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In this paper the application of image prior combinations to the Bayesian Super Resolution (SR) image
registration and reconstruction problem is studied. Two sparse image priors, a Total Variation (TV) prior
and a prior based on the �1 norm of horizontal and vertical first-order differences (f.o.d.), are combined
with a non-sparse Simultaneous Auto Regressive (SAR) prior. Since, for a given observation model, each
prior produces a different posterior distribution of the underlying High Resolution (HR) image, the use
of variational approximation will produce as many posterior approximations as priors we want to
combine. A unique approximation is obtained here by finding the distribution on the HR image given
the observations that minimizes a linear convex combination of Kullback–Leibler (KL) divergences. We
find this distribution in closed form. The estimated HR images are compared with the ones obtained by
other SR reconstruction methods.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Image SR is an active research field that studies the process
of obtaining an HR image from a set of degraded Low Resolution
(LR) images (see [1,2] for a review). The basic principle in SR is
that changes in LR images caused by the blur and the camera
(and/or scene) motion provide additional information that can be
utilized to reconstruct the HR image. Usually SR methods include
two parts: registration, where the motion between LR images is
estimated, and image reconstruction, where the HR image is re-
covered from the LR images.

In the Bayesian framework a prior model on the HR im-
age to be reconstructed is introduced, its aim is to encapsulate
our prior image knowledge and consequently to avoid the ill-
posedness of the image reconstruction problem. The selection of
this Bayesian prior model is a critical issue. Prior models imposing
image smoothness, like the Conditional Auto Regressive (CAR) or SAR
image models (see [3]), are known to oversmooth edge regions.
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More sophisticated priors based on wavelets [4], TV [5], or the
�1 norm of horizontal and vertical f.o.d. [6], have been proposed.
However, these priors lead to oversmooth non-edge regions.

Combining image priors is an interesting way to take advan-
tage of their behavior. While in image restoration there have been
several attempts to combine image priors [7–9], no such attempts
have been made in the SR literature apart from our conference
paper [10], from which the present paper grows. In [9] a Stu-
dent’s t Product of Experts (PoE) image prior model was proposed
and learnt from the observations. In [8] the PoE prior was learnt
using a large training set of images and also stochastic sampling
methods. A combination of the TV image prior model and the PoE
model of [9] has been recently proposed in [11]. This method can
be considered a spatially adaptive version of the TV model which
furthermore, as the method in [9], has the ability to simultane-
ously enforce different properties on the image.

In this paper, a combination of the sparse TV and �1, and the
non-sparse SAR image prior models is applied to SR. The rationale
of this modeling is to benefit from the ability of the sparse pri-
ors to recover image edges, and at the same time to avoid their
tendency to oversmooth inner regions by combining them with a
smoothness promoting prior model.

Accurate registration of displaced and rotated images, is vital
in SR image reconstruction. There are two major approaches to
registration in SR, which differ in the stage where registration is
performed. In the first approach the motion parameters are previ-
ously estimated from the observed LR images, in a preprocessing
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step, and then used in a separate image estimation process (see
[12–15]). The limited accuracy inherent to HR registration from
LR images is a shortcoming of this first approach. The second ap-
proach is to alternate between HR image registration and HR image
estimation (see [5,16–25]).

All the HR reconstruction methods proposed in this work de-
pend on model parameters, usually called hyperparameters. Hy-
perparameter estimation is also a critical issue, which has been
studied in previous SR papers, see for instance [5,6,10,21,25]. In
this paper the entire SR problem, that is HR image reconstruction,
registration, and hyperparameter estimation, is approached from
a Bayesian perspective. All the unknown, i.e., the HR image and
the displacements and rotations, are systematically included in a
hierarchical Bayesian model. Using a variational Bayesian analysis,
sparse and no sparse HR image prior models can be combined. The
proposed framework provides uncertainties of the estimates during
the restoration process, which helps to prevent error-propagation
and improves robustness. All required algorithmic parameters are
estimated along with the HR image and the motion parameters,
and therefore the proposed algorithms do not require user super-
vision.

The rest of this paper is organized as follows. Section 2 pro-
vides the mathematical model for the LR image acquisition process.
We provide the description of the hierarchical Bayesian frame-
work modeling the unknowns in Section 3. The inference proce-
dure to develop the proposed methods is presented in Section 4.
We demonstrate the effectiveness of the proposed methods with
experimental results in Section 5 and conclusions are drawn in
Section 6.

2. Problem formulation

We assume that the imaging process generates L LR images yk ,
k = 1, . . . , L, from the HR image x. The LR images yk consist of
N = Nh × Nv pixels (where Nh and Nv are the observations pix-
els number in horizontal and vertical, respectively) and the HR
image x of P N pixels, where the integer P > 1 is the factor of
increase in resolution. In this paper we adopt the matrix–vector
notation such that the images yk and x are arranged as N × 1 and
P N × 1 vectors, respectively. The imaging process introduces shift-
ing, blurring, and downsampling, which is modeled as

yk = AHkC(sk)x + nk = Bk(sk)x + nk, (1)

with the system N × P N matrix Bk = AHkC(sk), where A is the
N × P N downsampling matrix, Hk is the P N × P N blurring matrix,
C(sk) is the P N × P N warping matrix generated by the motion
vector sk , and nk is the N × 1 acquisition noise. Note that the ma-
trices Hk and C(sk) and the noise nk can be different for each LR
image yk .

In this work, we assume that the blurring matrices Hk are
known and we consider a motion model consisting of translational
and rotational motion, so that sk = (θk, ck,dk)

t , where θk is the
rotation angle, and ck and dk are the horizontal and vertical trans-
lations of the kth HR image with respect to the reference frame x.

