
A Buyer's Guide to Conic Fitting�Andrew W. FitzgibbonRobert B. FisherDepartment of Arti�cial Intelligence, Edinburgh University5 Forrest Hill, Edinburgh EH1 2QLAbstractIn this paper we evaluate several methods of �tting data to conic sec-tions. Conic �tting is a commonly required task in machine vision, butmany algorithms perform badly on incomplete or noisy data. We evalu-ate several algorithms under various noise and degeneracy conditions,identify the key parameters which a�ect sensitivity, and present theresults of comparative experiments which emphasize the algorithms'behaviours under common examples of degenerate data. In addition,complexity analyses in terms of 
op counts are provided in order tofurther inform the choice of algorithm for a speci�c application.1 IntroductionVision applications often require the extraction of conic sections from image data.Common examples are the calculation of geometric invariants [2] and estimationof the centers and radii of circles for industrial inspection.Many textbooks [5, 10] provide discussions and algorithms for least-squaresapproximation of conics, but these often include only the simple and fast algebraicdistance algorithm (algorithm LIN below). This algorithm fares poorly on manyreal data sets due to its inherent statistical bias, particularly when the image curvesare partially occluded. A number of authors [1, 6, 8, 9, 12, 13] have proposedalternative algorithms and while these are usually compared by the authors withLIN, there have been, to our knowledge, no comparative studies of the relativeaccuracy and e�ciency of these alternatives.This paper makes two important contributions to this area of computer visionresearch:� Identi�cation of the main conditions under which the algorithms fail. Itis common for comparative evaluations to concentrate on noise sensitivity,but in the case of conic �tting the important parameter is the amount ofocclusion.� Presentation of the algorithm complexities in terms of 
op counts allowsevaluation of the tradeo� between accuracy and speed of execution withoutreference to the speci�cs of an implementation and environment.�This work was funded by UK EPSRC Grant GR/H/86905.



British Machine Vision ConferenceThe four methods compared di�er primarily in terms of the error measure thatthey minimize and then in terms of the techniques that are used to minimize thismeasure. In particular, the error measure determines the eventual accuracy of themethods and generally dictates the choice of optimization algorithm and hencetheir execution speed.2 Problem StatementThe problem which the algorithms presented in this paper solve may be stated asfollows. Given:� A set of 2D data points P = fxigni=1, where xi = (xi; yi);� A family of curves C(a) parameterized by the vector a;� A distance metric �(C(a);x), which measures the distance from a point x tothe curve C(a);�nd the value amin for which the error function �2(a) =Pni=1 �(C(a);xi) attainsits global minimum. The curve C(a) is then the curve that best �ts the data.In this paper, the curve families considered are represented in the implicit formC(a) = fx j F (a;x) = 0g. The two families that we examine are general conicsections, with F (a;x) = Axxx2 + Axyxy +Ayyy2 +Axx+ Ayy + A0; and circles,for which FC(a;x) = Ar(x2 + y2) +Axx+ Ayy + A0.Finally we note that these forms may be written in a way that separates theparameters A� from the terms in x using the dot productF (a;xi) = [x2i xiyi y2i xi yi 1] � [Axx Axy Ayy Ax Ay A0]= �i � a3 The Algorithms3.1 Algorithm LIN: Algebraic DistanceThe algebraic distance algorithm minimizes the objective function�2(a) = nXi=1 F (a;xi)2 = kDak2subject to the constraint that kak2 = 1. The design matrix D is the n� 6 matrixwith rows �i. The constrained objective function E = kDak2 � �(kak � 1) =aTDTDa��(aT a�1) is minimized analytically to form an eigenvector problem [4]:raE = 0 () 2DTDa � 2�a = 0where � is a Lagrange multiplier. The minimizer amin is then the eigenvector ofDTD corresponding to the smallest eigenvalue.



British Machine Vision ConferenceThe algorithm requires 12nmultiplications and 14n adds (or approximately 26n
ops1 for the construction of the 15 unique elements of DTD. Evaluation of theeigensystem by Hessenberg reduction and QR generally took about 20 iterations(1700 
ops) in our experiments, giving a total complexity of about 26n + 1700
ops.3.2 Algorithm BOOK: Algebraic distance with quadraticconstraintBookstein's algorithm [1] attempts to reduce the bias of LIN by imposing a di�erentconstraint on the parameter vector a. He derives the constraint 2A2xx + A2xy +2A2yy = 1 and shows how this leads to the systemDTDa = � �awhere � = diag(2; 1; 2; 0;0; 0). This is a rank-de�cient generalized eigensystem,which Bookstein solves by block-decomposition.BOOK requires the 26n 
ops of LIN to form the DTD matrix. The matrixinversion and eigensystem solution's mean 
op count was 1165, yielding a totalcomplexity of 26n+ 1165 
ops.3.3 Algorithm AMS: \Approximate Mean Square"DistanceThe \approximate mean square distance" metric, introduced by Taubin[13], min-imizes the unusual objective function�2(a) = Pni=1F (a;xi)2Pni=1 krxF (a;xi)k2 = kDak2kDxak2 + kDyak2where the matrices Dx and Dy are the partial derivatives of D with respectto x and y. Restating the problem as the minimization of kDak2 subject tokDxak2 + kDyak2 = 1, the minimizer amin is then the eigenvector of the general-ized eigensystem [4] DTDa = �(DTxDx +DTy Dy)acorresponding to the largest eigenvalue.AMS requires the 26n 
ops of LIN to form the DTD matrix, but negligibleadditional time to form DTxDx +DTyDy from the elements of D. The generalizedeigensystem routine's mean 
op count was 9700, yielding a total complexity of26n+ 9700 
ops.1Matlab [7] de�nes addition and multiplication to each contribute one 
op, while Goluband van Loan [4] consider one 
op to consist of a multiply-accumulate. The Matlab de�nitioncorresponds more closely to the computer used to perform the experiments, on which bothmultiplication and addition require one clock cycle.



