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Abstract

In this correspondence we provide new bounds on the expected length L of
a binary one-to-one code for a discrete random variable X with entropy H. We
prove that I > H —log(H + 1) — Hlog(1 4+ 1/H). This bound improves on
previous results. Furthermore, we provide upper bounds on the expected length
of the best code as function of H and the most likely source letter probability.

Index Terms — Source coding, one-to-one codes, non-prefix codes.

1 Introduction

Let X be a discrete random variable which assumes values on a countable support set
X. A binary encoding for X is a function that maps each element of X’ to a binary
codeword. Without loss of generality, assume that X' = {1,2,..., N}, where N can
be infinite. The probability that X takes the value ¢ is p;. Throughout this paper we
assume, without loss of generality, that p; > p;y1. Given an encoding, the expected
length of the encoding is

L(X) = Z:pmz (1)

where n; is the length of the codeword used to encode the value ¢ € X'. The entropy
of X is denoted H(X) or simply H when X is clear from the context. Shannon [3]
proved that the minimum expected length L. of a prefix-free encoding of X satisfies
H<Ly.<H+I.
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Prefix-free codes are very useful as they are instantaneously decodable. Relaxing
the prefix property and keeping the non-singularity of the code (i.e., the encoding is
a one-to-one mapping), we obtain a larger class of possible encodings. Clearly, the
expected length of the best one-to-one encoding is at most L.

Two different frameworks have been considered in the literature depending on
whether the empty codeword is used. We refer to encodings using the empty codeword

as {0,1}>ﬁencodings and to encodings not using the empty codeword as {0,1}-encodings.

{0,1}*-encodings. If € is used then the codebook is {¢,0,1,00,01,10,11,000,.....}.

Clearly, the best {0,1}>ﬁencoding uses the N shortest codewords of the codebook. It is
easy to see that the length of the ¢-th shortest codeword is

n; = |logi|. (2)

All logarithms in this paper are to the base 2. We denote by L. the expected length

of the best {O,I}Tencoding.
Recently, Alon and Orlitsky [1] proved that

Le>H —log(H+1)—loge. (3)

Wymner [5] proved that
L. <H. (4)

Bound (4) is achieved by the constant random variable.
In this correspondence we prove that

ren o (ph) 0

extending the result of [4]. Previous bound is achievable for any value of H.
We also provide an explicit lower bound on L.,

1
LEZH—log(H—Fl)—Hlog(l—l—E). (6)

improving on (3).
We denote by H the binary entropy. We prove that

H + pylogpy for 0 < p; <0.5

<
LE_{H—|—1—p1—H(p1) f0r05<p1§1 (7)

slightly improving on (4).



{O,l}tencodings. It € is not used then the codebook, that is the set of possible
codewords, is {0,1,00,01,10,11,000,001,.....}. Clearly, the best {0,1}-encoding uses
the N shortest codewords of the codebook. It is easy to see that the length of the

1-th shortest codeword is )
n; = [log (% + 1)-‘ . (8)

We denote by L the expected length of the best {0,1}-encoding.
Leung-Yan-Cheong and Cover [2] proved the following bound

L>H—log"(H+1)—6 9)
where log™ x 2 logz 4 loglogz + --- stopping at last positive term. Alon and
Orlitsky’s bound (3) improves on previous bound (any lower bound for L. holds for

L as well).
Verriest [4] proved that when H > 1

e (en (). 0

Since L < L,,. we have that
L<H-+1. (11)

The above bound is achieved by the constant random variable.

Since L > L, bound (6) holds for L, too. Thus, we have
Lzﬂ—bgﬂ+m—ﬂbg0+%) (12)

Moreover, improving on (11), we prove that

fl 1 1
LS{H—I—%—I— ot +pilogpr for 0 <p < 0.5 (13)

H+ =2 —H(p) for 0.5 < py <1,

where ¢ = [log(1 + 1/p1)].

This correspondence is organized as follows. In Section 2 we consider {(),1}>.j
encodings and we prove the upper and the lower bounds on L.. In Section 3 we
address the case of {0,1}+—encodings providing the upper and the lower bounds on L.

2 {O,l}ﬂiencodings

In this section we consider the case of encodings that do use the empty codeword.
We employ the technique of [4] based on Lagrange’s multipliers. We will prove that
L. is related to the entropy H by

H§L5+(LE+1)H<L1+1). (14)
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Before showing how to obtain (14) we need some technical lemmas. In the next
lemma, given a random variable X of fixed entropy H taking on infinitely many
values, we compute the probability distribution of entropy H minimizing (1) (i.e.,
among all probability distributions of a given fixed entropy H, we want to find the
one minimizing the expected length).

