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Abstract Cloud Computing is a novel paradigm for providing data
center resources as on demand services in a pay-as-you-go manner. It
promises significant cost savings by making it possible to consolidate
workloads and share infrastructure resources among multiple applica-
tions resulting in higher cost- and energy-efficiency. However, these ben-
efits come at the cost of increased system complexity and dynamicity
posing new challenges in providing service dependability and resilience
for applications running in a Cloud environment. At the same time, the
virtualization of physical resources, inherent in Cloud Computing, pro-
vides new opportunities for novel dependability and quality-of-service
management techniques that can potentially improve system resilience.
In this chapter, we first discuss in detail the challenges and opportu-
nities introduced by the Cloud Computing paradigm. We then provide
a review of the state-of-the-art on dependability and resilience manage-
ment in Cloud environments, and conclude with an overview of emerging
research directions.

1 Introduction

In today’s data centers, IT services and applications are typically hosted on
dedicated hardware in order to provide dependability guarantees. Server capac-
ity is typically over-dimensioned to ensure adequate Quality-of-Service (QoS)
under variable workloads and load fluctuations. The use of dedicated hardware
with over-dimensioned capacity not only leads to poor resource efficiency, but
also makes it hard to react to changes and conflicting demands in operating
conditions, business processes or use practices. Moreover, the adoption of new



applications and the increasing demand for IT services leads to an exponen-
tial growth in the number of servers and the required network infrastructure.
Servers in data centers nowadays are estimated to have average utilization rang-
ing from 5% to 20% [90, 94] which corresponds to their lowest energy-efficiency
region [16]. The growing number of underutilized servers, often referred to as
“server sprawl”, translates into increasing data center operating costs including
system management costs and power consumption costs of the server, network
and cooling infrastructure. According to a study at Lawrence Berkley National
Labs (2007), power consumption in data centers doubled from 2000 to 2005, and
in 2006, the USA alone spent an estimated 61 TW-h in data centers. By 2025,
power consumption in data centers is projected to grow by 1600% and energy will
become the major factor in the Total-Cost-of-Ownership (TCO) for IT [6]. Al-
ready today, according to IDC, over 40% of data center customers report power
demand outstripping supply, while cooling capacities at their threshold have
become a limiting factor in deploying new systems [92]. In addition to driving
costs up, the rising energy consumption of the ICT sector will have a significant
impact on the global CO2 emissions. While today, ICT accounts for 2% to 4% of
the global CO2 emissions, it is projected to reach 10% in 5-10 years [53]. Thus,
reducing the costs of ICT and their environmental footprint while keeping a high
growth rate of IT services is one of today’s greatest challenges for society.

Driven by the pressure to improve energy efficiency and reduce data cen-
ter operating costs, industry is looking towards Cloud Computing which is a
novel paradigm for providing data center resources (computing, network and
storage) as on-demand services over a private or public network in a pay-as-you-
go manner. Cloud Computing is normally considered at three different levels:
i) Infrastructure-as-a-Service (IaaS) where raw compute, storage, and network
resources are provided, ii) Platform-as-a-Service (PaaS) where an application en-
vironment on top of the bare bones infrastructure is provided, iii) and Software-
as-a-Service (SaaS) where a working application is provided (e.g., NetSuite and
SalesForce.com). Cloud Computing makes it possible for enterprises to consol-
idate their IT resources internally or to completely outsource their IT infras-
tructure taking advantage of the economies of scale of a shared infrastructure.
In both cases, some substantial reductions in the TCO for IT can be achieved.
Virtualization plays a key role in this process since it makes it possible to signif-
icantly reduce the number of servers in data centers by having each server host
multiple independent virtual machines (VMs) managed by a Virtual Machine
Monitor (VMM) often referred to as a Hypervisor. By enabling the consolida-
tion of multiple applications on a smaller number of physical servers, virtual-
ization promises significant cost savings resulting from higher energy efficiency
and lower system management costs. Moreover, virtualization facilitates system
evolution by enabling adaptability and scalability of service infrastructures.

