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This paper describes the use of an artificial neural network (ANN) method for the analysis of relationships between

a number of input parameters and observed damage owing to reinforcement corrosion. Data on the effects of the

environmental conditions, structure and properties of concrete on the degree of damage caused by steel corrosion

have been gathered on 11 concrete bridge structures in a Croatian moderate continental climate. The main causes

of deterioration were chloride ions, from de-icing salts, and accelerated carbonation owing to the higher carbon

dioxide concentration on highways and in towns. The methodology of data gathering from surveys, diagnosis and

remedial works to concrete structures is described. The damage was classified into six categories based on the type

of remedial work necessary. As the parameters are time dependent and show high scatter, a probabilistic-like

approach was adopted using an ANN for fuzzy feature categorisation as a tool for classification of the degree of

damage. The ANN was successfully trained and validated for the range of data from the investigated bridges. The

outputs of the work could be used for fuzzy prediction of the extent of damage in the structure service life and for

planning the maintenance. The outputs can also be used to assist in the design and restoration of the reinforced

concrete structures.

Notation

c concrete cover depth

cc cement content

Cr water-soluble chloride content at the rebar

level by mass of concrete

Cs water-soluble chloride content in the surface

layer by mass of concrete

d carbonation depth

E measurements of a half-cell potential

according to ASTM C 876-91

Edge categorical parameter for considering an

impact of reinforcement in an edge of a

structural part

fc compressive strength of concrete

l categorical parameter for considering an

impact of water leakage

p porosity

t bridge age

w moisture content of the concrete by volume

Introduction

The safety of engineering concrete structures, the

expected service life of which is 120 years,1 is often

threatened and substantial repairs are necessary after

only 20 to 30 years of exposure. In addition to the

flaws in building standards, design and unsatisfactory

construction, the direct causes are

(a) accelerated carbonation owing to the higher carbon

dioxide concentration on highways and in towns

(b) chloride ions from de-icing salts, the fastest of

which activate corrosion of steel

(c) freezing and thawing cycles, which ‘find’ the flaws

in composition and curing of concrete.

The products of corrosion (rust) occupy up to six times

greater volume than steel and exert substantial stresses

on the surrounding concrete, resulting in deterioration

of concrete. The outward manifestations of the rusting

process include staining, cracking and spalling of the

concrete. Concurrently, the cross-section of the steel is

reduced. In time, structural distress may occur either by
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loss of bond between the steel and concrete owing to

cracking and spalling or as a result of the reduced steel

cross-sectional area.2

The principal factors influencing the rate of dete-

rioration caused by reinforcement corrosion are

known.2–8 Corrosion of reinforcing steel in concrete is

a very complex phenomenon that involves many fac-

tors; these are not currently well understood and both

parameters for concrete durability and environmental

exposure show a high scatter and are time dependent.

There are models describing certain phases of the

complex process of steel corrosion and destruction of

concrete cover caused by chloride ions, for example

the process of chloride penetration, carbonation, pro-

pagation of corrosion process and destruction of rein-

forcement and concrete. Overall, however, analytical

correlation among the influential parameters and the

various kinds of damage has not been established.

Surveys, diagnosis and remedial works to concrete

structures have generated extensive experimental data

over the years, but the analysis of such data using

traditional tools has not produced reliable predictive

models.

There are several ways to predict the service life of

reinforced concrete (RC) structures with the help of

various deterministic empirical models9–18 or experi-

mental methods.8

To include uncertainty of the various parameters to

generate reliable service life predictions, probabilistic

modelling has been utilised as opposed to a determinis-

tic method. Probabilistic modelling of the deterioration

mechanisms has gained strong momentum during the

past few years.19–27 For the probability approach, a

number of sophisticated statistical methods exist which

may be adopted for the durability analysis. Owing to a

lack of relevant input data for an analysis and as a

number of assumptions have to be made, a very simple

model based on a Monte Carlo simulation has been

developed.19,27 A probabilistic-based durability analysis

has been applied for obtaining a more controlled dur-

ability and the long-term performance durability design

of new concrete structures, as well as an improved basis

for condition assessment of existing concrete structures

in a marine environment.19,25 There are still many areas

in which further research is needed to improve the

current knowledge of the parameters of the models.

Recently, there has been a growing interest in using

artificial neural networks (ANNs), in engineering

applications.28–36 Neural network analysis is an analyti-

cal technique that can be applied to complex problems

described by a large amount of data. It does not require

a knowledge of physical processes involved (black box

modelling), but, rather, it identifies the relationships

present in a set of data. Thus it may be applied to

problems where more conventional mathematical solu-

tions are not feasible. Of course an expert on the

investigated process is needed to direct the develop-

ment of the ANN model. Neural networks are generally

used to predict individual results. Their use in evaluat-

ing the relationships of the results and influencing vari-

ables represents a relatively novel approach. This is,

however, particularly useful when the values of the

variables are difficult to control, as is the case for many

of the variables affecting concrete degradation.

