
Runge-Kutta Methods for Hyperbolic Conservation Lawswith Sti� Relaxation TermsShi JinSchool of MathematicsGeorgia Institute of TechnologyAtlanta, GA 30332AbstractUnderresolved numerical schemes for hyperbolic conservation laws with sti� re-laxation terms may generate unphysical spurious numerical results or reduce to lowerorder if the small relaxation time is not temporally well-resolved. We design a secondorder Runge-Kutta type splitting method that possesses the discrete analogue of thecontinuous asymptotic limit, thus is able to capture the correct physical behaviorswith high order accuracy even if the initial layer and the small relaxation time arenot numerically resolved.Key words. Hyperbolic conservation laws with sti� relaxation, shock capturingdi�erence method, Runge-Kutta methods, asymptotic limitAMS(MOS) subject classi�cations. 35L65, 35B40, 65M60
Typeset by AMS-TEX1



21. IntroductionHyperbolic systems with relaxations occur in the study of a variety of physicalphenomena, for example in linear and nonlinear waves [42,36], in relaxing gas owwith thermal and chemical nonequilibrium [41,9], in kinetic theory of rare�ed gasdynamics [6], in viscoelasticity [33], multiphase and phase transitions [15,38]. Theseproblems can be described mathematically by the system of evolutional equations@tU +r � F (U) = 1� Q(U) ; U 2 RN : (1.1)We will call this system the relaxation system. Here we use the term relaxation in thesense of Whitham [42] and Liu [29] to denote the relaxation termQ(U) that determinesuniquely the local equilibria U = E(u) for n (n < N) independent conserved quantitiesu. � is called the relaxation time. As �! 0, u formally satis�es an n� n equilibriumsystem @tu+r � f(u) = 0 : (1.2)A system of conservation laws with relaxation is sti� when � is small compared to thetime scale determined by the characteristic speeds of the system and some appropriatelength scales.Theoretical study for these relaxation problems began by Whitham for linearproblems [42]. For nonlinear hyperbolic systems of two equations the stability ofthe equilibrium equation and the zero relaxation limit were proved by Liu [29] andChen, Levermore and Liu [7] under an interlace condition between the characteristicspeeds of the relaxation system and those of the equilibrium system. Such an interlacecondition was referred to as the subcharacteristic condition by Liu [29].We are interested in high order numerical methods for the sti� relaxation sys-tem (1.1). In particular we would like to investigate the possibility of obtaining themacroscopic behavior described by the equilibrium system (1.2) by solving the orig-inal relaxation system (1.1) with coarse grids (�t;�x >> �). Short of resolution ofthe small relaxation time �, this approach is usually referred to as the underresolvednumerical method. Of course one can just solve directly the equilibrium system, whichmay often be a simpli�cation. However, in many circumstances, the relaxation timevaries from order one to much smaller than unity. There it is usually impossible tosplit the problem into separated regimes and solve directly the equilibrium systemin the sti� regime. The appearance of a wide range of relaxation time occurs in, forexample, relaxing gases [9] and the hypersonic computations in reentry problems [12].



3Thus one has to use one system, i.e., the original relaxation system, in the whole do-main. Here, as a �rst, yet di�cult and crucial, step toward developing a scheme thatworks for all range of the relaxation time, we will focus on the sti� regime. In thisregime, a reasonable scheme should allow the usage of time and spatial incrementsthat are much bigger than the small relaxation time �.We call a numerical scheme for the sti� relaxation system (1.1) robust in thefollowing sense:i. They should have a stability constraint independent of the small relaxation time.The Courant-Friedrichs-Lewy (CFL) number should be determined solely by thenonsti� convection part.ii. They should be modern high resolution shock capturing that can properly handlethe discontinuous features of the problem, yielding correct shock location andspeed without numerical oscillations.iii. They should give the correct macroscopic behavior with high order accuracy byusing coarse grids that do not resolve the small relaxation time �.Usually in a sti� source problem one can overcome the severe stability constraintby using implicit source terms during the time integration. In doing so one can expecta scheme with a CFL number independent of the small relaxation time �, i.e., the CFLnumber will depend solely on the convection part. Since the only sti�ness appearsin the source term, it is very natural to use explicit convection terms [43]. Thereforenumerical stability is not the central issue here. Critical to hyperbolic systems withsti� source terms is that underresolved numerical methods, though stable, may yieldspurious numerical solutions that are totally unphysical. High order schemes mayalso reduce to lower order when the mesh fails to resolve the small relaxation time.In this article we implement a second order Godunov scheme (the MUSCL schemeby van Leer [40]) for the sti� relaxation system (1.1) under the subcharacteristiccondition. The choice of MUSCL is not essential here, for other high resolutionmethods, such as the PPM method of Collela and Woodward [11] or ENO schemeof Harten, Engquist, Osher and Chakravarthy [19] may also serve our purpose. Herethe Godunov scheme is meant for the convection part of the relaxation system only,and the Riemann problem does not take the e�ect of the source term into account.A method of line approach is considered here, combined with a Runge-Kutta methodfor time marching. The purpose of this paper is to show how a splitting second ordertime discretization can be done to obtain a robust shock capturing method in thesense described above.Earlier Pember studied similar problems in [30,31]. Our understanding of this



