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ABSTRACT
Currently, the most significant line of defense against mal-
ware is anti-virus products which focus on authenticating
valid software from a white list, blocking invalid software
from a black list, and running any unknown software (i.e.,
the gray list) in a controlled manner. The gray list, con-
taining unknown software programs which could be either
normal or malicious, is usually authenticated or rejected
manually by virus analysts. Unfortunately, along with the
development of the malware writing techniques, the num-
ber of file samples in the gray list that need to be analyzed
by virus analysts on a daily basis is constantly increasing.
In this paper, we develop an intelligent file scoring system
(IFSS for short) for malware detection from the gray list by
an ensemble of heterogeneous base-level classifiers derived
by different learning methods, using different feature rep-
resentations on dynamic training sets. To the best of our
knowledge, this is the first work of applying such ensem-
ble methods for malware detection. IFSS makes it practical
for virus analysts to identify malware samples from the huge
gray list and improves the detection ability of anti-virus soft-
ware. It has already been incorporated into the scanning
tool of Kingsoft’s Anti-Virus software. The case studies on
large and real daily collection of the gray list illustrate that
the detection ability and efficiency of our IFSS system out-
performs other popular scanning tools such as NOD32 and
Kaspersky.
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1. INTRODUCTION

1.1 Malware Detection from the Gray List
Malware is a generic term [5] to denote all kinds of un-

wanted software(e.g., viruses, backdoors, spyware, trojans
and worms). Numerous attacks made by the malware have
posed a major security threat to computer users. Therefore,
malware detection is one of the computer security topics
that are of great interest. Currently, the most significant
line of defense against malware is anti-virus software prod-
ucts, such asNOD32, Kaspersky and Kingsoft’s Antivirus.
These widely-used malware detection software tools mainly
use signature-based method to recognize threats. Signature
is a short string of bytes which is unique for each known mal-
ware so that future examples of it can be correctly classified
with a small error rate.

In order to capture as many malware samples as possible,
besides authenticating valid software from a white list and
blocking invalid software from a black list using signature-
based method, most of the existing anti-virus software prod-
ucts run any unknown software (i.e., the gray list) in a con-
trolled manner. The gray list, containing unknown software
programs which could be either normal or malicious, is usu-
ally authenticated or rejected manually by virus analysts.
Unfortunately, with the development of the malware writ-
ing techniques, the number of file samples in the gray list
that need to be analyzed by virus analysts on a daily basis
is constantly increasing. For example, the gray list collected
by the Anti-virus Lab of a large software corporation usually
contains more than 100,000 file samples per day. The gray
list is not only large in size, but also very complicated since
it contains the variants of known malware and previously
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unknown malware samples. In order to remain effective, it
is of paramount importance for the anti-virus companies to
be able to quickly analyze the gray list and detect malware
samples.

Over the last few years, many research efforts have been
conducted on developing intelligent malware detection sys-
tems [19, 30, 33, 26]. In these systems, the detection pro-
cess is generally divided into two steps: feature extraction
and categorization. In the first step, various features such as
Application Programming Interface (API) calls and program
strings are extracted to capture the characteristics of the file
samples. In the second step, intelligent techniques such as
decision trees are used to automatically categorize the file
samples into different classes based on computational analy-
sis of the feature representations. These intelligent malware
detection systems are varied in their use of feature represen-
tations and categorization methods. For example, IMDS [33]
performs association classification on Windows API calls ex-
tracted from executable files while Naive Bayes methods on
the extracted strings and byte sequences are applied in [26].

1.2 Contributions of The Paper
Different feature representations and categorization meth-

ods have their own advantages and limitations in malware
detection. None of the single feature set can immune or resis-
tant to mimicry designed to confuse the anti-virus software
as different feature representation typically capture differ-
ent characteristics of file samples. For example, API calls
typically reflect the behavior of program code pieces while
program strings consist of reused code fragments, author sig-
natures, files names and system resource information. On
the other hand, different categorization methods have dif-
ferent strengths and may excel at different situations. A
natural question arises: can we combine different feature
representations and categorization methods to improve the
performance of malware detection?

