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Abstract. With this work we provide further evidence that lattice-
based cryptography is a promising and efficient alternative to secure
embedded applications. So far it is known for solid security reductions
but implementations of specific instances have often been reported to be
too complex beyond any practicability. In this work, we present an effi-
cient and scalable micro-code engine for Ring-LWE encryption that com-
bines polynomial multiplication based on the Number Theoretic Trans-
form (NTT), polynomial addition, subtraction, and Gaussian sampling
in a single unit. This unit can encrypt and decrypt a block in 26.19
µs and 16.80 µs on a Virtex-6 LX75T FPGA, respectively – at moder-
ate resource requirements of about 1506 slices and a few block RAMs.
Additionally, we provide solutions for several practical issues with Ring-
LWE encryption, including the reduction of ciphertext expansion, error
rate and constant-time operation. We hope that this contribution helps
to pave the way for the deployment of ideal lattice-based encryption in
future real-world systems.
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1 Introduction and Motivation

Resistance against quantum computers and long term security has been an is-
sue that cryptographers are trying so solve for some time [12]. However, while
quite a few alternative schemes and problem classes are available, not many
of them received the attention both from cryptanalysts and implementers that
would be needed to establish the confidence and efficiency for their deployment
in real-world systems. In the field of patent-free lattice-based public-key encryp-
tion there are a few promising proposals such as a provably secure NTRU vari-
ant [47] or the cryptosystem based on the (Ring) LWE problem [29,33]. For the
latter scheme Göttert et al. presented a proof-of-concept implementation in [19]
demonstrating that LWE encryption is feasible in software. However, their cor-
responding hardware implementation is quite large and can only be placed fully
on a Virtex-7 2000T and does not even fit onto the largest Xilinx Virtex-6 FPGA
for secure parameters.1 Several other important aspects for Ring-LWE encryp-

1 The authors report that the utilization of LUTs required for LWE encryption ex-
ceeds the number of available LUTs on a Virtex-6 LX240T by 197% and 410% for
parameters n = 256 and n = 512, respectively. Note that the Virtex-6 LX240T is a
very expensive e1300 FPGA (as of May 2013) and the largest of the Virtex-6 family.



tion have also not been regarded yet, such as the reduction of the extensive
ciphertext expansion and constant-time operation to withstand timing attacks.

Contribution. In this work we aim to resolve the aforementioned deficiencies
and present an efficient hardware implementation of Ring-LWE encryption that
can be placed even on a low-cost Xilinx Spartan-6 FPGA. Our implementation
of Ring-LWE encryption achieves significant performance, namely 42.88 µs to
encrypt and 27.51 µs to decrypt a block, even with very moderate resource
requirements on the low-cost Spartan-6 family. Providing the evidence that Ring-
LWE encryption can be both fast and cheap in hardware, we hope to complement
the work by Göttert et al. [19] and demonstrate that lattice-based cryptography
is indeed a promising and practical alternative for asymmetric encryption in
future real-world systems. In summary, the contributions of this work are as
follows:

1. Efficient hardware implementation of Ring-LWE encryption. We present
a micro-code processor implementing Ring-LWE encryption as proposed
by [29, 33] in hardware, capable to perform the Number Theoretic Trans-
form (NTT), polynomial additions and subtractions as well as Gaussian
sampling. For a fair comparison of our implementation with previous work,
we use the same parameters as in [19] and improve their results by at least
an order of magnitude considering throughput/area on a similar reconfig-
urable platform. Moreover, our processor is designed as a versatile building
block for the implementation of future ideal lattice-based schemes and is not
solely limited to Ring-LWE encryption. All parts of our implementation have
constant runtime and inherently provide resistance against timing attacks.

2. Efficient Gaussian sampling. We present a constant-time Gaussian sampler
implementing the inverse transform method. The sampler is optimized for
sampling from narrow Gaussian distributions and is the first hardware im-
plementation of this method in the context of lattice-based cryptography.

3. Reducing ciphertext expansion and decryption failure rates. A major draw-
back of Ring-LWE encryption is the large expansion of the ciphertext2 and
the occurrence of (rare) decryption errors. We analyze different approaches
to reduce the impact of both problems and harden Ring-LWE encryption for
deployment in real-world systems.

In order to allow third-party evaluation of our results we will make source
code files, test-benches and documentation available on our website.3

Outline. In Section 2 we introduce the implemented ring-based encryption
scheme. The implementation of our processor, the Gaussian sampler and the
cryptosystem are discussed in Section 3. In Section 4 we give detailed results
including a comparison with previous and related works and conclude with Sec-
tion 5.

2 For example, the parameters used for implementation in [19] result in a ciphertext
expansion by a factor of 26.

3 See our web page at http://www.sha.rub.de/research/projects/lattice/



2 The Ring-LWEEncrypt Cryptosystem

In this section we briefly introduce the original definition of the implemented
Ring-LWE public key encryption system (Ring-LWEEncrypt) and propose mod-
ifications in order to decrease ciphertext expansion and error rate without af-
fecting the security properties of the scheme.