The effects of downsampling, blurring, and warping are com-
bined into the system matrix Bk(sk), from which each row maps
the pixels of the HR image x to a given pixel in the LR image yk .
Given Eq. (1), the SR problem can be expressed as the search of an
estimate of the HR image x from the set of LR images {yk} using
our prior knowledge about {C(sk)}, {nk}, and x.

3. Hierarchical Bayesian model

In this work, we adopt a hierarchical Bayesian framework con-
sisting of two stages. The first stage is used to model the acquisi-
tion process, the unknown HR image x and the motion vectors {sk}.
For the unknown x we have m models which we want to combine.
They are denoted by pi(x | αi) for i = 1, . . . ,m. Prior distributions
p(sk) are assigned to the unknowns sk , for k = 1, . . . , L. The ob-
servation y = {yk} is also a random process with the correspond-
ing conditional distribution p(y | x, {sk}, {βk}). These distributions
depend on additional parameters αi and {βk} (called hyperparam-
eters), which are modeled by assigning hyperprior distributions in
the second stage of the hierarchical model.

In the following subsections we provide the description of the
individual distributions used to model the unknowns.

3.1. Observation model

Using the model in Eq. (1) and assuming that nk is zero-mean
white Gaussian noise with inverse variance (precision) βk , the con-
ditional distribution of the LR image yk is given by

p(yk | x, sk, βk) ∝ β
N/2
k exp

[
−βk

2

∥∥yk − Bk(sk)x
∥∥2

]
. (2)

Assuming statistical independence of the noise among the LR im-
age acquisitions, the conditional probability of the set of LR im-
ages y given x can be expressed as

p
(
y

∣∣ x, {sk}, {βk}
) =

L∏
k=1

p(yk | x, sk, βk). (3)

The independent Gaussian model in Eq. (3) is used in most of
the existing super resolution methods [18,21,22,26].

Let us now explicitly state the form of the warping matri-
ces C(sk) of Eq. (1). We denote the coordinates of the reference
HR grid by (u, v) and the coordinates of the kth warped HR grid,
after applying C(sk) to x, by (uk, vk). Let us also define

�uk = uk − u = u cos(θk) − v sin(θk) + ck − u,

�vk = vk − v = u sin(θk) + v cos(θk) + dk − v.

Note that the coordinates (uk, vk) generally correspond to frac-
tional values, and therefore the HR image value at pixel (uk, vk) in
the kth HR grid has to be calculated using resampling (see Fig. 1).
As in [27], we incorporate bilinear interpolation to approximate
the HR image value at (uk, vk) using the four neighboring HR im-
age values xtl(sk) , xtr(sk) , xbl(sk) , and xbr(sk) (see black bold remarked
pixels in Fig. 1), which are the pixels at the top-left, top-right,
bottom-left and bottom-right locations of the pixel at (uk, vk), re-
spectively.

Let us denote by (ak(sk),bk(sk))
T the vector difference between

the pixel position at (uk, vk) and the pixel at its top-left position
in the reference HR grid, that is,

ak(sk) = �uk − floor(�uk),

bk(sk) = �vk − ceil(�vk).

Using bilinear interpolation, the warped image C(sk)x can be ap-
proximated as (see [27] for details)

C(sk)x ≈ Dbk(sk)(I − Dak(sk))Lbl(sk)x + (I − Dbk(sk))Dak(sk)Ltr(sk)x

+ (I − Dbk(sk))(I − Dak(sk))Ltl(sk)x

+ Dbk(sk)Dak(sk)Lbr(sk)x, (4)

where Dak(sk) and Dbk(sk) denote diagonal matrices with the vec-
tors ak(sk) and bk(sk) in their diagonal, respectively. The matri-
ces Lz with z ∈ {bl(sk),br(sk), tl(sk), tr(sk)} are constructed in such
a way that the product Lzx produces pixels at the top-left, top-
right, bottom-left and bottom-right locations of (uk, vk), respec-
tively.
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Fig. 1. (a) HR image grid (in black) and the kth image grid (in red and rotated). (b) Detailed view of (a), with the pixel notation used for the bilinear interpolation of grid
element (uk, vk). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3.2. Image models

The quality of the estimated HR image as well as the accuracy
in the estimates of other unknowns depends on the incorpora-
tion of accurate image models. In this paper the SAR prior model
(see [3]), the prior model based in the �1 norm over horizontal
and vertical f.o.d. (see [6]) and the TV prior model (see [5]) are
used.

The SAR model is a smooth prior with quadratic energy which
is well known to oversmooth edge regions (see [3]). It is defined by

p1(x | α1) ∝ α
P N
2

1 exp

{
−α1

2
‖Cx‖2

}
, (5)

where C is the Laplacian operator and α1 the hyperparameter of
this prior model.

The �1 norm prior model is defined as

p2(x | α2)

∝ (
αh

2α
v
2

) P N
4 exp

{
−

P N∑
i=1

[
αh

2

∥∥�h
i (x)

∥∥
1 + αv

2

∥∥�v
i (x)

∥∥
1

]}
, (6)

where �h
i (x) and �v

i (x) represent the horizontal and vertical f.o.d.,
respectively, for the pixel i, α2 = {αh

2,αv
2 }, being αh

2 and αv
2 the

model hyperparameters.
The TV prior model is defined as

p3(x | α3) ∝ α
P N
2

3 exp

{
−α3

2

P N∑
i=1

√(
�h

i (x)
)2 + (

�v
i (x)

)2

}
, (7)

where α3 is the hyperparameters of this prior model. Both TV,
and �1, are sparse priors, very effective in preserving edges. The
main difference between TV and �1 is the presence of two hyper-
parameters αh

2 and αv
2 , in the �1 prior. These two parameters allow

to adapt the model to possible direction dependence of the edge
strength.