In this paper data on input parameters and observed

damage resulting from reinforcement corrosion in 11

concrete bridge structures located in a Croatian moder-

ate continental climate have been gathered. A probilis-

tic-like approach has been applied to account for the

randomness and time dependency of the parameters.

The ANN modelling 37,38 with fuzzy prediction of the

extent of damage has been employed. Influence of the

various parameters on the degree of damage, ranges of

values for parameters associated to certain categories

and interactions among parameters has been investi-

gated. The outputs of the work could be used for plan-

ning the maintenance; they can also assist in the design

and restoration of the RC concerned.

ANN-based model

The architecture of ANNs mimics that of biological

neurons and their operation essentially simulates the

internal operation of the human brain.37 In recent years,

ANNs have shown exceptional performance as a re-

gression tool, especially when used for pattern recogni-

tion and function estimation.38 They are highly non-

linear and can capture complex interactions among

input/output parameters in the system without any prior

knowledge about the nature of these interactions.39 A

neural network is an empirical modelling tool, and it

operates by ‘curve-fitting’. Some notable differences

exist, however, between neural networks and typical,

traditional empirical models. In comparison to tradi-

tional methods, ANNs tolerate relatively imprecise,

noisy or incomplete data: approximate results are less

vulnerable to outliers, have better filtering capacity and

are more adaptive. Moreover, ANNs are also massively

parallel—that is, their numerous independent opera-

tions can be executed simultaneously. Some of the

limitations of the neural networks are possible long

training times (determination of the optimal ANN ar-

chitecture by educated trial-and-error process), the need

for a large amount of reliable training data and no

guarantee of optimal results. The principles of ANNs

have been comprehensively discussed in available lit-

erature28–41 and are therefore not addressed in the pre-

sent paper.

Classification networks for feature categorisation

One of the most interesting issues of neural network

models is their categorisation ability—that is, the capa-

city of the system for grouping a given set of correlated

patterns (the examples) into distinct classes, in such a

way that each concept represents the common features
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of a set of examples. Statistical methods provide an-

other alternative to this problem. Neural computing,

however, outperforms the conventional statistical ap-

proach in many applications. Neural networks are very

effective in fault diagnosis for a number of reasons.

One of them, through training, is that the neural net-

work can store knowledge about the process and learn

directly from quantitative, historical fault information.

It is possible to train networks based on historically

‘normal’ operation, and then compare that information

with current data to determine faults. Furthermore,

neural networks can identify causes and classify

faults.41

For a prediction of the most likely categorical group

for a given input pattern, usually classification net-

works are used for characterisation of distinct features

(i.e. feature categorisation), (Fig. 1). This similarity

classifier uses the training examples to develop a model

for each class, and compares future test cases to this

model in order to assign a score to define similarity.

The classification networks produce Boolean output

responses—that is, zero indicates that the input pattern

is not within a specific class and one indicates that it is

within a specific class.38 For example, if a categorical

output has three possible categories (three attribute out-

put vectors), actual categories for a given input vector

observed are presented by three attribute output vectors

(see ‘Acutal ANN output’ in Table 1): for a given set

x1 presented is category 1; for a given set x2 category

2; category 3 for a given set x3). The predicted output

from the neural network is a numerical value between 0

and 1 (see ‘Predicted ANN output’ in Table 1), and can

represent the ‘probability’ that the input pattern corre-

sponds to a specific class. Classification networks used

for feature categorisation activate only one output re-

sponse for any input pattern, and they select that cate-

gory based on which output response has the highest

value (score). For instance, in Table 1 category 2 is

predicted for a given input vector x2.

Generally the best way to implement a multiple-class

model is to use a separate output neuron for each class.

Training is done by requiring the neuron corresponding

to the class being presented to be highly activated,

while all other neurons are required to be nearly off. A

classification problem has three major regions in pre-

dicting output.

(a) A decision region corresponds to a unique output

class within the input space (case for set x1 in

Table 1).

(b) A decision boundary is the intersection of two dif-

ferent decision regions (set x2).

(c) A transition region is the buffer between two dif-

ferent decision regions where fuzzy inferences37,38

about the classifications are made (set x3).

The primary method for measuring the effectiveness of

a neural network is misclassification rate—that is, the

percentage of testing (recall) and validation (general-

isation) examples misclassified from a given data set.38

Methodology

Data on the effects of the environmental conditions,

the structure and the properties of concrete on the

degree of damage caused by steel corrosion have been

gathered on 11 bridges located in a Croatian moderate

continental climate.42 The mean temperature in January

ranges mostly from 08C to �28C. The mean tempera-

ture in July is 228C. The annual rainfall is between

700 mm and 1000 mm. The data were gathered at ten

different bridge ages: 1, 14, 22, 24, 28, 29, 31, 33, 55

and 91 years of exposure. The data consist of 213

records.

