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Abstract

A time-varying Wiener filter specifies the ratio of a target signal and a noisy mixture in a local time-frequency unit. We
estimate this ratio using a binaural processor and derive a ratio time-frequency mask. This mask is used to extract the
speech signal, which is then fed to a conventional speech recognizer operating in the cepstral domain. We compare the
performance of this system with a missing-data recognizer that operates in the spectral domain using the time-frequency
units that are dominated by speech. To apply the missing-data recognizer, the same binaural processor is used to estimate
an ideal binary time-frequency mask, which selects a local time-frequency unit if the speech signal within the unit is stron-
ger than the interference. We find that the performance of the missing data recognizer is better on a small vocabulary
recognition task but the performance of the conventional recognizer is substantially better when the vocabulary size is
increased.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The performance of automatic speech recognizers
(ASRs) degrades rapidly in the presence of noise,
microphone variations and room reverberation
(Gong, 1995; Lippmann, 1997). Speech recognizers
are typically trained on clean speech and face a prob-
lem of mismatch when used in conditions where
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speech occurs simultaneously with other sound
sources. To mitigate the effect of this mismatch on
recognition, noisy speech is typically preprocessed
by speech enhancement algorithms, such as micro-
phone arrays (Bradstein and Ward, 2001; Cardoso,
1998; Ehlers and Schuster, 1997; Hughes et al.,
1999), computational auditory scene analysis
(CASA) systems (Brown and Wang, 2005; Rosenthal
and Okuno, 1998) or spectral subtraction techniques
(Boll, 1979; Droppo et al., 2002). Microphone arrays
require the number of sensors to increase as the num-
ber of interfering sources increases. Monaural
CASA systems employ harmonicity as the primary
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cue for grouping acoustic components correspond-
ing to speech. These systems, however, do not
perform in time-frequency (T-F) regions that are
dominated by unvoiced speech. Spectral subtraction
systems typically assume stationary noise. Hence, in
the presence of non-stationary noise sources, their
performance is not adequate for recognition (Cooke
et al., 2001). If samples of the corrupting noise source
are available a priori, a model for the noise source
can additionally be trained and noisy speech may
be jointly decoded using the trained models of speech
and noise (Gales and Young, 1996; Varga and
Moore, 1990) or enhanced using linear filtering
methods (Ephraim, 1992). However, in many realis-
tic applications, adequate amounts of noise samples
are not available a priori and hence training of a
noise model is not feasible.

Recently, a missing-data approach to speech rec-
ognition in noisy environments has been proposed
by Cooke et al. (2001). This method is based on
distinguishing between reliable and unreliable data.
When speech is contaminated by additive noise,
some time-frequency units contain predominantly
speech energy (reliable) and the rest are dominated
by noise energy. The missing-data method treats
the latter T-F units as missing or unreliable during
recognition (see Section 4.2). Missing T-F units are
identified by thresholding the T-F units based on
local SNR. Spectral subtraction is typically used
to estimate the local SNR. The performance of
the missing-data recognizer is significantly better
than the performance of a system using spectral
subtraction for speech enhancement followed by
recognition of enhanced speech (Cooke et al.,
2001).

A potential disadvantage of the missing-data
recognizer is that recognition is performed in the
spectral or T-F domain. It is well known that recog-
nition using cepstral coefficients yields a superior
performance compared to recognition using spectral
coefficients under clean speech conditions (Davis
and Mermelstein, 1980). The superiority of the ceps-
tral features stems from the ability of the cepstral
transformation to separate vocal-tract filtering from
excitation source in speech production (Rabiner and
Juang, 1993). Additionally, the cepstral transform
approximately orthogonalizes the spectral features
(Shire, 2000). Since the missing-data recognition is
based on marginalizing the unreliable T-F features
during recognition, it is coupled with a spectral or
T-F representation. Any global transformation of
the spectral features (e.g. cepstral transformation)

smears the information from the noisy T-F units
across all the global features, preventing its effective
marginalization. Attempts to adapt the missing-
data method to the cepstral domain have centered
around reconstruction or imputation of the missing
values in the spectral domain followed by transfor-
mation to the cepstral domain (Cooke et al., 2001;
Raj et al., 2004). Alternatively, van Hamme (2003)
performs imputation directly in the cepstral domain.
These reconstructions are typically based either on
the speech recognizer itself or on other trained mod-
els of speech. The success of these model-based
imputation techniques depend on the adequacy of
reliable data for identification of the correct speech
model for imputation. In addition, errors in imputa-
tion procedures affect the performance of the system
even when the model is correctly identified.

Another potential drawback of the missing-data
recognizer, which has not been well studied, is the
problem of data paucity. The amount of “‘reliable”
data available to the recognizer is a function of both
SNR and frequency characteristics of the noise
source. A decrease in SNR, as well as an increase
in the bandwidth of the noise source causes an
increase in the amount of missing data. This leads
to a deterioration in performance for a small vocab-
ulary task (Cooke et al., 2001). The reduction in
reliable data may pose an additional problem for
recognition with larger vocabulary sizes. Paucity
of reliable data constrains the missing-data recog-
nizer to use only a small portion of the total T-F
acoustic model space. This reduced space may be
insufficient to differentiate between a large number
of competing hypotheses during decoding. In this
paper, we study this issue by comparing the perfor-
mance of the missing-data recognizer on two tasks
with different vocabulary sizes.