3.3. Modeling the uncertainties in the registration parameters

Let us denote by s̄p
k the estimate of sk obtained from LR ob-

servations in a preprocessing step, using conventional registration
algorithms, such as the one reported in [28]. As mentioned ear-
lier, these estimates are in general inaccurate, which lowers the
image restoration quality. Therefore, we model the motion param-
eters as stochastic variables following Gaussian distributions with
a priori means set equal to the preliminary motion parameters s̄p
k ,

that is,

p(sk) = N
(
sk

∣∣ s̄p
k ,Ξ

p
k

)
(8)

with Ξ
p
k the a priori covariance matrix. The parameters s̄p

k and
Ξ

p
k incorporate prior knowledge about the motion parameters

into the estimation procedure. If such knowledge is not available,
s̄p

k and (Ξ
p
k )−1 can be set equal to zero, which makes the ob-

servations solely responsible for the estimation process. Similar
models utilizing Gaussian distributions to model the uncertainty
in preliminary motion parameters have also been used in some
existing algorithms [18,21,26], but with different inference meth-
ods.

3.4. Hyperpriors on the hyperparameters

The hyperparameters α1, α2, α3, and {βk} are crucial for the
performance of the SR algorithm. For their modeling, we employ
Gamma distributions

p(ω) = Γ
(
ω

∣∣ ao
ω,bo

ω

) = (bo
ω)

ao
ω

Γ (ao
ω)

ωao
ω−1 exp

[−bo
ωω

]
, (9)

where ω > 0 denotes a hyperparameter, and ao
ω > 0 and bo

ω > 0
are the shape and scale parameters, respectively. The hyperpriors
are chosen as Gamma distributions since they are conjugate priors
for the Gaussian distribution.

Finally, combining Eqs. (3), (5)–(9) we obtain

pl(Θl,y) = pl(x | αl)p(αl)

L∏
k=1

[
p(yk | x, sk, βk)p(βk)p(sk)

]
, (10)

which for l ∈ {1,2,3}, denotes the different joint probability dis-
tributions corresponding to the SAR, �1 and TV prior models re-
spectively. In Eq. (10) Θl = {Ω,αl}, Ω = {x, {sk}, {βk}}, p(α2) =
p(αh

2)p(αv
2 ) and the conditional probability for the set of L LR ob-

servations, defined in Eq. (3), has been used.

4. Variational Bayesian inference

Let us denote the set of all unknowns by Φ = {Ω, {αl}}. In this
paper, Bayesian inference is based on the posterior distribution
p(Φ | y) of Φ given the observed y. We propose here to approxi-
mate this posterior distribution by the distribution minimizing the
following linear convex combination of m KL divergence measures

q̂(Φ) = arg min
q(Φ)

m∑
λlC K L

(
q(Ω)q(αl)

∥∥pl(Θl | y)
)
, (11)
l=1
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where m is the number of image priors to be combined in our
model, λl � 0 for l = 1, . . . ,m and

∑m
l=1 λl = 1. In Eq. (11) the pos-

teriors p(Θl | y), for l = 1, . . . ,m are given by

p(Θl | y) = p(Θl,y)

p(y)
, (12)

where the joint distribution p(Θl,y), corresponding to the different
prior models, has been defined in Eq. (10), q(Φ) = q(Ω)

∏m
l=1 q(αl),

q(Ω) = q(x)
∏L

k=1 q(βk), and the KL divergences are defined as

C K L
(
q(Ω)q(αl)

∥∥pl(Θl | y)
)

=
∫

q(Ω)q(αl) log

(
q(Ω)q(αl)

pl(Θl,y)

)
dΩ dαl + const. (13)

Notice that since pl(Θl | y) cannot be found because p(y) cannot
be calculated analytically, we apply variational methods to approx-
imate this posterior distribution (see [29]). The KL divergence is
always non-negativeand zero if pl(Θl | y) and ql(Θl) coincide, so
by decreasing the KL divergence we are looking for good posterior
distribution approximations.

The estimation of λ = {λ1, λ2, . . . , λm} will not be addressed in
this paper, but we will show experimentally that non-degenerate
combinations of the divergences (those with more than one coef-
ficient λl �= 0) may provide better reconstructions than degenerate
ones.

Taking into account that∫
q(Ω)q(αl) log

(
q(Ω)q(αl)

pl(Θl,y)

)
dΩ dαl

=
∫

q(Φ) log

(
q(Ω)q(αl)

pl(Θl,y)

)
dΦ, (14)

Eq. (11) can be written in the more compact form:

q̂(Φ) = arg min
q(Φ)

∫
q(Φ) log

(
q(Ω)

p(y | Ω)
∏L

k=1 p(βk)

×
m∏

l=1

[
q(αl)

pl(x | αl)p(αl)

]λl
)

dΦ. (15)

In this paper two model configurations are studied. We first
consider the combination between SAR and �1 prior models, and
afterward the combination between SAR and TV. The two con-
figurations are denoted as Φc , for c ∈ {�1,TV}, with λ�1 = {1 −
λ2, λ2,0} and λTV = {1 − λ3,0, λ3}. The configuration correspond-
ing to the combination between the three considered prior models
has not been considered, because TV and �1 are very similar, dif-
fering only on the adaptability of the �1 prior to the possible
direction dependent strength of the edges.