British Machine Vision Conference3.4 Algorithm GEOM: Geometric DistanceThe geometric distance metric measures the orthogonal distance from the pointx to the conic section. This metric, proposed by Nakagawa and Rosenfeld [8], isapproximately unbiased if the errors in the data points are distributed normallyto the curve. The distance is evaluated at a point x by solving the simultaneousequations p+ �rF (a;p) = xF (a;p) = 0for p and de�ning �(C(a);x) = kx� pk2. These equations involve the solution ofa quartic equation, and while closed-form solutions exist, numerical instability canresult from the application of the analytic formula [10]. In our implementationwe extract roots from the eigensystem of the companion matrix [4]. This in turnmeans that analytic derivatives of �, and consequently ra�2(a), are di�cult tocalculate.Each evaluation of �2(a) involves the solution of n such quartics, averaging1300n 
ops per iteration for the eigenvalue calculation. The number of iterationsdepends on the minimization algorithm chosen, but it is clear that even with only10 iterations, GEOM is 3 to 4 orders of magnitude slower than the previous twoalgorithms, and therefore was not extensively tested in our experiments.3.5 Algorithm BIAS: \Statistical" DistanceAnother approach, proposed by Kanatani [6] and Porrill [9], improves the LINalgorithm by explicitly calculating its inherent statistical bias and subtracting thebias from the result of minimization. Because the calculation of the bias dependson knowing both the true minimum and the noise level, the process is iterateduntil the predicted bias results in a noise-level correction of zero. Kanatani callsthis metric the \statistical distance", and argues that its bias sensitivity is in factsuperior to the geometric distance in the case where the errors on the data pointsare spherically distributed. Due to pressure of space this paper discusses onlyKanatani's bias correction algorithm. A description of algorithm itself would betoo long to include here, due to its dependence on tensor arithmetic. Note howeverthat the published noise-level update formula [6, eq 21] should be replaced byc  c+ �mtr(Q)tr(MQ) + 2tr(MQ2)Complexity of the algorithm is of the order of 50n+1000 
ops per iteration, withour test runs taking an average of 10 iterations.3.6 Algorithm B2AC: Algebraic distance with quadraticconstraintThe B2AC algorithm is ellipse-speci�c, imposing the constraint that A2xy�4AxxAyy =1. This cleverly converts the inequality A2xy � 4AxxAyy > 0 into an equality by
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Figure 1: Visual depiction of the three noise levels used in the later experiments. TheHigh, Medium and Low levels correspond to standard deviations of 4, 1 and 14 pixelsrespectively.incorporating the normalisation factor. The corresponding generalized eigensys-tem is not nonnegative de�nite, and is solved by the scheme of Gander [3]. B2ACrequires the 26n 
ops of LIN to form the DTD matrix. The matrix inversion andeigensystem solution's mean 
op count was 5182.4 ExperimentsAll experiments were conducted using the Matlab system [7]. Eigensystems aresolved using the underlying EISPACK routines, while the derivative-free minimiza-tion needed for the GEOM algorithm used the Nelder-Mead simplex algorithm.Also, as the execution-speed characteristics of interpreted Matlab programs arequalitatively di�erent to those of equivalent programs in a compiled language, wegive no timing statistics other than the 
op counts in the previous section.Noise modelThe noise model applied in all experiments is isotropic zero mean normally dis-tributed. Other models may also be considered, particularly a nonisotropic modelwhere the variance is perpendicular to the curve. However, as the experimentsillustrate, degree of occlusion of the curve rather than noise is the parameter towhich the algorithms are more sensitive.Additionally, the noise model does not include any outlier component. This isbecause none of the described algorithms are statistically robust. The algorithmsmay be made robust in the usual ways [14], in which case an outlier componentwould be added. Qualitatively, the most important change that this might maketo the results presented here would be that timing considerations could prove lessunfavourable to the iterative algorithms than in the outlier-free case.Experiments other than the �rst are performed with three `typical' noise levels,depicted visually in Figure 1. The high, medium and low noise levels correspondroughly to standard deviations of 2, 1 and 14 pixels on an ellipse with a majordiameter of 20 pixels.
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Experiment 1: Center error vs. Noise level

