
nonaffine nonlinear systems, little is known on the 
more complicated and general nonlinear systems. 
Compared with the previous approaches, the contri-
bution of this paper is an investigation of the more 
general unknown nonaffine nonlinear systems using 
on-line adaptive T-S fuzzy-neural controllers. Instead 
of modeling these unknown systems directly, the T-S 
fuzzy-neural model approximates a so-called virtual 
linearized system (VLS), with modeling errors and 
external disturbances. We prove that the closed-loop 
system controlled by the proposed controller is robust 
stable and the effect of all the unmodeled dynamics, 
modeling errors and external disturbances on the 
tracking error is attenuated under mild assumptions. 
To illustrate the effectiveness and applicability of the 
proposed method, simulation results are given in this 
paper. 

Keywords: fuzzy-neural model, on-line modeling, gen-
eral unknown systems. 

 
1. Introduction 

 
Most physical systems are described by a set of dif-

ferential equations. Research has focused on the devel-
opment of various design techniques for controllers of 
these systems. The existence of a mathematical model of 
the system is assumed for model-based control. Control-
lers are designed to modify the behavior of the system 
and achieve some desired performance [1]. To this pur-
pose, a systematic way to construct a model mapping the 
inputs to the outputs is needed. Fuzzy models are usually 
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used in the case where the model structure and parame-
ters are unknown [2]. There are two fuzzy model struc-
tures, Takagi-Sugeno (T-S) and Mamdani. T-S fuzzy 
systems are nonlinear systems described by a set of 
IF-THEN rules. Such a model can approximate a wide 
class of nonlinear systems. In [3-5], the authors proved 
that the T-S fuzzy system can approximate any continu-
ous function to any precision. 

By using well-known off-line tuning algorithms for 
unknown nonlinear systems, an initial fuzzy-neural 
model with adjustable parameters can be constructed. 
However, the derived fuzzy-neural model with the 
off-line tuned parameters cannot cope with parameter 
changes arising from some external disturbance [6]. 
Thus, off-line algorithms cannot be applied to situations 
where real-time processing is required such as adaptive 
control and signal processing. In these situations, the 
adjustable parameters must be tuned on-line during op-
eration to compensate for undesirable effects. The objec-
tive of adaptive control is to maintain consistent per-
formance of a system in the presence of uncertainties. 
Ideally, then, a fuzzy-neural controller would be adap-
tive [6-8]. Further issues are stability analysis and con-
troller design of T-S fuzzy-neural controlled systems 
[9-10]. These have been extensively investigated in the 
literature. The existence of a common positive definite 
matrix for a set of Lyapunov inequalities is a sufficient 
condition for stabilization [11-14]. However, this is very 
difficult to achieve by using an on-line approach, even 
using the well-known linear matrix inequalities (LMIs) 
method [11-14]. Therefore, in this paper, adaptive 
schemes are used for simultaneous online modeling and 
controller design, instead of off-line modeling. Moreover, 
stability analysis of the adaptive T-S fuzzy-neural con-
trolled systems is easier than that of the LMIs method. 

The stabilization problem for the systems represented 
in T-S fuzzy-neural models has been addressed, e.g. [12, 
15], but studies concerning tracking controller design 
based on T-S fuzzy-neural models for unknown nonlin-
ear systems are relatively few. Tracking control designs 
for unknown nonlinear systems are important issues for 
practical applications. In [6], the authors only consider 
the stabilization problem for affine systems. In this paper, 
we apply the on-line adaptive T-S fuzzy-neural modeling 
approach to the design of robust tracking controllers for 
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the more general unknown nonaffine nonlinear systems. 
On the whole, this paper deals with the Ta-

kagi-Sugeno (T-S) fuzzy-neural model because of their 
capability to approximate dynamic nonlinear systems 
[16-19]. Although studies about adaptive T-S 
fuzzy-neural controllers have been made on some nonaf-
fine nonlinear systems, little is known about the more 
complicated and general nonlinear systems. In [23, 26], 
the authors proposed that the nonaffine nonlinear system 
possesses a strong relative degree and then they trans-
formed it into the state-space form. In [27], the authors 
considered that the nonaffine problems have an input 
nonlinearity which is algebraically invertible with re-
spect to the available control action. Compared with the 
previous approaches [19, 23, 26, 27], the contribution of 
this paper is an investigation of the more general uncer-
tain nonaffine nonlinear systems using adaptive T-S 
fuzzy-neural controllers. Instead of modeling these un-
known systems directly, the T-S fuzzy-neural model ap-
proximates a so-called virtual linearized system (VLS), 
with modeling errors and external disturbances. We 
propose an on-line identification algorithm for the T-S 
fuzzy-neural model and put significant emphasis on the 
robust tracking controller design using the adaptive 
scheme for a class of general uncertain nonaffine 
nonlinear systems. 

