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Abstract

In this paper we evaluate several methods of fitting data to conic sec-
tions. Conic fitting 1s a commonly required task in machine vision, but
many algorithms perform badly on incomplete or noisy data. We evalu-
ate several algorithms under various noise and degeneracy conditions,
identify the key parameters which affect sensitivity, and present the
results of comparative experiments which emphasize the algorithms’
behaviours under common examples of degenerate data. In addition,
complexity analyses in terms of flop counts are provided in order to
further inform the choice of algorithm for a specific application.

1 Introduction

Vision applications often require the extraction of conic sections from image data.
Common examples are the calculation of geometric invariants [2] and estimation
of the centers and radii of circles for industrial inspection.

Many textbooks [5, 10] provide discussions and algorithms for least-squares
approximation of conics, but these often include only the simple and fast algebraic
distance algorithm (algorithm LIN below). This algorithm fares poorly on many
real data sets due to its inherent statistical bias, particularly when the image curves
are partially occluded. A number of authors [1, 6, 8, 9, 12, 13] have proposed
alternative algorithms and while these are usually compared by the authors with
LIN, there have been, to our knowledge, no comparative studies of the relative
accuracy and efficiency of these alternatives.

This paper makes two important contributions to this area of computer vision
research:

e Identification of the main conditions under which the algorithms fail. Tt
1s common for comparative evaluations to concentrate on noise sensitivity,
but in the case of conic fitting the important parameter is the amount of
occlusion.

e Presentation of the algorithm complexities in terms of flop counts allows
evaluation of the tradeoff between accuracy and speed of execution without
reference to the specifics of an implementation and environment.

*This work was funded by UK EPSRC Grant GR/H/86905.
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The four methods compared differ primarily in terms of the error measure that
they minimize and then in terms of the techniques that are used to minimize this
measure. In particular, the error measure determines the eventual accuracy of the
methods and generally dictates the choice of optimization algorithm and hence
their execution speed.

2 Problem Statement

The problem which the algorithms presented in this paper solve may be stated as
follows. Given:

o A set of 2D data points P = {x;}'_,, where x; = (2, 4;);
o A family of curves C'(a) parameterized by the vector a;

o A distance metric §(C'(a), x), which measures the distance from a point x to
the curve C'(a);

find the value ayi, for which the error function e?(a) = Yo 6(C(a),x;) attains
its global minimum. The curve C'(a) is then the curve that best fits the data.

In this paper, the curve families considered are represented in the implicit form
C(a) = {x | F(a;x) = 0}. The two families that we examine are general conic
sections, with F(a;x) = App2? + Agyzy + Ayyy® + Az + Ayy + Ao; and circles,
for which Fe(a;x) = A, (2 +y*) + Azz + Ayy + Ao.

Finally we note that these forms may be written in a way that separates the
parameters A, from the terms in x using the dot product

Fla;x;) = [a:ZZ ;Y yi2 2 yi 1] - [Aee Awy Ayy Ae Ay Ad]
Xi-a

3 The Algorithms

3.1 Algorithm LIN: Algebraic Distance

The algebraic distance algorithm minimizes the objective function
n
¢(a) =) Fla,x;)’ = || Dall”
i=1

subject to the constraint that ||a]|> = 1. The design matriz D is the n x 6 matrix
with rows x;. The constrained objective function E = ||Dal|> — A(|Jal| — 1) =
al’ DT Da—\(a”a—1) is minimized analytically to form an eigenvector problem [4]:

VaE=0 <= 2DTDa—-2\a=0

where A is a Lagrange multiplier. The minimizer ay;, is then the eigenvector of
DT D corresponding to the smallest eigenvalue.
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The algorithm requires 12n multiplications and 14n adds (or approximately 26n
flops' for the construction of the 15 unique elements of DT D. Evaluation of the
eigensystem by Hessenberg reduction and QR generally took about 20 iterations
(1700 flops) in our experiments, giving a total complexity of about 26n + 1700
flops.

3.2 Algorithm BOOK: Algebraic distance with quadratic
constraint

Bookstein’s algorithm [1] attempts to reduce the bias of LIN by imposing a different
constraint on the parameter vector a. He derives the constraint 242 + Aiy +
2A§y = 1 and shows how this leads to the system

DTDa =\ Aa

where A = diag(2,1,2,0,0,0). This is a rank-deficient generalized eigensystem,
which Bookstein solves by block-decomposition.

BOOK requires the 26n flops of LIN to form the DT D matrix. The matrix
inversion and eigensystem solution’s mean flop count was 1165, yielding a total
complexity of 26n + 1165 flops.

3.3 Algorithm AMS: “Approximate Mean Square”
Distance

The “approximate mean square distance” metric, introduced by Taubin[13], min-
imizes the unusual objective function

i Flaxi)? || Dal|*

2
(a) = — =
2= IVxF(a,xi)|* - [[Deall® + [|Dyal]?

where the matrices D, and D, are the partial derivatives of D with respect
to z and y. Restating the problem as the minimization of ||Da||* subject to
|| Dyal|* + || Dyal)* = 1, the minimizer ay;, is then the eigenvector of the general-
ized eigensystem [4]

D" Da = XN(Df D, 4+ D] Dy)a

corresponding to the largest eigenvalue.