2.1 Background on LWE

Since the seminal result by Ajtai [2] who proved a worst-case to average-case
reduction between several lattice problems, the whole field of lattice-based cryp-
tography has received significant attention. The reasons for this seems to be
that the underlying lattice problems are very versatile and allow the construc-
tion of hierarchical identity based encryption (HIBE) [1] or homomorphic en-
cryption [17, 39] but have also led to the introduction of reasonably efficient
public-key encryption systems [19, 29, 33], signature schemes [13, 20, 31], and
even hash functions [32]. A significant long-term advantage of such schemes is
that quantum algorithms do not seem to yield significant improvements over
classical ones and that some schemes exhibit a security reduction that relates
the hardness of breaking the scheme to the presumably intractable problem of
solving a worst-case (ideal) lattice problem. This is a huge advantage to heuristic
and patent-protected schemes like NTRU [26], which are just related to lattice
problems but might suffer from yet not known weaknesses and had to repeat-
edly raise their parameters as immediate reaction to attacks [25]. A particular
example is the NTRU signature scheme NTRUSign which has been completely
broken [15, 40]. As a consequence, while NTRU with larger parameters can be
considered secure, it seems to be worthwhile to investigate possible alternatives.

However, the biggest practical problem of lattice-based cryptography are
huge key sizes and also quite inefficient matrix-vector and matrix-matrix arith-
metic. This led to the definition of cyclic [37] and more generalized ideal lat-
tices [30] which correspond to ideals in the ring Z[x]/〈f〉 for some irreducible
polynomial f of degree n. While certain properties can be established for various
rings, in most cases the ring R = Zq[x]/〈xn + 1〉 is used. Some papers proposing
parameters then also follow the methodology to choose n as a power of two and
q a prime such that q ≡ 1 mod 2n and thus support asymptotic quasi-linear
runtime by direct usage of FFT techniques. Recent work also suggests that q
does not have to be prime in order to allow security reductions [11].

Nowadays, the most popular average-case problem to base lattice-based cryp-
tography on is presumably the learning with errors (LWE) problem [46]. In order
to solve the decisional Ring-LWE problem in the ring R = Zq[x]/〈xn + 1〉, an
attacker has to decide whether the samples (a1, t1), . . . , (am, tm) ∈ R × R are
chosen uniformly random or whether each ti = ais + ei with s, e1, . . . , em has
small coefficients from a Gaussian distribution Dσ [33].4 This distribution Dσ is

4 Note that this is the definition of Ring-LWE in Hermite normal form where the
secret s is sampled from the noise distribution Dσ instead of uniformly random [34].



defined as the (one-dimensional) discrete Gaussian distribution on Z with stan-
dard deviation σ and mean 0. The probability of sampling x ∈ Z is ρσ(x)/ρσ(Z)

where ρσ(x) = exp (−x
2

2σ2 ) and ρσ (Z) =
∑∞
k=−∞ ρσ(k). In this simple case the

standard deviation σ completely describes the Gaussian distribution. Note that
some works, e.g., [19,29] use the parameter s =

√
2πσ to describe the Gaussian.

2.2 Ring-LWEEncrypt

The properties of the Ring-LWE problem can be used to realize a semantically
secure public key encryption scheme with a reduction to decisional Ring-LWE.
The scheme has been introduced in the full version [34] of Lyubashevsky et
al. [33] and parameters have been proposed by Lindner and Peikert [29] as well
as Göttert et al. [19]. The scheme (Gen, Enc, Dec) is defined as follows and will
from now on be referred to as Ring-LWEEncrypt:

– Gen(a): Choose r1, r2 ← Dσ and let p = r1 − a · r2 ∈ R. The public key is p
and the secret key is r2 while r1 is just noise and not needed anymore after
key generation. The value a ∈ R can be defined as global constant or chosen
uniformly random during key generation.

– Enc(a, p,m ∈ {0, 1}n): Choose the noise terms e1, e2, e3 ← Dσ. Let m̄ =
encode(m) ∈ R, and compute the ciphertext [c1 = a · e1 + e2, c2 = p · e1 +
e3 + m̄] ∈ R2

– Dec(c = [c1, c2], r2): Output decode(c1 · r2 + c2) ∈ {0, 1}n.

During encryption the encoded message m̄ is added to pe1+e3 which is uniformly
random and thus hides the message. Decryption is only possible with knowledge
of r2 since otherwise the large term ae1r2 cannot be eliminated when computing
c1r2+c2. According to [29] the polynomial a can be chosen during key generation
(as part of each public key) or regarded as a global constant and should then
be generated from a public verifiable random generator (e.g., using a binary
interpretation of π). The encoding of the message of length n is necessary as
the noise given by e1r1 + e2r2 + e3 is still present after calculating c1r2 + c2 and
would prohibit the retrieval of the binary message after decryption. Note that the
noise is relatively small as all noise terms are sampled from a narrow Gaussian
distribution. With the simple threshold encoding encode(m) = q−1

2 m the value
q−1
2 is assigned only to each binary one of the string m. The corresponding

decoding function needs to test whether a received coefficient z ∈ [0..q− 1] is in
the interval q−1

4 ≤ z < 3 q−14 which is interpreted as one and zero otherwise. As
a consequence, the maximum error added to each coefficient must not be larger
that | q4 | in order to decrypt correctly. The probability of an decryption error
is mainly dominated by the tailcut and the standard deviation of the Gaussian
σ = s√

2π
. Decreasing s decreases the error probability but also negatively affects

the security of the scheme.

Parameter Selection. For details regarding parameter selection we refer to the
work by Lindner and Peikert [29] who propose the parameter sets (n, q, s) with



(192, 4093, 8.87), (256, 4093, 8.35), and (320, 4093, 8.00) for low, medium, and
high security levels, respectively. In this context, Lindner and Peikert [29] state
that medium security should be roughly considered equivalent to the security
of the symmetric AES-128 block cipher as the decoding attack requires an es-
timated runtime of approximately 2120 seconds for the best runtime/advantage
ratio. However, they did not provide bit-security results due to the new nature
of the problem and several trade-offs in their attack.