Input pattern ( )x

Hidden layer

Class 1
[1, 0, 0, .., 0]

Class 2
[0, 1, 0, .., 0]

Class n
[0, 0, 0, .., 1]

Output
class

y

Fig. 1. A standard neural network architecture for pattern-

classification networks

Table 1. An example for explaining a classification network for feature categorisation

Data set Actual ANN output Predicted ANN output

Category 1 Category 2 Category 3 Category 1 Category 2 Category 3

Input vector x1 1 0 0 1.00 0.00 0.00

Input vector x2 0 1 0 0.00 0.50 0.499

Input vector x3 0 0 1 0.05 0.2 0.9
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The following describes:

(a) Gathering data on

(i) damage and deterioration processes caused by

steel corrosion at a certain bridge age

(ii) environmental conditions

(iii) properties of building materials at the time the

damage was observed.

(b) Sorting the data into a table suitable for training of

neural network.

(c) Building training, testing and validation of a neural

network.

(d ) Simulation research using

(i) contribution analysis

(ii) profile plot (in the diagram x ¼ age plotted

against y ¼ score for each category) for se-

lected constant parameters.

Data gathering and damage categorisation

Data used in this paper were gathered in two steps.42

First, a visual survey of the bridge was conducted with

categorisation of flaws on the basis of outward appear-

ance. Second, in situ and laboratory tests of specimens

taken from representative spots were examined in de-

tail.

Observed flaws were categorised as

(a) defects formed during construction of a bridge

(b) mechanical damage during use of structures

(c) damage caused by steel corrosion.

For the purpose of modelling, data under (a) and (b)

were interpreted as input parameters, while data under

(c) were interpreted as output. In addition, data on

environmental conditions, concrete properties and con-

crete compositions were considered as input para-

meters. Damage caused by steel corrosion has been

classified into six categories according to the criteria

described in Table 2. The measurements of a half-cell

potential, E, according to ASTM C 876-9143 on the

‘undamaged’ surfaces, indicate risks of corrosion occur-

rence. Damage categories were chosen so that they

corresponded to the types of repair works that would be

required to repair the damage.44,45

Based on the visual survey, a number of representa-

tive spots of categories 0 to 3 were selected for detailed

testing and verification of visually estimated categories.

These spots were tested by exact measurement of para-

meters defining their structure and properties. Cate-

gories 4 and 5 represent obvious damage; therefore

further verifications of the damage categories were not

necessary.

Parameters that affect the steel corrosion in concrete

(the microclimate conditions, the structure and the

properties of concrete) are listed in Fig. 2 and Table 3;

an example is given in Table 4. These parameters were

used in this study for training the ANN model to

predict the degree of damage.

Carbonation depth d (pH , 9) was estimated on

drilled cores using the phenolphthalein test. Chloride

ion concentrations at surface and rebar level, Cs and Cr

represent the water-soluble chloride content and are

expressed in terms of the mass of concrete. They were

determined from concrete powder obtained by drilling

three holes in four layers, each 2 cm thick. The test

methods for chloride extraction and titration recom-

mended by the AFREM group46 were used. Chloride

content values for Cs and Cr are averages of three

samples tested. Water-soluble47 chloride content is used

as an appropriate parameter related to corrosion risk.

The actual concrete strength, fc, was determined from

one drilled core for each macro location. A representa-

tive location for drilling the core was chosen on the

basis of testing the concrete homogeneity by the

Schmidt hammer. The porosity of concrete, p, was

measured on the 3 cm thick outer layer of the drilled

cores, as the general parameter of concrete quality. The

variability of the porosity with the cover depth has not

been considered. The moisture content in the concrete,

w, was estimated as the equilibrium value for average

relative humidity of air measured throughout the year.

The values for cement content (cc) and water/cement

(w/c) ratio were taken from design documentations. In

practice cement content (cc, kgm�3) is mixed with

reasonable (1–2%) accuracy, while realisation of de-

signed w/c ratio is considerably harder (deviation at

quality construction �0.02). Since water content in mix

design is a significant parameter regarding a structural

durability, it was considered in the modelling by relying

on design documentation.

The average temperatures and relative environment

humidity at the locations of the investigated structures

are similar (continental climate) due to their relative

Table 2. The categorisation criteria for damage caused by steel corrosion

Damage category Reinforced concrete structure state

0 No corrosion E . �200 mV (reference electrode Cu/CuSO4)

1 Possible corrosion E , �200 mV

2 Cracks , 0.2 mm

3 Cracks . 0.2 mm

Staining on the concrete surface

4 Large cracks, spalling, reinforcement corroded on the surface

5 Spalling of concrete cover

Significant loss of rebar cross-section

A neural network method for analysing concrete durability
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closeness, so the influence of these parameters on the

different impacts to the rebar corrosion was not consid-

ered. As no data were available for influences of ad-

mixtures, type of blended cement, and freezing and

thawing cycles, these parameters were not considered.

There are three characteristic spots (three micro loca-

tions) within a certain macro location. Characteristic

micro positions within the macro location were chosen

as places of different characteristic damage categories.