Unfortunately, we cannot directly tackle the minimization of
Eq. (15) because of the prior models pl(x | αl) for l = 2,3, de-
fined in Eqs. (6) and (7), respectively. In earlier work with �1 prior
model (see [6]) and with TV prior model (see [5]), this difficulty
was overcome by resorting to majorization–minimization (MM)
approaches, which is also the path followed here, in this paper.

In the MM approach lower bounds to the joint distributions
of Eq. (10) are found, which make the mininization of Eq. (11)
tractable. Lower bounds to the pl(Θl,y) distributions of Eq. (10),
for l = 2,3 can be found as follows. Let us first consider the func-
tionals

M2(α2,x,w2) = (
αh

2α
v
2

) P N
4 exp

{
−

P N∑
i=1

[
αh

2
(�h

i (x))2 + wh
2i

2
√

wh
2i

+ αv
2

(�v
i (x))2 + w v

2i

2
√

w v
2i

]}
(16)
and

M3(α3,x,w3)

= (α3)
P N
2 exp

{
−α3

2

P N∑
i=1

[
(�h

i (x))2 + (�v
i (x))2 + w3i√

w3i

]}
, (17)

with P N dimensional vectors wh
2,wv

2 ,w3 ∈ (R+)P N , with compo-
nents wh

2i , w v
2i , w3i for i = 1, . . . , P N , and with α2 = {αh

2,αv
2 } and

w2 = {wh
2,wv

2}. In Eqs. (16) and (17), wh
2i , w v

2i , and w3i act as local
adaptability factors: the greater their values, the lower the smooth-
ing effect of the functional. We will see in Eqs. (33) and (34), that
these vectors have large values in pixel locations with high f.o.d.
values, i.e. near image edges, that is, where we want the smooth-
ing effect of the prior to be lower.

It can be shown by applying, in Eqs. (16) and (17), the inequal-
ity

√
z � z+w

2
√

w
, ∀z � 0, w > 0 (details can be found in [5,6]) that

these functionals are lower bounds of the image priors pl(x | αl),
for l = 2,3, in Eqs. (6) and (7), respectively. These lower bounds
can be used to find lower bounds for the respective joint distribu-
tions, that is, for l = 2,3 we have

pl(Θl,y) � p(y | Ω)Ml(αl,x,wl)p(αl)

L∏
k=1

[
p(βk)p(sk)

]
= Fl(Θl,y,wl), (18)

and consequently, an upper bound to the integral in Eq. (15) is
then obtained.

The minimization in Eq. (15) can then be replaced by the min-
imization of its upper bound, since minimizing this bound with
respect to the unknowns and the auxiliary variable wl in an al-
ternating fashion results in closer bounds at each iteration. This
bound is quadratic and therefore it can be evaluated analytically.

Before we proceed to calculate the posterior approximation, we
first observe that to calculate q(αl), l = 1,2,3, we only have to
look at the only divergence where that distribution is present. So
we can write

q(α1) ∝ exp
(〈

log p1(Ω,α1,y)
〉
q(Ω)

)
(19)

and

q(αl) ∝ exp
(〈

log Fl(Θl,y,wl)
〉
q(Ω)

)
, for l = 2,3, (20)

where 〈〉q(Ω) denotes the expected value of  using the q(Ω) dis-
tribution, i.e., 〈〉q(Ω) = Eq(Ω)[]. In what follows, we will use 〈〉
for simplicity, making the distribution q(Ω) being utilized clear
from the context.

However, to calculate the distributions for the rest of the un-
knowns q(ξ), ξ ∈ Ω we have to take into account all the diver-
gences. We obtain

qc(ξ) ∝ exp

(〈
log

[
p(y | Ω)

L∏
k=1

[
p(βk)p(sk)

]

× [
Mlc (αlc ,x,wlc )p(αlc )

]λlc

× [
p1(x | α1)p(α1)

]1−λlc

]〉
q(Φcξ )

)
, (21)

for the two configurations c ∈ {�1,TV}, where lc = 2 for c = �1 and
lc = 3 for c = TV . In Eq. (21) Φcξ , for c ∈ {�1,TV}, denote the set of
variables Φc with ξ removed.
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4.1. Estimation of the HR image and registration parameters
distributions

In order to obtain the distribution function qc(x) we use
Eq. (21) resulting in the multivariate Gaussian

q�1(x) ∝ exp

[
−1

2

(
λ2

{〈
αh

2

〉∑
i

(�h
i (x))2 + wh

2i√
wh

2i

+ 〈
αv

2

〉∑
i

(�v
i (x))2 + w v

2i√
w v

2i

}
+ (1 − λ2)〈α1〉‖Cx‖2

+
∑

k

〈βk〉
〈∥∥yk − Bk(sk)x

∥∥2〉
q(sk)

)]
(22)

for c = �1, and for c = TV

qTV(x) ∝ exp

[
−1

2

(
λ3〈α3〉

∑
i

(�h
i (x))2 + (�v

i (x))2 + w3i√
w3i

+ (1 − λ3)〈α1〉‖Cx‖2

+
∑

k

〈βk〉
〈∥∥yk − Bk(sk)x

∥∥2〉
q(sk)

)]
. (23)

Also, from Eq. (21), we can find for the registration parameters,
the distribution

q(sk) ∝ exp

[
−1

2

(〈βk〉
〈∥∥yk − Bk(sk)x

∥∥2〉
q(x)

+ (
sk − s̄p

k

)t(
Ξ

p
k

)−1(
sk − s̄p

k

))]
. (24)