Lemma 2.1 Let X be a discrete random variable with entropy H. Suppose that X
takes on infinitely many values. The function L(X) = > pn;, where n; = |logi],

=1
- (1 —Pl)ni
Pi P 9 .

Proof. We want to minimize the function L(X) = mei under the constraints
=1

achieves the minimum at

ipi =1 (15)

and . .
> pilog — = H. (16)
=1 i
Using the Lagrange’s multipliers A and pu, the Lagrangian £ to be studied is the
following.

L= pni+ > pi—p Y pilogp;.
=1 =1 =1

For the optimality we get

oL
api

=n; + A — p(logp; + loge) = 0.

Therefore, p; = 2m/#tA=rloge)/u Qetting o = 200-#108€)/i and B = 1/u we obtain that
p: = a27". Recalling that n; = [log 1] = 0 we get that o = p;. Hence, p; = p; 267,
For y > 0, with V; we denote the number of codewords of length j. Therefore,
N; = 27, Substituting the p;’s in (15), we find the value of 3. Indeed,

1= Y pi=Yp2 = p Y N2¥ = pi(1+ > N2%)
=1 =1 7=0

=1
00 ] QB-I—I P
_ B+1 _ _ 1
- (1+;(2 )]) _p1(1+1—25+1) T o+

Hence, p; = 1 — 2°*! from which we obtain that 3 = log 1_%. Therefore, p; =

12 (1_%) ™ and the lemma is proved. 0



In the following we will show how to express the entropy H of a random variable

1_2771)”1', in terms of + = 1 — p; and H(x). If we

with probability distribution p; = p(
substitute the values of the p;’s we get

1 —py & RN
H +logp; + log QPIZnZ»pl( 2p1) =0. (17)
=1

Considering the expected length L. of the p;’s, we have

o0

: L—pi\" &, L—piy’
L= Yo (52) = v (52 (18)
=1 7=0

= 232]}?1( 2p1) =py jl—m) = o
7=0

Substituting (18) in (17) after some algebra we get

prlogpyr + (1 —pi)log(l —py) — (1 —py)

H + =0. (19)
h
Setting * = 1 — p; we obtain
H(z)+
H=—"—. 20
- (20)

In [4] it has been proved that the function y(x) = W, defined in the interval
[0, 1] is invertible. It follows that for any given value of the entropy H there exists an
unique solution in [0, 1] of the equation (20).

Next we prove

Theorem 2.2 For any discrete random variable X, the entropy H and the expected
length L. of the best {O,l}fencodmg, are related by

1
H< L.+ (L.+1 H( ) :
<L+ (Le+1) 11

Proof. Suppose that the random variable X takes on infinitely many values and that
its entropy is H. Let L. be the achievable minimum average codeword length, that
is, the minimum of (1) seen as function of the p;’s once that the value assumed by
the entropy H has been fixed. The achievable minimum average codeword length L.
has been computed in (18). Recalling that @ = 1 — p;, we obtain

n z ) 1

L. = or equivalently =z =1—- ——

1—z L.+1

Since H(z) = H(1 — z), substituting « =1 — 1/(L. + 1) in (20), we get

—_

H=1L+(LA+1)H ( (21)

ﬁ5+1)'



Let Y be a random variable having the same entropy as X. Clearly, the expected

length L. of the best {0,1}>ﬁencoding of Y is at least [A/E. Since the function = + (x +
LYH(1/(x + 1)) is a non-decreasing function, we get

<
H—LEHLEH)H(LEH)

and the theorem is proved. 0

The next theorem gives a bound on the expected length L. of any {0,1}>ﬁencoding
of a random variable X in term of the entropy H of X.

Theorem 2.3 For any discrete random variable X, with entropy H, the expected
length L. of the best {0,1}#-<encodmg satisfies

L ZH—log(H—l-l)—Hlog(l—l-%).

Proof. We get

L. > H—-(L.+1)H ( ) (from Theorem 2.2)

L.+1

> H—(H+1)H (ﬁ) (from (4))

— H —log(H +1)— Hlog (1+%).

0

A simple algebra shows that the above bound improves on (3) for any value of H
(though the difference between the two bounds tends to 0 as H tends to infinity).

In the following we will prove an upper bound on L.. The only known upper
bound is the Wyner’s upper bound (4).

Theorem 2.4 For any discrete random variable X, with entropy H, the expected
length L. of the best {0,1}#-<encodmg satisfies

[ < H—pllogpL1 for 0 < p; <0.5
T\l H+1—p —H(p) for05<p <1.