With investments of billions of dollars, the fortunes of dozens of companies,
and major research initiatives staked on its success, it is clear that Cloud Com-
puting is here to stay. Cloud-based infrastructures are rapidly becoming a desti-
nation of choice to host a variety of applications ranging from high-availability



enterprise services and online TV stations, to batch-oriented scientific computa-
tions. However, it is not yet clear whether Cloud services can be a dependable
alternative to dedicated infrastructure. In the context of this chapter, we con-
sider dependability to be the ability of a system to provide dependable services
in terms of availability, responsiveness and reliability. As part of dependability,
resilience is understood as the system’s ability to continue providing available,
responsive and reliable services under external perturbations such as security
attacks, accidents, unexpected load spikes or fault-loads. The remainder of this
chapter explores this question and is organized as follows. Section 2 describes
the challenges and opportunities in providing dependability and resilience in the
Cloud. In Section 3, we review the state-of-the-art on dependability, performance
and security management in Cloud infrastructures. An overview of the emerging
research directions in Cloud Computing is provided in Section 4.

2 Challenges and Opportunities

The increased complexity and dynamicity induced by Cloud Computing pose
new challenges and opportunities in providing service dependability and re-
silience. On one hand, availability and privacy are serious challenges for appli-
cations hosted on Cloud infrastructure. On the other hand, a Cloud provider’s
economies of scale allow levels of investment in redundancy and dependability
that are difficult to match for smaller operators. Furthermore, the ability to
monitor large numbers of applications and users can enable ‘wisdom of crowds’
approaches to provide enhanced security much in the same way that network
providers have been able to do with worms and DDoS attacks.

2.1 Challenges

In spite of the many benefits Cloud Computing promises, today, the lack of trust
in shared virtualized infrastructures is a major showstopper for its widespread
adoption. According to [7], 74% of technological and financial decision makers in
the UK would not put mission-critical applications in the Cloud. Service unavail-
ability, performance unpredictability, and security risks are frequently cited as
major reasons for the lack of trust [5,70]. Some recent stress tests conducted by
Sydney-based researchers revealed that the infrastructure-on-demand services
offered by Amazon, Google and Microsoft suffer from regular performance and
availability issues [114]. Response times of services varied by a factor of twenty
depending on the time of day the services were accessed. According to [70], con-
cerns of organizations about service availability is the number one obstacle to
the adoption of Cloud Computing. Service overload, hardware failures and soft-
ware errors as well as operator errors are among the most common causes of
service unavailability as experience with Google’s AppEngine, GMail and Ama-
zon’s AWS services shows [8, 114].

The lack of trust in shared virtualized infrastructures is a major impediment
which applies both to public and private Clouds. Indeed, virtualization comes at



the cost of increased system complexity and dynamicity. The increased dynamic-
ity is caused by the introduction of virtual resources and the lack of direct control
over the underlying physical hardware. The increased complexity is caused by
the complex interactions between the applications and workloads sharing the
physical infrastructure. The inability to predict such interactions and adapt the
system accordingly makes it hard to provide dependability guarantees in terms
of availability and responsiveness as well as resilience to external perturbations
such as security attacks. Thus, virtualization introduces new sources of failure
and threats degrading the dependability and trustworthiness of Cloud Comput-
ing infrastructures. Service providers are faced with the following challenges:

– How much resources (e.g., CPUs, main memory, storage capacity, network
bandwidth) should be allocated to a new application deployed in the Cloud
infrastructure and how should the application be configured to satisfy its re-
quirements for dependability (availability and reliability) and responsiveness
avoiding the pitfalls of underprovisioning or overprovisioning resources?

– How much and at what rate and granularity (e.g., CPU cycles, cluster nodes)
should resources be added or removed proactively to avoid Service Level
Agreement(SLA) violations or inefficient resource usage due to varying cus-
tomer workloads and load fluctuations?

Moreover, the consolidation of workloads translates into higher utilization of
physical resources which makes the system much more vulnerable to threats re-
sulting from unforeseen load fluctuations, hardware and software failures, and
network attacks. The Cloud provider is faced with the challenge of how to effi-
ciently share physical resources among hosted applications in the face of highly
variable and unpredictable resource demands as well as operational failures.

An environment with a few large Cloud infrastructure providers not only
increases the risk of common mode outages affecting a large number of applica-
tions, but also provides highly visible targets for attackers. Community-driven
sites such as [3] track outages in major Cloud providers and have documented a
number of outages and security vulnerabilities over the last two years affecting
hundreds of Internet sites.

Sharing of Cloud resources by entities that engage in a wide range of behav-
iors and employ best practices to varying degrees can expose Cloud applications
to increased risk levels. For example, on April 26 2008, Amazon’s Elastic Cloud
(EC2) had an outage [1] across several instances due to a single customer apply-
ing a very large set of unusual firewall rules and instantiating a large number of
instances at the same time, thereby triggering a performance degradation bug
in Amazon’s distributed firewall.

