
1

DRAFT: August 17, 2000.

To appear in Current Opinion in Neurobiology, vol. 10, no. 6 (2000).

Complementary roles of basal ganglia and cerebellum in
learning and motor control

Kenji Doya

Information Sciences Division, ATR International;

CREST, Japan Science and Technology Corporation

2-2-2 Hikaridai, Seika, Soraku, Kyoto 619-0288, Japan

Phone: +81-774-95-1251

Fax: +81-774-95-1259

E-mail: doya@isd.atr.co.jp

Summary:
The classical notion that the basal ganglia and the cerebellum are dedicated to

motor control has been challenged by a growing evidence showing their

involvement in non-motor, cognitive functions. From computational viewpoints, it

has been suggested that the cerebellum, the basal ganglia, and the cerebral cortex are

specialized for different types of learning, namely, supervised learning,

reinforcement learning, and unsupervised learning, respectively. This idea of

learning-oriented specialization is helpful in understanding the complementary roles

of the basal ganglia and the cerebellum in motor control and cognitive functions.

Introduction
The basal ganglia and the cerebellum have been known to be involved in

motor control because of the marked motor deficits associated with their damages.

However, it has not been clear what aspects of motor control they are involved in

under normal conditions. Traditionally, the cerebellum was supposed to be involved

in real-time, fine tuning of movement[1,2], while the basal ganglia were supposed to

be involved in selection and inhibition of action commands [3]. However, these

distinctions were by no means clear cut[4]. Furthermore, an ever increasing number
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of brain imaging studies show that the basal ganglia and the cerebellum are involved

in non-motor tasks, such as mental imagery[5,6], sensory processing[7-9],

planning[10-12], attention[13], and language[14-17].

Both the basal ganglia and the cerebellum have recurrent connections with

the cerebral cortex[1,3]. Anatomical studies using transneuronally transported

viruses[18-21] have clearly shown that the projections from the basal ganglia and the

cerebellum through the thalamus to the cortex constitute multiple `parallel' channels.

The diversity of the target cortical areas, not only the motor and premotor cortices

but also the prefrontal[18], temporal[22], and parietal cortices[19], is in agreement

with their involvement in diverse functions. However, the neural activity tuning and

the lesion effects of a subpart of the basal ganglia or the cerebellum tends to be

similar to that of the cortical area it projects to[21]. This makes it difficult to

distinguish the specific roles of the basal ganglia and the cerebellum simply from

recording or lesion results.

Is it then impossible to characterize the specific information processing in the

basal ganglia and the cerebellum? Despite their diverse, overlapping target cortical

areas, the basal ganglia and the cerebellum have unique local circuit architectures

and synaptic mechanisms. This strongly suggests that each structure is specialized

for a particular type of information processing.

Specialization by Learning Paradigms
Theoretical models of learning in different parts of the brain suggest that the

cerebellum, the basal ganglia, and the cerebral cortex are specialized for different

types of learning[23,24], as summarized in Figure 1. 1) The cerebellum is specialized

in supervised learning based on the error signal encoded in the climbing fibers[2,25-

27]. 2) The basal ganglia is specialized in reinforcement learning based on the reward

signal encoded in the dopaminergic fibers from the substantia nigra[28-30]. 3) The

cerebral cortex is specialized in unsupervised learning based on Hebbian plasticity

and reciprocal connections within and between cortical areas[31-34].

Reward-based learning in the basal ganglia
A breakthrough in elucidating the function of the basal ganglia was given by

a series of experiments by Schultz and colleagues on the activity of midbrain

dopamine neurons in primates [35,36]. In a conditional reaching task, dopamine
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neurons initially respond to the liquid reward after successful trials. However, as the

animal learns the task, dopamine neurons start to respond to the conditional visual

stimulus and cease to respond to actual reward delivery. This means that the activity

of dopamine neurons does not just encode immediate reward, but prediction of

future reward. Prediction of future reward is one of the key element in the theory of

reinforcement learning[37,38]. Especially, the sum of the actual reward and the

increase in the predicted future reward, which is called the `temporal difference (TD)

signal,' is the main teaching signal for selection of actions as well as prediction of

future reward. The change of response of the dopamine neurons in the course of

learning turned out to be very similar to that of the TD signal in reinforcement

learning.