4problem is that poor numerical results may be generated if the numerical schemedoes not have the correct asymptotic limit. A scheme for the relaxation system (1.1)is said to have the correct asymptotic limit if for �xed �x and �t, as � ! 0, thelimiting scheme is a good (consistent, stable and high order) discretization of theequilibrium system (1.2). In other words, the numerical scheme possesses a discreteanalogy of the asymptotic limit that leads from the relaxation system (1.1) to theequlibrium system (1.2). We illustrate our idea through a model relaxation systemto be speci�ed below, and design a second order time integration that works for thegeneral relaxation systems de�ned in the begining of this section.The sti� source problem also arises in the computations of reacting ows. Therethe smeared numerical shock pro�le may trigger the reaction to the wrong equilib-rium, thus cause incorrect shock speed [10,28]. Various numerical methods are sug-gested in the literature, which requires some sort of resolution in the reacting front([1,2,14,17,18,39]). The sti� source terms in these problems have both stable andunstable local equilibria, thus have essential di�erences from the relaxation systemswe study here.An important class of relaxation problems lie in the kinetic theory of rare�edgas dynamics. There the relaxation describes the interactions of particles, and therelaxation time is the mean free path. When the mean free path is small, the kineticequation approximate the compressible Euler or Navier-Stokes equations, known asthe uid dynamic limit. Numerical simulations of kinetic equations with small meanfree path lead to the development of Boltzmann schemes or kinetic schemes for thecompressible Euler equations [20,32] that do not use the solution of the Riemannproblem.The correct asymptotic limit analysis was applied earlier in the literature. It wasused to study and develop numerical schemes for the neutron transport equation indi�usive regimes [25,26,21,22]. The di�usive behavior of spatially underresolved, semi-discrete high order Godunov schemes for hyperbolic systems with sti� relaxation termswas studied in [23] applying a combination of the correct asymptotic limit analysisand the modi�ed equation analysis. The underresolved numerical method was alsostudied for hyperbolic systems in oscillatory �elds, see for example [13].We choose to analyze in details the numerical discretizations of a prototypicalrelaxation model [7]@th+ @xw = 0 ; (1.3a)@tw + @xp(h) = � 1� (w � f(h)) ; � > 0 ; p0(h) > 0 : (1.3b)



5This system is hyperbolic with two distinct real characteristic speeds �pp0(h). Thepositive parameter � is the relaxation time for the system. The relaxation term is sti�when � << 1; that is, the relaxation time is much shorter than the time it takes for ahyperbolic wave (sound wave) to propagate over a gradient length. The leading termapproximation to Eqs.(1.3) is w = f(h) ; (1.4a)@th+ @xf(h) = 0 : (1.4b)By looking for the O(�) correction to the approximation (1.3), one obtains a dissipativeevolution equation ([7]):w = f(h) � � (p0(h) � f 0(h)2)@xh ; (1.5a)@th+ @xf(h) = � @x �(p0(h) � f 0(h)2)@xh� ; (1.5b)provided that the characteristic speed f 0(h) interlaces with those of system (1.3),�pp0(h) � f 0(h) �pp0(h) :This is the subcharacteristic condition of Liu ([29]) for (1.3).The asymptotic expansion here is analogous to the Chapman-Enskog expansion inrare�ed gas dynamics modeled by the nonlinear Boltzmann equation close to its uiddynamic limit when the mean free path is small ([5,6]). Adopting the terminology ofkinetic theory, the leading term approximation (1.4) is referred to as the Euler limit,while approximation (1.5) is usually called the Navier-Stokes limit. Eq.(1.5a) can becalled the local Maxwellians or local equilibria. As the Chapman-Enskog expansionis formal in the sense that it may not be valid when the solution is near regions withlarge gradients, our numerical asymptotic analysis is only valid when the solution issmooth.In section 2 we perform a detailed initial layer analysis for (1.3). The resultindicates that the initial layer projects the initial data to the local equilibrium. Thisinformation is needed since we want a scheme that does not resolve the initial layer.In section 3 we begin our study with the �rst order splitting method and the Strang'ssplitting method. First we show that, by doing the �rst time step fully implicitly,the scheme automatically projects the initial data into the local equilibrium, thus thescheme needs not to resolve the initial layer nor to preprocess the initial data. We thenshow that the Strang splitting may fail to maintain its second order accuracy as �! 0,



6thus does not have a good limit when the mesh does not resolve �. A second ordersplitting scheme is developed which combines the high order Godunov schemes withan implicit ODE solver in a second order total-variation-diminishing (TVD) Runge-Kutta formulation. This scheme is robust in the sense described above. In contrast tothe conclusion of Pember in [31], where he conjectures that unsplit schemes must beused for the relaxation system, our analysis indicates that it is not the splitting thatcauses the spurious or poor solutions. Rather, any schemes, split or unsplit, violatingthe correct asymptotic limit lead to spurious or poor solutions. In section 4 we showsome numerical examples that seem to agree with our analysis.Although the analysis and experiment are carried out on the model problem (1.3),the result extends far beyond this model. In section 5 we apply the new splittingscheme developed in section 3 to two more general relaxation systems, including theBroadwell model of the rare�ed gas dynamics, and the Eulerian gas dynamics withheat transfer. Numerical results show that for these problems the new splitting schemedoes give the correct equilibrium behavior without resolving the small relaxationtime. Since our analysis concentrates on the time integrator, which is dimensionindependent, thus also works for higher dimensional problems [24].2. The Initial Layer AnalysisSince the underresolved numerical schemes exhibit spurious behavior in the pres-ence of the initial layer, such as the incorrect local equilibria and the worng shocklocation, which do not appear if there is no initial layer, it is important to understandthe initial layer behavior of the relaxation system. In this section we perform aninitial layer analysis on the model system (1.3). The analysis here is in analogy tothe similar analysis performed by Caisch and Papanicolaou ([5]) on the Broadwellmodel of the Nonlinear Boltzmann Equation close to its uid dynamic limit when themean free path is small.Introducing a stretched time variable� = t=�and considering h and w as functions of � and x, Eq.(1.3) then takes the form1� @�h+ @xw = 0 ; (2.1a)1� @�w + @xp(h) = �1� (w � f(h)) ; (2.1b)