Multiple administrative domains between the application and infrastructure
operators reduces end-to-end system visibility and error propagation informa-
tion, thus making problem detection and diagnosis very difficult. Additionally,
for competitive reasons, Cloud infrastructure providers may not provide full dis-
closure regarding the cause of outages or other detailed infrastructure design
information, raising the question of the verifiability of claims regarding depend-
ability.



The hosting of data on outsourced and shared infrastructure that may be
in a different legal jurisdiction than the owner of the data has serious legal and
privacy implications. Corporate accountability legislation such as the Sarbanes-
Oxley Act (SOX) of 2002 and privacy clauses included in legislation such as the
Health Insurance Portability and Accountability Act (HIPAA) of 1996 and the
Telecommunications Act of 1996 create obstacles to the applicability of Cloud
solutions in the financial, healthcare, and telecom industries. For example, Busi-
nessWeek reported in Aug 2008 [57] that ITricity, a European provider of Cloud
computing capacity, could not offer services to such companies until it began of-
fering owner-hosted private Cloud services. The recently formed industrial con-
sortium called the Cloud Security Alliance [2] includes in its charter several issues
regarding the interplay of Cloud Computing and legal requirements.

2.2 Opportunities

Cloud computing enables economies of scale leading to large redundancy levels
and wide geographical footprints. For example, Amazon’s EC2 currently sup-
ports two regions in the US and Europe, each split into independent ‘availability
zones’, while AT&T’s Synaptic Cloud computing offering provides five ‘super
IDCs’ located across the world. These can be leveraged through techniques such
as virtual machine migration and cloning to provide better fault tolerance and
disaster recovery, especially for operators of smaller applications that may not
have been able to afford such capabilities.

New security and reliability services can be enabled or strengthened by virtue
of being located in the Cloud. For example, popular cloud-based email services
such as GMail amplify manual feedback from some users to provide automatic
spam filtering for all users. Oberheide et. al. describe in [85] a Cloud-based
anti-virus solution that can not only utilize multiple vendors to provide better
coverage, but also compares data blocks across users to improve efficiency and
provides an archival service for forensic analysis.

Managed Cloud services that include OS level support can result in improved
reliability and security due to consistent centralized administration and timely
application of patches and upgrades.

3 State-of-the-Art Review

In this section, we provide an overview of the state-of-the-art in dependability
and resilience for Cloud Computing. We start with a discussion of dependability
assessment techniques and then survey methods for managing dependability. The
approaches in the first section cover the issue of how Cloud system dependability
could be assessed, while the second section comprises methods that are used to
manage the system with the goal of improving dependability.



3.1 Approaches for Dependability Assessment

Availability, performance and security can be evaluated using measurements
on real deployments, measurements on test-beds, simulations, and analysis of
models. While a lot of work exists in these areas, approaches specifically targeting
Cloud systems are still rare.

Measurement studies on real Cloud systems are undertaken in order to un-
derstand the effect of the Cloud on the application. In [38], resilience of an
Infrastructure-of-a-service (IaaS) cloud is quantified as job rejection rate and
response delay in situations where the cloud is subjected to changes in demand
and available capacity. However, most existing studies focus on performance.
The typical approach in such studies is to generate a workload and measure
various performance indicators. The tools used and the indicators of interest
depend on the application that the authors focus on. [31, 48, 82, 86, 111] serve
as examples for evaluation of the performance of applications for scientific com-
puting. These studies employ tools that generate a typical High Performance
Computing (HPC) workload, and measure run-times. In [86], the authors also
evaluate the time required for allocating and releasing virtual machines. Since
flexible resource allocation is a major selling-point of Cloud systems, this aspect
should not be ignored when considering overall performance. Furthermore, [86]
studies the performance of disk I/O operations performed on virtualized disks.
The findings in [29,31,48] show that applications running on Cloud systems have
run-times that are longer and exhibit more variance than applications running
on native systems. The authors of [86], however, state that extensive caching in
a Cloud system may result in significantly faster disk I/O operations, compared
to a native system. On the other hand, [86] also shows that a quick performance
drop occurs once the cache size is exceeded.