Test results from 213 examined spots are summarised

into 213 sets (records) of data. A subset of 12 samples

of data for training and testing of the ANN model is

given in Table 4. The data are arranged in a patterned

format. Data used for network training, testing and

validation contain sets of pairs: the records. Each pair

consists of an input vector of 12 attributes (influential

parameters) and an output vector of six attributes (da-

mage categories). The range, mean value and standard

Category 1

Category 3

Category 2

Category 4

Category 5

Output layer

Category 0

Age, t

Porosity, p

Leakage, l

Surface Cl content,� Cs

Rebar level Cl content,� Cr

Carbonation depth, d

Moisture content, w

Compressive strength, fc

Cement content, cc

Water/cement ratio, w/c

Rebar in edge, Edge

Input layer

Concrete cover depth, c

Hidden layer

Fig. 2. Architecture of selected network: one hidden layer with ten neurons (for clarity, not all neuron connections are shown)

Table 3. Range or categories, mean values and standard deviations of input parameters

(continuous and categorical)

Input parameters Range or categories Mean value or

typical category

Standard deviation

Continuous input

Age, t: years 1–91 26.2 21.4

Cover depth, c: cm 0.2–6.5 3.2 1.5

Surface Cl�, Cs: %* 0.00–0.35 0.071 0.12

Rebar level Cl�, Cr: %* 0.00–0.30 0.038 0.08

Carbonation depth, d: cm 0.0–3.5 1.8 0.9

Moisture content, w: vol.% 1.7–3.5 2.5 0.5

Cement content, cc: kg/m3 220–480 370 69.8

Water/cement ratio, w/c 0.42–0.65 0.5 0.05

Compressive strength, fc: MPa 10.0–75.0 44.7 18.3

Porosity, p: vol.% 10.0–19.1 13.8 2.0

Categorical input

Rebar in edge, Edge Yes or no No —

Leakage, l Yes or no No —

*wt% of concrete, water-soluble chloride content
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deviation of the continuous input parameters and cate-

gories for categorical parameters used in training of the

ANN model are presented in Table 3.

Training of the ANN

For building and training the neural network, several

software packages were used.48–51 To provide an ANN

model with good generalisation capability the data were

divided into sets of 183 training and 30 validation

records (randomly selected 17% of data as validation

set). The actual output was presented to the network as

a binary (Boolean) output vector38 (Table 1 and Fig. 1).

The training procedure comprised iterative calculations

of the weight coefficients by minimising the criteria

function. After each iteration, the network predicted

outputs using training (recall) and validation (general-

isation) records. To avoid over-fitting (over-training),

and thus enabling a good generalisation capability,

training was stopped when the misclassification rate of

the validation records started to deviate from the mis-

classification rate of the training records (network

weight coefficients saved for least validation error)

(Fig. 3).

Neural network architecture

For modelling purposes a feed-forward neural net-

work using a back-propagation algorithm was em-

ployed. It should be noted that it is possible to achieve

satisfactory results with different network architectures.

The chosen architecture is shown in Fig. 2. The deter-

mination of the optimal number of hidden layers, the

number of processing elements and the network para-

meters used, was largely achieved by an educated trial-

and-error process. This involved the development and

testing of more than 100 networks. The network input

layer consisted of 12 neurons representing influential

parameters. The output layer consisted of six neurons,

for each of the damage categories. There was one

T
a
b
le
4
.
S
a
m
p
le
s
o
f
d
a
ta

fo
r
tr
a
in
in
g
a
n
d
te
st
in
g
o
f
th
e
A
N
N
m
o
d
el

S
p
o
t

N
o
.

C
o
n
ti
n
u
o
u
s
an
d
ca
te
g
o
ri
ca
l
in
p
u
t
p
ar
am

et
er
s

A
ct
u
al

o
u
tp
u
t

A
N
N

o
u
tp
u
t

1
2

3
4

5
6

8
9

1
0

1
1

1
2

1
4

C
o
n
t.

C
o
n
t.

C
o
n
t.

C
o
n
t.

C
o
n
t.

C
o
n
t.

C
o
n
t.

C
o
n
t.

C
o
n
t.

C
o
n
t.

C
at
.

C
at
.

t:

y
ea
rs

c: cm

C
s
:

%

C
r: %

d
:

m

w
:

%

cc
:

k
g
/m

3

w
/c

f c
:

M
P
a

p
:

%

E
d
g
e

l
P
re
d
ic
te
d

S
co
re

(3
)

S
co
re

(0
)

S
co
re

(5
)

S
co
re

(4
)

S
co
re

(2
)

S
co
re

(1
)