The rest of the paper is organized as follows. Section 
2 reviews T-S fuzzy-neural model and fuzzy-neural net-
works. Section 3 introduces the T-S fuzzy-neural model 
for the virtual linearized system (VLS). Section 4 pre-
sents a controller design for online modeling and robust 
tracking. In Section 5, simulation results are presented to 
confirm the effectivness and applicability of the pro-
posed method. Finally, conclusions are given in Section 
6. 

 
2. T-S Fuzzy-Neural Model 

 
Figure 1 shows the configuration of the T-S 

fuzzy-neural model [18], which is a typical T-S fuzzy 
inference system [16] constructed from a neural network 
structure. It has a total of six layers. The T-S 
fuzzy-neural model is essentially a multi-model ap-
proach in which a set of linear models are combined to 
describe the global behavior of the system [11, 17, 18]. 
Based on this idea, the T-S fuzzy-neural model is appro-
priate for developing fuzzy-neural controllers because 
many systems can be expressed locally in some form of 
mathematical model. The T-S fuzzy-neural model can 
approximate a wide class of nonlinear systems. In [3-5], 
the authors proved that the T-S fuzzy-neural system can 
approximate any continuous function to any precision. 

The T-S fuzzy-neural model approximates a nonlinear 
system with a combination of several linear systems. It is 

formed by fuzzy partitioning of the input space. The 
premise of a fuzzy implication indicates a fuzzy sub-
space of the input space and each consequent expresses a 
local input-output relation in the subspace corresponding 
to the premise part [6]. The T-S fuzzy-neural model de-
fined is 

( )
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where  is a state vector,  is 
the system output, 

T n
1 2 1[z  z ] Rnz +=z " y

( 1, 2, , 1i
jF j n= +"  are fuzzy sets, 

and  (i
lkp 1, 2, , , 1,2, , 1,i h k n= = +" "  1,2, ,l n= " ) 

are adjustable parameters. The T-S fuzzy-neural model 
can be described by the fuzzy-neural network shown in 
Fig. 1. 

 
3. T-S Fuzzy-Neural Model for Virtual Lin-

earized System (VLS) 
 

Suppose that the general unknown nonaffine nonlinear 
system is 
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where , and  are 
unknown functions which define a smooth mapping on 
the open sets 

RRfff n
n →− :,,, 121 … RRf n

n →+1:

nR  and 1nR + , respectively, 
1 2[  ]T

nx x x=x "  is a state vector, u  and  are the 
control input and system output, respectively, and 

 represents external disturbances. 
Without loss of generality, we assume a solution for (2) 
exists. 

y

1 2[  ]T
d d d dnd d d=d "

Assumption 1: Assume that the general unknown nonaf-
fine nonlinear system (2) can be piece-wise linearized. If 
we use Taylor series expansion of the unknown nonaf-
fine nonlinear system in (2) around time varying states, 

, there is a virtual linearized system 

(VLS): 
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where  , hjd 1,2, ,j n= " , stands for higher order terms, 
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uο  is an operating input,  is an input devia-

tion,  is a vector of operating states, 

 is a vector of state devia-

tions, and , 

ou u uδ = −
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o o o onx x x=x "
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ο

ο

[0 0 1]T
e =b "

11 12 1

21 22 2

1 2

( ) ( ) ( )
( ) ( ) ( )

( , ) ( , ) ( , )

n

n

n n nn

a a a
a a a

a u a u a u

ο ο

ο ο

ο ο ο ο ο ο

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

x x x
x x x

A

x x x

…
…

# # % #
…

 

0
0

( , )b uο ο

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

B

x
#

 

( , )
i

ij u
j

fa x ο ο

∂= ∂ x
, and ( , )

n
u

fb u ο ο

∂= ∂ x , , 1,2, ,i n= "

1,2, ,j n= " . ♦ 
Remark 1: Instead of modeling the unknown systems (2) 
directly, the T-S fuzzy-neural model in (1) is used to ap-
proximate the virtual linearized system (VLS) in (3). 