7with initial conditions h(0; x) = hI(x) ; w(0; x) = wI(x) :We look for an expansion such thath = h0(t; x) + �h1(t; x) + � � �+ hIL0 (�; x) + �hIL1 (�; x) + � � � ; (2.2a)w = w0(t; x) + �w1(t; x) + � � �+ wIL0 (�; x) + �wIL1 (�; x) + � � � ; (2.2b)where h0 + �h1 and w0 + �w1 are functions already determined by (1.3) up to theinitial condition and an O(�2) error.We insert (2.2) into (2.1),1� @� [h0(t; x) + �h1(t; x) + � � �+ hIL0 (�; x) + �hIL1 (�; x) + � � � ]+ @x[w0(t; x) + �w1(t; x) + � � �+ wIL0 (�; x) + �wIL1 (�; x) + � � � ] = 0 ;1� @� [w0(t; x) + �w1(t; x) + � � �+ wIL0 (�; x) + �wIL1 (�; x) + � � � ]+ @xp(h0(t; x) + �h1(t; x) + � � �+ hIL0 (�; x) + �hIL1 (�; x) + � � � )+ 1� [w0(t; x) + �w1(t; x) + � � �+ wIL0 (�; x) + �wIL1 (�; x) + � � �� f(h0(t; x) + �h1(t; x) + � � �+ hIL0 (�; x) + �hIL1 (�; x) + � � � )] = 0 :Equating to zero coe�cients of equal powers of � gives the following equations for theinitial layer terms:@�hIL0 = 0 ; (2.3a)@�wIL0 + w0 + wIL0 � f(h0 + hIL0 ) = 0 ; (2.3b)@�hIL1 + @th0 + @xw0 + @xwIL0 = 0 ; (2.4a)@�wIL1 + @tw0 + @xp(h0 + hIL0 )+ w1 + wIL1 � f 0(h0 + hIL0 )(h1 + hIL1 ) = 0 : (2.4b)In these equations all the terms of the interior expansion appearing on the right sideare evaluated at t = 0 after the indicated operations have been performed.We attempt now to solve (2.3) and (2.4) recursively so thathILk (�; x) and wILk (�; x) decay to zero as � !1 uniformly along x derivativesfor k = 0; 1; � � � , and



8 h0(0; x) + hIL0 = hI(x) ; (2.5a)w0(0; x) + wIL0 = wI(x) ; (2.5b)hk(0; x) + hILk = 0 ; k = 1; 2; � � � ; (2.5a)wk(0; x) + wILk = 0 ; k = 1; 2; � � � : (2.5b)Lemma 2.1. Let w0(0; x) = f(h0(0; x)) be the local equilibrium to the leading orderand hIL0 (0; x) = 0. Then the nonlinear system of ordinary di�erential equations (2.3)has a unique solution exponentially decaying as � ! 1, uniformly in x, with theinitial condition (2.5). Moreover x derivatives of the solution also decay exponentiallyas � !1, uniformly in x.Proof: Since hIL0 (0; x) = 0, one immediately obtains from Eq.(2.3) thathIL0 (�; x) = 0 ; for any � � 0 : (2.6)Thus (2.5a) gives h0(0; x) = hI(x) :Applying (2.6) and the assumption w0(0; x) = f(h0(0; x)) in (2.3b) then gives@�wIL0 = �wIL : (2.7)The existence of a unique exponential decay solution wIL0 is obvious from (2.7). Thestatement about x-derivative follows similarly after di�erentiating (2.7) with respectto x which is just a parameter here. The proof of the lemma is complete. //Remark: Lemma 1 and (2.5) implyh0(0; x) = hI(x) ; hIL0 (�; x) � 0 ; (2.8a)w0(0; x) = f(hI(x)) ; wIL0 = wI(x) � f(hI(x)) : (2.8b)With Lemma 1, the leading term interior approximation @th0 = �@xf(h0) from (1.2a),and (2.5),we can now reduce Eq.(2.4) to@�hIL1 = �@xwIL0 ; (2.9a)@�wIL1 = �wIL1 + f 0(h0)2@xh0 � p0(h0)@xh0 � w1 + f 0(h0)(h1 + hIL1 ) : (2.9b)



9Lemma 2.2. Let w1(0; x) = f 0(h0(0; x))2@xh0(0; x) � p0(h0(0; x))@xh0(0; x) andh1(0; x) = 0. Then the nonlinear system of ordinary di�erential equations (2.4) (orequivalently (2.9)) has a unique solution exponentially decaying as � !1, uniformlyin x, with the initial condition (2.5). Moreover x derivatives of the solution also decayexponentially as � !1, uniformly in x.Proof: First, the exponential decay of hIL1 and its x-derivatives can be easily seenfrom (2.9a) by the exponential decay of wIL0 and its x-derivatives. Now, submittingw1(0; x) = f 0(h0(0; x))@xw0(0; x) � p0(h0(0; x))@xh0(0; x) and h1(0; x) = 0 in (2.9b)gives @�wIL1 = f 0(h0)hIL1 � wIL1 : (2.10)This ordinary di�erential equation clearly has a unique exponential decay solutionsince hIL1 has exponential decay. The x-derivatives of wIL1 has exponential decay isalso trivial by taking derivatives with respect to x on Eq.(2.10) using the fact thatthe x-derivatives of hIL1 also have exponential decay. This completes the proof for thelemma. //Remark: Lemma 2 and (2.8) give the initial layer solutionw1(0; x) = (f 0(hI(x))2 � p0(hI(x)))@xhI(x) : (2.11)Higher-order terms and their initial conditions are determined similarly but areomitted here since the interior expansion (1.3) is only valid to O(�). By combining(2.8) with (2.11) we obtain the initial conditions for the relaxation equation (1.3) ash(0; x) = hI(x) ;w(0; x) = f(hI (x)) + � [f 0(hI(x))2 � p0(hI(x))]@xhI(x) :By comparing with (1.3a) one sees that the initial layer projects the initial data tothe local equilibria.Remark: Similar initial layer analysis can be carried out for the more generalrelaxation system (1.1) and similar conclusion may be drawn.3. The Numerical DiscretizationsWe introduce the spatial grid points xj+ 12 ; j = � � � ;�1; 0; 1; � � � with uniformmesh spacing �x = xj+ 12 � xj� 12 for all j. The time level t0; t1; � � � are also spaced



10uniformly with space step �t = tn+1 � tn for n = 0; 1; 2; � � � . Here the assumption ofa uniform grid is only for simplicity. We use Unj to denote the cell average of U in thecell [xj� 12 ; xj+ 12 ] at time tn,Unj = 1�x Z xj+12xj� 12 U(tn; x) dx :Consider the one-dimensional relaxation system@tU + @xF (U) = 1� Q(U) :A spatial discretization in conservation form can be written as@tUj + 1�x (Fj+ 12 � Fj� 12 ) = 1� Qj ;where the numerical ux Fj+ 12 is to be de�ned in terms of the known cell-averagenumerical quantities Uj 's, and the averaged source term is de�ned byQj = 1�x Z xj+12xj� 12 Q(U) dx = Q0@ 1�x Z xj+12xj� 12 U dx1A +O(�x2) = Q(Uj ) +O(�x2) :Thus, for su�ciently accurate spatial discretizations we have, with an accuracy ofO(�x2), @tUj + 1�x (Fj+ 12 � Fj� 12 ) = Q(Uj ) :3.1 The Shock Capturing Spatial DiscretizationsTo de�ne the convection ux Fj+ 12 we use the high order Godunov scheme of vanLeer ([40]), that are based on Roe's approximate solution of the Riemann problem[34] for the homogeneous hyperbolic system@tU + @xF (U) = 0 :During the reconstruction step slope limiters [40] are applied in order to eliminateunphysical numerical oscillations. Note here the reconstruction and the Riemannsolver do not account for the presence of the source terms.3.2. The Correct Asymptotic Limit Analysis