This finding prompted proposals of reinforcement learning models of the

basal ganglia[28-30,39-41], as summarized in Figure 2. Among the two

compartments of the striatum, the striosome, which projects to nigral dopamine

neurons, evaluates the state in a form of cumulative future reward. In the other

compartment, the matrix, different groups of neurons evaluates the merits of

possible actions. An action output is selected within the output pathways from the

globus pallidus and the substantial nigra through the thalamus to the cerebral cortex.

The TD error is represented by the nigral dopamine neurons based on limbic inputs

about the actual reward and the striatal input about the predicted reward. It is fed

back to cortico-striatal synapses for the learning of evaluation of states and actions.

Such models have successfully replicated the learning of conditioning tasks as well

as sequence learning tasks [39-41].

However, there still remain several issues to be clarified in the reinforcement

learning hypothesis of the basal ganglia. First, it is not clear how the `temporal

difference' of expected future reward is calculated in the circuit leading to the

substantia nigra, although a few possible mechanisms have been suggested

[28,36,40]. Recently, Brown and colleagues[42] proposed an alternative model in

which two different pathways to dopamine neurons are responsible for acquisition

of reward predictive response and inhibition of predicted reward response. They

argued that their model better explains experimental data than the TD based models

do.

Another open issue in TD based models is the plasticity of cortico-striatal
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synapses. The above reinforcement learning model predicts that there should be

different plastic mechanisms for the striosome and the matrix, which are respectively

involved in evaluation of current state and possible actions. Although it has been

shown that cortico-striatal synaptic plasticity is strongly modulated by

dopamine[43,44], it remains to be clarified whether there are different plastic

mechanisms in different compartments.

Reward related activities have also been found in frontal cortices, including

dorsolateral prefrontal cortex [45], orbitofrontal cortex [46], and cingulate cortex[47].

Dopaminergic neurons in the ventral tegmental area project to those cortical areas.

What is the difference of reward processing in the cerebral cortex and the basal

ganglia? A systematic comparison of the reward related activities in the orbitofrontal

cortex, the striatum, and the dopamine neurons revealed the following

characteristics [48]: the cortical neurons retain more information about sensory

input; the striatal neurons show richer variety of activation in relation to task

progress; the dopamine neurons respond mainly to unpredicted reward or sensory

stimuli. This suggests that the cortex is responsible for analyzing sensory input, the

striatum is involved in production of actions, and the dopamine neurons are most

responsible for learning new behaviors.

Error-based learning in the cerebellum
The idea that the cerebellum is a supervised learning system dates back to the

hypothesis by Marr[25] and Albus[26]. It was shown by Ito in vestibulo-ocular reflex

(VOR) adaptation experiments [2,49] that the long-term depression of the Purkinje

cell synapses depending on the climbing fiber input is the neural substrate of such

error driven learning (Figure 3). Although it is still controversial whether the LTD in

Purkinje cells is the only locus of plasticity and memory storage in VOR [50], recent

results are in accordance with the cerebellar error-based learning hypothesis.

In ocular following response movement, Kobayashi and colleagues[51]

showed that the response tuning of complex spikes is the mirror image of that of

simple spikes[52]. This is in agreement with the hypothesis that the simple spike

response of Purkinje cells are shaped by LTD of parallel fiber synapses with the error

signal provided by the climbing fibers. They also showed that the modulation of

simple spikes by complex spikes is too weak to be useful for real-time motor control.
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Kitazawa et al. analyzed the information content of complex spikes in arm

reaching movement in monkeys. The result showed that complex spike firing carries

information about the target direction in early phase of the movement while it

carries information about the end-point error near the end of the movement [53]. The

coding of end-point error is consistent with LTD hypothesis. What is the role of the

target related activity at the beginning of movement? The low probability of firing

(less than one spike per trial) suggests that the signal may not be useful for on-line

movement control. One possibility is that they are potential error signals that could

be used for further improvement of the performance should there be any preceding

sensory cues that enable movement preparation.