Binaural CASA systems that compute binary
masks have been used successfully as front-ends
for the missing-data recognizer on small vocabulary
tasks (Palomaki et al., 2004; Roman et al., 2003).
Such systems compare the acoustic signals at the
two ears in order to extract the binaural cues of
interaural time differences (ITD) and interaural
intensity differences (IID). These binaural cues are
correlated with the location of a sound source and
hence provide powerful mechanisms for segregating
sound sources from different locations. Moreover,
binaural processing is independent of the signal con-
tent and hence can be used to segregate both voiced
and unvoiced speech components from a noisy
mixture. The computational goal of the binaural
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CASA systems is an ideal binary mask. A T-F unit
in the ideal binary mask is labeled 1 or reliable if the
corresponding T-F unit of the noisy speech contains
more speech energy than interference energy; it is
labeled 0 or unreliable otherwise.! We employ a
recent binaural speech segregation system (Roman
et al., 2003) to estimate an ideal binary T-F mask.
This mask is fed to the missing-data recognizer
and recognition is performed in the spectral
domain.

The minimum mean-square error (MMSE) based
short-time spectral amplitude estimator, which uti-
lizes a priori SNR in a local T-F unit, has been used
previously to effectively enhance noisy speech
(Ephraim and Malah, 1984). 4 priori SNR can be
obtained if premixing speech and noise signals are
available. Roman et al. (2003) have shown that in
a narrow frequency band, there exists a systematic
relationship between a priori SNR and values of
ITD and IID. Motivated by this observation, we
estimate an ideal ratio T-F mask using statistics
collected for ITD and IID at each individual fre-
quency bin. A unit in the ratio mask is a measure
of the speech energy to total energy (speech and
noise) in the corresponding T-F unit of the noisy
signal. The ratio mask is then used to enhance the
speech, enabling recognition using Mel-frequency
cepstral coefficients (MFCCs). We use ‘“‘conven-
tional recognizer” to refer to a continuous density
hidden Markov model (HMM) based ASR using
MFCCs as features.

We compare the performance of the conven-
tional recognizer to that of the missing-data recog-
nizer on a robust speech recognition task. In
particular, we examine the effect of vocabulary size
on the performance of the two recognizers. We find
that on a small vocabulary task, the missing-data
recognizer outperforms the conventional ASR.
Our finding is consistent with a previous compari-
son using a binaural front-end made on a small
vocabulary  “‘cocktail-party” recognition task
(Glotin et al., 1999; Tessier et al., 1999). The accu-
racy of results obtained using the missing-data
method in the spectral domain was reported to be
better than those obtained using the conventional
ASR in the cepstral domain. With an increase in
the vocabulary size, however, the conventional

! Similar masks have also been referred to as ‘a priori masks’
and ‘oracle masks’ in the literature.

ASR performs substantially better. Results using
the missing value imputation methods have been
reported on a larger vocabulary previously (Raj
et al., 2004). Their method uses a binary mask
and therefore is subject to the same limitations
stated previously.

The rest of the paper is organized as follows.
Section 2 provides an overview of the proposed
systems. We then describe the binaural front-end
for both the conventional and missing-data recog-
nizers in Section 3. The section additionally
provides the estimation details of ideal binary and
ratio T-F masks. The conventional and missing-
data recognition methods are reviewed in Section
4. The recognizers are tested on two different task
domains with different vocabulary sizes. Section 5
discusses the two tasks and presents the evaluation
results of the recognizers along with a comparison
of their relative performance. Finally, conclusion
and future work are given in Section 6.

2. System overview

In this study, we analyze two strategies for robust
speech recognition: (1) missing-data recognition and
(2) a system that combines speech enhancement
with a conventional ASR. The performance is
examined at various SNR conditions and for two
vocabulary sizes. Fig. 1 shows the architecture of
the two different processing strategies.

The input to both systems is a binaural mixture
of speech and interference presented at different,
but fixed, locations. The measurements of head-
related transfer functions (HRTFs) are a standard
method for binaural synthesis. HRTF encompasses
the filtering effects of head, torso and pinna, and
encodes information corresponding to the source
location. In this paper, the HRTFs are provided
by the measured left and right responses of the
KEMAR manikin from a distance of 1.4 m in the
horizontal plane, resulting in two 128 point impulse
responses at a sampling rate of 44.1 kHz (Gardner
and Martin, 1994). We generate the left and right
ear signals by filtering the monaural signals with
the left and right HRTFs. Note that different loca-
tions provide different HRTFs, resulting in different
binaural signals. The responses to multiple sources
are added at each ear. Due to the differential filter-
ing effects between the two ears, the HRTFs provide
location-dependent ITD and IID which can be
extracted independently in each T-F unit (see
Section 3). The T-F resolution is 20 ms time frames
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Fig. 1. Architecture of the two robust speech recognition strategies with binaural preprocessing: The missing-data recognizer and the
conventional ASR. Left and right ear signals are obtained by filtering with HRTFs. A short-time Fourier analysis is applied to the signals,
resulting in a time-frequency decomposition. ITD and IID are computed in each T-F unit. The missing-data recognizer works with a
binary mask. A ratio mask is used as a speech enhancement strategy and is fed to the conventional recognizer.

with a 10 ms frame shift, and 512 DFT coefficients.
Frames are extracted by applying a running
Hamming window to the signal. The frequency bins
uniformly cover the complete frequency range, up
to the Nyquist frequency.

The missing-data speech recognizer operates in
the log-spectral domain and requires a binary
mask that informs the recognizer of which T-F
units of the noisy input are dominated by speech
energy. A 64-channel auditory filterbank was used
previously as a front-end for the missing-data recog-
nizer (Cooke et al., 2001). We have chosen a DFT
representation for the missing-data recognizer in
order to be consistent with the conventional recog-
nizer. A comparison between the DFT representa-
tion and the auditory filterbank representation has
shown that the difference in recognition perfor-
mance is statistically insignificant. Statistics based
on mixtures of multiple speech sources show that
there exists a systematic correlation between the a
priori energy ratio and the estimated ITD/IID
values, resulting in a characteristic clustering across
frequencies (Roman et al., 2003). To estimate the
ideal binary mask we extend the non-parametric
classification method of Roman et al. (2003) in the
joint ITD/IID feature space independently for each
frequency bin. The frequency decomposition used
by Roman et al. (2003) was generated by a gamm-
atone filterbank. This classification results in binary
Bayesian decision rules that determine whether
speech is stronger than interference in individual
T-F units (energy ratio greater than 0.5). The system
of Roman et al. (2003) was chosen because of the
excellent match between their estimated binary
mask and the ideal binary mask.