The explicit form of these distributions depends on the expecta-
tion values 〈‖ yk − Bk(sk)x ‖2〉q(sk) and 〈‖ yk − Bk(sk)x ‖2〉q(x) . These
calculations are not easy since C(sk), in Eq. (1), is nonlinear with
respect to sk . Therefore, we expand C(sk) using its first-order Tay-
lor series around the mean value s̄k = 〈sk〉 = (θ̄k, c̄k, d̄k)

T of the
distribution q(sk), of Eq. (24), resulting in

C(sk) ≈ C(s̄k) + [
N1(s̄k),N2(s̄k),N3(s̄k)

]
(sk − s̄k), (25)

with[
N1(s̄k)x,N2(s̄k)x,N3(s̄k)x

]
= [(

P1(s̄k)M1(s̄k) + P2(s̄k)M2(s̄k)
)
,M1(s̄k),M2(s̄k)

]
. (26)

In Eq. (26),

M1(s̄k) = (I − Dbk(sk))(Ltr(sk) − Ltl(sk)) + Dbk(sk)(Lbr(sk) − Lbl(sk)),

M2(s̄k) = (I − Dak(sk))(Lbl(sk) − Ltl(sk)) + Dak(sk)(Lbr(sk) − Ltr(sk)),

P1(s̄k) = −[Du sin(θ̄k) + Dv cos(θ̄k)] and P2(s̄k) = [Du cos(θ̄k) −
Dv sin(θ̄k)], where Du and Dv are diagonal matrices whose diag-
onals are the vectors u and v, respectively.

Using Eq. (25), Bk(sk) of Eq. (1) can be approximated by

Bk(sk) = AHkC(sk)

≈ Bk(s̄k) + [
Ok1(s̄k),Ok2(s̄k),Ok3(s̄k)

]
(sk − s̄k), (27)

with Okr(s̄k) = AHkNr(s̄k), for r = 1, . . . ,3, and we obtain〈∥∥yk − Bk(sk)x
∥∥2〉

q(sk)

≈ ∥∥yk − B(s̄k)x
∥∥2 +

3∑ 3∑
〈βk〉ξki jx

tOki(s̄k)
tOkj(s̄k)x, (28)
i=1 j=1
where for i, j = 1, . . . ,3, ξki j are the elements of the 3 × 3 covari-
ance matrix Ξk of the posterior q(sk), of Eq. (24).

Substituting Eq. (28) into Eqs. (22) and (23), we obtain for the
posterior distribution qc(x) the multivariate Gaussian

qc(x) = N
(
x

∣∣ Eqc(x)[x], covqc(x)[x]), (29)

with mean

Eqc(x)[x] = covqc(x)[x]
[∑

k

〈βk〉Bk(s̄k)
tyk

]
, (30)

and inverse covariance

cov−1
q�1(x)[x] =

∑
k

〈βk〉Bk(s̄k)
tBk(s̄k)

+
∑

k

3∑
i=1

3∑
j=1

〈βk〉ξki jOki(s̄k)
tOkj(s̄k)

+ λ2
(〈
αh

2

〉
�ht

W
(

wh
2

)
�h

+ 〈
αv

2

〉
�v tW

(
w v

2

)
�v)

+ (1 − λ2)〈α1〉CtC, (31)

for c = �1, and

cov−1
qTV (x)[x] =

∑
k

〈βk〉Bk(s̄k)
tBk(s̄k)

+
∑

k

3∑
i=1

3∑
j=1

〈βk〉ξki jOki(s̄k)
tOkj(s̄k)

+ λ3〈α3〉
(
�ht

W(w3)�
h + �v tW(w3)�

v)
+ (1 − λ3)〈α1〉CtC, (32)

for c = TV . In the equations above, �h and �v represent the P N ×
P N convolution matrices associated respectively with the horizon-
tal and vertical f.o.d., and W(w), ∀w ∈ (R+)P N , is a P N × P N
diagonal matrix with elements W(w)ii = 1√

wi
, for i = 1, . . . , P N .

These W(w) matrices can be interpreted as space adaptation ma-
trices.

The following expressions are obtained for the w parameters

wh
2i = Eq�1(x)

[(
�h

i (x)
)2]

, w v
2i = Eq�1(x)

[(
�v

i (x)
)2]

, (33)

w3i = EqTV (x)

[(
�h

i (x)
)2 + (

�v
i (x)

)2]
. (34)

Now, we use again Eq. (27), to obtain the following approxima-
tion〈∥∥yk − Bk(sk)x

∥∥2〉
q(x)

≈ ∥∥yk − B(s̄k)Eqc(x)[x] − Υ k(sk − s̄k)
∥∥2

+ trace
[
B(s̄k)

tB(s̄k) covqc(x)

]
+ 2Φt

k(sk − s̄k)

+ (sk − s̄k)
tΨ k(sk − s̄k) (35)

which allows us to express the distribution q(sk) of Eq. (24) as the
Gaussian q(sk) =N (sk | 〈sk〉,Ξk) with parameters

〈sk〉 = Ξk
[(

Ξ
p
k

)−1
s̄p

k + 〈βk〉(Γ k s̄k + Ψ k s̄k + Qk − Φk)
]
, (36)

and

Ξ−1
k = (

Ξ
p
k

)−1 + 〈βk〉(Ψ k + Γ k). (37)

In Eqs. (35)–(37) above,

Υ k = [
Ok1(s̄k)Eqc(x)[x],Ok2(s̄k)Eqc(x)[x],Ok3(s̄k)Eqc(x)[x]],
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Φk and Qk are 3×1 vectors with elements Φki = trace[B(s̄k)
t Oki(s̄k)

× covqc(x)], and Q ki = (yk − B(s̄k)Eqc(x)[x])tΥ ki , respectively, for
i = 1,2,3, and Ψ k and Γ k are 3 × 3 matrices with elements
Ψki j = trace[Oki(s̄k)

t Okj(s̄k) covqc(x)[x]], and Γki j = Υ t
kiΥ kj , respec-

tively, for i, j = 1,2,3.
An interesting observation is that this registration method is

a generalized stochastic version of the Lucas–Kanade registration
algorithm [28] as applied to the super resolution problem. The
classical Lucas–Kanade method can be obtained as a special case
of Eq. (36) by setting the matrix Ψk equal to zero. This matrix in-
corporates the uncertainty of the image estimate x into the motion
estimation procedure.