Collaboration of Learning Modules
In the above framework of `specialization by learning,' each organization is

not specialized in what to do, but in how to learn it. Specific behaviors or functions

can be realized by combination of multiple learning modules distributed among the

basal ganglia, the cerebellum, and the cerebral cortex[23,24].

The use of internal models of the body and the environment can improve the

performance of motor control[54,55]. Such internal models could be acquired by

supervised learning with the motor command as the input and the sensory outcome

as the teacher signal. Furthermore, for supervised or reinforcement leaning, it is

often helpful to use unsupervised learning algorithms to extract the essential

information in the raw sensory input.  Such ways of combination of different

learning modules could be helpful in exploring possible collaborations of the

cerebellum, the basal ganglia, and the cerebral cortex[24]. Table 1 summarizes

possible roles of the learning modules in the cerebellum, the basal ganglia, and the

cerebral cortex.

In many brain imaging experiments, different parts of the cerebellum, the

basal ganglia, and the cerebral cortex are activated simultaneously. The above

hypotheses on the specialization by the frameworks of learning can provide us with

a helpful hint as to the different roles of simultaneously activated brain areas. Below

we review recent studies from the viewpoint of this learning-oriented specialization.

Eye movement
Recent experiments on saccadic eye movement have shown separate gain
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adaptation for different types of saccades, such as visually guided and memory

guided [56]. A recent model by Gancarz and Grossberg[57] explained the mechanism

for separate adaptation based on error-based learning of synaptic weights for

multiple input pathways to the cerebellum.

Neurons in the caudate nucleus have been known to be activated in memory-

guided saccades [58]. Recently, Kawagoe and colleagues performed delayed saccade

experiments in which reward is given only in one of four possible saccade directions.

Surprisingly, the direction tuning of caudate neurons were strongly modulated by

the reward condition. In some neurons, direction tuning was sharper when the

preferred direction coincided with the rewarded direction. In others, the preferred

direction changed with the reward direction [59]. In a recent review article[60],

Hikosaka et al. proposed a model on how different types of neuronal tuning could

be realized due to modulation of striatal plasticity by dopaminergic input. Their

study suggests that the basal ganglia associate spatial information from the cortex

and the reward-related information from the midbrain dopaminergic neurons and

thus take a key role in selecting goal-directed actions.

Arm reaching
It has been shown in arm reaching studies in monkeys that the cerebellum is

involved in externally driven (e.g., visually guided) movement while the basal

ganglia are involved in internally generated (e.g., memory guided) movement [61].

Recent recording and inactivation studies of motor thalamus [62,63] further

confirmed this contrasting involvement. In the area X of thalamus, which receives

input from the cerebellum and projects to the ventral premotor cortex [21], majority

of neurons were selectively activated in visually triggered movements. On the other

hand, in the nucleus VApc, which receives input from the basal ganglia and projects

to the prefrontal cortex, majority of neurons were selective for internally generated

movements.

What is the reason for such differential involvement? In visually guided

movements, the most critical computation is coordinate transformation of visual

input to corresponding motor output. Such mapping could be learned in a form of

supervised learning in the cerebellum. In memory guided or internally generated

movements, what is most critical is selection of an appropriate action and
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suppression of unnecessary actions, both of which require prediction of reward

value.

Sequence learning
It has been shown in trial and error learning of sequential movement that

cortico-basal ganglia loops are differentially involved in early and late stages of

learning. Brain areas in the prefrontal loop (prefrontal cortex, preSMA, caudate

head) are involved in learning new sequences, while those in the motor loop (SMA,

putamen body) are involved in execution of well learned movements [64,65]. Why

should the information about the sequence learned initially in the prefrontal loop be

copied to the motor loop? We hypothesized that the two cortico-basal ganglia loops

learn a sequence using different representations: visuospatial coordinate in the

prefrontal loop and motor coordinate in the motor loop[66]. A reinforcement

learning model of sequence learning based on this hypothesis could replicate many

experimental findings, for example, time course of learning, performance for

modified sequences, and the results of lesion experiments[41]. In a recent

psychophysical experiment motivated by this hypothesis, it was confirmed in a

sequential key-press task that human subjects depend gradually more on body-

specific representation than on visual representation with the progress of learning

[67].