The conventional approach to robust speech
recognition involves preprocessing of the corrupted
speech by speech enhancement algorithms. This
allows for the subsequent usage of decorrelating
transformations (cepstral transformation, linear dis-
criminant analysis), temporal processing methods
(delta features, RASTA filtering) and normalization
techniques (mean subtraction, variance normaliza-
tion) on enhanced spectral features (Chen et al.,
2005; Shire, 2000). In this study we use cepstral
and delta features along with cepstral mean subtrac-
tion, which are known to provide improved recogni-
tion accuracy. To enhance noisy speech we estimate
a ratio T-F mask. The statistics described above
show that the estimated ITD and I1ID have a func-
tional relationship with the a priori energy ratio.
We employ this relationship in a non-parametric
fashion to estimate the ideal ratio mask. Finally,
to decode using the conventional ASR, MFCCs
are computed from speech enhanced by masking
the corrupted signal with the estimated ratio mask.

We evaluate the performance of the missing-data
recognizer using both ideal and estimated binary
masks. This is then compared to that of the conven-
tional ASR using both ideal and estimated ratio
masks.

3. A localization based front-end for ASR

When speech and additive noise are orthogonal,
the linear MMSE filter is the Wiener filter (van
Trees, 1968). With a frame-based processing, the
MMSE filter corresponds to the ratio of speech
eigenvalues to the sum of eigenvalues of speech
and noise (van Trees, 1968). The eigenvalues can
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be computed from the auto-covariance functions
prior to mixing by considering speech and noise to
be two distinct random processes. Under asymp-
totic conditions, the MMSE filter corresponds to
the frame-based Wiener filter (McAulay and
Malpass, 1980; van Trees, 1968). Ephraim and
Malah (1984) have additionally shown that the opti-
mal MMSE estimate of speech spectral amplitude in
a local T-F unit is strongly related to the a priori
SNR. To estimate the speech in a local T-F unit,
we approximate the frame-based filter with an ideal
ratio mask defined using the a priori energy ratio
R(w, 1):

S(o,0)F ] o

@0 = ls@, OF + N0

where S(w,?) and N(w,t) are the target and noise
spectral values at frequency w and time ¢ computed
from the signal at the “better ear” — the ear with
higher SNR. Our computational goal for front-
end processing with the conventional ASR is to
estimate R(w,t) directly from the noisy mixture.

In addition, we define the ideal binary T-F mask
as:

B(w,t) = {

1 if R(w, 1) > 0,

0 otherwise,

2)

where 0 is set to be 0.5. Such masks have been
shown to generate high-quality reconstruction for
a variety of signals and also provide an effective
front-end for missing-data recognition on a small
vocabulary task (Cooke et al., 2001; Roman et al.,
2003).

The objective of our front-end processing is to
develop effective mechanisms for estimating both
ideal binary and ratio masks. We propose an esti-
mation method based on observed patterns for the
binaural cues caused by the auditory interaction of
multiple sources presented at different locations.
Roman et al. (2003) have shown that ITD and
IID undergo systematic shifts as the energy ratio
between the target and the interference changes. In
a particular frequency bin, the ITD and IID corre-
sponding to the target source exhibit location
dependent characteristic values. As the SNR in this
frequency bin decreases due to the presence of inter-
ference, the ITD and IID systematically shift away
from the target values. Theoretical derivations for
the case of two sinusoidal sources can be found in
Roman et al. (2003). Moreover, statistics collected
from real signals have shown similar patterns. In

particular, the empirical mean approximates well
the theoretical mean obtained in the case of two
sinusoids (Roman et al., 2003). Note that training
for each frequency bin is required since frequency-
dependent combinations of ITD and IID arise nat-
urally for a fixed spatial configuration. We employ
the same training corpus as used by Roman et al.
(2003) consisting of 10 speech signals from the
TIMIT database (Garofolo et al., 1993). Five sen-
tences correspond to the target location set and
the rest belong to the interference location set.
Binaural signals are obtained by convolving with
KEMAR HRTFs as described in Section 2. This
dataset is different from the databases used in train-
ing the ASRs.

The ITD/IID estimates are computed indepen-
dently in each T-F unit based on the spectral ratio
at the left and right ears:

o T (X0 X))
(1D, HD) (e, 1) = { wA(XR«»,z))’ |XR<w,r>|}’

(3)

where X1 (w,?) and Xg(w, ) are the left and right ear
spectral values of the noisy speech at frequency
and time ¢ and A(re'’) = ¢, —n < ¢ < m. The func-
tion A(-) computes the phase angle, in radians, of
a complex number with magnitude » and phase
angle ¢. Note that the phase is ambiguous corre-
sponding to integer multiples of 2. To disambigu-
ate, we identify ITD in the range of 2n/w centered
at zero delay. By dividing the relative phase angle
by the radian frequency, I7D estimates the time
difference between the left and the right ear signals.
11D calculates the relative magnitude between the
left and the right ear spectral values and hence esti-
mates the intensity difference.