4.2. Estimation of the hyperparameter distributions

Finally we obtain the distributions for the hyperparameters {αl}
and {βk}, which are found to be Gamma distributions. For the {βk}
hyperparameters, using Eq. (21), we obtain

q(βk) ∝ β

N
2 −1+a0

βk
k exp

[
−βk

(
b0

βk
+ Eqc(x)[‖yk − Bk(sk)x‖2]

2

)]
.

(38)

Using Eq. (19) we obtain for α1 the distribution

q(α1) ∝ α
P N
2 −1+ao

α1
1 exp

[
−α1

(
b0
α1

+ Eqc(x)[‖Cx‖2]
2

)]
, (39)

and from Eq. (20) we obtain

q
(
αh

2

) ∝ (
αh

2

) P N
4 −1+a0

αh
2 exp

[
−αh

2

(
b0
αh

2
+

P N∑
i=1

√
wh

2i

)]
, (40)

q
(
αv

2

) ∝ (
αv

2

) P N
4 −1+a0

αv
2 exp

[
−αv

2

(
b0
αv

2
+

P N∑
i=1

√
w v

2i

)]
, (41)

for α2, and finally for α3

q(α3) ∝ (α3)
P N
2 −1+a0

α3 exp

[
−α3

(
b0
α3

+
P N∑
i=1

√
w3i

)]
. (42)

We summarize below the proposed iterative SR Algorithm 1,
which comprises HR image estimation, registration and estimation
of the model hyperparameters:

Algorithm 1 SR and registration using SAR and �1 or TV model
combinations.
Require: Initial values for HR image, registration parameters and hyperparameters.
1: while convergence criterion is not met do
2: Estimate the image distribution using Eq. (21).
3: Calculate the vectors wh

2 and wv
2 using Eq. (33), for c = �1, or w3 using

Eq. (34) for c = TV .
4: Estimate the registration parameters using Eq. (36).
5: Estimate the hyperparameters {βk} using Eq. (38), α1 using Eq. (40), and α2

using Eqs. (40) and (41), for c = �1, or α3 for c = TV , using Eq. (42).

Two model configurations are considered, the combination be-
tween SAR and �1 prior models, for c = �1, and the combination
between SAR and TV, for c = TV .

5. Experimental results

A number of experiments have been run, with synthetic and
real images, in order to evaluate the performance of the proposed
method, both in terms of HR image restoration quality and of reg-
istration accuracy, some of them will be described in this section.
The two most widely used SR sensor integration models are uni-
form and Gaussian functions. In this paper we have used, for Hk in
Eq. (1), a 3 × 3 uniform PSF.
We use in this section, as convergence criterion for Algorithm 1
‖x j−x j−1‖2

‖x j−1‖2 < 10−5, where x j and x j−1 are the image estimates

at the jth and ( j − 1)th iterations, respectively. Step 4 of Al-
gorithm 1 is an iterative registration process based on Eqs. (36)
and (37), for which the stopping criterion ‖yk − AHkC(si

k)x̂‖2 >

‖yk − AHkC(si−1
k )x̂‖2, has been applied, where si

k and si−1
k are the

motion parameters estimated at the ith and (i − 1)th iterations,
respectively. This iterative registration process has been limited
to a maximum of 35 iterations. Setting ao

ω = 0 and bo
ω = 0 in

Eq. (9), for ω ∈ {{αl}, {βk}}, we have used non-informative prior
in all the experiments. In Algorithm 1 initialization, a bicubic
interpolation of the first observation y1, has been used as ini-
tial value x0 for the HR image. The remaining parameters have
been initialized to the following values: wh

2i = (�h
i (x0))2, w v

2i =
(�v

i (x0))2, w3i = (�h
i (x0))2 + (�h

i (x0))2, αh
2 = P N/(2

∑P N
i

√
wh

2i),

αv
2 = P N/(2

∑P N
i

√
w v

2i), α3 = P N/(2
∑P N

i
√

w3i) and βk = N/

‖yk − Bk(sk)x0‖2.
The parameter estimations in steps 3–5 of Algorithm 1, which

have been described in Section 4, require the evaluation of
traces of different matrix products involving the covariance ma-
trix covqc(x)[x]. As this covariance matrix cannot be obtained in
exact form, an approximation has to be applied. In our previous
paper [30], an analysis of approximations to the covariance matrix
was performed. The Jacobi approximation, which has been adopted
in this paper, offered the best tradeoff between precision and effi-
ciency.