Previous research has shown that ensemble methods, by
combining multiple input systems, are a popular way to
overcome instability and increase performance in many ma-
chine learning tasks, such as classification, clustering and
ranking [9, 11]. In this paper, we develop an intelligent file
scoring system (IFSS for short) for malware detection from
the gray list by an ensemble of heterogeneous base-level clas-
sifiers derived by different learning methods, using different
feature representations on dynamic training sets. To the
best of our knowledge, this is the first work of applying such
ensemble methods for malware detection.

Our IFSS system has the following major traits:

• Diverse feature representations: Two sets of extracted
features, API calls and interpretable string, are used in
our system. API calls reflect the behavior of program
code pieces and the interpretable strings carry seman-
tic interpretations and reflect an attacker’s intent and
goal. For example, (1) the API call like“GetVersionExA”
in“KERNEL32.DLL”actually executes the function of
obtaining extended information about the version of
the recently running operating system; (2) the string of
“<script language=‘javascript’>window.open(‘readme.eml’)”
always exists in the worms of “Nimda” and implicates
that they try to infect the scripts.

• Dynamic training sets: Note that malware techniques
are constantly evolving and new malware samples are

produced on a daily basis. To account for the temporal
trends of malware writing, our IFSS system makes use
of two different datasets for training purpose: DB T1
which consists of file samples from the historical data
collection and DB T2 which contains most recent file
samples. The training sets are dynamically changing
to include new samples while retaining the character-
istics of historical data. In addition, training on differ-
ent training sets also helps to increase the diversity of
individual classifiers.

• Heterogeneous base classifiers: Associative classifiers
and support vector machines have been chosen as our
base classifiers. Both classifiers have been successfully
used in malware detection [33, 19] and have distinct
properties.

• Human-in-the-Loop: Our system provides a user-friendly
mechanism for incorporating the expert knowledge and
expertise of virus analysts. It should be pointed that
in many cases, classifying a file sample from the gray
list as malware will still be the prerogative of virus an-
alysts. Our IFSS system uses a simple voting scheme
to combine the prediction of individual classifiers and
produces a file scoring list which is simple for virus an-
alysts to interpret and understand. Virus analysts can
then look at the top ranked file samples and manually
authenticated and rejected those samples. New labeled
samples can then be used to update the training sets.

• Simultaneous model construction and testing: With
the dynamic training sets and human-in-the-Loop, our
IFSS system performs simultaneous model construc-
tion and testing in malware detection, an environment
and a task that is constantly evolving over the time.
In our IFSS system the following three steps are iter-
atively conducted on the daily basis: 1) classifiers are
first constructed to classify/rank the file samples in the
gray list; 2) virus analysts manually analyze these top
ranked samples; and 3) labeled samples are then used
to dynamically generate new training sets.

All these traits make our IFSS a practical solution for help-
ing virus analysts identify malware samples in the gray list
and improving the detection ability of anti-virus software.
The case studies on large and real data collections collected
by the Anti-virus Lab of Kingsoft corporation illustrate that:
(1) After being scanned by all the popular anti-virus soft-
ware products, such as NOD32 and Kaspersky, malware in
the gray list still can be effectively detected by our IFSS.
(2) The performance and efficiency of our IFSS outperform
other classification methods in detecting malware from the
gray list. (3) Our IFSS reduces the number of file samples
that need to be analyzed by virus analysts. Our case studies
show that the percentage of malware samples in the gray list
is about 0.5% while the percentage of malware samples in
the top 100 ranked files samples of the file scoring list gener-
ated by our IFSS system is 35%. Therefore IFSS can greatly
save human labor. As a result, our IFSS has already been
incorporated into the scanning tool of Kingsoft’s Anti-Virus
software.

1.3 Organization of The Paper
The rest of this paper is organized as follows. Section 2

gives an overview of our IFSS system and Section 3 discusses
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the related work. Section 4 describes the feature representa-
tion and extraction; Section 5 introduces the two base classi-
fiers; Section 6 presents the ensemble framework used in our
IFSS system for generating the file scoring list. In Section 7,
we systematically evaluate the effects and efficiency of our
IFSS system in comparison with other classification meth-
ods. In Section 8, based on the daily data collection obtained
from Kingsoft Anti-virus lab, we examine the detection abil-
ity and efficiency of IFSS in comparison with other popular
anti-virus software such as NOD32 and Kaspersky. Finally,
Section 9 concludes.