The T-S fuzzy-neural model can be described by the 
fuzzy-neural network shown in Fig. 1. The coefficient, 

, of the fuzzy-neural network is lkp
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where )( jF
zi

j
μ  is the value of the membership function. 

For the tuning of the weighting factors  , we define i
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Assumption 2: The antecedent part of the fuzzy implica-
tion describes the conditions of the operation states 

. The consequent part of the fuzzy implication 
represents the linearization of the general nonaffine 
nonlinear system (2). ♦ 

[ , ]T uο οx

Based on the above assumptions, for the purpose of 
approximating the virtual linearized system (VLS) in (3), 
the ith fuzzy implication (1) can be described as 
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After applying some commonly used defuzzification 
strategies, we can obtain 
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where  (ijp 1,2, , , 1,2, ,i n j n= =" " ) and ( 1)n np +  are 
used to approximate  (  ija 1,2, , ,i n= " 1,2, ,j n= " ) 
and  of the virtual linearized system (VLS) in (3), 
respectively. The virtual linearized system (VLS) is de-
rived from the unknown nonlinear system (2). 

b

 
4. Controller Design for Online Modeling and 

Robust Tracking 
 

To design a robust controller for (2), the following 
assumptions are required. 
Assumption 3: Let δx  and uδ  belong to compact sets 
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}:{ ∞<≤∈= xx xxU mRn  

}:{ ∞<≤∈= uu muRuU  
and ,  are design parameters. We define xm um

1 2[  ]h
lj lj lj ljp p pφ = " , 1, 2, ,l n= "   1,2, ,j n= " , and 

. It is known that the op-

timal adjustable parameters 

1 2
( 1) ( 1) ( 1) ( 1)[    h

n n n n n n n np p pφ + + += … ]+

*
ljφ  and  lie in some 

convex regions 

*
( 1)n nφ +

M { :
lj lj

h
lj lj }R mφ φφ φ= ∈ ≤ , 

1, 2, ,l n= " ,  1,2, ,j n= "  
and 

( 1) ( 1)( 1) ( 1)M { :
n n n n

h
n n n nR mφ φφ φ

+ ++ += ∈ ≤ } 

where the radii 
lj

mφ and  are constant, and 
( 1)n n

mφ +

*

M ,
ˆarg min [ sup ( , ) ( , ) ]

lj lj u

i i
lj lj lj lj

u
p u p u

δ δ

δ δ δ δφ
φ φ

∈ ∈ ∈
= −

xx U U
x x

φ

, 



36 International Journal of Fuzzy Systems, Vol. 10, No. 1, March 2008 

1, 2, ,l n= "   1,2, ,j n= "  
and 
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According to (9) and assumption 4, a fuzzy-neural 
controller can be chosen as 
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where the coefficients, 1 2,  ,   , nλ λ " λ , are selected such 
that the matrix  is a   Hurwitz matrix. From (9) and 
(10), we obtain 
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 and the virtual linearized system 
(VLS) in (3), the error dynamic equation of the VLS is 
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where * ˆ ˆˆ ˆ ,  i i i i ib b b= − = −A A A �� . We define su  (the 
error compensator) and eΔ  as 
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On the basis of the above discussion, the following 
theorem can be obtained. 
Theorem 1: Consider the general unknown nonaffine 
nonlinear system (2), which is approximated as (9) and 
satisfies Assumptions 1 and 3 to 5. If the controller is 
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Proof : 
Consider the Lyapunov-like function candidate 
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If we select  and , as (16) and (17) and from as-
sumption 5, (21) becomes 
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but not that is converges. The boundedness of  im-
plies the boundedness of . Since the operating states 
are finite, 

( )te
( )tx

δx  is bounded. Based on Assumption 1 and 

the boundedness of δx ,  is bounded. Therefore, 
 is bounded, i.e. . Integrating both side of 

(23) yields 

uδ

( )te� ( )t L∞∈e�

2

min 0

1( ) (0) ( ) ( )
2

t
v t v dλ τ− ≤ − ∫Q e τ      (24) 

where min ( ) 0λ >Q  is the minimum eigenvalue of . 
When  tends to infinity, (24) becomes  

Q
t

       2

0

min

(0) ( )( ) .1 ( )
2

v vdτ τ
λ

∞ − ∞
≤∫ e

Q
         (25) 