1
2
8

3
. 0

0
. 0
0
2

0
. 0
0
2

1
. 5

2
. 5

3
5
0

0
. 5
2

2
5
. 5
2

1
6
. 7

0
0

3
3

0
. 4
7

0
. 0
1

0
. 0
0

0
. 1
9

0
. 0
7

0
. 0
2

2
2
8

6
. 0

0
. 0
0
2

0
. 0
0
2

1
. 5

2
. 3

3
5
0

0
. 5
2

2
5
. 5
2

1
6
. 7

0
0

0
0

0
. 0
0

0
. 9
4

0
. 0
0

0
. 0
0

0
. 0
5

0
. 0
7

3
2
8

1
. 9

0
. 0
0
2

0
. 0
0
2

2
. 0

2
. 7

3
5
0

0
. 5
2

2
5
. 5
2

1
6
. 7

0
0

5
5

0
. 0
0

0
. 0
2

0
. 8
4

0
. 1
7

0
. 0
0

0
. 0
0

8
2
8

2
. 5

0
. 0
0
1

0
. 0
0
0

2
. 0

2
. 2

3
5
0

0
. 5
2

2
3
. 8
1

1
4
. 6

0
0

3
4

0
. 0
9

0
. 0
0

0
. 0
1

0
. 1
1

0
. 0
0

0
. 0
0

3
3

3
3

2
. 2

0
. 0
1
1

0
. 0
0
3

0
. 5

1
. 7

4
8
0

0
. 4
2

7
5
. 0
0

1
1
. 5

0
0

1
1

0
. 1
0

0
. 0
0

0
. 0
0

0
. 1
5

0
. 1
3

0
. 2
1

3
6

3
3

2
. 3

0
. 0
1
1

0
. 0
1
1

0
. 7

3
. 0

4
8
0

0
. 4
2

7
5
. 0
0

1
1
. 5

0
1

4
4

0
. 2
2

0
. 0
0

0
. 1
0

0
. 3
1

0
. 1
7

0
. 1
4

5
3

3
3

4
. 5

0
. 0
0
3

0
. 0
0
3

2
. 0

3
. 5

3
5
0

0
. 5
2

5
4
. 5
0

1
3
. 3

0
1

2
2

0
. 0
0

0
. 0
5

0
. 0
0

0
. 0
2

0
. 4
3

0
. 1
1

8
0

1
4

5
. 5

0
. 0
3
2

0
. 0
0
0

2
. 0

3
. 5

3
0
0

0
. 5
8

3
2
. 7
0

1
6
. 7

0
1

2
2

0
. 0
0

0
. 1
0

0
. 0
0

0
. 0
1

0
. 2
3

0
. 1
1

8
2

1
4

2
. 0

0
. 0
3
2

0
. 0
3
2

2
. 0

3
. 5

3
0
0

0
. 5
8

3
0
. 2
0

1
6
. 0

0
1

4
4

0
. 0
2

0
. 4
7

0
. 0
1

0
. 6
9

0
. 0
2

0
. 0
0

9
8

9
1

1
. 7

0
. 0
0
6

0
. 0
0
2

3
. 5

2
. 6

3
0
0

0
. 5
5

1
1
. 0
0

1
3
. 8

0
0

5
5

0
. 0
0

0
. 0
0

1
. 0
0

0
. 0
7

0
. 0
0

0
. 0
0

9
9

9
1

4
. 6

0
. 0
0
6

0
. 0
0
2

3
. 5

2
. 6

3
0
0

0
. 5
5

1
1
. 0
0

1
3
. 8

0
0

3
3

0
. 7
7

0
. 0
0

0
. 0
1

0
. 2
7

0
. 0
5

0
. 0
0

1
5
3

2
4

5
. 5

0
. 0
1
3

0
. 0
0
4

1
. 0

2
. 5

4
8
0

0
. 4
8

5
4
. 4
0

1
1
. 1

0
0

0
0

0
. 0
0

0
. 8
2

0
. 0
0

0
. 0
0

0
. 2
5

0
. 2
6

200150100500
0

10

20

30

40

50

60

70

M
is

cl
as

si
fic

a
tio

n 
ra

te
: %

�100 iterations

Validation (generalisation)

Training (recall)

Training of ANN

Fig. 3. Misclassification rate of the training and validation

records
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hidden layer, which was made up of 10 neurons. A

sigmoid transfer function, logsig, was employed as an

activation function for all processing units (neurons)

with full connection adopted among units in different

layers within the network, as shown in Fig. 2.

Elements—that is, attributes in input—and six output

vectors were normalised between 0 and 1 to render

them compatible with the limits of the sigmoid transfer

function, logsig. Weights and biases were initialised

randomly with an initial weight range ¼ �0.3 to +0.3.

The following values of network parameters were used:

learning parameter ¼ 0.5 and momentum ¼ 0.5.

Discussion

Testing of ANN model using training data

A successfully trained network is characterised by its

ability to predict the damage category for the data on

which it was trained. Therefore, the trained network

was used to predict the damage category for input

parameters already used in the training process; see

Table 4 (ANN output). The training process was com-

pleted with a misclassification rate of 9.29%, which

indicates that 17 out of 183 testing (recall) examples

were misclassified. The number of correctly and falsely

predicted categories by the developed ANN model for

the testing data records is shown in Table 5. The matrix

diagonal in Table 5 represents correctly predicted cate-

gories. Clearly the network has learned the relationship

between input parameters and respective damage cate-

gory effectively, and the model performance on the

training data is satisfactory.