2. SYSTEM ARCHITECTURE
In this paper, resting on the analysis of Windows API

(Application Program Interface) calls which can reflect the
behavior of program code pieces and interpretable strings
which carry semantic interpretations and reflect an attacker’s
intent and goal, we develop the Intelligent File Scoring Sys-
tem(IFSS) to detect malware from the gray list. Figure 1
shows the malware detection procedure of IFSS:

Figure 1: Malware detection flow of IFSS

• Training:

1. Feature Extractor: IFSS first uses the feature ex-
tractor to extract the API calls and interpretable
strings from the collected Windows Portable Ex-
ecutable (PE) files of “black list” and “white list”,
converts them to a group of 32-bit global IDs as
the features of the training data, and stores these
features in the signature database. A sample sig-
nature database is shown in Figure 2, in which

there are 8 fields: record ID, PE file name, file
type (“0” represents benign file while “1” is for
malicious file), called APIs name, called API ID,
the total number of called API functions, string
ID, and the total number of interpretable strings.
The transaction data can also be easily converted
to relational data if necessary.

Figure 2: A sample signature database after data
transformation

2. Feature Selector: Feature selection is important
for many pattern classification systems. As not all
of the extracted features are contributing to mal-
ware detection, feature selector is used to identify
the most representative features.

3. Base Classifiers: Base classifiers are constructed
by applying associative classifier and SVM us-
ing different feature representations on different
training sets (denoted by DB T1 and DB T2).
Coupled with the two different feature represen-
tations, we have four different combinations of
training sets and feature representations: DB T1
with API calls, DB T1 with interpretable strings,
DB T2 with API calls, and DB T2 with inter-
pretable strings. Using the two different classifi-
cation methods, we thus obtain 8 different base
classifiers.

• Malware Detection from the Gray List

The daily collection of file samples is first scanned
by the existing popular anti-virus software products.
Valid software programs from a white list are authen-
ticated and invalid software programs from a black list
are blocked or rejected. The gray list, containing un-
known software programs which could be either normal
or malicious, is then fed into our IFSS system. After
feature extraction and selection, 8 different classifiers
are applied to the gray list. A simple voting scheme
is used to combine base classifiers and generate a file
scoring list. The file score list ranks the input file sam-
ples from the gray list. Virus analysts can then look
at the top ranked file samples and manually authen-
ticated and rejected those samples. These manually
labeled file samples can then be used to update the
training sets.
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3. RELATED WORK

3.1 Data Mining Methods for Malware
Detection

Signature-based methods are widely used in malware de-
tection to recognize threats [12]. A signature is a short
string of bytes which is unique for each known malware.
However, this classic signature-based method always fails to
detect variants of known malware or previously unknown
malware. The problem lies in the signature extraction and
generation process, and in fact these signatures can be eas-
ily bypassed [27]. In order to overcome the disadvantages of
the widely-used signature-based malware detection method,
data mining and machine learning approaches are proposed
for malware detection [19, 26, 30, 7]. The performance of
such methods used for malware detection critically depend
on the set of features and the classifier [10].

Neural Networks as well as immune system are used by
IBM for computer virus recognition [28]. Naive Bayes, Sup-
port Vector Machine(SVM) and Decision Tree classifiers are
used to detect new malicious executables based on small
data collection in the previous studies [19, 26, 30]. Recently,
associative classification [22], with its ability to utilize re-
lationships among attributes, has been also applied in [33].
Note that the class distribution in the gray list of our col-
lection is quite imbalanced with the malware samples as the
minority class. Many accuracy driven classifiers may fail on
such a large and imbalanced gray list. For example, neu-
ral networks and naive Bayes consistently biased towards
the majority class at any given size and prone to treat the
minority (malware) class as noise [18]. Decision trees algo-
rithms (C4.5) are also not performing well in the presence of
imbalance: they might lose big parts of the minority (mal-
ware) class at the pruning phase or lead to the trees of large
size and over-fitting of the minority class [18]. Hence in our
work, we choose association classifier and SVM as our base
classifiers.