11For the relaxation system, it is natural to require that the numerical schemepossesses a discrete analogy of the continuous asymptotic limit. Here the asymptoticanalysis is de�ned in the following sense. First, the asymptotic expansion is carriedout in terms of � under the coarse scaling �x�t = O(1), ��t >> 1. Second, sincethe Chapman-Enskog expansion for the continuous relaxation system is valid only forsmooth solution, in our discrete system we have to impose the same assumption. Thusall the discrete spatial derivatives, including f 0(h), are assumed to be O(1). Therefore,unless otherwise speci�ed, we always have ��+ = O(�t). We do not, however, assumethe time derivative to be O(1). This allows us to determine the e�ect of the initiallayer. Under these assumptions our asymptotic expansion illustrates the numericalbehavior only in the smooth region.A (high order) scheme is said to have the correct asymptotic limit if as � !0, under the above assumptions, the limiting scheme becomes a good (high order)approximation of the equilibrium equations. The initial layer analysis in section 3suggests that the initial layer projects the initial data into a local equilibrium. Thissame projection also leads from the relaxation system to the equilibrium equationaway from the initial layer. In order to have the correct asymptotic limit withoutresolving the initial layer, the numerical scheme should intrinsically have the samemechanism, that is to say, the scheme should project the numerical data, in or not inlocal equilibrium, into a local equilibrium at every time step. Such a projection in the�rst time step simulates the initial layer behavior without resolving the initial layer.At later times this same projection guarantees the correct numerical passage from therelaxation system to the equilibrium equation. Mathematically such a projection isrealized through Q(Un) � 0 ; for all n � 1 ;up to some approximation error which is a function of � and �t. For the modelproblem (1.3), this impliesWn � F (Hn) � 0 ; for all n � 1 :3.3 A First Order Splitting SchemeBy examining the asymptotics that leads from the relaxation system (1.1) tothe equilibrium system (1.2), it is natural to design numerical schemes that simulatethe same asymptotics. The simplest way is to use a �rst order splitting scheme thatcombines a backward Euler method for the sti� source term with a forward Euler



12method for the convection term. It is given byU (1) = Un + �t� Q(U (1)) ; (3.1a)Un+1 = U (1) + ��+F (1)j� 12 : (3.1b)Roughly speaking, the �rst step being fully implicit always gives a projection into alocal equilibrium Q(U) � 0 independent of the initial data. This local equilibrium,after applied to the second step, should give an equilibrium scheme that is consistentto the equilibrium system (1.2). The ODE solver being used here is the backwardEuler method, which is both A-stable and L-stable. We show that this scheme hasthe correct asymptotic limit.Applying (3.1) to the model problem (1.3), one hasH(1) = Hn ; (3.2a)W (1) =Wn � �t� (W (1) � f(H(1))) ; (3.2b)Hn+1 = H(1) + ��+W (1)j� 12 ; (3.2c)Wn+1 =W (1) + ��+p(1)j� 12 : (3.2d)We have the following results:� If at t = tn, Wn � f(Hn) = 0 ; (3.3)then at t = tn+1, Wn+1 � f(Hn+1) = O(�t) : (3.4)In the intermediate step, W (1) � f(H(1)) = 0 : (3.5)If at t = tn the solution is not in local equilibrium, thenWn+1 � f(Hn+1) = O(�t + ��t) : (3.6)In the intermediate step, W (1) � f(H(1)) = O( ��t ) : (3.7)Case 1. The Initial Data in a Local Equilibrium.



13From (3.2b) and (3.3),W (1) �Wn = ��t� (W (1) �Wn +Wn � f(H(1)))= ��t� (W (1) �Wn +Wn � f(Hn))= ��t� (W (1) �Wn) : (3.8)Thus W (1) �Wn = 0 : (3.9)Applying this to (3.2b) implies W (1) � f(H(1)) = 0 :Applying (3.9) in (3.2d) givesWn+1 � f(Hn+1) =W (1) � f(Hn+1) +O(�t)=Wn � f(Hn) + f(Hn) � f(Hn+1) +O(�t) = O(�t) :(3.10)In the last equality of (3.10) we used Hn+1 � H(1) = Hn+1 � Hn = O(�t). Thus(3.4) and (3.5) are true.Case 2. The Initial Data Not in a Local Equilibrium.SupposeWn� f(Hn) = O(1) 6= 0. Then (3.9) does not hold. Instead, (3.8) onlyyields W (1) �Wn = ��t� (W (1) �Wn) +O(�t� ) ;thus W (1) �Wn = 11 + �t� O(�t� ) = O(1) :Applying this in (3.2b) givesW (1) � f(H(1)) = � ��t (W (1) �Wn) = O( ��t ) :Applying (3.2b) in (3.2d),Wn+1 � f(Hn+1) = 11 + �t� (Wn + �t� f(H(n))) � f(Hn+1) := ��t (Wn � f(Hn)) + f(Hn)� f(Hn+1) +O(( ��t)2)= O(�t+ ��t ) :