AMS requires the 26n flops of LIN to form the DT D matrix, but negligible
additional time to form DX D, + DgDy from the elements of D. The generalized
eigensystem routine’s mean flop count was 9700, yielding a total complexity of

26n + 9700 flops.

IMATLAB [7] defines addition and multiplication to each contribute one flop, while Golub
and van Loan [4] consider one flop to consist of a multiply-accumulate. The MATLAB definition
corresponds more closely to the computer used to perform the experiments, on which both
multiplication and addition require one clock cycle.
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3.4 Algorithm GEOM: Geometric Distance

The geometric distance metric measures the orthogonal distance from the point
x to the conic section. This metric, proposed by Nakagawa and Rosenfeld [8], is
approximately unbiased if the errors in the data points are distributed normally
to the curve. The distance is evaluated at a point x by solving the simultaneous
equations

p+AVF(ajp) =
Fla;p) = 0

for p and defining §(C'(a), x) = ||x — p||?. These equations involve the solution of
a quartic equation, and while closed-form solutions exist, numerical instability can
result from the application of the analytic formula [10]. In our implementation
we extract roots from the eigensystem of the companion matrix [4]. This in turn
means that analytic derivatives of §, and consequently Vae?(a), are difficult to
calculate.

Each evaluation of €?(a) involves the solution of n such quartics, averaging
1300n flops per iteration for the eigenvalue calculation. The number of iterations
depends on the minimization algorithm chosen, but it is clear that even with only
10 iterations, GEOM is 3 to 4 orders of magnitude slower than the previous two
algorithms, and therefore was not extensively tested in our experiments.

3.5 Algorithm BIAS: “Statistical” Distance

Another approach, proposed by Kanatani [6] and Porrill [9], improves the LIN
algorithm by explicitly calculating its inherent statistical bias and subtracting the
bias from the result of minimization. Because the calculation of the bias depends
on knowing both the true minimum and the noise level, the process is iterated
until the predicted bias results in a noise-level correction of zero. Kanatani calls
this metric the “statistical distance”, and argues that its bias sensitivity is in fact
superior to the geometric distance in the case where the errors on the data points
are spherically distributed. Due to pressure of space this paper discusses only
Kanatani’s bias correction algorithm. A description of algorithm itself would be
too long to include here, due to its dependence on tensor arithmetic. Note however
that the published noise-level update formula [6, eq 21] should be replaced by

Am

T T RQu(MQ) + 2 (MQY)

Complexity of the algorithm is of the order of 50n 4+ 1000 flops per iteration, with
our test runs taking an average of 10 iterations.

3.6 Algorithm B2AC: Algebraic distance with quadratic
constraint

The B2AC algorithm is ellipse-specific, imposing the constraint that Aiy—4AmAyy =
1. This cleverly converts the inequality Aiy — 4AzzAyy > 0 into an equality by
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Figure 1: Visual depiction of the three noise levels used in the later experiments. The
High, Medium and Low levels correspond to standard deviations of 4, 1 and i pixels
respectively.

incorporating the normalisation factor. The corresponding generalized eigensys-
tem is not nonnegative definite, and is solved by the scheme of Gander [3]. B2AC
requires the 26n flops of LIN to form the DT D matrix. The matrix inversion and
eigensystem solution’s mean flop count was 5182.

4 Experiments

All experiments were conducted using the MATLAB system [7]. Eigensystems are
solved using the underlying EISPACK routines, while the derivative-free minimiza-
tion needed for the GEOM algorithm used the Nelder-Mead simplex algorithm.
Also, as the execution-speed characteristics of interpreted MATLAB programs are
qualitatively different to those of equivalent programs in a compiled language, we
give no timing statistics other than the flop counts in the previous section.

Noise model

The noise model applied in all experiments is isotropic zero mean normally dis-
tributed. Other models may also be considered, particularly a nonisotropic model
where the variance is perpendicular to the curve. However, as the experiments
illustrate, degree of occlusion of the curve rather than noise is the parameter to
which the algorithms are more sensitive.

Additionally, the noise model does not include any outlier component. This 1s
because none of the described algorithms are statistically robust. The algorithms
may be made robust in the usual ways [14], in which case an outlier component
would be added. Qualitatively, the most important change that this might make
to the results presented here would be that timing considerations could prove less
unfavourable to the iterative algorithms than in the outlier-free case.

Experiments other than the first are performed with three ‘typical’ noise levels,
depicted visually in Figure 1. The high, medium and low noise levels correspond
roughly to standard deviations of 2, 1 and % pixels on an ellipse with a major
diameter of 20 pixels.
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Experiment 1: Center error vs. Noise level
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Figure 2: Results of experiment 1. Only B2AC degrades smoothly wrt noise on unoc-
cluded data.

Conic representation

In the following for convenience in defining the experiments, central conic parame-
ters are expressed as b-vectors [¢g, ¢y, Re, Ry, 8], where (¢, ¢y) is the conic center,
R, and R, are the X and Y radii respectively, and @ is the counterclockwise angle
in degrees between the ellipse and the positive X axis.