Validation of the ANN model

The validity of a successfully trained ANN model is

determined by its ability to generalise its predictions

beyond the training data and to perform well when it is

presented with unfamiliar new data from within the

range of the input parameters used in the training.

Therefore, the ability of the ANN model thus devel-

oped to predict the damage category of new input

parameters excluded from the training data must be

validated. The model was presented with a total of 30

unseen records and was required to predict the damage

category associated with each set of values for influen-

tial parameters. The number of correctly and falsely

predicted categories by the developed ANN model for

the validation data records is shown in Table 5. The

matrix diagonal in Table 5 represents correctly pre-

dicted categories. Validation of the ANN model re-

sulted in a misclassification rate of 16.67 %, which

indicates that 5 out of 30 validation (generalisation)

examples were misclassified. The misclassification rate

is not high for this highly heterogeneous material.

Categories 4 and 5 were accurately (more correctly)

classified (Table 5). This can be attributed to the un-

certainty of the corrosion occurrence evaluation for

‘undamaged’ surfaces.

The appropriate training and validation sets pre-

sented here were obtained by a cross-validation method.

The cross-validation method consisted of validating the

ANN (with above architecture and parameters) 50 times

using random (different) selection of the data, as a 17%

generalisation set. Each time the training misclassifica-

tion rate and the validation misclassification rate were

calculated, and ranged from 8.2% to 10.4% and from

13% to 20% respectively. Based on the cross-validation

method the ANN with the most frequent value of mis-

classification rate was taken as the model presented

here. The standard deviation for training misclassifica-

tion rates is 0.93 and for validation misclassification

rates is 1.34. Low dispersion validates the selected

model.

It should be emphasised that the developed model is

valid only for the data range from the investigated

bridges. The general application of the model to all

structures exposed to rebar corrosion damage is ques-

tionable. Only structures in a similar climate, with

values of input parameters within the range used in the

training, shown in Table 3, can be analysed. The ANN

model can do interpolation (demonstrated by validation

Table 5. The number of correctly and falsely predicted categories by developed ANN

model for the training and the validation data records (the matrix diagonal represents

correctly predicted categories)

Training Validation

Predicted Predicted

True 0 1 2 3 4 5 True 0 1 2 3 4 5

0 69 1 0 0 0 0 0 5 1 0 0 0 0

1 4 14 1 0 0 0 1 0 3 1 0 0 0

2 0 2 10 2 0 0 2 0 1 4 2 0 0

3 0 0 3 22 2 0 3 0 0 0 4 0 0

4 0 0 0 1 21 0 4 0 0 0 0 6 0

5 0 0 0 0 0 31 5 0 0 0 0 0 4

Ukrainczyk and Ukrainczyk

Magazine of Concrete Research, 2008, 60, No. 7 481



of ANN), whereas extrapolation is doubtful. New data

records obtained by additional surveys and examina-

tions of RC structures should be used for an additional

training of ANN and for a validation of the predictions.

The more data are available, the more reliable a predic-

tion of damage degree by ANN will be obtained.

Simulation research

Contribution factor. A contribution factor is a

measure of the importance of the respective para-

meter in predicting the network’s output, relative to

the other input parameters in the network.32 A con-

tribution factor for each input parameter is obtained

by adding absolute (coefficient) values of weights that

connect one input neuron (variable) to all the inner

layer neurons. The higher the absolute sum of those

weights, the more the parameter is contributing to the

classification. Neural networks are, however, also cap-

able of finding patterns among several parameters,

none of which is highly correlated with the output,

but which together form a pattern that uniquely deter-

mines the output.

The contribution factor for individual input para-

meters in predicting the damage category was evalu-

ated. The idea of the contribution factor analysis was

found in Neuroshell,48 where a specific module calcu-

lates contribution factors. Based on the final set of

weights given by the software,49 a contribution factor

was calculated. The importance of parameters in des-

cending order estimated by contribution factor analysis

(Fig. 4), is as follows: cover depth, c; age, t; chloride

content at rebar level, Cr; carbonation depth, d; com-

pressive strength, fc; water/cement ratio, w/c; water

content, w; rebar in an edge of structural part, Edge;

water leakage, l; porosity, p; surface chloride content,

Cs.

Traditionally important factors influencing the rate

of deterioration caused by reinforcement corrosion—

porosity (p), strength (f ) and w/c ratio—are in the

middle of the list of parameters stated above, because

they influence the rate and amount of chloride, moist-

ure and carbonation penetration.

To investigate the interactions and sensitivities of the

parameters, the parameters listed above were chosen for

further simulation research using profile plots (Figs 5–

7). The use of the ANN in evaluating the influence

(sensitivities) of parameters on the degree of damage,

the ranges of values for parameters associated to cer-

tain categories and an interaction among parameters

has been demonstrated (Figs 5–7).