In this context, the authors of [19] introduced hardware-friendly parameter
sets for medium (256, 7681, 11.31) and high security (512, 12289, 12.18). With n
being a power of two and q a prime such that q = 1 mod 2n, the Fast Fourier
Transform (FFT) in Zq (namely the Number Theoretic Transform (NTT)) can
be directly applied for polynomial multiplication with a quasi-linear runtime of
O(n log n). Increased security parameters (e.g., a larger n) have therefore much
less impact on the efficiency compared to other schemes [33].

Security Implications of Gaussian Sampling. For practical and efficiency rea-
sons it is common to bound the tail of the Gaussian. As an example, the au-
thors of the first proof-of-concept implementation of Ring-LWEEncrypt [19]
have chosen to bound their sampler to [−d2se, d2se]. Unfortunately, they do
not provide either a security analysis or justification for this specific value. In
this context, the probability of sampling ±24 which is out of this bound (recall
that d2se = d2 · 11.32e = 23) is 6.505 · 10−8 and thus not negligible. How-
ever, when increasing the tail-cut up to a certain level it can be ensured that
certain values will only occur with a negligible probability. For [−48, 48], the
probability of sampling an x = ±49 is 2.4092 · 10−27 < 2−80 which is unlikely
to happen in a real world scenario. The overall quality of a Gaussian random
number generator (GRNG) can be measured by computing the statistical dis-
tance ∆(X,Y ) = 1

2

∑
ω∈Ω |X(ω)− Y (ω)| over a finite domain Ω between the

probability of sampling a value x by the GRNG and the probability given by
ρσ(x)/ρσ(Z).

Since in general attacks on LWE work better for smaller secrets (see [3, 4]
for a survey on current attacks) the tail-cut will certainly influence the security
level of the scheme. However, we are not aware of any detailed analysis whether
short tails or certain statistical distances lead to better attacks. Moreover, a
recent trend in lattice-based cryptography is to move away from Gaussian to
very small uniform distributions (e.g., −1/0/1) [20, 38]. It is therefore not clear
whether a sampler has to have a statistical distance of 2−80 or 2−100 (which is
required for a worst-case to average-case reductions) in order to withstand prac-
tical attacks. Moreover the parameter choices for the Ring-LWEEncrypt scheme
and for most other practical lattice-based schemes already sacrifice the worst-
case to average-case reduction in order to obtain practical parameters (i.e., small
keys). As a consequence, we primarily implemented a ±d2se bound sampler for
straightforward comparison with the work by Göttert et al. [19] but also provide
details and implementation results for larger sampler instantiations that support
a much larger tail.



2.3 Improving Efficiency

In this section we propose efficient modifications to Ring-LWEEncrypt to de-
crease the undesirable ciphertext expansion and the error rate at the same level
of security.

Reducing the Ciphertext Expansion. Threshold encoding was proposed in [19,29]
to transfer n bits resulting in an inflated ciphertext of size 2n log2 q. Efficiency
is further reduced if only a part of the n bits is used, for example to transfer a
128-bit AES key. Moreover, the Ring-LWEEncrypt scheme suffers from random
decryption errors so that redundancy in the message m is required to correct
those errors. In the following we analyze a simple but effective way to reduce the
ciphertext expansion without significantly affecting the error rate. This approach
has been previously applied to homomorphic encryption schemes [9, Section
6.4], [10, Section 4.2] and the idea is basically to cut-off a certain number of
least significant bits of c2 since they mostly carry noise but only few information
supporting the threshold decoding. We experimentally verified the applicability
of this approach in practice with regard to concrete parameters by measuring
the error rates for reduced versions of c2 as shown in Table 1 (u = 1).

Table 1. Bit-error rate for the encryption and decryption of 160,000,000 bytes of
plaintext when cutting off a certain number x of least significant bits of every coefficient
of c2 for the parameter set (n = 256, q = 7681, s = 11.31) where u is the parameter of
the additive threshold encoding (see Algorithm 1) and ±d2se the tailcut bound. For a
cutoff of 12 or 13 bits almost no message can be recovered.

u Cut-off x bits 0 1 2 3 4 5 6 7 8 9 10 11

1 Errors (103) 46 46 45.5 45.6 46 46.5 48.6 56.1 94.4 381 5359 135771
Error rate (10−5) 3.59 3.59 3.56 3.57 3.59 3.63 3.80 4.38 7.38 29.81 418.7 10610

2 Errors 26 20 26 27 23 21 21 32 71 957 125796 44 · 106

Error rate (10−8) 2.03 1.56 2.03 2.11 1.80 1.64 1.64 2.5 5.55 74.7 9830 34 · 105

As it turns out the error rate does not significantly increase – even if we re-
move 7 least significant bits of every coefficient and thus have halved the size of
c2. It would also be possible to cut-off very few bits (e.g., 1 to 3) of c1 at the cost
of an higher error rate. A further extreme option to reduce ciphertext expansion
is to omit whole coefficients of c2 in case they are not used to transfer message
bits (e.g., to securely transport a symmetric key). Note that this approach does
not affect the concrete security level of the scheme as the modification does not
involve any knowledge of the secret key or message and thus does not leak any
further information. When compared with much more complicated and hard-
ware consuming methods, e.g., the compression function for the Lyubashevsky
signature scheme presented in [20], this straightforward approach is much more
practical.