Experimentation on test-beds is seldom performed for Cloud systems, since
the complexity and costs of setting up a Cloud environment of realistic size
become prohibitively large. Existing approaches thus tend to focus on special
aspects of Cloud systems, in particular, specific programming models and virtu-
alization technology. In [44], the performance of an application using MapReduce
is evaluated on a small cluster of physical machines, each of which runs several
virtual machines. The authors point out that performance may suffer from vir-
tual machines competing for the physical I/O resources. As virtualization is a
key component in Cloud Computing, its impact on dependability must be un-
derstood. Virtualization is rather amenable to experiments in test-beds. Existing
work [42,43,73,96] focusses on studying the performance impact of configuration
options and workloads through experiments with benchmarks and standard per-
formance measurement tools. Performance indicators are typically throughput
and benchmark-specific aggregated metrics.

Benchmarks for virtualized server consolidation, i.e., benchmarks measur-
ing aggregated server performance when physical resources are virtualized and
shared, include vConsolidate [14], VMMark [41] and recently SPECvirt sc2010 [98].
Benchmarks for virtualized servers are still a subject of discussion, as there is a
lack of consensus for a metric describing consolidated server performance [20,36].



The authors of [36] propose new metrics taking into account per-VM performance
along with total system throughput. The authors of [20] emphasize that partic-
ularly for benchmarking database performance, the consolidation of resource-
intensive workloads is of crucial importance. None of the virtual benchmarks
available today measure database-centric properties adequately [20].

Unlike virtualized server consolidation, Cloud Computing lacks well-esta-
blished benchmark suites [39], although benchmarks such as TeraSort, Cloud-
stone or MalStone exist, and traditional high-performance computing bench-
marks have been used (e.g., [31,48,86]). In [18], it is argued that the established
TPC-W benchmark [97] is not appropriate for Cloud Computing, because Cloud
scalability invalidates its metrics, TPC-W relies on database properties often
not supported in the Cloud, and because TPC-W does not provide metrics for
important Cloud properties such as scalability, pay-per-use pricing, and fault-
tolerance. The authors of [18] propose desirable properties of a Cloud benchmark;
similarly, [24] proposes a benchmarking framework specific to Cloud data serving
systems.

Several simulation approaches for Cloud systems have been proposed. These
methods differ in whether they focus on special applications or allow simulation
of Cloud systems in general. The simulation framework MRPerf [112] instru-
ments the discrete-event network simulator NS-2 [107] for studying performance
and dependability of MapReduce [28]. The framework models node, network,
and disk behavior in high detail and thus allows evaluating the impact of net-
work topology choices and node/network failures, but is limited to applications
that use MapReduce. In contrast, the CloudSim toolkit [22] is a discrete-event
simulation toolkit for general Cloud systems. The toolkit models, among other
aspects, virtual machines and VM scheduling, storage, network, and computing
resources.

Analytical approaches for the evaluation of dependability and performance
of Cloud systems usually focus on the impact of virtualization.

Reliability block diagrams to model system reliability at the host level have
been proposed in [89]. These models do not consider the behavior of the underly-
ing hardware and software components. More detailed models based on CTMCs
are presented in [103], but these models still only capture behavior at the VM
level. The two-level hierarchical approach in [56] uses fault-trees in the upper
level and CTMCs in the lower level in order to capture software failures at the
VMM, VM, and application level as well as hardware failures. Finally, combina-
torial modelling to analyse design choices with a single physical server hosting
multiple VMs was proposed in [89].

Virtualized resources shared between VM instances have a non-trivial impact
on performance. Due to this overhead, traditional design-time model-based ap-
proaches, as surveyed in e.g., [15,62] may yield imprecise results when used as-is.
A typical approach (e.g., [17, 75]) is to construct traditional queueing network
models and apply a slowdown factor to capture the effects of virtualization.
Another approach is applied in [64], where artificial neural networks are used



to predict performance of virtualized applications from a set of observable or
controllable parameters related to CPU, memory, disk and network usage.

Prediction of resource utilization is required for dimensioning and workload
placement decisions. The work in [115] focusses on predicting CPU utilization
of both a VM and the Dom-0 (which hosts the network and disk drivers). The
prediction model is automatically derived from a set of microbenchmarks con-
sisting of synthetic CPU, network and disk workloads, using a robust stepwise
linear regression between several metrics obtained in native and virtualized mi-
crobenchmark executions. Further parameterizations of the model are based on
measurements of the application executed natively. Simple models for core util-
isation and effective shared space allocation are developed in [46, 104]. The au-
thors also note that for some shared resources (such as the cache space), online
measurement and modeling is not possible today, due to a lack of appropriate
performance counters.

As has long been accepted for dependability, complex systems can never
be perfectly secure. Therefore, only quantitative measures allow comparisons
between systems with respect to their security. While quantification of security
has long been recognised as an important problem [66,67] and several approaches
have been made in recent years [33, 45, 49, 65, 71, 84, 95], the area is still under-
explored and subject to dispute [108]. Still, various security metrics have been
proposed [12,33,49,72,101], and experimental studies have been performed [45].