3.2 Ensemble Classification
Previous research has shown that ensemble methods, by

combining multiple input systems, are a popular way to
overcome instability and increase performance in many ma-
chine learning tasks, such as classification, clustering and
ranking. For example, an ensemble of classifiers is a set of
classifiers whose individual predictions are combined in some
way (typically by voting) to classify new examples. Gener-
ally there are two types of classifier ensemble: 1) Homoge-
neous ensemble: the base classifiers are constructed using
a single learning algorithm, such as decision trees or neural
networks [9]. Typically base classifiers are generated by ma-
nipulating the training set (as done in boosting or bagging),
manipulating the input features, manipulating the output
targets or injecting randomness in the learning algorithm [8].
The individual classifiers are then typically combined by vot-
ing or weighted voting. 2) Heterogeneous ensemble: the base
classifiers are constructed by applying different learning al-
gorithms (with heterogeneous model representations) to a
single dataset [24]. More complicated methods such as stack-
ing are used for combining classifiers [32]. In our IFSS sys-
tem, the base classifiers are constructed by different learning
methods (association classification or SVM), using different
feature representations (API calls or Interpretable strings)

on different training sets (DB T1 and DB T2). We expect
that our construction of base classifiers would increase their
diversity and improve the classification performance. Our
work is the first effort on applying such ensemble classifier
methods for malware detection.

4. FEATURE EXTRACTION AND
SELECTION

Our IFSS system is performed directly on Windows PE
code. PE is designed as a common file format for all fla-
vor of Windows operating system, and PE malware are in
the majority of the malware rising in recent years. If a PE
file is previously compressed by a third party binary com-
press tool such as UPX and ASPack Shell or embedded a
homemade packer, it needs to be decompressed first. We
use the dissembler W32Dasm developed by KingSoft Anti-
Virus Laboratory to dissemble the PE code and output the
assembly instructions as the input for feature extraction.

4.1 Feature Extraction
API Calls: The Windows API execution calls for each

benign/malicious executable is generated by a PE parser.
Through the API query database, the API execution calls
generated by the PE parser can be converted to a group of
32-bit global IDs which represents the static execution calls
of the corresponding API functions. For example, the API
“KERNEL32.DLL, OpenProcess” executes the function that
returns a handle to an existing process object and it can be
encoded as 0x00500E16. Then we use the API calls as the
signatures of the PE files and store them in the signature
database.

Interpretable Strings: The interpretable strings are ex-
tracted using a feature parser. The feature parser reads the
PE file. If there is a sequence of consecutive bytes belonging
to the same Character Set, such as ASCII, GB2312, Big5
and Unicode, then the parser exacts them as our features.
Figure 3 shows a sample interpretable strings extracted by
our feature parser. These strings are extracted from a mal-
ware named Backdoor − Redgirl.exe. From Figure 3, we
can see the behaviors of the malware and the attacker’s in-
tent explicitly.

Since these two sets of features are representation of PE
file samples at different semantic levels, we use them for
building base classifier respectively.

4.2 Feature Selection
API Calls: As not all of the API calls are contributing

to malware detection, we rank each API call using Max-
Relevance algorithm [25] and select a set of API calls with
the highest relevance to the target class, i.e. the file type, for
later classification. Given ai which represents the API with
ID i, and the file type f (“0” represents benign executables
and “1” is for malicious executables), their mutual informa-
tion is defined in terms of their frequencies of appearances
p(ai), p(f), and p(ai, f) as follows.

I(ai, f) =

∫ ∫
p(ai, f)log

p(ai, f)

p(ai)p(f)
d(ai)d(f)

With this algorithm, we select the top m APIs in the de-
scent order of I(ai, f), i.e. the best m individual features
correlated to the file types of the PE files.
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Figure 3: Interpretable strings sample extracted by
feature parser

Interpretable Strings: For Interpretable strings, we
first use the corpus of natural language to filter the can-
didate interpretable strings. If the string consists most of
the unusual characters which are not in the corpus, like
“!0&0h0m0o0t0y0”, it will be pruned by our feature parser.
We then also apply Max-Relevance algorithm [25] to select a
set of the most representative strings for later classification.

5. BASE CLASSIFIERS
In this section, we briefly describe the base classifiers used

in our IFSS. We use association classifier and SVM as our
base classifiers for the following reasons: 1) The gray list
is large and quite imbalanced and many accuracy driven
classifiers including neural networks, naive Bayes and de-
cision trees may fail on such a large and imbalanced gray
list [18]. On the other hand, association classifier and SVM
seems work well on imbalanced datasets. 2) Both associa-
tive classification and SVM have been successfully applied
in malware detection [33, 19]. In particular, association clas-
sification can discover interesting relationships among input
features that are explicitly related to malware/benign file
class and SVM can identify good classification boundaries
for malware detection.