The proposed Algorithm 1 allows the determination of all the
unknowns of our problem, except for the λ parameter, which de-
termines the relative contribution of the different prior models we
are combining. Two variants of the proposed Algorithm 1 have
been considered, the first, for c = �1, corresponds to the combi-
nation of the SAR and �1 norm based model priors (denoted by
�1–SAR), and the second, for c = TV , corresponds to the combi-
nation of the SAR and TV model priors (denoted by TV–SAR). For
�1–SAR λ�1 = {1 − λ2, λ2,0} and there are two degenerate com-
binations of interest. When λ2 = 0 only the SAR model is used,
and this combination will be denoted as SARREG, while the com-
bination for λ2 = 1, will be denoted as �1. �1 coincides with the
model proposed in [6], except for image registration which we in-
corporate in this paper. For c = TV , λTV = {1−λ3,0, λ3}. We denote
as TV the degenerate combination obtained when λ3 = 1. When
λ3 = 0 we obtain again the SARREG combination.

In this section we compare the results obtained using SARREG,
�1, TV, TV–SAR and �1–SAR, with the ones obtained by bicubic
interpolation (denoted by BBC), the robust SR method in [13] (de-
noted by ZMT), based on backprojection with median filtering, the
robust SR method in [14] (denoted by RSR), based on bilateral TV
filters and the SR method in [23] (denoted by SDK), based on mul-
tidimensional kernel regression.

Let us consider first the experiments with synthetic images,
which are based on the set of four images of 120 × 120 pixels of
size, depicted in Fig. 2. Sequences of five LR images have been gen-
erated from the image set through warping, blurring and down-
sampling by a factor

√
P = 2. For the warping, the following mo-

tion vectors have been used for the images in the sequence: s1 =
(0.0◦,0.0,0.0)t , s2 = (3.0◦,0.0,0.5)t , s3 = (−3.0◦,0.5,0.0)t , s4 =
(5.0◦,1.0,0.0)t and s5 = (−5.0◦,0.0,1.0)t . A 3×3 uniform PSF has
been used for the blur. Finally additive white Gaussian noise with
Signal to Noise Ratio (SNR) levels between 10 dB and 40 dB, has
been added to the LR observations. We conducted simulations with
3 different noise realizations at each SNR level. Motion errors have
also been simulated, corrupting the original translation parameters
with white Gaussian noise with standard deviation of 1, and the
rotation parameters with noise uniformly distributed in [−2◦,2◦].
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Fig. 2. Set of 120 × 120 images used in the synthetic experiments.
Fig. 3. Mean PSNR values, and standard deviations, corresponding to the different methods and noise levels, for the images in Figs. 2(a)–2(d).
A numerical comparison between the original and recon-
structed HR images, obtained with the different methods, has been
performed in terms of the peak signal-to-noise ratio (PSNR), de-
fined as

PSNR = 10 log10
N P

‖x̂ − x‖2
, (43)

where x̂ and x are the estimated and original HR images, respec-
tively, and pixel values have been normalized to lie in the interval
[0,1].
Figs. 3(a)–3(d) show, for the images in Figs. 2(a)–2(d), plots of
the PSNR values corresponding to the different methods, except for
the SDK method, and for all noise levels. The SDK method [23],
which reconstructs video sequences, assumes differentiability in
the temporal direction, to which a first-order Taylor expansion is
applied. We believe it is unfair to compare the SDK method in this
experiment since there are abrupt changes between the images in
the sequence.

The proposed methods SARREG, �1, TV, TV–SAR and �1–SAR,
behave better in terms of PSNR than the other ones. Regarding the
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Table 1
λ2 and λ3 values obtained from the exhaustive search PSNR maximization, for the different noise levels and images in Fig. 2.

Image SNR 10 dB 20 dB 30 dB 40 dB

Fig. 2(a)
λ2 0.95 0.85 0.85 0.55
λ3 0.80 0.85 0.65 0.45

Fig. 2(b)
λ2 0.90 0.75 0.30 0.00
λ3 0.85 0.75 0.30 0.00

Fig. 2(c)
λ2 0.90 0.80 0.10 0.00
λ3 0.90 0.85 0.05 0.00

Fig. 2(d)
λ2 1.00 0.95 1.00 0.90
λ3 0.95 0.90 0.95 0.55

Fig. 4. PSNR of the reconstruction of the HR image in Fig. 2(c), from 5 LR observations with 20 dB, as a function of λ2 for �1–SAR and λ3 for TV–SAR.
various models separately, the sparse �1 and TV give better results
than the non-sparse SARREG and in most cases, �1 gives higher
PSNR values than TV. The two proposed model combinations �1–
SAR and TV–SAR obtain similar PSNRs and perform better than �1,
TV and SAR alone.

Table 1 shows the λ2 values maximizing PSNR, for the �1–SAR
model combination, and the λ3 values for TV–SAR, in the present
experiment, for the different images and noise levels. These λ2 and
λ3 values have been obtained by exhaustive search of the value
space [0,1], with a precision of 0.05. Fig. 4, for example, shows
the PSNR as a function of λ2 for �1–SAR combination and as a
function of λ3 for the TV–SAR combination for the reconstruction
of the HR image in Fig. 2(c), at 20 dB. For PSNR as a function of λ2

and λ3, curves similar in shape to the ones shown in Fig. 4, have
been obtained for the rest of the images, and experiments.

In the second experiment, in order to compare our results also
with the ones obtained using the SDK method, a smooth temporal
sequence has been considered. For the image in Fig. 2(b), the fol-
lowing rotations and translations were used: s1 = (0.0◦,0.0,0.0)t ,
s2 = (0.1◦,0.3,0.1)t , s3 = (0.2◦,0.4,0.2)t , s4 = (0.3◦,0.5,0.3)t and
s5 = (0.4◦,0.6,0.4)t . A 3 × 3 uniform PSF has been used for the
blur. Finally additive white Gaussian noise with SNR levels be-
tween 5 dB and 40 dB, has been added to the LR observations.
We conducted simulations with 3 different noise realizations at
each SNR level. Motion errors have also been simulated, corrupt-
ing the original translation parameters with white Gaussian noise
with standard deviation of 1, and the rotation parameters with
noise uniformly distributed in [−2◦,2◦]. Fig. 5(a) shows a plot of
the PSNR values corresponding to the different methods and noise
levels. As it can be observed in Fig. 5(a), the proposed methods
SARREG, �1, TV, TV–SAR and �1–SAR, behave better in terms of
PSNR than the other ones.