For security evaluation of Cloud systems, even less work exists. In fact, quan-
titative security evaluation of Cloud systems is still in its infancy. The analytical
approach by [91] exemplifies some of the difficulties in quantitative security as-
sessment. In this approach, risk is computed as a weighted sum of the impact of
a security incident and its probability. Both incident probabilities and impacts,
however, are hard to measure. While the authors of [91] argue that probabilities
can be obtained from published incidence reports and impacts can be estimated
based on expert opinions, such data may be invalid due to biased report and
subjective opinions. Furthermore, taking the weighted sum assumes that secu-
rity is a static property, whereas it seems likely that the probability of security
incidents and their impact changes over time, as both the system, the attacker,
and the value of the system to the user evolve.

3.2 Approaches for Managing Dependability and Performance

There are many research challenges with respect to managing dependability and
performance in Cloud systems (see Section 3). On the one hand, virtualization
provides opportunities to improve these properties, on the other hand, Cloud
Computing poses a complex resource allocation problem.

Virtualization for improving dependability and performance Techniques
that take advantage of virtualization to improve system dependability have been
the focus of recent research [25,32,61,79,102,103]. Two lines of research can be
distinguished: i) virtualization-based software rejuvenation and ii) using VM
replication as a basis for failure recovery.



Software rejuvenation is a proactive fault management technique aimed at
cleaning up the system’s internal state to prevent occurrence of severe failures
due to the phenomena of software aging or caused by transient failures [105]. A
detailed introduction to rejuvenation is given in Chapter ??. The approach has
been applied to Cloud Computing and virtualization. In [102], a technique that
can increase availability of application servers through the use of virtualization,
clustering and software rejuvenation is presented. Analytical models are used to
analyze multiple design choices when a single physical server and dual physical
servers are used to host multiple VMs. It is shown that by integrating virtualiza-
tion, clustering and software rejuvenation, it is possible to benefit from increased
availability, manageability and savings from server consolidation through virtu-
alization without decreasing uptime of critical services. A similar approach based
on automated self-healing techniques claimed to induce zero downtime for most
of the cases is proposed in [79]. Software aging and transient failures are de-
tected through continuous monitoring of system data and performability metrics
of the application server. A further virtualization-based rejuvenation technique
for application servers using stochastic models was proposed in [103]. The au-
thors present a stochastic model of a single physical server used to host multiple
virtual machines (VMs) configured with the proposed technique. The model is
intended as a general model capturing the application server characteristics, fail-
ure behavior, and performability measures. Finally, in [61], the authors present
a technique called warm-VM reboot for fast rejuvenation of VMMs that enables
efficiently rebooting only a VMM by suspending and resuming VMs without
accessing the memory images. The technique is based on two mechanisms, on-
memory suspend/resume of VMs and quick reload of VMMs. The technique is
claimed to reduce downtime and prevent the performance degradation due to
cache misses after the reboot. In [105], stochastic models that help to detect
software aging and determine optimal times to perform rejuvenation are pro-
posed. Models are constructed using workload and resource usage data collected
from the UNIX operating system over a period of time. The measurement-based
models are intended to help development of strategies for software rejuvenation
triggered by actual measurements.

Accounting for failures by dynamically creating replicas is a common strat-
egy to improve overall dependability. For instance, [87] uses regeneration of new
data objects to account for reduction in redundancy and the Google File Sys-
tem [37] similarly creates new file “chunks” when the number of available copies
is reduced below a threshold. Even commercial tools such as VMWare High
Availability (HA) [110] allow a virtual machine on a failed host to be reinstan-
tiated on a new machine. However, the placement of replicas becomes especially
challenging when they are components in a multitier application. Recent work on
performance optimization of multitier applications (e.g., [26,51,80,106]) address
the performance impact of resource allocation on such multitier applications, but
does not combine performance modeling with availability requirements and dy-
namic regeneration of failed components. The tradeoff between availability and
performance is always present in dependability research since increasing avail-



ability (by using more redundancy) typically increases response time. Examples
of work that explicitly address this issue include [27] and [93], both of which
consider the problem of when to invoke a (human) repair process to optimize
various metrics of cost and availability defined on the system. In both cases, the
“optimal policies” that specify when the repair was to be invoked (as a function
of system state) were computed off-line through solution of Markov Decision
process models of the system.