While the use of different learning algorithms is associated with differential

involvement of the cerebellum, the basal ganglia, and the cerebral cortex, the use of

different representations is associated with differential involvement of different

channels in cortico-basal ganglia loops and cortico-cerebellar loops.

Timing and rhythm
In a series of imaging studies by Sakai and colleagues [68][69], it was shown

that the memory of simple rhythms involves anterior cerebellum, while memory of

complex rhythms and adjustment of movement timing to irregular external triggers

involve the posterior cerebellum. A possible reason for such differential involvement

is the use of different representations [66]. The anterior cerebellum can provide

internal models of body dynamics, which can be helpful in prediction of regular

timing as well as in controlling detailed movement parameters. The posterior

cerebellum may provide internal models for prediction of sensory events, which
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may be useful in timing perception and adjustment.

Cognitive processing
Involvement of the basal ganglia and the cerebellum in cognitive functions

once was a controversial issue[14,70]. However, now there are abundant brain

imaging data showing their involvement in mental imagery[5,6], sensory

discrimination[7-9], planning[10-12], attention[13], and language[14-17]. Careful

studies of cerebellar and basal ganglia patients have also revealed that their

impairments are not limited to motor control but also extend to cognitive functions

[21,71,72]. Lesion studies in rodents also suggest the involvement of the basal

ganglia in rule based learning [73] and spatial navigation [74].

In a recent PET study, Dagher and colleagues used the Tower of London task

and found that the activity of the caudate nucleus as well as the premotor and

prefrontal cortices are correlated with the task complexity [11]. This suggests that the

cortico-basal ganglia loops may be involved in multi-step planning of actions.

Conclusion
A new hypothesis on the specialization of brain structures based on learning

paradigms provides helpful clues as to the differential roles of the basal ganglia and

the cerebellum. The frontal cortex has been regarded as the site of high-level

information processing because of their activity related to working memory, action

planning, and decision making. However, what has been found in the cerebral

cortex could be just the tip of an iceberg. The activities of the cortical neurons could

be the results of recurrent dynamics of the cortico-basal ganglia and cortico-

cerebellar loops. An important role of the cerebral cortex is to provide common

representations on which both the basal ganglia and the cerebellum can work

together. Unsupervised learning of the cerebral cortex may also be the foundation of

building modular organization in which learning modules in the basal ganglia and

the cerebellum are flexibly combined.
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Figure 1:
In supervised learning, a detailed target output is given for each input and the

goal of learning is to minimize the error signal. In reinforcement learning, no explicit

target output is given, but a scalar reward signal is given that notifies how good or

bad the output (or a sequence of outputs) was. In unsupervised learning, no target or

reward signal is given and the output is determined to best represent the statistical

features in the input.
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Figure 2:
A schematic diagram of the cortico-basal ganglia loop and the possible roles of its

components in a reinforcement learning model. The neurons in the striatum predict

the future reward for the current state and the possible actions. The error in the

prediction of future reward, the TD error, is encoded in the activity of dopamine

neurons and is used for the learning of cortico-striatal synapses. One of the

candidate actions is selected in the pathway through SNr and GP to the thalamus

and the cerebral cortex as a result of competition of predicted future rewards. SNr:

substantia nigra, pars reticulata, GP: globus pallidus. The direct and indirect

pathways within the globus pallidus are omitted for simplicity.
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Figure 3:
A schematic diagram of the cortico-cerebellar loop. In a supervised learning model

of the cerebellum, the climbing fibers from the inferior olive provides the error signal

for the Purkinje cells. Coincident inputs from the inferior olive and the granule cells

result in a long-term depression (LTD) of the granule-to-Purkinje synapses.
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Table 1:
Possible roles of different learning modules.

1) Cerebellum: Supervised learning

a) internal models of the body and the environment.

b) replication of arbitrary input-output mapping that was learned elsewhere

in the brain.

2) Basal ganglia: Reinforcement learning

a) evaluation of current situation by prediction of reward.

b) selection of appropriate action by evaluation of candidate actions.

3) Cerebral cortex: Unsupervised learning

a) concise representation of sensory state, context, and action.

b) finding appropriate modular architecture for a given task.
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