3.1. Estimation of the binary mask

Fig. 2 shows empirical results from the training
corpus for a two-source configuration: target source
in the median plane and interference at 30°. In the
training corpus, we have access to target and interfer-
ence signals separately. Hence, we can compute R for
each mixture signal. The scatter plot in Fig. 2(a)
shows samples of / TD and R, as well as the mean,
the standard deviation, and the histogram (the
bottom panel), for a frequency bin at 1 kHz. Simi-
larly, Fig. 2(b) shows the results that describe the var-
iation of 71D and R for a frequency bin at 3.4 kHz.
The results are similar to those obtained by Roman
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Fig. 2. Relationship between ITD/IID and the energy ratio R. Statistics are obtained with target in the median plane and interference on
the right side at 30°. (a) The top panel shows the scatter plot for the distribution of R with respect to ITD for a frequency bin at 1 kHz. The
solid white curve shows the mean curve fitted to the data. The vertical bars represent the standard deviation. The bottom panel shows the
histogram of ITD samples. (b) Corresponding results for IID for a frequency bin at 3.4 kHz. (c) Histogram of ITD and IID samples for a

frequency bin at 2 kHz.

et al. (2003), who use an auditory filterbank for fre-
quency decomposition. Note that for the T-F units
dominated by target (R = 1), the binaural cues are
clustered around the target values. Similarly, for
the T-F units dominated by interference (R = 0),
the binaural cues are clustered around the interfer-
ence values. Furthermore, the scatter plots exhibit a
systematic shift of the estimated ITD and IID as R,
as defined in (1), varies from 1 to 0. Moreover, a loca-
tion-based clustering is observed in the joint ITD—
IID space as shown in Fig. 2(c). Each peak in the
histogram corresponds to a distinct active source.
Therefore, to estimate the binary mask B(w, 1), we
employ non-parametric classification in the joint

ITD-IID feature space as used by Roman et al.
(2003). There are two hypotheses for the binary
decision: H; — target is stronger or R > 0.5 and
H, — interference is stronger or R <0.5. The esti-
mated binary mask, B(w,?), is obtained using the
maximum a posteriori (MAP) decision rule:

Bo.1) _{1 if p(H\)p(x|H\) > p(Ha)p(x|H>),
’ 0 otherwise,

4)

where x is the (ITD,1ID)(w,t) feature vector. The
prior probabilities, p(H;), are computed as the ratio
of the number of samples in each class to the total
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number of samples. The conditional probabilities,
p(x|H;), are estimated from the training data using
the kernel density estimation method (Roman
et al., 2003).

3.2. Estimation of the ratio mask
In order to estimate the ideal ratio mask, we use

the same training data. It is well known that ITD is
salient at low frequencies while IID becomes more
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prominent at higher frequencies (Blauert, 1997). In
the high-frequency range, the wavelength of the
acoustic signal is much shorter compared to the dis-
tance between the two ears. This results in a com-
pressed range for the unambiguous values of ITD,
which reduces the discriminative power of this cue.
On the other hand, while the range of IID is very
small at low frequencies, it can be as high as
30 dB at high frequencies. Hence, IID is a more
reliable cue at high frequencies.
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Fig. 3. Comparison between estimated and ideal binary and ratio T-F masks for a mixture of a clean speech utterance presented in the
median plane and an interference signal presented at 30°. The SNR is 0 dB. (a) Spectrogram of the clean speech utterance. (b) Spectrogram
of the mixture. (c) The ideal binary mask. (d) The estimated binary mask. (¢) The ideal ratio mask. (f) The estimated ratio mask. The

signals correspond to the left ear.
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ITD exhibits different patterns across frequency
bins as seen in the number of modes that characterizes
the distribution of the samples (Roman et al., 2003).
Hence, there is no unique parametric curve for all
frequencies. Moreover, in the absence of evidence
for a parametric estimate to provide better recogni-
tion results, a mean curve is fitted to the distribution
of ITD. Thisis our estimated ratio mask below 3 kHz.
For higher frequencies, we utilize the information
provided by the IID cues and use the same method
to estimate the energy ratio. For improved results,
we remove the outliers outside of 0.2 distance from
the median. The resulting mean curves are shown in
Figs. 2(a) (ITD) and (b) (IID). Thus, for given
ITD(w,t) and IID(w, 1), the estimated energy ratio
R(w, 1) is the corresponding value on the mean curve.

Fig. 3 shows the comparison between ideal and
estimated masks. Figs. 3(a) and (b) show the spec-
trograms of a clean speech utterance and the noisy
mixture, respectively. The noisy mixture is gener-
ated by combining the clean speech utterance pre-
sented in the median plane with a factory noise
signal presented on the right side at 30°. The SNR
is 0 dB. The mask estimation algorithms described
above are applied to the mixture and the results
are presented in Fig. 3(c)—(f). Figs. 3(c) and (d) show
the ideal binary mask and the estimated binary
mask, respectively. Notice that the estimated binary
mask approximates well the ideal binary mask (see
also Roman et al., 2003). Figs. 3(e) and (f) show
the ideal ratio mask and the estimated ratio mask,
respectively. Observe that the estimated ratio mask
is very similar to the ideal ratio mask, especially in
the high speech energy T-F units.

4. Recognition strategies

We evaluate the binaural segregation system
described in Section 3 as the front-end for robust
ASR using two different recognizers. Conventional
ASR uses MFCCs as the parameterization of
observed speech. MFCCs are computed from the
segregated speech obtained after applying the ratio
mask to the noisy input signal (see Eq. (5)). The
missing-data recognizer uses log-spectral energy as
feature vectors in conjunction with the binary mask,
generated by the binaural system. An HMM toolkit,
HTK (Young et al., 2000), is used in the training of
both recognizers and the testing with the conven-
tional ASR. During testing with the missing-data
recognizer, the decoder is modified to incorporate
the missing-data methods.

4.1. The conventional speech recognizer

We use the standard continuous density HMM
based speech recognizer trained on clean speech to
model each word in the vocabulary (Section 5).
Observation densities are modeled as a mixture of
Gaussians with diagonal covariance. The input to
this ASR is the estimated speech spectral energy
IS(w,1)|, obtained by an element-wise multiplica-
tion of the estimated ratio mask and the spectral
energy of the noisy speech.