As far as failure recovery mechanisms are concerned, in [32], the authors in-
troduce an extensible grammar that classifies the states and transitions of VM
images and can be used to create rules for recovery and high availability ex-
ploiting virtualization for simplified fault tolerance. In [25], a fail-over technique
based on asynchronous VM replication is proposed that asynchronously prop-
agates changed state to a backup host at frequencies as high as forty times a
second, and uses speculative execution to concurrently run the active VM slightly
ahead of the replicated system state. In case of a failure, automatic fail-over with
only seconds of downtime is provided while preserving host state such as active
network connections. Finally, in [81], a proactive fault tolerance technique for
Message Passing Interface(MPI) applications is presented exploiting Xen’s live
migration mechanism to migrate an MPI task from a health-deteriorating node
to a healthy one without stopping the MPI task during most of the migration.
Experimental results demonstrate that live migration hides migration costs and
limits the overhead to only a few seconds. Some further general approaches for
leveraging virtualization to improve system dependability are surveyed in [69,89].
In [78], a high-level approach for autonomic management of the system avail-
ability including real-time evaluation, monitoring and management is sketched.
The authors suggest using analytical models parameterized using monitoring
data collected during operation. The approach, however, is targeted at static
system architectures and assumes that the underlying availability models are
built manually at system design time.

Self-adaptive capacity and power management in virtualized data cen-

ters including trade-offs. We first describe general approaches to a self-
adaptive capacity and power management. Afterwards, approaches specifically
targeted at virtualized environments are reviewed.

A number of self-adaptive approaches have been proposed that automatically
adapt resource allocations in response to changes in application workloads in a
way that utility is maximized. Existing work mostly focuses on performance as
QoS property and utility functions are based on assigning rewards for satisfied
SLAs and penalties for violated SLAs, e.g., [10,26,68,76]. In recent years, given
the rising cost of energy, capacity management strategies aiming at improving
the power usage effectiveness have received increasing attention, e.g., [23,50,109].

Existing approaches to self-adaptive capacity management are typically based
on: i) control theory feedback loops, ii) machine learning techniques or iii) general
utility-based optimization techniques. Approaches based on feedback loops and
control theory, e.g., [9,13], can normally guarantee system stability by capturing



the transient system behavior [13]. Machine learning techniques, without a need
for an a priori analytical model of the system, base their learning sessions on
live systems. Such techniques have been used to tackle resource allocation prob-
lems [100] as well as the coordination of multiple autonomic managers [47]. In
utility-based approaches, the system is typically modeled by means of a perfor-
mance model embedded within an optimization framework aiming at optimizing
multiple criteria such as different QoS metrics [50, 77,109].

Utility-based optimization frameworks differ in the way in which they trigger
adaptations. There are reactive and proactive approaches. The former react on
certain events observed in the system, the latter try to anticipate the future sys-
tem behavior and thus require forecasting mechanisms. For workload forecasting,
established time series analysis techniques [21] are used, e.g., Brown’s quadratic
exponential smoothing or general AutoRegressive - Moving Average (ARMA)
models have been implemented in [77] and [23,52], respectively. Regarding per-
formance modeling, existing work mainly uses predictive performance models
that capture the temporal system behavior (e.g., queueing networks) where the
platform is normally abstracted as a “black-box” (e.g., [10,23,80,106,118]). Ap-
plications are modeled by a single queue with a single workload class [23] or
multiple workload classes [80]. In [118], multi-tier applications are modeled us-
ing queueing networks where one queue represents one tier. All these models are
solved analytically, e.g., in the latter case based on mean-value analysis (MVA).
In [51], layered queueing models (LQNs) are solved by means of simulation. A
different approach uses fuzzy-logic models to model the resource needs of an
application for a given workload intensity [116]. The fuzzy-logic models need to
be trained under dynamically changing workloads.

Resource allocation problems have been studied in the literature, frequently
using techniques including bin packing (e.g., [19, 50]), multiple knapsack prob-
lems, and multi-dimensional knapsack problems [55]. For dynamic resource allo-
cation applications, previous studies address this problem using linear optimiza-
tion techniques [54] or non-linear optimization strategies based on simulated
annealing [113], fuzzy logic [116], or other heuristics [11]. There are approaches
to formulate the optimization problem as a network flow problem [68], to solve it
with genetic algorithms [77], or to automatically change deployments using pro-
files capturing experts’ knowledge of scaling different types of applications [117].
The above studies differ in the objective of the optimization and the type of
applications on which they focus.