Since the right side of (25) is bounded, 2L∈e . There-
fore, by using Lemma 2, ( ) 0t →e  as . This 
completes the proof. ♦ 

t →∞

Algorithm 1: 
1)  Select the coefficients, 1 2,  ,   , nλ λ " λ , such that 

the matrix  is a Hurwitz matrix. Λ
2)  Choose an appropriate value  in (14) such that k

e k kΔ > . In order to remedy control chattering, (14) 
can be modified as 

         if 0 and 

       if 0 and 

     if 

s

k e e

u k e e
ke e

α

α

α
α

Δ Δ

Δ Δ

Δ
Δ

⎧
⎪ ≥ >
⎪⎪= − <⎨
⎪
⎪ <
⎪⎩

>           

where α  is a positive constant. 
3)  Choose an appropriate matrix . Then, solve the 

Lyapunov matrix equation in Lemma 1. 
Q

4)  Construct fuzzy sets for δx  and uδ . 
5)  Obtain the control law (12) and update laws (16) 

and (17). 
Remark 2: If we review theorem 1, choosing an appro-
priate value of k, such that e k kΔ >  (or (22)) implies 

(23), is very important. That is kesigne
TT )(~

Δ− ΓbedΓe  
must be a negative number. Otherwise the effect of all 
the unmodeled dynamics, and external disturbances on 
the tracking error can not be efficiently attenuated by the 
proposed controller. 

Figure 2 shows the overall scheme of the T-S 
fuzzy-neural controller proposed in this paper. 
 

5. Simulation Results 
 

This section presents the simulation results of the 
proposed on-line T-S fuzzy modeling and robust adap-
tive fuzzy control for general nonaffine uncertain sys-
tems to illustrate that the tracking error of the 
closed-loop system can be made arbitrarily small. In ad-
dition, the simulation results confirm that the effect of all 
the unmodeled T-S fuzzy system dynamics, modeling 
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errors and external disturbances on the tracking error is 
attenuated efficiently by the proposed controller. 
 
Example 1: Consider a nonaffine system [23]: 

1

222

121

)1))(sin(2)(1(2.0 21

xy
deuxex

dxx

d
uxx

d

=
+−+++=

+=

�
�

 

where  is the control input, and both  and  
are external disturbances which are assumed to be values 
randomly in the interval  (cases 1, 2) or a 
square wave with the amplitude  and the period 

u 1dd 2dd

]1.0,1.0[−
1.0±

2π (case 3). In this example, three different cases for the 
operation states ,  and reference signals are simu-
lated. The three cases are shown in Table I.  

ox ou

Five fuzzy sets over the interval  are defined 
for with the term sets (PB, PS, Z, NS, 
NB) and three fuzzy sets over the interval  
for 

]6,6[−

1 2[ ,  ]Tx xδ δ δ=x
[ 1400,1400]−

uδ
. The design parameters are selected as 0.002η = , 

21 =λ , λ2 2=  and . The initial states of 
system are assumed to be  (case 1), 

(case 2) and (case 3). 
We use the proposed control law in (12) to control the 
state  of the system to track the reference signal 

 (cases 1, 2), (case 3) and the state 
 of the system to track the reference signal 

(cases 1, 2), (case 3). Figs. 3 and 4 
(case 1), Figs. 6 and 7 (case 2), and Figs. 9 and 10 (case 
3) show that the curves of the states  and 

2
 of the 

closed-loop system, respectively. The responses of con-
trol input  are shown in Fig. 5 (case 1), Fig. 8 (case 2) 
and Fig. 11 (case 3). The simulation results indicate that 
the effect of all the unmodeled dynamics, and external 
disturbances on the tracking error is attenuated effi-
ciently by the proposed controller. 

[2 1;  1 2]=Q
(0) [0.4, 0.6]T=x

(0) [0.5, 0.5]T=x (0) [0.8, 0.3]T=x

1x

1 sin( )r = t

t
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2 cos( )r = 0.50.5 te−

1x x

u

 
Example 2: Consider a more complicated nonlinear sys-
tem [24]: 

2

2

1
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1 1 1 1

1
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where  is the control input, and both  and  
are external disturbances which are assumed to be values 
randomly in the interval . 

u 1dd 2dd

]1.0,1.0[−
Five fuzzy sets over the interval  are defined 

for with the term sets (PB, PS, Z, NS, 
NB) and three fuzzy sets over the interval 