5.1 Association Classification

5.1.1 Introduction
For malware detection in this paper, the first goal is to find

out how a set of input features (e.g., API calls) supports the
specific class objectives: class1 = Malicious, and class2 =
Benign.

• (Support and confidence) Given a dataset DB, let
I = {I1, ..., Im} be an itemset and I → Class(os, oc)
be an association rule whose consequent is a class ob-
jective. The support and confidence of the rule are
defined as:

os = supp(I, Class) =
count(I ∪ {Class})

|DB| × 100%

oc = conf(I, Class) =
count(I ∪ {Class})

count(I, DB)
× 100%

where the function count(I∪{Class}) returns the num-
ber of records in the dataset DB where I ∪ {Class}
holds.

• (Frequent itemset) Given mos as a user-specified
minimum support. I is a frequent itemset/pattern in
DB if os ≥ mos.

• (Classification association rule) Given moc as a
user-specified confidence. Let I = {I1, ..., Im} be a
frequent itemset. I → Class(os, oc) is a classification
association rule if oc ≥ moc where os and oc are the
support and confidence of the rule.

Apriori [1] and FP-Growth [13] algorithms can be ex-
tended to associative classification [21, 22]. In general, FP-
Growth algorithm is much faster than Apriori for mining
frequent item sets. In our work, we use FP-Growth algo-
rithm to conduct the classification association rule mining.

5.1.2 Post-processing for Associative Classifier
Construction

Since there is a huge number of rules generated from the
training set and it is infeasible to build the classifier used all
of rules, post-processing of associative classification is also
very important for improving the accuracy and efficiency of
the classifier. Rule pruning and rule re-ordering are used for
post-processing associative classifier.

Rule Pruning. Several common rule pruning approaches
have been developed for associative classifiers to reduce the
generated rules [3, 4, 21, 22, 23, 29]: (1) χ2 (chi-square)
testing [21] to measure the significance of the rule itself, (2)
database coverage [22] to just keep the rules covering at least
one training data object not considered by a higher ranked
rule, and (3) pessimistic error estimation [22] to test the
estimated error of a new rule. These rule pruning techniques
mainly focus on individual rules. We have used the above
three pruning techniques in our application.

Rule Re-ordering. Rule re-ordering plays an important
role in the classification process since most of the associa-
tive classification algorithms utilize rule ranking procedures
as the basis for selecting the classifier [22, 21, 34]. In par-
ticular, CBA [22] and CMAR [21] use database coverage
pruning approach to build the classifiers, where the pruning
evaluates rules according to the rule re-ordering list. Hence,
the highest-order rules are tested in advance and then in-
serted into the classifier for predicting test data objects. For
rule re-ordering, there are five popular mechanisms [31]: (1)
Confidence Support size of Antecedent (CSA), (2) size of
Antecedent Confidence Support (ACS), (3) Weighted Rel-
ative Accuracy (WRA), (4) Laplace Accuracy, and (5) χ2

(chi-square) measure. CSA and ACS are belong to the pure
“support-confidence”framework and have been used by CBA
and CMAR for rule ranking. WRA, Laplace Accuracy and
χ2 measure are used by some associative classification al-
gorithms, such as CPAR [34], to weigh the significance of
each generated rule. In our work, we adopt hybrid rule re-
ordering mechanism by combining CSA and χ2 to re-order
the rules. We first rank the rules whose confidences are
100% by CSA and then re-order the remaining rules by χ2

measure. Because those rules whose confidences are 100%
can make the classifier accurate, while the remaining rules
should be considered by the combination of their supports
and confidences together.
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We use “Best First Rule” [31] method to predict the new
file samples. We select the first best rule that satisfies the
new file sample according to the rule list based on our hybrid
CSA/χ2 rule re-ordering method to predict whether the new
case is malware or not.