14Hence (3.6) and (3.7) are true. //We have shown that, as long as the solution is bounded (by numerical stability),Wn�f(Hn) will always be O(�t+ ��t) by the result (3.6) for general initial data, andat t = t(1) 2 (tn�1; tn+1) (3.7) is always valid. Thus we have the following conclusion:� For any initial data, the splitting scheme (3.2) always gives, for any n � 1,Wn � f(Hn) = O((�t + ��t ) ; (3.11)and W (1) � f(H(1)) = O( ��t ) ; (3.12)for t(1) 2 (tn�1; tn).Moreover, as � ! 0, by applying (3.12) in (3.2c), after ignoring the error terms,the splitting scheme (3.2) limits to the equilibrium schemeHn+1 = Hn + ��+fnj� 12 ; (3.13a)Wn+1 = f(Hn+1) ; (3.13b)where fnj� 12 =Wnj� 12 ��Wn=f(Hn) : (3.13c)(3.13a) is clearly the forward Euler method for the equilibrium equation (1.4b). By(3.11) and (3.12), the scheme (3.2) approximates (3.13a) with an error O( ��t ), andapproximates (3.13b) with an error O(�t + ��t). Thus, the splitting scheme alwayshas the correct asymptotic limit independent of the initial data.Remark: We use the �rst order splitting method just to carry out the analysisand to illustrate the basic ideas. It does not mean that we advocate the use of a �rstorder scheme.3.4 The Strang SplittingA frequently used splitting method for an inhomogeneous hyperbolic system isStrang's splitting [37]. If we call the sti� ODE operator as S1(t), and the homogeneousconvection operator S2(t), then the Strang splitting takes the formUn+1 = S1(�t2 )S2(�t)S1(�t2 )Un : (3.14)



15This is a second order splitting for � = O(1) and �t;�x << �, as long as both S1 andS2 are of second order discretizations. In this section we will show that as �! 0 whileholding �t and �x �xed, the Strang splitting becomes only �rst order approximationto the equilibrium equation (1.4b).For the model system (1.3), since the variable w is linear in the system, we caneven assume that S1 is the exact solution operator. Thus in the sti� ODE step we donot introduce any numerical error. The exact ODE solver, of cource, also projects thesolution into a local equilibrium. For S2 we use the second order explicit Runge-Kuttamethod. Applying the Strang splitting (3.14) to (1.3), one getsH� = Hn ; (3.15a)W � = S1(�t2 )(Hn;Wn) ; (3.15b)H(1) = H� � ��+W �j� 12 ; (3.15c)W (1) =W � � ��+p�j� 12 ; (3.15d)H(2) = H(1) � ��+W (1)j� 12 ; (3.15e)W (2) =W (1) � ��+p(1)j� 12 ; (3.15f)H(3) = 12 (H� +H(2)) ; (3.15g)W (3) = 12 (W � +W (2)) : (3.15h)Hn+1 = H(3) ; (3.15i)Wn+1 = S1(�t2 )(H(3);W (3)) : (3.15j)As �! 0, (3.15a-3.15b) simply projects the solution into a local equilibriumW � = f(H�) +O(�) : (3.16)Note that for n � 2, both (3.15a,b) and (3.15i,j) essentially do (3.16), thus we candisregard (3.15i-3.15j) in our analysis. Applying (3.16) into (3.15c), one can reducethe scheme (3.15) into: H(1) = Hn � ��+fnj� 12 +O(�) ; (3.17a)W (1) = f(Hn)� ��+pnj� 12 +O(�) ; (3.17b)H(2) = H(1) � ��+W (1)j� 12 ; (3.17c)W (2) =W (1) � ��+p(1)j� 12 ; (3.17d)Hn+1 = 12 (Hn +H(2)) ; (3.17e)Wn+1 = 12 (Wn +W (2)) : (3.17f)



16Clearly (3.17a) is consistent to the equilibrium equation (1.4b), modulus an O(�) error.(3.17) overall seems to be a second order Runge-Kutta method for (1.4b), except thatone needs to justify that (3.17c) is consistent to (1.4b). This requiresW (1) � f(H(1)) :Using (3.17b) and (3.17a) impliesW (1) = f(Hn) +O(�t + �) = f(H(1)) +O(�t+ �) : (3.18)If one applies (3.18) in (3.17c) then one indeed gets a consistent discretization ofthe equilibrium equation (1.4b), however, the O(�t) error in (3.18) makes such anapproximation only �rst order! Thus in the regime � ! 0 and ��t ! 0 the Strangsplitting is only �rst order approximation to the equilibrium equation (1.4b).Remark 1: Similar argument shows that one can not improve the result byusing higher order Runge-Kutta methods in the convection step.Remark 2: If one uses a Godunov type integration in time in the convection steprather than a method of line approach, then such deterioration of numerical results donot appear [27]. The reason for this is that the Godunov type time marching schemeis a one step scheme, that only uses the initial data obtained from the �rst step of theODE solver (3.15a-b), which is a good approximation of the local equilibrium. Thusthe result of this paper applies only to method of line approaches.To �x the problom associated with the Runge-Kutta approach one just need toadd a good sti� ODE step between t = t(1) and t = t(2) in (3.17). This will reducethe error term in (3.18). This motivates the development of our second order splittingscheme in the next section.3.5 A Second Order Splitting SchemeIn this section we introduce a second order Runge-Kutta Godunov splittingscheme which combines two explicit steps for the convection terms and two implicitsteps for the source terms. If one views (3.1) as a splitting method in the Eulersetting, then this new splitting scheme is a natural second order extension in theRunge-Kutta setting. It is a second order method when � is �xed, and not only hasthe correct asymptotic limit but the limiting scheme, as �! 0, is again a second order



17approximation to the equilibrium system. The scheme is as follows:U� = Un + a�t� Q(U�) ; (3.19a)U (1) = U� � ��+F �j� 12 ; (3.19b)U�� = U (1) + b�t� Q(U��) + c�t� Q(U�) ; (3.19c)U (2) = U�� � ��+F ��j� 12 ; (3.19d)Un+1 = 12 (Un + U (2)) : (3.19e)The coe�cients a; b and c are to be determined. Roughly speaking, this scheme hasprojections into the local equilibrium at two intermediate time steps t� (which is thevery �rst step!) and t��, immediated followed by two convection steps. Due to theprojection at t� and t��, these two convection steps will relax to a limiting equilibriumscheme for the equilibrium system.Scheme (3.19) has the following general properties:a) If Q = 0, then (3.19) reduces toU (1) = Un � ��+Fnj� 12 ;U (2) = U (1) � ��+F (1)j� 12 ;Un+1 = 12 (Un + U (2)) ;which is the second-order explicit TVD Runge-Kutta method.b) For �xed � = O(1) it is second order ifa = �1 ; b = 1 ; c = 2 :Proof: See Appendix.Remark: Like the second order time discretization of Engquist and Sjogreen[14], this scheme also contains a negative parameter a in the implicit term in (3.19).Since we only concentrate on the coarse (�t >> �) regime, this drawback does nothave any impact on the results presented in this article. In an upcoming article thisobstacle will be removed [4].c) The L-stability analysis with F = 0 shows that this splitting method givesUn+1 = �1 + q � q2=21� q2 �Un ! 12Un as q! �1:



18Although this method is not L-stable, it does damp any oscillation introduced by thetransient behavior with a rate of 12 .Applying scheme (3.19) to the model problem (1.3),H� = Hn ; (3.20a)W � =Wn � a�t� (W � � f(H�)) ; (3.20b)H(1) = H� � ��+W �j� 12 ; (3.20c)W (1) =W � � ��+p�j� 12 ; (3.20d)H�� = H(1) ; (3.20e)W �� =W (1) � b�t� (W �� � f(H��)) � c�t� (W � � f(H�)) ; (3.20f)H(2) = H�� � ��+W ��j� 12 ; (3.20g)W (2) =W �� � ��+p��j� 12 ; (3.20h)Hn+1 = 12 (Hn +H(2)) ; (3.20i)Wn+1 = 12 (Wn +W (2)) : (3.20j)Scheme (3.20) has the following properties:d) Although (3.20) contains implicit nonlinear terms, due to the special structureof the source term, one can avoid solving nonlinear algebraic equations. This is nottrue for more general source terms.e) Suppose ab 6= 0, i.e., both (3.20b) and (3.20f) are genuinely implicit, and�t >> �. Then� If at t = tn, Wn � f(Hn) = 0 ; (3.21)then at t = tn+1 the scheme (3.20) givesWn+1 � f(Hn+1) = 12(Wn � f(Hn)) +O(�t) : (3.22)In the intermediate steps,W � � f(H�) = 0 ; W �� � f(H��) = O(�) : (3.23)



19If at t = tn the solution is not a local equilibrium, then at t = tn+1,Wn+1 � f(Hn+1) = 12 (Wn � f(Hn)) +O(�t+ ��t ) ; (3.24)and W � � f(H�) = O( ��t ) ; W �� � f(H��) = O( ��t) : (3.25)We begin with case 1. First, if (3.21) holds, then (3.20a,b) giveW � �Wn = �a�t� (W � �Wn +Wn � f(Hn)) = �a�t� (W � �Wn) ;thus W � �Wn = 0 : (3.26)Applying (3.26) in (3.20b) givesW � � f(H�) = � �a�t (W � �Wn) = 0 : (3.21)By (3.20c,d),H(1) �Hn = H(1) �H� = O(�t) ; W (1) �W � = O(�t) : (3.22)Using (3.21) and (3.22) in (3.20f),W �� �W (1) = �b�t� (W �� � f(H��))= �b�t� (W �� �W (1) +W (1) � f(H(1)))= �b�t� (W �� �W (1)) � b�t� (W � � f(H�)) +O(�t2� )= �b�t� (W �� �W (1)) +O(�t2� ) ;so W �� �W (1) = 11 + b�t� O(�t2� ) = O( ��t )O(�t2� ) = O(�t) (3.23)Applying (3.23) in (3.20f), along with (3.21), givesW �� � f(H��) = � �b�t [W �� �W (1) + c�t� (W � � f(H�))] = O( ��t)O(�t) = O(�) :(3.20g,h) giveH(2) �H(1) = H(2) �H�� = O(�t) ; W (2) �W �� = O(�t) : (3.24)



20Combining (3.24) with (3.22) givesH(2) �Hn = O(�t) ;Now from (3.20i,j),Wn+1 � f(Hn+1) = 12 (Wn +W (2)) � 12f(Hn) � 12f(H(2)) +O(�t2)= 12 (Wn � f(Hn)) + 12 (W (2) � f(H(2))) +O(�t2)= 12 (Wn � f(Hn)) + 12 (W �� � f(H��)) +O(�t)= 12 (Wn � f(Hn)) +O(� +�t)= 12 (Wn � f(Hn)) +O(�t) :Thus (3.22) and (3.23) are shown.Next, assume at t = tn the solution is not in local equilibrium, soWn�f(Hn) =O(1) 6= 0. Then, due to the underresolution of the initial layer, (3.20a,b) implyW � �Wn = �a�t� (W � �Wn)� a�t� (Wn � f(Hn)) = �a�t� (W � �Wn) +O(�t� ) ;or W � �Wn = 11 + �t� O(�t� ) = O(1) : (3.25)Applying (3.25) in (3.20b) givesW � � f(H�) = O( ��t) :Similar arguments applying to (3.20f) givesW �� � f(H��) = O( ��t ) :Furthermore, one hasWn+1 = 12 (Wn+W (2)) = 12 (Wn+W ��) +O(�t) = 12 (Wn + f(H��)) +O(�t+ ��t) :Therefore,Wn+1 � f(Hn+1) = 12Wn + 12f(H��) � 12f(Hn)� 12f(H(2)) +O(�t + ��t)= 12 (Wn � f(Hn)) + 12 (f(H��) � f(H(2))) +O(�t + ��t )= 12 (Wn � f(Hn)) +O(�t + ��t ) :



21Thus (3.24) and (3.25) are true. //Note that (3.24) and (3.25) are derived independent of Wn � f(Hn) (as long asit is O(1)), thus are true for all n � 1 independent of the initial data W 0 � f(H0).Therefore we have the following:� For any O(1) initial data, the splitting scheme (3.20) always givesWn � f(Hn) = 12n (W 0 � f(H0)) +O(�t+ ��t ) ; (3.26)and W � � f(H�) = O( ��t ) ; W �� � f(H��) = O( ��t) ; (3.27)for all n � 1, where t�; t�� 2 (tn�1; tn).Proof. By (3.24), for all n � 1,Wn � f(Hn) = 12 (Wn�1 � f(Hn�1)) +O(�t+ ��t )= 12n (W 0 � f(H0)) + (1 + 12 + � � � + 12n�1 )O(�t+ ��t )= 12n (W 0 � f(H0)) +O(�t+ ��t) : (3.28)(3.27) follows easily from (3.28) and the analysis that leads to (3.25).By (3.26), Wn � f(Hn) decays to zero with a decay rate of 12 , up to the error ofO(�t+ ��t ). Thus we havef) Scheme (3.20) has the correct asymptotic limit as t!1 for any O(1) initialdata. More speci�cally, as �! 0, it limits toH(1) = Hn � ��+fnj� 12 ; (3.29a)H(2) = H(1) � ��+f (1)j� 12 ; (3.29b)Hn+1 = 12 (Hn +H(2)) : (3.29c)Wn+1 = f(Hn+1) : (3.29d)Here fnj� 12 and f (1)j� 12 are de�ned the same way as in (3.13c). This is the secondorder TVD Runge-Kutta method for the equilibrium equation (1.4), with the spatialdiscretizations fj� 12 being Wj+ 12 evaluated at the local equilibriumW = f(H). Thusthis new splitting method limits to a second order method to the equilibrium equationas � ! 0, which is the major di�erence from the Strang splitting. By (3.27), the