Decreasing the Error Rate. As noted above decryption of Ring-LWEEncrypt is
prone to undesired message bit-flips with some small probability. Such a faulty
decryption is certainly highly undesirable and can also negatively affect secu-
rity properties. One solution can be the subsequent application of forward error
correcting codes but such methods obviously introduce additional complexity in
hardware or software. As another approach, the error probability can be lowered
by modifying the threshold encoding scheme, i.e., instead of encoding one bit
into each coefficient of c2, a plaintext bit is now encoded into u coefficients of c2.
This additive threshold encoding algorithm is shown in Figure 1 where encode

takes as input a plaintext bit-vector m of length bnuc and outputs the threshold
encoded vector m̄ of size m. The decoding algorithm is given the encoded mes-
sage vector m̃ affected by an unknown error vector. The impact on the error rate
by using additive threshold encoding (u = 2) jointly with the removal of least
significant bits is shown in Table 1. Note that this significantly lowers the error
rate without any expensive encoding or decoding operations and is much more
efficient than, e.g., a simple repetition code [35].

Algorithm Encode(m = {0, 1}b
n
u
c, u)

1: for i=0 to bn
u
c − 1 do

2: for j=0 to u-1 do
3: m̄[u · i+ j] = m[i] · q−1

2

4: end for
5: end for
6: return m̄

Algorithm Decode(m̃ = {− q−1
2
, q−1

2
}n, u)

1: for i=0 to bn
u
c do

2: s = 0
3: for j=0 to u-1 do
4: s = s+ |m̃[u · i+ j]|
5: end for
6: if s < u·q

4
then

7: m[i] = 0
8: else
9: m[i] = 1

10: end if
11: end for
12: return m

Fig. 1. Additive threshold encoding.

3 Implementation of Ring-LWEEncrypt

In this section we describe the design and implementation of our processor with
special focus on the efficient and flexible implementation of Gaussian sampling.

3.1 Gaussian Sampling

Beside its versatile applicability in lattice-based cryptography, sampling of Gaus-
sian distributed numbers is also crucial in electrical engineering and information
technology, e.g., for the simulation of complex communication systems (see [49]
for a survey from this perspective). However, it is not clear how to adapt continu-
ous Gaussian samplers, like the ones presented in [22,28,53], for the requirements



of lattice-based cryptography. In the context of discrete Gaussian sampling for
lattice-based cryptography the most straightforward method is rejection sam-
pling. In this case an uniform integer x ∈ {−τσ, ..., τσ}, where τ is the ”tail-cut”
factor, is chosen from a certain range depending on the security parameter and
then accepted with probability proportional to e−x

2/2σ2

[18]. This method has
been implemented in software in [19] but the success rate is only approximately
20% and requires costly floating point arithmetic (cf. to the laziness approach
in [14]). Another method is a table-based approach where a memory array is
filled with Gaussian distributed values and selected by a randomly generated
address. Unfortunately, a large resolution – resulting in a very large table – is
required for accurate sampling. It is not explicitly addressed in [19] how larger
values such as x = d2se for s = 6.67 with a probability of Pr[x = 14] = 1.46·10−7

are accurately sampled from a table with a total resolution of only 1024 entries.
We further refer to [13, Table 2] for a comparison of different methods to sample
from a Gaussian distribution and a new approach.

Hardware Implementation Using the Inverse Transform Method. Since the afore-
mentioned methods seem to be unsuitable for an efficient hardware implemen-
tation we decided to use the inverse transform method. When applying this
method in general a table of cumulative probabilities pz = Pr(x 6 z : x ← Dσ)
for integers z ∈ [−τσ, ..., τσ] is computed with a precision of λ bits. For a uni-
formly random chosen value x from the interval [0, 1) the integer y ∈ Z is then
returned (still requiring costly floating point arithmetic) for which it holds that
pz−1 ≤ x < pz [13, 16,41].

In hardware we operate with integers instead of floats by feeding a uni-
formly random value into a parallel array of comparators. Each comparator
ci compares its input to the commutative distribution function scaled to the
range of the PRNG outputting r bits. As we have to cut the tail at a certain
point, we compute the accumulated probability over the positive half (as it is
slightly smaller than 0.5) until we reach the maximum value j (e.g., j = d2se)
so that w =

∑j
k=0 ρσ(x)/ρσ(Z). We then compute the values fed into the com-

parators as vk = 2r−1−1
w (vk−1 +

∑j
k=0 ρσ(x)/ρσ(Z)) for 0 < k ≤ j and with

v0 = 2r−1−1
2w ρσ(0)/ρσ(Z). Each comparator ci is preloaded with the rounded

value vi and outputs a one bit if the input was smaller or equal to vi. A sub-
sequent circuit then identifies the first comparator cl which returned a one bit
and outputs either l or −l.

The block diagram of the sampler is shown in Figure 2 for the concrete
parameter set (n = 256, q = 7681, s = 11.32) where the output of the sampler is
bound to [−d2se, d2se] = [−5.09σ, 5.09σ] and the amount of required randomness
is 25 bits per sample. These random bits are supplied by a PRNG for which
we used the output of an AES block cipher operating in counter mode. Each
128-bit output block of our AES-based PRNG allows sampling of 5 coefficients.
One random bit is used for sign determination while the other 24 bits form
a uniformly random value. Finally, the output of the sampler is buffered in
a FIFO. When leaving the FIFO, the values are lifted to the target domain



[0, q − 1]. Although it is possible to generate a sampler directly in VHDL by
computing the cumulative distribution function on-the-fly during synthesis, we
have implemented a Python script for this purpose. The reason is that the VHDL
floating point implementation only provides double accuracy while the Decimal5

data type supports arbitrary precision. The Python script also performs a direct
evaluation of the properties of the sampler (e.g., statistical distance).