Figure 2: Results of experiment 1. Only B2AC degrades smoothly wrt noise on unoc-cluded data.Conic representationIn the following for convenience in de�ning the experiments, central conic parame-ters are expressed as 5-vectors [cx; cy; Rx; Ry; �], where (cx; cy) is the conic center,Rx and Ry are the X and Y radii respectively, and � is the counterclockwise anglein degrees between the ellipse and the positive X axis.All of the experiments use center position as their primary error measure. Wehave performed the same experiments using radius error as the measure and foundno qualitative di�erence in the results.4.1 Experiment 1: NoiseIn this experiment, we are interested in characterizing the behaviour of the algo-rithms with complete data and with respect to noise. Experimental procedure wasas follows:1. The ellipse [0; 0; 1; 12 ; 40] was sampled at 100 points uniformly distributedaround the circumference.2. Noise sigma was logarithmically varied between 2�3 and 23 pixels.3. The sampled ellipse was corrupted with noise as described above for 100 runsand the distance between the true ellipse center and the center of the conicreturned by the �tting algorithm was recorded. Returned hyperbolae wereincluded.Figure 2 shows the 90th percentile error in the centers as a function of noise level.At low noise levels (� < 0:5), all algorithms can be seen to perform similarly, whileat high levels only the B2AC algorithm degrades gracefully.
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Experiment 2: Arc center error vs. Orientation

Figure 3: Results of experiment 2. Highest errors in center position occur at curvaturemaxima for LIN, between maxima and minima for AMS and BIAS.4.2 Experiment 2: OrientationIn this experiment, we investigate how the errors in determining the center of a120� elliptical arc vary as the portion of the ellipse from which the arc is sampledrotates about the ellipse. This is so that in Experiment 3 we may ensure that thesubtended angle measurements are taken at the most pessimistic location aboutthe ellipse. Experimental procedure was as follows:1. The counterclockwise orientation of the center of the arc was varied from 0to 360� in steps of 45�.2. The ellipse [0; 0; 1; 12 ; 40] was sampled at 100 points uniformly distributedalong the 120� arc.3. The sampled arc was corrupted with the three `standard' noise levels asdescribed above.4. The distance between the true ellipse center and the center returned by the�tting algorithm was recorded.Figure 3 shows the results in two ways. The top three �gures illustrate visuallythe located circle positions for algorithms AMS, LIN, BOOK and B2AC, while thebottom graph shows the error in median center position as a function of the arc
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sFigure 4: Results of experiment 3. Results are for low, medium and high noise fromleft to right. The upper curves show the average sum of the errors in the principalpoints, while the lower ones show the proportion of non-ellipses produced by the conicalgorithms.orientation. BIAS and AMS show their greatest errors at the 45� points, whilemaximum errors for LIN occur when the arc is sampled from the high curvaturesections at 0� and 180�.4.3 Experiment 3: OcclusionThe third experiment is designed to locate the breakdown point of each of thealgorithms when the ellipse is progressively occluded. We measure the errors incenter position and radius estimates for several arcs of decreasing subtended angle.Experimental procedure was as follows:1. The angle subtended by the elliptical arc was varied from 360� down to 0 insteps of 10�.2. The ellipse [0; 0; 1; 12 ; 40�] was sampled at 100 points uniformly distributedalong the arc.3. The sampled arc was corrupted with the three `standard' noise levels asdescribed above.4. Over 500 runs, the noisy arcs were submitted to each �tting algorithm. Thedistances of the �tted principal points to their correspondents on the true el-lipse were calculated. The mean sum distance where the algorithms returned
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Experiment 4: Circle breakdown vs. subtended angle

Figure 5: Results of experiment 4. The specialized circle �tters LINC and AMSC havebetter breakdown characteristics than the corresponding general conic algorithms.ellipses was calculated, as was the percentage of runs in which non-ellipseconics were returned.Figure 4 shows the plots of principal point error and percentage of returned non-ellipses as a function of decreasing subtended angle.4.4 Experiment 4: CirclesIn the �nal experiment, we consider the breakdown performance when the generalconic �tting algorithms are made speci�c to a particular task; in this case, circle�tting. Procedure is similar to Experiment 3, but we add two new algorithms,LINC and AMSC, which are specializations of LIN and AMS respectively. Figure 5shows the breakdown curves for the low-noise case. As expected, the specialized�tters LINC and AMSC break down considerably later than the general conicalgorithms.5 DiscussionThis paper has discussed the problem of �tting conic sections to ellipse data. Theexperiments illustrate that the key parameter a�ecting the algorithms' accuracyis the amount of occlusion present and the qualitative noise level. With completedata, all algorithms exhibit a similar degradation in the presence of increasingnoise.As the data become progressively incomplete, a breakdown point is reachedbeyond which the algorithms fail catastrophically. This breakdown point is supe-rior with the B2AC and BIAS algorithms, and, in the special case of a circle, withthe circle-speci�c algorithms. Under high noise, BIAS has superior accuracy butproduces non-ellipses up to 60% of the time on highly occluded ellipses.Algorithm complexities are, in increasing order: BOOK, LIN, B2AC, AMS,BIAS, GEOM.
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