22splitting scheme (3.20) approaches (3.29a-c) with an error of O( ��t ), and to (3.29d)with a decay rate of 12 up to an error of O(�t + ��t ). In conclusion, the splittingscheme (3.20) always has the correct asymptotic limit in long time independent of theinitial data, and the limiting scheme remains its second order accuracy, thus shouldperform better then the Strang splitting.4. Numerical ExamplesWe now test these methods on the following example:@th+ @xw = 0 ; (4.1a)@tw + @x�h+ 12h2� = �108�w � 12h2� ; (4.1b)The limiting equations for this problem isw = 12h2 � 10�8(1 + h� h2)@xh ; (4.2a)@th+ @x�12h2� = 10�8@x�(1 + h� h2)@xh� : (4.2b)In the �rst example we choose the initial condition for h ashI(x) = � 1 for 0 < x < 0:2 ;0:2 for 0:2 < x < 1 ; (4.3a)while for w the non-local-equilibrium initial data are taken to bewI(x) = � 12hI(x)2 : (4.3b)In this example � = 10�8. We use reecting boundary conditions. In all numericalexamples presented in this section we always take �x = 10�2.Given the initial condition (4.2a) the solution of the equilibrium equation (4.2b),to the leading order, forms a shock moving to the right with speed 0:6 determined bythe Rankine-Hugoniot jump condition. Note that for this problem the CFL numberCFL = maxh ph�t�x = p2 �t�x = � :We now test the three splitting schemes discussed in last section. In all theschemes we use CFL=0:37 (�t = 0:0025), and output the numerical solutions att = 0:5 in Fig.1. Fig.1(a), Fig.1(b) and Fig.1(c) show the results of h;w and w� f(h)



23given by the �rst order splitting scheme (3.1), the Strang splitting (3.15) and the newsplitting (3.20) respectively. All the scheme captures the correct equilibrium behavior,but Strang's splitting gives inferior results compared with the other two splittings. InFig.1(b) we do not plot w � f(H) for the Strang splitting since that is O(�) by theexact ODE solver that we use.In the next example we still solve (4.1) but with the initial condition given byhI(x) = 1 + 0:2 sin(8�x) (4.4a)and the local equilibrium condition for wwI(x) = 12hI(x)2 : (4.4b)The boundary condition is periodic. We choose �t = 0:005 and output the solutionsof the Strang splitting and the new splitting at t = 0:3 in Fig.2. One can clearlysee that the Strang splitting exhibits a typical �rst order nature for a solution withcomplicated structures, while the new splitting gives a results of a typical second orderTVD (total-variation-diminishing) behavior.5. Some ApplicationsIn this section we apply the second order splitting scheme (3.19) to two moregeneral relaxation systems. These include the Broadwell model of the nonlinear Boltz-mann equation of rare�ed gas dynamics, and the Eulerian gas dynamics with heattransfer. We believe that the scheme (3.19) is also applicable to other discrete velocitykinetic equations and gas dynamics with thermo-nonequilibrium.5.1. The Broadwell ModelA simple discrete velocity model for a gas was introduced by Broadwell [3]. Itcan be derived by looking for one dimensional solutions of a four-velocity model. Thegas is de�ned by a density function in phase space satisfying the equation@tf+ + @xf+ = � 1� (f+f� � f20 ) ;@tf� � @xf� = � 1� (f+f� � f20 ) ;@tf0 = � 12� (f+f� � f20 ) ; (5.1)



24Here f+; f� and f0 denote the particle density distribution at time t, position x withvelocity 1;�1 and 0 respectively. � is the mean free path. The uid dynamic variablesfor the Broadwell model are density � and momentum m de�ned by� = f+ + 2f0 + f� ; m = f+ � f� ;In addition, de�ne z = f+ + f�then the Broadwell equations can be rewritten as@t�+ @xm = 0 ; (5.2a)@tm+ @xz = 0 ; (5.2b)@tz + @xm = 12� (�2 +m2 � 2�z) : (5.2c)A local Maxwellian (or local equilibrium) in (5.1) is a density function that satis�esf20 = f+f� ;or in uid variables, z = 12� (�2 +m2) : (5.3)As � ! 0, the following model Euler equation can be derived by applying (5.3) in(5.2b), @t�+ @xm = 0 ;@tm+ @x 12�(�2 +m2) = 0 ;By including the O(�) correction one obtains a model Navier-Stokes equation [3].We now test the van Leer-new splitting scheme for the Broadwell equation (5.2)with � = 10�8 by solving a Riemann problem with the initial data�l = 1; �r = 0:2 ; ml = mr = 0 ; zl = zr = 1 : (5.4)Here the initial data are not a local equilibrium. The initial jump appears at atx = 0:5. We integrate the Broadwell equation over [0; 1] with 200 spatial cells, and�t = 0:0025. The boundary condition is reecting. The solution, output at t = 0:25and depicted in Fig. 3, contains a left moving rarefaction and a right moving shock