AES
24

<1482086

<4374472

..........

<1677215

<1677209

1

0 2 22 23

..........

1

 (-1)
5 6 6

mod p
13

FIFO

24

IV CTR ..........

25

Fig. 2. Gaussian sampler using the inverse transform sampling method.

3.2 Ring-LWE Processor Architecture

The core of our processor is built around an NTT-based polynomial multiplier
which is described in [43]. The freely available implementation has been further
optimized and the architecture has been extended from a simple polynomial
multiplier into a full-blown and highly configurable micro-code engine. Note that
Aysu et al. [6] recently proposed some improvements to the architecture of [43] in
order to increase the efficiency and area usage of the polynomial multiplier. While
some improvements rely on their decision to fix the modulus q to 216 + 1 other
ideas are clearly applicable in future work and revisions of our implementations.
However, we do not fix q as the design goal of our hardware processor is the native
support for a large variety of ideal lattice-based schemes, including the most
common operations on polynomials like addition, subtraction, multiplication by
the NTT as well as sampling of Gaussian distributed polynomials. By supporting
an arbitrary number of internal registers (each can store one polynomial) realized
in block RAMs and by reusing the data path of the NTT multiplier for other
arithmetic operations we achieve high performance at low resource consumption.

General Description and Instruction Set. The datapath of our engine depicted
in Figure 3 depends on the size of the reduction prime q and is thus log2 q as
polynomial coefficients are processed serially in a pipeline. Four registers are fixed
where register R0 and R1 are part of the NTT block, while the Gaussian sampler
is connected to register R2. Register R3 is exported to upper layers and operates
as I/O port. More registers R4 to Rx can be flexibly enabled during synthesis
where each additional register can hold a polynomial with n elements of size
log2 q. The Switch matrix is a dynamic multiplexer that connects registers to

5 http://docs.python.org/2/library/decimal.html



the ALU and the external interface and is designed to process statements in two-
operand form like R1← R1+R2. All additional registers Rx for x > 4 are placed
inside of the Register array component. The Decoder unit is responsible for
interpreting instructions that configure the switch matrix, determines whether
the ALU has to be used (SUB, ADD, MOV) or if NTT specific commands need
to invoke the NTT multiplier. To improve resource utilization of the overall
system, the butterfly unit of the NTT core is shared between the NTT multiplier
and the ALU.

Butterfly

NTT multiplier Register file

instruction

ALU
Processing 

element

R0 R1 R4 R5 R6

(R2)

I/O (R3)

ROM

Decoder
config

mod p

Sampler

Generic 
processor

Threshold
encoder

RAM

m_in

m_out

FSM

addr

din

we

dout

ctl

LWEenc

R0_0

R0_1

R1_0

R1_1

FIFO

AES

Comparator
array

start

Instruction
memory

config

fifo_full

Content:
p

Content:
a

Content:
r2

config

config

Fig. 3. Architecture of our implementation of the Ring-LWEEncrypt engine with a
particular instance of our generic lattice processor with three additional registers R4-6.

The most important instructions supported by the processor are the iterative
forward (NTT NTT) as well as the backward transform (NTT INTT) which take
≈ n

2 log2 n cycles. Other instructions are for example used for the bit-reversal
step (NTT REV), point-wise multiplication (NTT PW MUL), addition (ADD),
or subtraction (SUB) – each consuming ≈ n cycles. Note that the sampler and
the I/O port are just treated as general purpose registers. Thus no specific I/O
or sampling instructions are necessary and for example the MOV command
can be used. Note also that the implementation of the NTT is performed in
place and commands for the backward transformation (e.g., NTT PW MUL, or
NTT INTT) modify only register R1. Therefore, after a backward transform a
value in R0 is still available.

Implementation of Ring-LWEEncrypt. For our implementation we used the
medium and high security parameter sets as proposed in [19] which are specifi-
cally optimized for hardware. We further exploit the general characteristic of the



NTT which allows it to ”decompose” a multiplication into two forward trans-
forms and one backward transform. If one coefficient is fixed or needed twice it
is wise to directly store it in NTT representation to save subsequent transforma-
tions. In Figure 4 the modified algorithm is given which is more efficient since
the public constant a as well as the public and private keys p and r2 are stored
in NTT representation.

As a consequence, an encryption operation consists of a certain overhead, one
forward NTT transformation (n + 1

2n log2 n cycles), two backward transforms
(2 ·(2n+ 1

2n log2 n) cycles), two coefficient-wise multiplications (2n cycles), three
calls to the Gaussian sampling routine (3n cycles) and some additions as well
as data movement operations (3n cycles) which return the error vectors. For
decryption, we just need two NTT transformations, one coefficient-wise multi-
plications and one addition.