Profile plot. The output has six categories (six

attributes output vectors) dependent on the kind of

damage, shown in Table 4 as ‘ANN output’. The

model predicts scores (values between 0 and 1) for

each of these six categories (outputs) (Table 4). The

final category predicted by the model (in Table 4 as

‘ANN output, predicted’) is the one with the highest

score. The profile plot is the best way to visualise

the fitted ANN model, as it depicts a one-dimen-

sional cross-section of the higher-dimensional fitted

surfaces. To generate one profile plot, 100 predictions

are performed by varying bridge age between 1 and

91 years (Table 6) and keeping all the others fixed at

a pre-specified (mean) value. After the scores for

each of the six categories were taken, as predicted by

the model, they were plotted against a bridge age. A

profile plot enabled studying the ranges of values for

given parameters associated to certain categories as

well as the interactions among parameters.

For the purpose of simulating the impact of para-

meters and interactions among parameters, the respec-

tive parameter was assigned to mean, minimum and

maximum values in its range (Table 6). All other para-

meters were held at their typical (mean) values shown

in Table 3. The results of those simulations are illu-

strated in profile plots (Figs 5–7).

Figures 5(a), 6(a) and 7(a) show a profile plot for

mean values of continuous input parameters and the

following categorical input parameters: rebar not in an

edge of structural part (edge ¼ 0), and no water leak-

age (l ¼ 0). In this case, the score of the category 2

prevails after 38 years of exposure when category 3

starts to emerge, therefore requiring repair works. After

60 years the score of category 4 rises, meaning that the

structural safety could be endangered.

Figure 5(b) shows simulation performed with fixed

cover depth, c, at 1.0 cm with all the other parameters

from the previous case unchanged. The score of the

category 4 now prevails after only six years and reaches

a maximum at 24 years when category 5 prevails,

showing the importance of concrete cover depth. Fig.
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5(c) shows the profile plot for the case where the

reinforcement was in an edge of a structural part so the

carbonation and chloride ions penetrate from both

sides. Fig. 6(b) shows the influence of maximum carbo-

nation depth, d ¼ 3.5 cm (instead of mean value Cs ¼
1.8 cm). All the other parameters remained unchanged

as those for Fig. 6(a). Owing to the higher carbonation

depth than the concrete cover depth, category 4 prevails

after only 20 years. Fig. 6(c) shows the influence of

higher chloride ion concentration, Cs ¼ 0.35% (instead
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Fig. 5. Profile plots for simulating the impact of the concrete

cover depth and rebar position: (a) c ¼ 3.2 cm, Cs ¼ 0.071%,

Cr ¼ 0.038%, d ¼ 1.8 cm, w ¼ 2.5%, cc ¼ 350, w/c ¼ 0.5,

fc ¼ 45, p ¼ 14, edge ¼ 0, l ¼ 0; (b) c ¼ 1.0 cm,

Cs ¼ 0.071%, Cr ¼ 0.038%, d ¼ 1.8 cm, w ¼ 2.5%, cc ¼ 350,

w/c ¼ 0.5, fc ¼ 45, p ¼ 14, edge ¼ 0, l ¼ 0; (c) c ¼ 3.2 cm,

Cs ¼ 0.071%, Cr ¼ 0.038%, d ¼ 1.8 cm, w ¼ 2.5%, cc ¼ 350,

w/c ¼ 0.5, fc ¼ 45, p ¼ 14, rebar in an edge of structural part

edge ¼ 1, l ¼ 0; mean values for other parameters and

categories as shown in Table 3
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Fig. 6. Profile plots for simulating the impact of carbonation

depth and chloride ion concentration: (a) c ¼ 3.2 cm,

Cs ¼ 0.071%, Cr ¼ 0.038%, d ¼ 1.8cm, w ¼ 2.5%, cc ¼ 350,

w/c ¼ 0.5, fc ¼ 45, p ¼ 14, edge ¼ 0, l ¼ 0 (b) (b) c ¼ 3.2 cm,

Cs ¼ 0.071%, Cr ¼ 0.038%, d ¼ 3.5 cm, w ¼ 2.5%, cc ¼ 350,

w/c ¼ 0.5, fc ¼ 45, p ¼ 14, edge ¼ 0, l ¼ 0; (c) c ¼ 3.2 cm,

Cs ¼ 0,35%, Cr ¼ 0.30%, d ¼ 1.8 cm, w ¼ 2.5%, cc ¼ 350,

w/c ¼ 0.5, fc ¼ 45, p ¼ 14, edge ¼ 0, l ¼ 0; and with mean

values for other parameters and categories as shown in Table 3
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of mean value Cs ¼ 0.071%) and Cr ¼ 0.30% (instead

of mean value Cr ¼ 0.038%). All the other parameters

remained unchanged as those for Fig. 6(a). After only

ten years the structural safety could be endangered.

Fig. 7(b) shows the impact of water leakage. For water

content value, w ¼ 3.3% was assigned. All other para-

meters remained unchanged as those for Fig. 7(a).