S(0,0)* = X (@, )" - R(w, 1), ()

where |X(w,1)|? is the spectral energy of the noisy
signal at the better ear (see Section 5). One of our
evaluation corpora (see Section 5) is originally
band-limited to 4 kHz. Hence, we apply a rectangu-
lar window to the estimated spectra and truncate
them to 4 kHz. These truncated speech spectra are
processed by a Mel-frequency filterbank (Rabiner
and Juang, 1993), comprising 26 triangle-shaped fil-
ters. The low frequency cut-off of the first filter is set
to 105 Hz and the high frequency cut-off of the last
filter was set to 4300 Hz. A log compression is then
applied to the resulting spectra. Finally, the spectral
coefficients are converted to cepstral coefficients via
the discrete cosine transform (Oppenheim et al.,
1999). The performance of the conventional ASR
with full-band spectra is shown in an earlier study
(Srinivasan et al., 2004). We observe that the appli-
cation of the rectangular window eliminates the
effect of the spurious and inaccurately estimated
high-frequency components. This helps significantly
improve accuracy compared to recognition using
full-band spectra.

MFCCs are chosen as feature vectors as they are
most commonly used in state-of-the-art recognizers
(Rabiner and Juang, 1993). Thirteen cepstral coeffi-
cients along with delta and acceleration coefficients
are extracted each frame, including the Oth order
cepstral coefficient Cy as the energy term. Frames
are extracted as described in Section 2. A first-order
preemphasis coefficient of 0.97 is applied to the
signal. Cepstral mean normalization is additionally
implemented for improved ASR performance
(Young et al., 2000).

4.2. The missing-data speech recognizer

The missing-data recognizer (Cooke et al., 2001)
is an HMM-based ASR that makes use of
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spectro-temporal redundancy in speech to recog-
nize noisy speech based on its speech dominant
T-F units. Given an observed speech vector 7Y,
the problem of word recognition is to maximize
the posterior P(W;|Y), where W, is a valid word
sequence according to the grammar for the recog-
nition task. When parts of Y are corrupted by
additive noise, it can be partitioned into its reliable
and unreliable constituents as Y, and Y,. One can
then seek the Bayesian decision given the reliable
constituents. In the marginalization method, the
posterior probability using only the reliable con-
stituents is computed by integrating over the unre-
liable ones (Cooke et al., 2001). In missing-data
methods, recognition is typically performed using
spectral energy as feature vectors. If Y represents
the observed spectrum and sound sources are addi-
tive and uncorrelated, then the unreliable parts
may be constrained as 0 < Yﬁ < Yﬁ. This con-
straint, therefore, states that the true value of the
spectral energy in the unreliable parts, I?ﬁ, lies
between 0 and the observed spectral energy. These
bounds are used as limits on the integral involved
in marginalizing the posterior probability over
the unreliable features. This bounded marginaliza-
tion method is shown by Cooke et al. (2001) to
have a better recognition score than the simple
marginalization method, and is hence used in all
our experiments employing the missing-data recog-
nizer. We use mixture of Gaussians with diagonal
covariance to model the observed speech features
as suggested by Cooke et al. (2001). Feature vec-
tors for the missing-data recognizer are derived
from the DFT coefficients in each frame extracted
as described in Section 2. Log compression is
applied to the resulting energy spectrum of the sig-
nal. To be consistent with experiments on the con-
ventional ASR, we apply a rectangular window to
truncate the log-spectral energy to 4 kHz. Hence 98
spectral coefficients along with delta coefficients in
a two-frame delta window are extracted in each
frame. Note that the delta window covers two
preceding frames and two succeeding frames
(Young et al., 2000). Additionally, during decoding
of the noisy input, the missing-data recognizer uses
the estimated binary mask to provide the reliability
information for the static features. For the delta
features, the binary mask is defined as follows. A
unit in the mask is labeled 1 if all the static spectral
coefficients used in the computation of the corre-
sponding delta feature are reliable, and 0 otherwise
(Barker et al., 2000).

5. Evaluation results

To compare the effect of vocabulary size on the
two recognition approaches outlined above, we
choose two task domains. The first task is
speaker-independent recognition of connected dig-
its. The grammar for this task allows for the repeti-
tion of one or more digits. This is the same task used
in the original study of Cooke et al. (2001). Thirteen
(1-9, a silence, very short pause between words, zero
and oh) word-level models are trained for both
recognizers. All except the short pause model have
8 emitting states. The short pause model has a single
emitting state, tied to state 4 of the silence model.
The output distribution in each state is modeled as
a mixture of 10 Gaussians, as suggested by Cooke
et al. (2001). The grammar for this task allows for
one or more repetitions of digits. All digits are
equally probable. The average number of digits in
an utterance is 3.2, with a minimum of 1 and a
maximum of 7. The TIDigits database’s male
speaker data are used for both training and testing
(Leonard, 1984). Specifically, the models are trained
using 4235 utterances in the training set of this data-
base. Testing is performed on a subset of the testing
set consisting of 461 utterances from 6 speakers,
comprising 1498 words. All test speakers are differ-
ent from the speakers in the training set. The signals
in this database are sampled at 20 kHz.

The second task is the speaker-independent rec-
ognition of command and control type phrases.
There are 40 phrase templates that range from a 1
word template such as “STOP” to a 8 word
template such as “CALL MY DAUGHTER AT
ELEVEN PM ON <WEEKDAY>”. Note that
some templates generate many utterances by using
variables such as <WEEKDAY>. The grammar
for this task assigns equal probability to all 40
phrase templates in the database. The average num-
ber of words in an utterance is 4.2. Two hundred
and eight (206 words, a silence and a short pause
between words) word-level models are trained for
both recognizers. This task allows us to increase
the vocabulary size from 13 to 208, a natural pro-
gression in testing the effect of vocabulary size on
the recognizers. All except the short pause model
have 8 emitting states, whose output distribution
is modeled as a mixture of 10 Gaussians. The short
pause model has a single state. The digital data sub-
set of the Apple Words and Phrases database is used
for both training and testing (Cole et al., 1995). In
particular, 1996 speakers with IDs 21-2604 are used
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for training. This corresponds to 63,835 utterances.
Data from 14 speakers with IDs 4-19 are used for
testing. This corresponds to 454 utterances, com-
prising 1823 words. The signals are sampled at
8 kHz.