Domain Parameters
Temporary value: r1 = sample(), Global constant: ã = NTT(a)
Secret key: r̃2 = NTT(sample()), Public key: p̃ = NTT(r1 − INTT(ã◦r̃2))

Algorithm Enc(ã, p̃,m ∈ {0, 1}n)

1: e1, e2, e3 = sample()
2: ẽ1 = NTT(e1)
3: h̃1 = ã◦ẽ1, h̃2 = p̃◦ẽ1
4: h1 = INTT(h̃1), h2 = INTT(h̃2)
5: c1 = h1 + e2
6: c2 = h2 + e3 + encode(m)

Algorithm Dec(c1, c2, r̃2)

1: h̃1 = NTT(c1)
2: h̃2 = c̃1◦r̃2
3: m = decode(INTT(h̃2) + c2)

Fig. 4. NTT-aware algorithms for Ring-LWEEncrypt.

The top-level module (LWEenc) in Figure 3 instantiates the ideal lattice pro-
cessor and uses a block RAM as external interface to export or import ciphertexts
c1, c2, keys r2, p or messages m with straightforward clock domain separation (see
again Figure 3). The processor is controlled by a finite state machine (FSM) is-
suing commands to the lattice processor to perform encryption, decryption, key
import or key generation. It is configured with three general purpose registers
R4-R6 in order to permanently store the public key p, the global constant a and
the private key r2. More registers for several key-pairs are also supported but
optional. The implementation supports pre-initialization of registers so that all
constant values and keys can be directly included in the (encrypted) bitstream.
Note that, for encryption, the core is run similar to a stream cipher as c1 and
c2 can be computed independently from the message which is then only added
in the last step (e.g., comparable to the XOR operation used within stream
ciphers).



4 Results and Performance

For performance analysis we primarily focus on Virtex-6 platforms (speed grade
-2) but would also like to emphasize that our solution can be efficiently imple-
mented even on a small and low-cost Spartan-6 FPGA. All results were obtained
after post-place and route (Post-PAR) with Xilinx ISE 14.2.

4.1 Gaussian Sampling

In Table 2 we summarize resource requirements of six setups of the imple-
mented comparator-based Gaussian sampler for different tail cuts and statis-
tical distances. Our random number generator is a round based AES in counter
mode that computes a 128-bit AES block in 13 cycles and comprises 349 slices,
1181/350 LUT/FF, two 18K block RAMs and runs with a maximum frequency
of about 265 MHz. Combined with this PRNG6, Gaussian sampling based on
the inverse transform method is efficient for small values of s (as typically used
for Ring-LWEEncrypt) but would not be suitable for larger Gaussian parame-
ters like, e.g., s =

√
2π2688 = 6737.8 for the treeless signature scheme presented

in [31]. While our sampler needs a huge number of random inputs, the AES
engine is still able to generate these numbers (for each encryption we need 3n
samples). Table 2 also shows that it is possible to realize an efficient sampler even
for a small statistical distance < 2−80 since its resource consumption of roughly
250 slices is quite moderate (setup III/IV). With additional register levels and
pipelining for versions I/II we achieved the overall clock frequency for the whole
core reported in Table 3 in this section. As the PRNG does not provide enough
randomness to sample a value in every clock cycle it is not required to evaluate
the comparator array in every single cycle so that in particular setups III-VI can
use several clock cycles until output is provided. This lowers the critical path
and thus allows higher clock frequencies without costs for pipelining registers.
Setups V/VI are even more accurate and support (theoretical) requirements of a
statistical distance smaller than 2−100 [16]. However, then a faster PRNG would
be required as for n = 256 we would need 105 ·3n = 80640 bits of random input.

4.2 Performance of Ring-LWEEncrypt

Table 3 lists the resource consumption and performance of our implementation
of Ring-LWEEncrypt. As stated in Section 3.2 our implementation combines
key generation, encryption and decryption in a holistic design and would not
significantly benefit from removing any one of these functional units. The only
exception might be a decryption-only core in which no Gaussian sampling is
needed.

Table 4 compares the results achieved in this work with the implementation
by Göttert et al. [19] as well as other relevant asymmetric schemes and also

6 Generation of true random numbers is not in the scope of this work; we refer to the
survey by Varchola [50] how to achieve this.



Table 2. Performance, resource consumption, and quality of the core part (shaded
grey in Figure 2) of the Gaussian sampler on a Virtex-6 LX75T (Post-PAR). The entry
rnd denotes the number of used random bits to sample one value.

Setup s Max s rnd Slices LUT/FF MHz Stat. Distance

I 11.32 23 25 42 136/5 115 < 2−22

II 12.18 25 25 46 149/5 118 < 2−22

III 11.32 48 85 231 863/6 61 < 2−80

IV 12.18 51 85 255 911/6 61 < 2−80

V 11.32 53 105 314 1157/6 58 < 2−100

VI 12.18 57 105 342 1248/6 50 < 2−100

Table 3. Resource consumption and performance of the combined key generation, en-
cryption and decryption engine for the two different security levels on a Virtex-6 LX75T
(Post-PAR). The public key requires n log2 q bits (when stored in NTT representation),
the private key n log2 q bits and the ciphertext 2n log2 q bits.