In virtualized environments, due to the introduction of virtual resources, the
resource allocation problem is more complex. The studies in [74, 88] validate a
performance inference in virtualized environments. There are strategies that ex-
plicitly make use of VMM configurations. For instance, the authors of [76,83] pro-
pose to exploit the min, max and shares parameters (respectively CPU priorities)
for VM placement and power consolidation in data centers. In [35], the power-to-
frequency relationship of dynamic voltage and frequency techniques is leveraged
to distribute available power among the servers in order to get maximum per-
formance. Some recent work on capacity management in Cloud infrastructures,



based on LQN models, considers both performance and power as well as adapta-
tion costs [50,51]. To estimate the power consumption, utilization-based models
from previous studies [63] are used. The following adaptation actions are con-
sidered: adapt a VM’s CPU capacity, add/remove a VM, live-migrate a VM
between hosts, and shut down/restart a host [50]. For the optimization there
are two algorithms: a bin packing algorithm optimizing the power/performance
tradeoff and an A* graph search algorithm that takes adaptation costs as well
as search costs into account. The case study shows promising results, however,
it is based on a simple multi-tier application with read-only transactions and a
fixed web tier.

4 Emerging Research Directions

In this section, we outline emerging research directions targeting resilience and
dependability management in Cloud infrastructures. At first, we discuss the ques-
tion how the flexible allocation mechanisms available in virtualized environments
can be used to tackle scalability and consolidation issues. Afterwards, we capture
the research challenge of finding representative predictive models and model pa-
rameters. Finally, we examine the trade-off decisions between performance and
energy consumption and highlight the need for self-aware management tech-
niques that enable a continuous application of management activities during
system operation.

4.1 A Question of Scale

By 2015, it is predicted that more than 75% of computer infrastructure will
be purchased from virtualized service providers [34]. Such services are hosted
in Cloud environments with computation and network resources multiplexed
between many distinct services. Although functionally, services may not impact
each other, there is good evidence to suggest that performance stress from one
virtual machine can indeed be noticed by another virtual machine instance [30].

Cloud administrators, like software developers, are increasingly responsible
for the reliable and performance-driven provision of these software and hard-
ware services. They face difficult quantitative scalability questions, often focused
around service-level response-time goals. Being able to create accurate predic-
tive models of such services is a major challenge in performance engineering and
stochastic analysis.

Clearly servers could be over-provisioned in an effort to obtain high through-
put, availability or resilience for all services. However, this is not a viable solution.
The economics of virtualized service provision dictate that a sufficient level of
shared or multiplexed computation is in fact a requirement. The energy con-
sumed for unnecessary servers and extra air-conditioning will render a policy of
server over-provisioning unsustainable financially, even if in doing so it was able
to satisfy a strict service level requirement.



This is one of the major challenges facing Cloud Computing, how can many
services be multiplexed in a virtualized environment and guarantee service level
agreements imposed upon those services while minimizing the energy costs and
maximizing the revenue of the overall cloud environment.

4.2 Parameter Sweeping

Here are some examples of the quantitative scalability questions and require-
ments that a virtualized environment might face. Maintaining a predictive model
of a Cloud environment will mean both sustaining an accurate behavioral model
of the services and virtualized architecture but also addressing the key scalability
and configuration issues, for example:

– How many servers does a Cloud cluster need in order to execute 4000 jobs
every minute at least 95% of the time?

– Under the predicted traffic profile, at what rate can a Cloud environment
hibernate its servers to save energy, given the time penalty involved in power-
cycling a host and relocating virtual instances?

– How many virtual machines can be launched on a host (for the same/different
service) while maintaining a service level requirement of 96.7% of service
requests actioned within 0.88 seconds?

These are all examples of performance evaluation questions where the result
is contingent on specific model parameters. Potentially, small fluctuations in a
set of key parameters in the model will have an enormous effect on the overall
performance and even functional behavior of the whole system. Discerning which
parameters have the most effect on a given performance goal is a question of
sensitivity analysis and can be a highly computationally intensive task even for
small models.

Where such questions are not asked, or not rigorously answered, the conse-
quences are very familiar. Systems are delivered which fail to win the trust of
users because their performance is too unpredictable. Those systems which do
deliver the required level of service often have excessively high running costs be-
cause their architects over-provisioned the hardware requirements in an attempt
to mask failings due to uncertain software performance. There is a growing un-
derstanding that the running costs of a system greatly outweigh the development
costs and that it is false economy to buy more hardware to cut software costs.