For this experiment, a comparison of the efficiency of the dif-
ferent methods in terms of the CPU time on an @Intel(R) Core(TM)
i7CPU 950 at 3.07 GHz processor, has been performed. Fig. 5(b)
shows CPU plots for the different noise levels, our proposed meth-
ods are more time consuming than the other considered methods,
with the exception of the SDK method. In the case of the pro-
posed TV–SAR and �1–SAR methods, the execution times shown
in Fig. 5(b) correspond to a given λm value. The exhaustive search
process, multiplies these times by the number of explored λm val-
ues.

In a third experiment, a comparison has been performed be-
tween the registration accuracy of the proposed methods, and
the one obtained utilizing the Lucas–Kanade (LK) [28] registration
method. A comparison with the Vandewalle (VAN) method [15]
was also performed, its performance is not shown because its reg-
istration accuracy is considerably worse. LK was applied to the
HR images resulting from bilinear interpolations of the observa-
tions. In this experiment, in order to illustrate the robustness
of the registration process, together with the image sequence
of the first experiment, two more five images sequences have
been considered, with motion vectors s1 = (0.0◦,0.0,0.0)t , s2 =
(−6.4◦,1.3,−0.6)t , s3 = (3.2◦,−2.6,−4.1)t , s4 = (4.0◦,3.5,2.6)t

and s5 = (−7.2◦,0.5,6.2)t , for the first sequence, and s1 =
(0.0◦,0.0,0.0)t , s2 = (−8.0◦,2.0,−1.0)t , s3 = (3.0◦,−3.0,5.0)t ,
s4 = (−4.0◦,4.0,2.0)t and s5 = (5.0◦,1.0, 2.0)t for the second
sequence. In this case motion errors have also been simulated,
corrupting the original translation parameters with white Gaussian
noise with standard deviation of 1, and the rotation parameters
with noise uniformly distributed in [−2◦,2◦].
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Fig. 5. (a) Mean PSNR values, (b) mean CPU time corresponding to the different methods and noise levels, for the image in Fig. 2(b).

Fig. 6. Mean absolute motion error, and standard deviations, of the estimated values for (a) the rotation angle θk , (b) the horizontal displacement ck , and (c) the vertical
displacement dk , corresponding to the different methods and noise levels, for the image in Fig. 2(b).
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Fig. 7. HR images obtained from the first 20 LR frames of the text sequence using:
(a) BBC, (b) RSR, (c) ZMT, (d) SAR, (e) TV, (f) �1, (g) TV–SAR with λ3 = 0.8 and
(h) �1–SAR with λ2 = 0.4.

The accuracy of the registration has been measured in terms of
the absolute registration errors |sk − 〈sk〉|, between the estimated
parameters 〈sk〉 and their true values sk , which in this case are
known. Fig. 6 shows the error values for the registration of the
HR image in Fig. 2(b), for the different methods, at different noise
levels. From the results shown in Fig. 6, the proposed methods
outperform to the LK method.

Let us finally study the performance of the proposed methods
on real observations. Two data sets have been used, the set of real
observations in [31], and image sequences captured with a Canon
IXUS700 camera, to which the different methods have been ap-
plied to enhance their resolution by a factor

√
P = 4.

Fig. 7 shows the HR reconstructions obtained using BBC, RSR,
ZMT and the proposed methods, for the first 20 LR images of
the “text” sequence in [31]. The superior quality of the HR recon-
structions obtained by our proposed methods is evident in Fig. 7.
We note, for example, that the gray background is cleaner in the
Fig. 8. HR images obtained from 19 LR observations captured with a Canon Ixus700
camera, using: (a) BBC, (b) RSR, (c) ZMT, (d) SAR, (e) TV, (f) �1, (g) TV–SAR with
λ3 = 0.5 and (h) �1–SAR with λ2 = 0.5.

reconstructions obtained using the model combinations TV–SAR,
for λ3 = 0.8, of Fig. 7(g), and �1–SAR, for λ2 = 0.4 of Fig. 7(h),
than in the �1 reconstruction of Fig. 7(d).

Finally, for the sequence of 19 observations captured with a
Canon Ixus700 camera, Fig. 8 shows the HR reconstructions ob-
tained using the different methods. Once again, the reconstructions
obtained using model combinations, shown in Figs. 8(g)–(h), are
superior to the ones obtained using the rest of methods under
comparison.
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6. Conclusions

In this paper, a novel variational Bayesian methodology for the
combination of sparse and non-sparse image priors, has been ap-
plied to SR image reconstruction from rotated and displaced LR
images. The entire SR problem, that is, the joint HR image recon-
struction, registration and parameter estimation, has been studied
from a Bayesian perspective. For the combination of different im-
age prior models, the Bayesian inference utilized finds the HR
image given the observations, which minimizes a linear convex
combination of KL divergences. We have found this distribution
in closed form. The HR image estimates obtained by the proposed
method compare favorably with the images provided by other state
of the art SR reconstruction methods. Future work will address the
estimation of the weights assigned to each KL divergence in their
convex combination.
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