Aspect Medium Security High Security
(n=256,q=7681,s=11.32) (n=512,q=12289,s=12.18)

R
es

o
u
rc

es Slices 1506 1887
LUT/FF 4549/3624 5595/4760
18K BRAM 12 14
DSP48E1 1 1

P
er

fo
rm

a
n
ce MHz 262 251

Key generation (cycles/time) 7235/27.61 µs 14532/57.90 µs
Encryption (cycles/time) 6861/26.19 µs 13769/54.86 µs
Decryption (cycles/time) 4404/16.80 µs 8883/35.39 µs

adds performance figures for a Spartan-6 instantiation. Note that a detailed
comparison with [19] is unfair due to inaccuracies of synthesis results (the Virtex-
6 LX240T FPGA used in [19] was overmapped so that the subsequent place-
and-route (PAR) step providing final results could not be performed). Figures
for clock frequency, overall slice consumption, and cycles counts for individual
operations or the whole encryption block are thus not given in [19]. We therefore
can only refer to numbers providing the resource consumption of registers and
LUT usage. For a rough comparison we apply the throughput to area (T/A)
metric and define area equivalent to the usage of LUTs due to the restriction
mentioned above. It turns out that our implementation for n = 256 is 32 times
smaller regarding key generation, 65 times smaller for encryption and 27 times
smaller for decryption, at a loss of a factor of about 2 and 3.3 in performance.

When employing the Bit/s
LUT metric for medium security encryption we achieve

9.77·106Bits
4549 LUTs = 2147 while the work presented in [19] gives 31.8·106Bits

298016 LUTs = 106.
This results in an improvement of a factor of roughly 20.7

7 For this comparison we assumed that for each encryption 256 bits are transmitted.



In comparison with a recent implementations of the code-based Niederre-
iter scheme [24] we are faster for decryption and we also use fewer resources
on the same platform. Another natural target for comparison is the patent-
protected NTRU scheme which has been implemented on a large number of
architectures [5, 7, 23]. The implementation in [27] is clearly faster than ours.
However, the implemented NTRU(251,3,12) variant in [27] seems to be less se-
cure than our scheme [25]. Unfortunately, we are not aware of any newer NTRU
FPGA implementations in order to determine the impact of increased security
parameters on runtime and area consumption. In software, NTRU even seems
to be rather slow for higher security levels what can be obtained from the 256-
bit secure NTRU software implementation (ntruees787ep1) benchmarked using
the eBACS framework [8] with secret/public key sizes of 1854/1574 bytes and
a ciphertext of 1574 bytes. For the ideal lattice-based NTRU version presented
in [47], no implementation and concrete parameters have been published yet. In
comparison with ECC over prime curves (i.e., a single point multiplication [21])
and RSA (random-exponent 1024-bit exponentiation [48]) our implementation is
by an order of magnitude faster, scales better for higher security levels, and also
consumes less resources. However, we are not able to beat the recent binary curve
implementation of Rebeiro et al. [45] in terms of throughput and performance.

4.3 Constant Time Operation

Side-channel attacks are a problem for all physical implementations [36]. A sim-
ple target for a side-channel attack is the use of timing information of the se-
curity algorithm by measuring execution time or cycles. Our implementation of
Ring-LWEEncrypt is fully pipelined and has no data-dependent operations. The
processor core does not support any branches and Gaussian sampling based on
the inverse transform operates in constant time. Summarizing, all cryptographic
operations of our core are timing-invariant.

5 Conclusions and Future Work

In this work we presented a novel implementation of the ideal lattice-based Ring-
LWE encryption scheme that fits even on a low-cost Spartan-6 FPGA. According
to our findings, we improved the results obtained in the previous work of [19] by
at least an order of magnitude using the same FPGA platform and much less
resources.

Future work can combine our hardware engine with error correction facili-
ties and CCA2 conversion. Additionally, countermeasures against further side-
channel and fault-injection attacks need to be considered. As we intend to make
our implementation publicly available, our work also offers the chance for third-
party side-channel evaluation and cryptanalysis (e.g., exploiting the concrete
implementation of the Gaussian sampler). Since our processor could also be uti-
lized by other lattice-based cryptosystems, the provably secure NTRU variant
presented in [47] can be another target for implementation. Moreover, a recent



Table 4. Performance comparison of our proposal with other public key encryption
schemes (≈ 80..128 bit) comparable to the medium security (n = 256, q = 7681, s =
11.31) parameter set which is capable of transferring 256-bit messages. Our implemen-
tation is versatile enough to perform encryption, decryption and key generation in a
single core. Figures denoted with an asterisk (*) are less accurate results obtained from
synthesis due to extensive overmapping of resources.

Scheme Device Resources Speed

Our Work [Gen/Enc/Dec] S6LX16 4121 LUT/3513 FF/ 45.22 µs
(n=256) @160 MHz 14 BRAM(8K)/1 DSP48 42.88 µs

27.51 µs

Our Work [Gen/Enc/Dec] V6LX75T 4549 LUT/3624 FF/ 27.61 µs
(n=256) @262 MHz 12 BRAM(18K)/1 DSP48 26.19 µs

16.80 µs

Ring-LWEEncrypt V6LX240T 146718 LUT/82463 FF -
[Gen/Enc/Dec] (n=256) [19] V6LX240T 298016 LUT/143396 FF 8.05 µs*

V6LX240T 124158 LUT/65174 FF 8.10 µs

Niederreiter [Enc/Dec] [24] V6LX240T 888 LUT/875 FF/17 BRAM 0.66 µs
V6LX240T 9409 LUT/12861 FF/ 57.78 µs

12 BRAM

NTRU [Enc/Dec] [27] XCV1600E 27292 LUT/5160 FF 1.54 µs
1.41 µs

1024-bit mod. Exp. [48] XC4VFX12 3937 SLICE/17 DSP48 1.71 ms

ECC-P224 [21] XC4VFX12 1825 LUT/1892 FF/ 365.1 µs
26 DSP48/ 11 BRAM

ECC-B233 [45] XC5VLX85T 18097 LUT/5644 SLICE 12.3 µs

proposal of a lattice-based signature scheme by Ducas et al. [13] uses exactly
the same parameters (n = 512, q = 12289) as Ring-LWEEncrypt and is thus a
natural target for implementation based on our micro-code engine.
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A Appendix