The two tasks also differ in perplexity. Perplexity
is one indicator of difficulty of the recognition task
along with vocabulary size (Rabiner and Juang,
1993). Perplexity is a measure of the average num-
ber of different words that can occur following
any given word. For the digit recognition task, the
perplexity is 11.0 as any digit can follow any other
digit. For the command and control task the
perplexity is 3.05. For our task, we calculate the
perplexity empirically from the word level lattice
(Young et al., 2000). The lower perplexity for the
second task is due to the use of a restrictive gram-
mar for this task (Cole et al., 1995). To test the
robustness of the two recognizers in the aforemen-
tioned tasks, noise is added at a range of SNRs from
—5to 10 dB in steps of 5 dB. Higher positive values
of SNRs are not explored, as one of the recognizers
saturates to ceiling performance at 10 dB. The noise
source for both recognition tasks is the factory noise
from the NOISEX corpus (Varga et al., 1992),
which is also used by Cooke et al. (2001). The fac-
tory noise is chosen as it has energy in the formant
regions, therefore posing challenging problems for
recognition. It also contains contributions from
impulsive sources, making it difficult to estimate
its spectrum using spectral subtraction methods
(Cooke et al., 2001). In all our experiments, the
target speech source is in the median plane and
the noise source on the right side at 30°, making
the left ear the better ear in terms of SNR (see Sec-
tion 3). The binaural mixture is created by convolv-
ing the monaural target and noise signals with the
HRTFs corresponding to the respective source loca-
tions as described in Section 2. Note that for both
tasks, training and testing are performed using
speech band-limited to 4 kHz.

Fig. 4 summarizes the performance of the two
recognizers on the digit recognition task. Perfor-
mance is measured in terms of word-level recogni-
tion accuracy under various SNR conditions.
“Unprocessed” refers to the baseline performance
of the conventional ASR, without the use of any
front-end, speech enhancement processing. The fig-
ure shows the recognition accuracy of the conven-
tional ASR with the use of ideal and estimated
ratio T-F masks (“Ideal RM” and ‘“Estimated
RM”, respectively). This is compared to the accu-
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Fig. 4. Performance of conventional and missing-data recogniz-
ers on the digits recognition task. Ideal RM refers to the
performance of the conventional ASR using the ideal ratio mask.
Estimated RM refers to its performance when using the estimated
ratio mask by the binaural front-end. Ideal BM refers to the
performance of the missing-data ASR using the ideal binary
mask. Estimated BM refers to the performance of the same when
using the estimated binary mask by the binaural front-end. For
comparison, the performance of the conventional ASR without
the use of any front-end processing and with processing by the
ETSI advanced feature extraction algorithm are also shown.

racy of the missing-data recognizer, which uses ideal
and estimated binary T-F masks (“Ideal BM” and
“Estimated BM”, respectively). We also compare
the performance to that obtained by using an
advanced front-end feature extraction algorithm
(“ETSI AFE”), which is standardized by the Euro-
pean Telecommunication Standards Institute
(ETSI) (STQ-AURORA, 2005). This is a state-of-
the-art feature extraction algorithm for noisy envi-
ronments (Macho et al., 2002). The algorithm
achieves noise robustness by combining a two-stage
Wiener filter with an SNR-dependent waveform
processing. Finally, power spectra extraction and
blind equalization are used in the cepstrum calcula-
tion in order to further improve robustness of the
extracted features. The algorithm is used to generate
a 39 dimensional feature vector as suggested by
Macho et al. (2002). These features are used to train
and test an ASR system in a manner similar to that
used by the conventional ASR.

Fig. 4 shows the robust performance of the ideal
ratio mask when used as a front-end for conven-
tional ASR. Only a minor performance degradation
is observed even at —5 dB. The performance with
the use of the estimated ratio mask shows substan-
tial improvement over that with no preprocessing
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across all SNR conditions. Additionally, the esti-
mated ratio mask also outperforms the ETSI
advanced front-end at SNR <10 dB. The perfor-
mance improvement is especially substantial at low
SNRs. As reported by Cooke et al. (2001), the per-
formance of the missing-data recognizer degrades
very little with increasing amounts of noise added,
indicating the adequacy of recognition using a bin-
ary mask for this task. Also, the performance with
the estimated binary mask is close to that with the
ideal binary mask, indicating the high quality of
the front-end to estimate the ideal binary mask
(see also Roman et al., 2003). Notice that, for this
task, the performance of the missing-data recog-
nizer is close to the performance of the conventional
ASR with the ideal ratio mask and better than the
performance with the estimated ratio mask.
Similarly, Fig. 5 summarizes the performance of
the two recognizers on the task of recognition of
command and control phrases. The relative perfor-
mance of the two recognizers reverses with this
increase in the vocabulary size. As in the digits rec-
ognition task, the performance of the conventional
ASR using the ideal ratio mask is close to the ceiling
performance. Additionally, its performance using
the estimated ratio mask is close to the that with
the ideal ratio mask, especially at SNR >0 dB. Also
notice that the estimated ratio mask outperforms
the ETSI advanced feature extraction algorithm
across all SNRs. As in the previous task, the perfor-
mance improvement is substantial at low SNRs.
The increased accuracy of the conventional ASR

100

80+

601

40t

Accuracy (%)

—©- ldeal RM
—A~ Estimated RM
—=— Ideal BM

204 —»— Estimated BM ||
—%— ETSI AFE
0 ‘ —— Unprocessed
-5 0 5 10 inf
SNR (dB)

Fig. 5. Performance of conventional and missing-data recogniz-
ers on the command and control task. See Fig. 4 caption for
notations.

using the estimated ratio mask compared to its per-
formance on the digits recognition task is due to the
lower perplexity of this task. Its performance now is
substantially better than that of the missing-data
recognizer using both ideal and estimated binary
masks, particularly at SNR > 0 dB. Notice that
the performance of the missing-data recognizer with
the estimated binary mask is close to that with the
ideal binary mask as in the digits recognition task,
confirming the ability of the front-end to estimate
the ideal binary mask accurately.