5.2 Support Vector Machine
Support Vector Machine (SVM) is a promising method

for data classification and regression and it has also been
successfully used in malware detection [16, 2, 15]. The key
to the success of SVM is the kernel function which maps
the data from the original space into a high dimensional
feature space. By constructing a linear boundary in the
feature space, the SVM produces nonlinear boundaries in the
original space. The output of a linear SVM is u = w×x− b,
where w is the normal weight vector to the hyperplane and
x is the input vector. Maximizing the margin can be seen
as an optimization problem:

minimize
1

2
‖w‖2, subject to yi(w · x + b) ≥ 1,∀i,

where x is the training example and yi is the correct output
for the ith training example. Intuitively the classifier with
the largest margin will give low expected risk, and hence
better generalization.

6. ENSEMBLE CLASSIFIER
Base classifiers are constructed by applying associative

classifier and SVM using different feature representations
on different training sets (denoted by DB T1 and DB T2).
Coupled with the two different feature representations, we
have four different settings for training base classifiers: DB T1
with API calls, DB T1 with interpretable strings, DB T2
with API calls, and DB T2 with interpretable strings. Us-
ing the two different classification methods, we thus obtain
8 different base classifiers. A simple voting scheme is used
to combine base classifiers. For an input file, each base clas-
sifier casts a vote for its prediction: i.e., 1 if the input file is
predicted to be malicious and 0 otherwise. Therefore after
classifier voters, each file sample can obtain a score ranging
from 8 to 0. If two file sample have the same score, they
will be ranked by their matching association classification
rules’ χ2 (chi-square) values [21] in descending order. IFSS
system then generates a file scoring list which is a ranked
list of all input file samples from the gray list. The file score
list is simple for virus analysts to interpret and understand.
Virus analysts can then look at the top ranked file samples
and manually authenticated and rejected those samples. In
practice, each virus analyst can analyze 20 new file samples
per day and they pick the top 100 file samples from the file
scoring list for manual inspection. These manually labeled
file samples can then be used as new training data to im-
prove the system.

7. EXPERIMENTAL RESULTS AND
ANALYSIS

In this section, we conduct two sets of experimental stud-
ies using our data collection obtained from the Anti-virus
Lab of Kingsoft to compare our IFSS with other classifiers:
(1) The first set of experiments is to investigate the effects
of feature selection. (2) In the second set of experiments,

we compare our IFSS with different ensemble methods ob-
tained using different combinations of feature representa-
tions, training sets and base classifiers. All the experimen-
tal studies are conducted under the environment of Windows
XP operating system plus Intel P4 1.83 GHz CPU and 2 GB
of RAM.

7.1 Evaluation of Feature Selection
Identifying the most representative features is critical to

improve the performance and efficiency of the classifiers [17,
20]. As not all of the features contributing to malware de-
tection, we rank each API call and interpretable string using
Max-Relevance algorithm [25] and select top k API calls and
interpretable strings as the features for later classification.
We obtain a whole week’s data collection(from Jan. 1st,
2009 to Jan. 7th, 2009) from Kingsoft Anti-virus lab to tes-
tify the validation of the feature selection method in this
set of experiments. We use six days’ data collection con-
taining 530,448 PE file samples for training ( half of them
are recognized as benign executables and the other half are
malicious executables mainly consisting of backdoors, tro-
jans and worms) and one day’s samples including 89,626
files for testing. There are 7,909 API calls and 32,123 inter-
pretable strings extracted from these file samples. We use
precision[6] and recall [6] of the malware class to evaluate the
performance of the classification results, which can be de-
fined as follows: precision= TP

TP+FP
, recall= TP

TP+FN
, where

TP is the number of malicious files correctly classified, FP is
the number of benign files incorrectly classified as malicious
and FN is the number of malicious files incorrectly classi-
fied as benign. Figure 4 and Figure 5 show that the testing
performance of Associative Classifier(AC) changes slightly
after the number of API calls reaches 100 and the number
of interpretable strings reaches 500. So, we select top 100
API calls and top 500 interpretable strings respectively as
the features for later classification.

Figure 4: AC performance with different number of
API Calls

Figure 5: AC performance with different number of
Strings
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Feature-Classifier-Train TP TP+FP Recall Precision

C1:API-AC-DB T1 13 1244 21.31% 1.05%
C2:API-AC-DB T2 13 896 21.31% 1.45%
C3:STR-AC-DB T1 30 4173 49.18% 0.72%
C4:STR-AC-DB T2 9 444 14.75% 2.03%
C5:API-SVM-DB T1 13 747 21.31% 1.74%
C6:API-SVM-DB T2 13 568 21.31% 2.29%
C7:STR-SVM-DB T1 29 3266 47.54% 0.89%
C8:STR-SVM-DB T2 30 803 49.18% 3.74%

Table 1: Detection results of different base classifiers
on different training sets using different feature rep-
resentations. The test data is from the gray list of
Jan. 8th, 2009.