25wave. Although the mean free path � = 10�8 is underresolved, the numerical schemedoes capture the correct behavior.5.2 Eulerian Gas Dynamics with Heat TransferConsider the one-dimensional Euler equation for gas dynamics, coupled with asimpli�ed heat transfer rate equation with a constant temperature bath [31]:@t�+ @x�u = 0 ; (5.5a)@t(�u) + @x(�u2 + p) = 0 ; (5.5b)@t(�E) + @x(�uE + up) = �K�(T � T0) ; (5.5c)In this system, � is the density, u the velocity, E = e+u2=2 the energy per unit mass,e the internal energy, T the temperature, and p the pressure. Away from equilibriumwe assume the gas is a -law gas, i.e., p = ( � 1)�e. We choose units of temperatureso that T = e. K and T0 are positive constants. K is the heat transfer coe�cient.T0 is the temperature of the constant temperature bath. The characteristic speeds ofthe system are u� c; u and u+ c, where c =pp=�. At equilibrium,T = T0 or E = T0 + 12u2 ;the ow is governed by the Eulerian equations for isothermal ow:@t�+ @x�u = 0 ;@t(�u) + @x(�u2 + p�) = 0 ;The pressure p� is governed by an isothermal gas law p�(�) = ( � 1)�e0, where e0 isthe internal energy of the gas at T = T0. The equilibrium characteristic speeds areu� c� and u+ c�, where c� =pp=� =p( � 1)e0 :We now test the van Leer-new splitting scheme for eqs (5.5) with � = 10�8 bysolving a Riemann problem with initial data�l = 1; �r = 0:2 ; ml =mr = 0 ; El = Er = 1 : (5.6)Here the initial data are not the local Maxwellian. The initial jump appears at x = 0:5.We integrate over [0; 1] with 200 spatial cells, and �t = 0:002. The boundary condition



26is reecting. The solution, output at t = 0:3 and depicted in Fig. 4, contains a leftmoving rarefaction and a right moving shock wave. Although the relaxation time� = 10�8 is underresolved, the numerical scheme again captures the correct behavior.6. ConclusionsIn this article we analyzed some underresolved, splitting schemes for hyperbolicsystems with sti� relaxation terms. We indicate that such a sti� source problem isnot merely a stability problem, and classical high order splitting method may failto maintain the higher order accuracy when the relaxation time is not temporallyresolved. To design high order scheme that gives correct physical behavior, yet alsomaintains high order accuracy in the underresolved regime, the scheme should havea discrete analogue of the asymptotic limit of the continuous system. A new secondorder splitting scheme is developed which has the correct asymptotic limit even if theinitial layer and the small relaxation time is not resolved, and limits to a second orderscheme as the relaxation time shrinks to zero.The asymptotic analysis carried out here is for an one-dimensional 2�2 p-systems.It is also applicable to general N �N relaxation systems in higher dimensions. Simi-larly, the second order splitting scheme (3.19) can also be used for general hyperbolicsystems with sti� relaxation terms (1.1) in any dimension. Besides the model prob-lem (1.3), we have tested this splitting scheme on two more general one-dimensionalrelaxation systems in which the numerical results do have the correct asymptotic limit.More importantly, the studies here also led to the development of the relaxationschemes for nonlinear systems of hyperbolic conservation laws ([24]). This new classof TVD shock capturing schemes do not use any Riemann solver and can be easilyextended to higher dimensions.Appendix: The Order of Accuracy of the Splitting SchemesHere we study the accuracy of the splitting scheme (3.19) for � = O(1). Forsimplicity consider the linear case with f(U) = AU and g(U) = BU , where A and B



27are both constant matrices. Let � = 1. Then (3.19) becomesU� = Un � aB�tU� ; (A.1a)U (1) = U� �A�tU� ; (A.1b)U�� = U (1) � bB�tU�� � cB�tU� ; (A.1c)U (2) = U�� �A�tU�� ; (A.1d)Un+1 = 12 (Un + U (2)) : (A.1e)Assume that kAk�t < 1 and kBk�t < 1 such that the invert of the matrices inthe subsequent context is valid. From (A.1) we getU� = (I + aB�t)�1Un ; (A.2a)U (1) = (I �A�t)U� = (I �A�t)(I + aB�t)�1Un ; (A.2b)U�� = (I + bB�t)�1(U (1) � cB�tU�)= (I + bB�t)�1((I �A�t� cB�t)(I + aB�t)�1)Un ; (A.2c)U (2) = (I �A�t)U��= (I �A�t)(I + bB�t)�1((I �A�t� cB�t)(I + aB�t)�1)Un : (A.2d)Here (A.2b) uses (A.2a), (A.2c) uses (A.2b) and (A.2d) uses (A.2c). Note that ingeneral AB 6= BA. After ignoring the O(�t3) terms, we get from (A.2d) thatU (2) =fI � [2A+ (a + b+ c)B]�t+ [A2 + (2a+ b + c)AB + bBA+ ((a + b)(a + c) + b2)B2]�t2gUn :Therefore by (A.1e),Un+1 =fI � [A+ 12 (a+ b + c)B]�t+ 12 [A2 + (2a + b+ c)AB + bBA+ ((a + b)(a + c) + b2)B2]�t2gUn : (A.3)From tn to tn+1, the exact solution isUn+1 = e��t(A+B)Un= [I � (A+B)�t+ 12 (A2 +AB +BA+B2)�t2 +O(�t3)]Un : (A.4)



28By comparing (A.4) with (A.3) one should equate the coe�cients of every correspond-ing terms. This gives the following system of linear equations:a+ b+ c = 2 ;2a+ b+ c = 1 ;b = 1 ;(a + b)(a + c) + b2 = 1 : (A.5)Equations (A.5) are consist of four equations but only three of them are independent.Solving (A.5) gives a = �1 ; b = 1 ; c = 2 :With this choice of coe�cients we get a second order ODE solver.
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Fig. 1. Numerical solutions of equations (4.1) and (4.3). at t = 0:5. The solid linesare the exact solutions, the '+' lines are the numerical solutions with �x = 0:01,�t = 0:0025 (CFL= 0:37). (a) The �rst order splitting (3.1).
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Fig.1. (cont'd) (b). The Strang splitting (3.15). (No w�f(h) is ploted since we usedthe exact ODE solver here, thus it is of O(�).)



34
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x

H

t=0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

x

W

t=0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x

W
-f

(H
)

t=0.5

Fig.1. (cont'd) (c). The new splitting (3.20).
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Fig.4 Numerical solutions by the new splitting scheme (3.19) of the Euler equationswith a heat transfer (5.5) with initial data (5.6) not in the local equilibrium. Thedensity �, velocity u, pressure p and e = E � E0 by S2-vL at time t = 0:3 aredepicted. � = 10�8, �x = 0:005. The solid lines are the exact solutions, the '+' linesare the numerical solutions with �t = 0:002.