In the experiments with the missing-data ASR
thus far, the threshold 0 used in defining the ideal
binary mask (Eq. (2)) is fixed at 0.5. Fig. 6 shows
the performance of the missing-data ASR on both
tasks as 0 is varied in the range 0.2-0.8. The perfor-
mance is measured in terms of change in recognition
accuracy relative to that obtained by setting 6 = 0.5.
The SNR is 0dB. Note that for both tasks, the
performance is relatively stable for 6 in the range
0.4-0.7. While the highest accuracy on the digit rec-
ognition task is obtained when 6 = 0.3, the improve-
ment is only small. Moreover, this choice of
threshold results in a significant degradation in the
performance on the command and control task.
For this task, 0 = 0.5 provides the best performance.
Hence, the selection of 0.5 as the threshold in the def-
inition of the ideal binary mask is an appropriate
choice for the tasks considered in the present study.

Lower accuracy values for the missing-data
recognizer using both binary masks in Fig. 5 may

10

—— Digit Recognition Task
—k— Command and Control Task

Relative change in accuracy (%)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

Fig. 6. Effect of varying the threshold, 6, used in the definition of
the ideal binary mask (see Eq. (2)) on the performance of the
missing-data ASR on the two tasks. The performance is relative
to its performance when using 0 = 0.5. The SNR for both tasks is
0dB.
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be attributed to a number of reasons. It is known
that the use of mixtures of Gaussians with diagonal
covariance structure does not adequately represent
the observed spectral vectors (Cooke et al., 2001)
and this problem gets exacerbated with an increase
in the vocabulary size. Thus, under clean speech
conditions, the difference between the accuracy of
conventional and missing-data recognizers increases
with increase in vocabulary size (see also Raj et al.,
2004). One could compute MFCCs from the speech
resynthesized using the binary T-F masks by substi-
tuting the ratio mask with the binary mask in (5),
followed by the overlap and add resynthesis
(Oppenheim et al., 1999). Under clean speech condi-
tions, the missing-data recognizer would then have
the same recognition accuracy as that of the conven-
tional ASR. The performance though degrades
rapidly with decreasing SNR (de Veth et al., 1999).

The use of binary masks does not compensate for
amplitude distortions, because the mixture spectral
values are used in recognition for those T-F units
labeled 1. Could this be the reason for reduced per-
formance in larger vocabulary recognition? To test
the effect of this distortion, we replace the spectral
vectors of the reliable T-F regions with their corre-
sponding clean speech values, calculated a priori.
The performance, at various SNRs, is summarized
in Tables 1 and 2. “Distorted” refers to the perfor-
mance of the missing-data recognizer on the mixture
spectral values for all T-F units. “Undistorted”
refers to its performance when the reliable T-F units
contain clean speech values. In the unreliable units,
we retain the spectral values of noisy speech. We use
the ideal binary mask generated at each SNR to
provide the reliability information for both condi-
tions. Table 1 shows the effect of amplitude distor-
tion on the digits recognition task. For this task,
the effect of amplitude distortion is seen, as
expected, to be minimal across all SNRs, since the
recognition accuracy is already quite high. Table 2
shows the effect of amplitude distortion on the task
of command and control phrases. Only a small

Table 1

Effect of amplitude distortion in the reliable T-F regions on
recognition accuracy (%) of the missing-data recognizer for the
digits recognition task

Amplitude SNR (dB)

-5 0 5 10
Distorted 94.89 95.97 97.18 98.12
Undistorted 94.76 96.24 97.31 98.25

Table 2

Effect of amplitude distortion in the reliable T-F regions on
recognition accuracy (%) of the missing-data recognizer for the
command and control task

Amplitude SNR (dB)

-5 0 5 10
Distorted 66.54 71.2 76.51 80.88
Undistorted 69.17 74.38 79.1 82.67

improvement is observed by eliminating the noise
energy from the reliable T-F units. Hence, the
degradation to the overall performance of the miss-
ing-data recognizer caused by this amplitude distor-
tion is statistically insignificant at the range of SNRs
considered here. When using the ideal binary mask
generated at each SNR directly on clean speech,
we observe a degradation in performance. This
may be attributed to the use of energy bounds for
the unreliable units in the marginalization method.
The bounded marginalization method averages the
observation probability over all possible spectral
energy values between 0 and the observed value.
Hence, when the observed value is the clean spectral
energy, the bounded marginalization method over-
estimates the true observation probability.
Comparing Figs. 4 and 5, we can see that the per-
formance curve for the missing-data recognizer is
steeper on the second task compared to the first
task. This may be caused by the inability of the
missing-data recognizer to represent all the speech
models adequately. The log-spectral representation
may have a limited expressibility in terms of
distinct words that can be uniquely represented.
The TIDigits database has a small vocabulary.
The Applewords database with a larger vocabulary
creates many more competing models during decod-
ing. Thus, within the same T-F grid, an increased
number of words need to be discriminated. With
the use of a binary mask, only a small portion of
the total T-F acoustic model space is utilized during
recognition. This makes it difficult for the missing-
data recognizer to differentiate between competing
hypotheses. Fig. 7 shows the effect of using the same
binary T-F mask on two signals. Fig. 7(a) shows the
spectrogram of the word “Billy” and Fig. 7(b)
shows the spectrogram of the word ‘“Delete” in
quiet. Fig. 7(c) shows an ideal binary T-F mask gen-
erated at low SNR. The reliable units in this mask
are black and the unreliable white. This binary mask
is applied to the spectrograms in Figs. 7(a) and (b)
and the resulting spectrograms with only reliable
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Fig. 7. An illustration of similarity of reliable regions. (a) The spectrogram of the word “Billy” in quiet. (b) The spectrogram of the word
“Delete” in quiet. (c) An ideal-binary T-F mask. Reliable T-F units are marked black and unreliable white. (d) The spectrogram obtained
from (a) by applying the ideal mask in (c). (e) The spectrogram obtained from (b) by the same ideal masking as in (d).