For these reasons, precise query-driven performance evaluation of computer
systems and specifically virtualized computer systems is an important practi-
cal concern. In the next section will highlight some of these energy-computation
tradeoffs in the context of a simple multi-client, multi-server environment. Achiev-
ing this for a more complex Cloud environment with many possible services will
require a step change in modelling and analysis approaches.

4.3 Trade-off between Energy Consumption and Performance

We demonstrate the sort of energy/performance trade-off on a simple massively
parallel client–server system. It serves to demonstrate the synergy of several



critical issues that will need to be considered in a more complex model of a Cloud
environment: scalability analysis via parameter sweeping, energy modelling and
server hibernation.

The model consists of a large number of clients and a large number of servers
cooperating together. The clients access the servers in two stages: first the client
requests some data of the server and then the client receives the data from the
server in response; the client goes on to process this data individually before
restarting. The servers, in addition to serving clients, can hibernate to save en-
ergy and can also break. Broken servers are repaired. The details of this stochas-
tic model and analysis can be found in Stefanek et al. [99]. A reward archi-
tecture is deployed to keep track of energy consumption and a fluid analysis
technique [40] is used to calculate a service level agreement.

In this client/server model, we might be interested in the optimal number
of servers that have to be employed in order to guarantee given performance
requirements while minimizing the associated running costs. The performance
requirements are often given in terms of a Service Level Agreement (SLA) for
each client. In the context of this model, a suitable SLA might require that
a client finishes its first request cycle within a given time period with a given
high probability, for example within time 4.0 seconds with probability at least
0.9. Considering only the configurations that satisfy such an SLA, the feasible

configurations, we can look for those that minimize the energy expended over
the operation of the system.

Figure 1 is generated by the Grouped PEPA Analyzer (GPA) tool [4] and
shows an example where we vary the number of servers and the rate with which
they are hibernated. For each configuration we calculate the energy used and
plot a point on the surface only if that configuration satisfies the SLA require-
ment mentioned above. We are able to find the configuration (84 servers and a
hibernation rate of 0.37) which minimizes the energy consumption in the system.
Intuitively, increasing the number of servers and decreasing the hibernation rate
increases the probability of a client finishing early, but also raises the energy cost
of running the system. Although, at this stage we are not capturing issues such
as virtualization, multiple services or server classes in the model, this example
illustrates the power of predictive modeling in being able to identify so-called
sweet spots in operation.

4.4 Self-Aware Systems

As discussed in the previous sections, managing system resources in Cloud envi-
ronments to ensure acceptable end-to-end application QoS and efficient resource
utilization is a challenge. Modern enterprise software systems have highly dis-
tributed architectures composed of loosely-coupled services that operate and
evolve independently, and are subjected to time-varying workloads.

The presented challenges call for novel systems engineering methodologies
enabling the engineering of so-called self-aware software systems [58, 60]. The
latter should have built-in online QoS prediction and self-adaptation capabilities
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Figure 1. Global optimization of the energy consumption of the server components
from [99]. Only configurations satisfying the SLA are shown in colour.

used to enforce QoS requirements in a cost- and energy-efficient manner. Self-
awareness in this context is defined by the combination of three properties that
systems should possess:

– Self-reflective: aware of their software architecture, execution platform and
the hardware infrastructure on which they are running as well as of dynamic
changes that occur during operation,

– Self-predictive: able to predict the effect of dynamic changes (e.g., changing
user workloads) as well as predict the effect of possible adaptation actions,

– Self-adaptive: proactively adapting as the environment evolves in order to
ensure that their non-functional requirements (e.g., availability, performance
and reliability) and respective SLAs are continuously satisfied in a cost- and
energy-efficient manner.

Self-aware systems engineering is a newly emerging research area at the inter-
section of several computer science disciplines including software architecture,
computer systems modeling, autonomic computing, distributed systems, and
more recently, Cloud Computing and Green IT [59].

5 Conclusion

We provided an overview of the research challenges and opportunities in pro-
viding dependability and resilience in Cloud Computing environments. State-of-
the-art approaches for dependability assessment and for managing dependability,
performance and security were presented, including approaches to self-adaptive



capacity and power management in virtualized data centers. The identification
of the existing gaps led to an overview of the emerging research directions. It is
still an open question, how a set of services should be multiplexed in a virtualized
environment while SLAs are guaranteed in such a way that the revenue of the
overall Cloud environment is maximized. In particular, modeling the trade-offs
between energy consumption/costs and application QoS remains a challenge.
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