Category 0 ceases to prevail after 17 years, when cate-

gory 2 and 3 start to emerge. Category 4 prevails after

28 years, and category 5 after 47 years. Fig. 7(c)

simulates the importance of concrete cover quality. The

lowest quality was presented to the model: w/c ¼ 0.65;

fc ¼ 10; p ¼ 19. All others parameters were maintained

at their mean values (Fig. 7(a)). Category 4 prevails

after 36 years.

Likewise, the impact of other individual parameter

values on the damage degree and interactions among

input parameters were investigated. The significance of

the various influence factors as a function of age is

difficult to deduce quantitatively from profile plots (in

a form of a one factor number) owing to the different

evolution of a number of damage categories during

ageing as well as the interdependence of interactive

parameters, but a comparison of respective profile plots

shows qualitatively the impact of the parameter and

enables the range of ages associated with each category

to be studied quantitatively.

Conclusions

Damage to RC structures caused by steel corrosion

as a function of bridge age, concrete structure and

environmental conditions is difficult to predicte analyti-

cally. As the parameters are time dependent and show

high scatter, a probabilistic-like approach was adopted

using an ANN modelling with fuzzy inferences for

damage prediction. It was demonstrated that the devel-

oped ANN model was successfully trained and vali-

dated for the range of data from the investigated

bridges. An ANN method for evaluating the relation-

ships of the results and influencing variables was de-

scribed. The model was able to recognise and evaluate

the effect of individual parameters on the damage

caused by steel corrosion. Simulations of parameter

interactions and impact were performed. Using the

developed ANN model it was possible to rate the more

influential parameters by contribution factor analysis.

The results could be used to predict the extent and

severity of degradation in a structure during its service

life, to plan the maintenance and to assist in the design

and restoration of RC structures.

Unfortunately, data on admixtures, type of blended

cement, and freezing and thawing cycles were not

available. Possibly, if included, the ANN model would

form a pattern that better determines its output. New

data records obtained by additional surveys and exam-

inations of RC structures should be used for an addi-

tional training of ANN and for a validation of the

predictions. The more data that are made available, the

more reliable prediction of damage degree by ANN can

be performed.
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Fig. 7. Profile plots for simulating the impact of water

leakage and concrete cover quality: (a) c ¼ 3.2 cm,

Cs ¼ 0.071%, Cr ¼ 0.038%, d ¼ 1.8 cm, w ¼ 2.5%,

cc ¼ 350, w/c ¼ 0.5, fc ¼ 45, p ¼ 14, edge ¼ 0, l ¼ 0;

(b) c ¼ 3.2 cm, Cs ¼ 0.071%, Cr ¼ 0.038%, d ¼ 1.8 cm,

w ¼ 3.3%, cc ¼ 350, w/c ¼ 0.5, fc ¼ 45, p ¼ 14, edge ¼ 0,

l ¼ 1; (c) c ¼ 3.2 cm, Cs ¼ 0.071%, Cr ¼ 0.038%,

d ¼ 1.8 cm, w ¼ 2.5%, cc ¼ 350, w/c ¼ 0.65, fc ¼ 10,

p ¼ 19, edge ¼ 0, l ¼ 0; and with mean values for other

parameters and categories as shown in Table 3
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16. Réunion Internationale des Laboratoires et Experts des
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versidade do Minho, Guimarães, Portugal, 2004. Available

online from http://www.civil.uminho.pt/duracon/index.php?

navigate¼articles (last accessed June 2008).

20. Gehlen C. and Schiessl P. Probability-based durability design

for the Western Scheldt Tunnel. Structural Concrete Journal of

the fib, 1999, P1, No. 2, 1–7.

21. McGee R. Modelling of durability performance of Tasmanian

bridges. In Application of Statistics and Probability in Engineer-

ing (Melchers R. E. and Stewart M. G. (eds)). Balkema,

Rotterdam, the Netherlands, 2000, pp. 297–306.

Table 6. Explaining a profile plot generation

Reference

Simulation

No.

Input parameters Predicted output

t: years Impact Continuous Categorical 1 2 3 4 5

1 1 Mean values held (Table 3) Typical, as in Table 3 Score (5 3 100 values)

: : :

:

100 91

Impact simulation

Input parameters Predicted output

t: years Impact Continuous Categorical 1 2 3 4 5

1. . .91 Min. Mean Typical, as in Table 3 Score

1. . .91 Max. Mean

Ukrainczyk and Ukrainczyk

Magazine of Concrete Research, 2008, 60, No. 7 485



22. Schiessl P. New approach to service life design of concrete

structure. Asian Journal of Civil Engineering (Buildings and

Housing), 2005, 6, No. 5, 393–407

23. Biondini F., Bontempi F., Frangopol D. M. and Malerba P.

G. Probabilistic service life assessment and maintenance plan-

ning of concrete structures. Journal of Structural Engineering,

2006, 132, No. 5, 810–825.

24. Schiessl P. Prediction of service life of existing structures by

applying probabilistic service life design (SLD) procedures.

International Conference on Advances in Concrete and Struc-

tures (Yuan Y.-S., Shah P. S. and Lü H. L. (eds)). RILEM
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