]6,6[−

1 2[ ,  ]Tx xδ δ δ=x
[ 1400,1400]−  

for uδ . The design parameters are selected as 
0.0003η = , 1 8λ = , 2 10λ =  and . The 

initial states of system are assumed to be . 
We use the proposed control law in (12) to control the 
state  of the system to track the reference signal 

[1 0;  0 1]=Q
(0) [1,1.2]T=x

1x

1 0r = , and the state  of the system to track the refer-
ence signal 

2x

2 20.5 ,  when 2 and 1,r t t r= ≤ = when 2t > . 
Figures 12 and 13 show that the curves of the states  
and  of the closed system, respectively. The response 
of control input  is shown in Fig. 14. The simulation 
results indicate that the effect of all the unmodeled dy-
namics, and external disturbances on the tracking error is 
attenuated efficiently by the proposed controller. 

1x
2x

u

 
Example 3: Consider a third order nonlinear system [25] 
described by： 
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where  is the control input, and both ,  and 
 are external disturbances which are assumed to be 

random values in the interval . 

u 1dd 2dd

3dd
]1.0,1.0[−

Five fuzzy sets over the interval  are defined 
for  with the term sets (PB, PS, Z, 
NS, NB) and three fuzzy sets over the interval 

]6,6[−

1 2 3[ ,  ,  ]Tx x xδ δ δ δ=x

[ 1400,1400]−  for uδ . The design parameters are se-
lected as 0.002η = , 1 15λ = , 2 20λ = , 3 40λ =  and 

[0.6 0 0;  0 0.6 0; 0 0 0.6]=Q . The initial states of 
system are assumed to be . We use the 
proposed control law in (12) to control the states, , 

, and 

(0) [1,1, 1]T= −x

1x
2x 3x  of the system to track the reference signal 

r=0. Figures 15, 16 and 17 show the curves of the states 
, 1x 2x  and 3x  of the closed system, respectively. The 

response of the control input  is shown in Fig. 18. The 
simulation results indicate that the effect of all the un-
modeled dynamics, and external disturbances on the 
tracking error is attenuated efficiently by the proposed 
controller. 

u

 
6. Conclusions 

 
We propose a novel approach of on-line T-S 
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fuzzy-neural modeling and robust adaptive control for a 
class of general nonaffine nonlinear systems to achieve 
the efficient attenuation of the unmodeled dynamics, 
modeling errors and external disturbances. The initial 
values of the parameters of the fuzzy-neural model are 
tuned to their true values through update laws. Instead of 
modeling the unknown systems directly, the T-S 
fuzzy-neural model approximates the virtual linearized 
system (VLS), with modeling errors and external distur-
bances. Theorem 1 proved that although the bound of 
unmodeled dynamics, modeling errors and external dis-
turbances are unknown, the tracking error of the 
closed-loop system can be made arbitrarily small. Simu-
lation results support the theoretical arguments about the 
T-S fuzzy-neural modeling and the tracking performance 
of the design algorithms under the adaptive tuning 
methods. 
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Figure 3. Curve of the state  of the tracking control (case 1) 

in example 1. 
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Figure 4. Curve of the state  of the tracking control (case 1) 

in example 1. 
2x

 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5816
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5816


W.-Y. Wang et al.: An On-Line Robust and Adaptive T-S Fuzzy-Neural Controller for More General Unknown Systems    41 

0    5 10 15
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time (sec)

Fo
rc

e 
(N

)

the control input u

 
Figure 5. Response of control input  (case 1) in example 1. u
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Figure 6. Curve of the state  of the tracking control (case 2) 

in example 1. 
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Figure 7. Curve of the state  of the tracking control (case 2) 

in example 1. 
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Figure 8. Response of control input  (case 2) in example 1. u
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Figure 9. Curve of the state  of the tracking control (case 3) 

in example 1. 
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Figure 10. Curve of the state  of the tracking control (case 

3) in example 1. 
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Figure 11. Response of control input  (case 3) in example 1. u
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Figure 12. Curve of the state 1x  of the tracking control in 

example 2. 
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Figure 13. Curve of the state 2x  of the tracking control in 

example 2. 
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Figure 14. Response of control input  in example 2. u
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Figure 15. Curve of the state 1x  of the tracking control in 

example 3. 
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Figure 16. Curve of the state 2x  of the tracking control in 

example 3. 
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Figure 17. Curve of the state 3x  of the tracking control in 

example 3. 
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Figure 18. Response of control input  in example 3. u
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