A.1 Using the NTT for Polynomial Multiplication

A method achieving complexity of O(n log n) for polynomial multiplication is the
Number Theoretic Transform (NTT) [42]. For a given primitive n-th root of unity



ω the generic forward NTTω(a) of a sequence {a0, .., an−1} to {A0, . . . , An−1}
with elements in Zq and length n is defined as Ai =

∑n−1
j=0 ajω

ij mod q, i =

0, 1, ..., n− 1 with the inverse NTT−1ω (A) just using ω−1 instead of ω.
The NTT can also be used directly for multiplication of polynomials in

Zq[x]/〈xn+1〉 when ω is a primitive n-th root of unity in Zq and ψ2 = ω which is
guaranteed by the requirement that p = 1 mod 2n. When a = (a0, ..., an−1) and
b = (b0, ..., bn−1) be vectors of length n with elements in Zq let d = (d0, ..., dn−1)
be the negative wrapped convolution of a and b (thus d = a ∗ b mod xn + 1).
Let ā, b̄ and d̄ be defined as (a0, ψa1, ..., ψ

n−1an−1), (b0, ψb1, ..., ψ
n−1bn−1), and

(d0, ψd1, ..., ψ
n−1dn−1). Then d̄ = NTT−1w (NTTw(ā)◦NTTw(b̄)) [52].

The implementation given in [43] uses the standard Cooley and Tukey radix-
2 decimation in time approach to compute the NTT. The core operation is the
multiplication of the factor ωN mod n with d and the adding or subtraction of
the result from c (the famous ”butterfly”). By Bit-Reverse(g) the input vector
g is reordered where the new position of an element at position k is determined
by the value obtained by reversing the binary representation of k.

A.2 Detailed Processor Instructions and Implementation

In Table 5 we provide a list of supported micro-code instructions for our ideal lat-
tice processor and show in Table 6 how we used these instructions to implement
the Ring-LWEEncrypt encryption scheme defined in Figure 4.



Table 5. The basic instruction set of the ideal lattice processor. Note that between
every instruction a certain number of wait cycles ε (approx. 40 depending on pipeline
size) is necessary in order to clear the pipeline and reconfigure the switch matrix.

Command Op 1 Op 2 Cycles Explanation

NTT REV {A/B} R{2..x} - n+ ε Loads a polynomial into register R{0/1} of
the NTT engine, performs the bit reversal
step and multiplies with NTT constants.

NTT NTT {A/B} - - n
2

logn+ ε Executes the NTT on register R{0/1}.
NTT PW MUL - - n+ ε Point/Coefficient-wise multiplication of

registers R0 and R1. The result is stored
in register R1.

NTT INTT - - n
2

logn+ ε Executes the inverse NTT on register R1.
NTT INV PSI - - n+ ε Multiplies coefficients in R1 and multiplies

with NTT constants.
NTT INV N - - n+ ε Multiplies coefficients in R1 with n−1.
ADD R{0..x} R{0..x} n+ ε Adds two polynomials (R(op1) ←

R(op1) +R(op2))
SUB R{0..x} R{0..x} n+ ε Subtracts two polynomials (R(op1) ←

R(op1)−R(op2))
MOV R{0..x} R{0..x} n+ ε Moves a polynomial from one to another

register (R(op1)← R(op2)).
WAIT SAMPLER - - ε Waits until the sampler has buffered more

than n coefficients.
NTT GP MODE - - ε Export special purpose NTT registers as

general purpose registers until the next
NTT operation.

EN CPIO - - ε Enables a mode in which polynomials writ-
ten to the target register are also written
to the I/O port.

DIS CPIO - - ε Disables the copy to I/O mode.



Table 6. Encryption and decryption program for the Ring-LWEEncrypt scheme
executed by our implementation. The public key p is stored in R4, the global constant
a in R5, and the private key r2 in R6. The sampler port is R2 and the I/O port is R3.

Encryption Comment Decryption Comment

NTT GP MODE NTT BITREV B(3) Load c1 into R1
MOV(1, 5) Load NTT(a) into R1 NTT GP MODE
WAIT SAMPLER MOV(0, 6) Load NTT(r2) into R0
NTT BITREV A(2) Sample/Load e1 into NTT NTT NTT B Compute NTT(c1)
NTT NTT A R0 now contains NTT(e1) NTT PW MUL
NTT POINTWISE MUL NTT INTT
NTT INTT NTT INV PSI
NTT INV PSI NTT INV N R1 now contains r2 · c1
NTT INV N R1 now contains a · e1 NTT GP MODE
WAIT SAMPLER ADD(1, 3) Add c2 to r2 · c1
NTT GP MODE MOV(3, 1) Output c1 · r2 + c2
EN CPIO Copy result to I/O
ADD(1, 2) Sample/add e2 to a · e1
DIS CPIO
MOV(1, 4) Load NTT(p) into R1
NTT PW MUL R0 still contains NTT(e1)
NTT INTT
NTT INV PSI
NTT INV N R1 now contains p · e1
WAIT SAMPLER
NTT GP MODE
EN CPIO Copy result to I/O
ADD(1, 2) Sample/add e3 to p · e1
DIS CPIO