T-F units are shown in Figs. 7(d) and (e), respec-
tively. Notice that the reliable regions of the two
spectrograms are very similar. In the absence of
information in the unreliable regions, it is difficult
for the recognizer to distinguish between the two
words. Indeed the recognizer frequently substitutes
one word with the other. The bounded marginaliza-
tion method treats the information in the unreliable
regions only as counter-evidence for recognition of
certain models (Cunningham and Cooke, 1999).
Hence, the missing-data recognizer faces increased
acoustic complexity during decoding.

6. Discussion

The advantage of the missing-data recognizer is
that it imposes a lesser demand on the speech
enhancement front-end than the conventional
ASR. Only knowledge of reliable T-F units of noisy
speech, or an ideal binary mask, is required from the
front-end. Moreover, Roman et al. (2003) have
shown that the performance of the missing-data
recognizer degrades gradually with increasing devia-
tion from the ideal binary mask. The binaural sys-
tem employed here is able to estimate this mask
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accurately. Hence, we achieve performance close to
the ceiling performance of missing-data recognition.
Conventional ASR, on the other hand, requires
speech enhancement across all T-F units through
front-end processing. In this study, we have
employed a ratio T-F mask as a front-end for the
conventional ASR, which is estimated using statis-
tics of ITD and IID. Estimation of the ideal ratio
mask is less robust than the estimation of the
ideal binary mask. As a result, the performance
of the missing-data recognizer on the small vocabu-
lary task is better than that of the conventional
ASR.

The marginalization method for missing-data
recognition is the optimal spectral domain recogni-
tion strategy provided that the missing T-F units
can be ignored for classification (Little and Rubin,
1987). The missing-data recognizer assumes that
the unreliable units carry redundant information
for speech recognition. This, however, is not always
true. For a small vocabulary task, the unreliable
units may be safely marginalized for good recogni-
tion results. When vocabulary size increases, the
acoustic model space becomes densely populated.
Under such conditions, good recognition results
may not be obtained by completely ignoring the
missing T-F units. This may be caused by the inabil-
ity to represent all the acoustic models adequately
using only a small number of reliable T-F units.
On the other hand, the ratio T-F mask attempts
to recover the speech in the unreliable T-F units
for use in recognition (see Eq. (5)). Additionally,
under clean speech conditions, recognition accuracy
using spectral features is inferior to using cepstral
features. The cepstral transformation retains the
envelope of speech while removing its excitation
source (Rabiner and Juang, 1993). The speech enve-
lope contains most relevant information for recog-
nition. In addition, cepstral features are used for
their quasi-orthogonal properties (Shire, 2000).
Hence, advantage of the conventional ASR shows
when vocabulary size increases.

Raj et al. (2004) have previously reported that
conventional ASR with reconstructed missing T-F
regions outperforms the missing-data recognizer
when tested on the Resource Management database
(Price et al., 1988). The missing or unreliable T-F
units were reconstructed either using speech clusters
or based on their correlations with reliable regions.
The speech clusters and the knowledge of correla-
tions between reliable and unreliable T-F units are
obtained from the training portion of the Resource

Management database. Unlike their system, our
estimation of the ideal ratio mask is independent
of the signals used in the training and testing of
the speech recognizers. Hence, it is applicable even
when samples of clean speech are unavailable.
Additionally, the accuracy and computational com-
plexity of our ratio mask based system are not
dependent on the nature and size of the vocabulary.

Note that our supervised training captures only
the location information, and hence our system is
not sensitive to the content of sound sources. While
we have shown results only for one configuration of
target and interference source positions, similar
results are expected for other spatial configurations,
including those with interferences at multiple loca-
tions (see Roman et al., 2003). The study of Roman
et al. (2003) also addresses the localization of vari-
ous sounds sources in a mixture. However, the esti-
mation of the ratio and the binary masks requires
training for different configurations of sources and
reestimating the mean curves as described in Section
3. Although extrapolation from trained configura-
tions to untrained ones may be possible, this is a
limitation that needs to be addressed in future
research.

Although our estimated T-F ratio mask provides
promising results, other approaches for the estima-
tion of this mask could also be explored; should a
parametric curve be suspected, the parameters could
be optimized to minimize recognition errors. Future
work will also extend to large vocabulary tasks
and explore the robustness of the binaural front-
end to changes in location and number of noise
sources.

To summarize, we have proposed a ratio T-F
mask, estimated using a binaural processor, as a
front-end for conventional ASR. At two different
vocabulary sizes, the use of this mask results in siz-
able improvement in recognition accuracy at various
SNRs when compared to the baseline performance.
Additionally, it significantly outperforms the ETSI
advanced robust feature extraction algorithm at
most SNRs. On the larger vocabulary task, the per-
formance of the proposed ASR is substantially bet-
ter than that of the missing-data recognizer. Our
study indicates that optimal preprocessing strategies
for robust speech recognition may depend on the
vocabulary size of the task. For small vocabulary
applications, computation of the ideal T-F binary
mask may be desirable, whereas a ratio mask may
provide an improved performance with increased
vocabulary sizes.
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