7.2 Comparisons of Different Classification
Methods

In this set of experiments, we compare our IFSS with
different ensemble methods obtained using different com-
binations of feature representations, training sets and base
classifiers. In particular, we use: (1) API calls and inter-
pretable strings as diverse features, (2) DB T1 consisting of
491,733 PE file samples obtained from the history data set
of Kingsoft Anti-virus lab, and DB T2 containing 530,448
PE files which is the data collection of the week from Jan.
1st, 2009 to Jan. 7th, 2009, (3) associative classifier de-
scribed in Section 5.1 and linear SVM [14] implemented in
LibLinear package as heterogenous base classifiers, to con-
struct different classifiers. To evaluate the performance of
different classifiers and ensembles, we use the gray list of
Jan. 8th, 2009 obtained at Kingsoft Anti-virus lab. We
randomly sample 10% from the gray list for testing. The
test dataset contains 12,365 files, 61 of which are malware
samples.

Table 1 shows the detection results of different base clas-
sifiers on different training sets using different feature rep-
resentations. From Table 1, we observe that the precision
of each classifier is too low and the number of the file sam-
ples misclassified as malware is too large. Obviously, the
single classification result is infeasible for real applications.
Ensemble classifiers are quite popular in many data min-
ing applications due to their potential for efficient parallel
implementations and high accuracy.

Table 2 and Figure 6 show the detections results of differ-
ent ensembles constructed by different combinations of the
feature representations, training sets and base classifiers. In
particular, E1-E4 are the ensemble methods constructed by
a single classifier with a single feature representation on dif-
ferent training sets; E5-E6 are the ensemble methods con-
structed by a single classifier with diverse feature represen-
tations on different training sets. These methods are typi-
cal approaches for constructing ensembles. For comparison
purpose, we also include the results of human expert. F1
measure, defined as F1 = 2×Recall×Precision

Recall+Precision
, is also used

to evaluate the classification performance of different algo-
rithms. From the comparison, we observe that our IFSS
outperforms other ensembles as well as human experts.

In addition, the detection by our IFSS can be done very
efficiently using a couple of minutes (it uses 21.5 minutes to
detect these 12,365 file samples, including feature extraction
time). A virus analyst has to spend 5 days to analyze the
100 file samples in the gray list, since he/she can analyze 20

Ensemble TP Recall Precision F1
E1:C1+C2 2 3.28% 2% 0.0248
E2:C3+C4 3 4.92% 3% 0.0373
E3:C5+C6 3 4.92% 3% 0.0373
E4:C7+C8 4 6.56% 4% 0.0497
E5:C1+C2+C3+C4 12 19.67% 12% 0.1491
E6:C5+C6+C7+C8 9 14.75% 9% 0.1118
IFSS:C1-C8 35 57.38% 35% 0.4348
Human Expert 2 3.28% 2% 0.0248

Table 2: Detection results of different ensembles.
Remarks: We select the top 100 files from the rank-
ing list generated by each ensemble according to the
simplest voting and ranking mechanism described in
Section 6 and evaluate the performances of differ-
ent ensembles. For comparison purpose, our virus
analysts also select 100 files from the gray list to
analyze.

new file samples per day. Our case studies shows that the
percentage of malware samples in the gray list is about 0.5%
while the percentage of malware samples in the top 100 files
samples of the file scoring list generated by our IFSS system
is 35%. Because of its high efficiency and effectiveness, our
IFSS system makes it practical for human experts to inspect
the top rank files.

Figure 6: F1 measures of different ensembles based
on part of the gray list of Jan. 8th, 2009.

8. REAL APPLICATION OF IFSS
It should be pointed out that our IFSS system for malware

detection has already been incorporated into the product of
Kingsoft’s Anti-virus software. Figure 7 shows the interface
of the IFSS system. We call the new scanning tool of King-
soft’s Anti-Virus software which incorporates IFSS system
as KS-IFSS. The old scanning tool of Kingsoft’s Anti-Virus
software is referred as KS. The main purpose of IFSS is to
help virus analysts find out malware samples in the gray list
on which all other popular scanners fail and to improve the
malware detection ability of anti-virus software. Therefore,
we apply KS-IFSS in real applications and compare with
other popular scanners(including KS) to testify its malware
detection ability and efficiency on the daily data collection.