All of the experiments use center position as their primary error measure. We
have performed the same experiments using radius error as the measure and found
no qualitative difference in the results.

4.1 Experiment 1: Noise

In this experiment, we are interested in characterizing the behaviour of the algo-
rithms with complete data and with respect to noise. Experimental procedure was
as follows:

1. The ellipse [0,0,1, %,40] was sampled at 100 points uniformly distributed

around the circumference.
2. Noise sigma was logarithmically varied between 273 and 23 pixels.

3. The sampled ellipse was corrupted with noise as described above for 100 runs
and the distance between the true ellipse center and the center of the conic
returned by the fitting algorithm was recorded. Returned hyperbolae were
included.

Figure 2 shows the 90'" percentile error in the centers as a function of noise level.
At low noise levels (o < 0.5), all algorithms can be seen to perform similarly, while
at high levels only the B2AC algorithm degrades gracefully.
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Experiment 2: Arc center error vs. Orientation
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Figure 3: Results of experiment 2. Highest errors in center position occur at curvature
maxima for LIN, between maxima and minima for AMS and BIAS.

4.2 Experiment 2: Orientation

In this experiment, we investigate how the errors in determining the center of a
120° elliptical arc vary as the portion of the ellipse from which the arc is sampled
rotates about the ellipse. This is so that in Experiment 3 we may ensure that the
subtended angle measurements are taken at the most pessimistic location about
the ellipse. Experimental procedure was as follows:

1. The counterclockwise orientation of the center of the arc was varied from 0
to 360° in steps of 45°.

2. The ellipse [0,0, 1, %,40] was sampled at 100 points uniformly distributed

along the 120° arc.

3. The sampled arc was corrupted with the three ‘standard’ noise levels as
described above.

4. The distance between the true ellipse center and the center returned by the
fitting algorithm was recorded.

Figure 3 shows the results in two ways. The top three figures illustrate visually
the located circle positions for algorithms AMS, LIN, BOOK and B2AC, while the
bottom graph shows the error in median center position as a function of the arc
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Experiment 3: NoiseLevel=1 Experiment 3: NoiseLevel=2 Experiment 3: NoiseLevel=3
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Figure 4: Results of experiment 3. Results are for low, medium and high noise from
left to right. The upper curves show the average sum of the errors in the principal
points, while the lower ones show the proportion of non-ellipses produced by the conic

algorithms.

orientation. BIAS and AMS show their greatest errors at the 45° points, while
maximum errors for LIN occur when the arc is sampled from the high curvature
sections at 0° and 180°.

4.3 Experiment 3: Occlusion

The third experiment is designed to locate the breakdown point of each of the
algorithms when the ellipse is progressively occluded. We measure the errors in
center position and radius estimates for several arcs of decreasing subtended angle.
Experimental procedure was as follows:

1. The angle subtended by the elliptical arc was varied from 360° down to 0 in
steps of 10°.

2. The ellipse [0,0, 1, %, 40°] was sampled at 100 points uniformly distributed
along the arc.
3. The sampled arc was corrupted with the three ‘standard’ noise levels as

described above.

4. Over 500 runs, the noisy arcs were submitted to each fitting algorithm. The
distances of the fitted principal points to their correspondents on the true el-
lipse were calculated. The mean sum distance where the algorithms returned
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Experiment 4: Circle breakdown vs. subtended angle
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Figure 5: Results of experiment 4. The specialized circle fitters LINC and AMSC have
better breakdown characteristics than the corresponding general conic algorithms.

ellipses was calculated, as was the percentage of runs in which non-ellipse
conics were returned.

Figure 4 shows the plots of principal point error and percentage of returned non-
ellipses as a function of decreasing subtended angle.

4.4 Experiment 4: Circles

In the final experiment, we consider the breakdown performance when the general
conic fitting algorithms are made specific to a particular task; in this case, circle
fitting. Procedure is similar to Experiment 3, but we add two new algorithms,
LINC and AMSC, which are specializations of LIN and AMS respectively. Figure 5
shows the breakdown curves for the low-noise case. As expected, the specialized
fitters LINC and AMSC break down considerably later than the general conic
algorithms.

5 Discussion

This paper has discussed the problem of fitting conic sections to ellipse data. The
experiments illustrate that the key parameter affecting the algorithms’ accuracy
is the amount of occlusion present and the qualitative noise level. With complete
data, all algorithms exhibit a similar degradation in the presence of increasing
noise.

As the data become progressively incomplete, a breakdown point is reached
beyond which the algorithms fail catastrophically. This breakdown point is supe-
rior with the B2AC and BIAS algorithms, and, in the special case of a circle, with
the circle-specific algorithms. Under high noise, BIAS has superior accuracy but
produces non-ellipses up to 60% of the time on highly occluded ellipses.

Algorithm complexities are, in increasing order: BOOK, LIN, B2AC, AMS,
BIAS, GEOM.
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Current and future work involves implementation and testing of the ellipse-
specific algorithms of [11, 12], along with Porrill’s alternative BIAS algorithm,
and examining some alternative error metrics such as the conic invariants.
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