8.1 Detection Ability of KS-IFSS
In this section, we apply KS-IFSS in real applications to

testify its detection ability of the daily data collection. Table
3 illustrates the daily data collection obtained from Kingsoft
Anti-virus lab for the week of Jan. 25th, 2009 to Jan. 31st,
2009.
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Figure 7: The interface of IFSS system.

Day Date All Files Malware Benign Files
1 2009/01/25 407,882 42,608 51,595
2 2009/01/26 516,715 44,204 59,245
3 2009/01/27 551,120 44,813 50,297
4 2009/01/28 597,767 47,796 38,982
5 2009/01/29 312,372 49,077 65,113
6 2009/01/30 520,761 57,144 66,022
7 2009/01/31 705,620 55,523 54,489

Sum 3,612,237 341,165 385,723

Table 3: Daily data collection for the week of Jan.
25th, 2009 to Jan. 31st, 2009.

3,612,237 file samples are collected in total: 2,885,349 of
which are gray files, 385,723 of which are benign files, and
341,165 of which are malware samples detected by all of the
four anti-virus scanners. For the gray files, we just review
the malware samples detected by KS-IFSS. We examine KS-
IFSS’s malware detection ability and FP(False Positive)rate
which is the ratio of benign files misclassified as malicious
in comparison with some of the popular scanning tools like
NOD32, Kaspersky and KS. For comparison purpose, we
use all of the Anti-virus scanners’ newest versions of the
base of signature on the same day. Table 4 and Figure 8
show that KS-IFSS outperforms other Anti-virus scanners
on malware detection ability, since it can detect the mal-
ware from the gray list while all the popular scanners fail.
Figure 9 shows that KS-IFSS outperforms other Anti-virus
scanners on FP(False Positive)rate.

Day Perf. KS-IFSS KS NOD32 Kaspersky
1 DRate 91.53% 87.33% 81.56% 72.85%
2 DRate 91.98% 87.72% 82.69% 66.09%
3 DRate 91.28% 88.24% 83.42% 65.72%
4 DRate 92.84% 89.21% 84.95% 62.95%
5 DRate 92.89% 89.97% 86.27% 75.47%
6 DRate 93.02% 89.68% 88.66% 79.12%
7 DRate 91.76% 89.40% 85.37% 86.36%

Table 4: Malware detection results of different Anti-
Virus Scanners. Remarks: DRate means the detec-
tion rate of the Anti-Virus Scanner which is the ratio
of malware correctly classified.

8.2 Detection Efficiency of KS-IFSS
In this set of experiments, we compare the efficiency of

our KS-IFSS with different Anti-virus scanners. We also
use the daily malware data collection, from Jan. 25th, 2009
to Jan. 31st, 2009, described in Section 8.1 to testify the de-
tection efficiency of each Anti-virus scanner. The results in
Figure 10 illustrate that KS-IFSS achieves higher efficiency
than other scanners when being executed in the same envi-
ronment.

Figure 8: Comparisons of malware detection ability
for different Anti-Virus Scanners.

Figure 9: Comparisons of FP rate for different Anti-
Virus Scanners.

9. CONCLUSION
In this paper, we present an an intelligent file scoring sys-

tem (IFSS) for malware detection from gray list. IFSS uses
an ensemble framework and it has several favorable traits
including diverse feature representations, dynamic training
sets, heterogeneous base classifiers and human-in-the-Loop.
In addition, IFSS performs simultaneous model construction
and testing. With these properties, IFSS makes it practical
for virus analysts to identify malware samples from the huge
gray list and improves the detection ability of anti-virus soft-
ware.

IFSS has already been incorporated into the scanning tool
of Kingsoft’s Anti-Virus software. The case studies on large
data collections on the the gray list and real daily data col-
lection obtained from the Anti-virus Lab of Kingsoft cor-
poration demonstrate the effectiveness and efficiency of our
IFSS system.
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Figure 10: Malware detection efficiency of different
Anti-Virus Scanners
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