Proof. First, we prove that

Lo <Y pilogi—05 > p. (22)
i>2 i=27-1
722



Indeed, recalling that ny = |log 1] = 0, we have

Lo = Y pmi = Y pillogi] = > pillogi]+ Y pillogi]

i>1 i>1 i#£29-1 i=27 -1
> 722
= > pillogi)+ > pilogi— > pi(logi— |logi])
i#20 -1 i=2i—1 i=20—1
i>1 7>2 J>2
< > pilogi— Y pi(logi— [logi])
i>2 =20 -1
i>2

The function log(2/ — 1) — |log(2/ — 1)] is an increasing function of j. For j > 2, it
reaches its minimum at j = 2. This minimum is equal to log3 — |log 3| > 0.5. Thus,

relation (22) holds.

Next, we prove that

1
L. <H-— pllog——05 Z D (23)

1=27—1
7>2

Indeed, since p; < 1/i, we have
Le < Y pilogi—05 Y pi

i>2 =271
i>2
< szlog——05 Z i
1>2 =27 -1
7>2
1
= H-— pllog——05 Z ;.
=271
]>2
Finally, we prove that
Le<H-—H(p)+1—pi—05 >  p. (24)
=27 -1

2
Indeed, observing that for any ¢ > 2, it holds that p; < (1 —p1)/(i —1) < 2(1 —p)/4,
we get

Lo < ) pilogi—05 Y pi < szlog )05 > pi
1>2 =27 -1 1>2 =27 -1
J>2 i>2
= szlog— (1 + log(1 —pl))Zpi—Oﬁ Z P
i>2 1>2 =29 -1
i>2
1
= H—pllogp——l—(l—l-log(l—pl))(l—pl)—0.5 Y. i
! =271
i>2

= H-—Hp)+1-p—05 > ps



From (23) and (24), since > p; > 0, we get

1
L. < H —plog—
4!

and

Lo<H—H(p)+1—pr.
It is easy to check that p; log p% > H(p1)+p1—1for 0 < p; <0.5. Thus, the theorem
holds. 0

The above bound improves on (4) for 0 < p; < 1; when p; = 1 they coincide.

3 {0.I}~encodings

In this section we consider the case of encodings that do not use the empty codeword.
The following relation between L and L. holds:

L= Le + Zin—l‘ (25)

i>1

Clearly L. < L < L.+ 1. Therefore, the bound (6) holds for {0,1}+—encodings as

well, and from (7) we obtain

LS{H—I—l—I—pllogpl for 0 <p; <0.5

H+2— pP1— H(pl) for 0.5 < pr < 1 (26)

improving on (11).
In the sequel we improve previous upper bound, providing a sharper upper bound

on ZPQi_l.

i>1
Lemma 3.1 For any integer { > 1 it holds that

L+ p

szi—l <(=1p + S

i>1

Proof. Recall that the p;’s are in non-increasing order. First, we prove that for any
(>1

125" p;
Z Poic1 < 2—2] (27)
i>i41
Indeed,
261 201 261
L - ij = ij > Z Z Poici—k = Z szi—l =2 Z Pai-1-
=1 j>at i>44+1 k=1 i>44+1 k=1 i>i41



Next, we prove that for any ¢ > 1

21

Z pj > ZT Paic1- (28)

In fact,
261 2t—11 £ 271
ij Zzp2’1k>zzp2’l—22 Pai-1-
7=1 =1 = i=1 k=0
Whence,
szi—1 = szl 1+ Z P2i-1
1>1 2>€—|—1
< szz 1 —|— 222 iy (from (27) and (28))
=1
= ‘|‘Z — 27 gy
’ ‘
% 1
< 5 +m ;(1 2 )
B L+ p
= ((—=Dpi+ o
Thus, the lemma holds. 0

A simple algebra shows that the bound of Lemma 3.1 for {41 is sharper than the
one for ¢ if and only if p; < 74— This implies that when p; €]1/(27' —1),1/(2°—1)]
the best bound is the one for . Therefore, for any p; the value of ¢ achieving the
sharpest bound is ¢ = [log(1 + 1/p1)|. Thus, we have

1+
szz 1 S =1)p + p1
>1 2

where ¢ = [log(1 + 1/p1)].
We can use the bound of Lemma 3.1 to improve on bound (26). Indeed, from

(23), (24), and (25) we have that

H+pilogp +p1/2 405> paisy  for0<p <05

L < >1
Tl H+1—pi/2—H(p1) +0.5> pa_y for 0.5 <p <1

i>1

(29)

From (29) we obtain the following theorem.

Theorem 3.2 For any discrete random variable X with entropy H, the expected
length L of the best {0,1}-encoding satisfies

L [HAE AR nlogp for0< <05
— H_I_ _Tpl _H(pl) f07“ 05 < pl S 17

where { = [log(1+ 1/p1)].




Previous bound improves on (26). Figure 1 shows upper bounds on L — H as

provided by (13) and (26).

0.2 0.2 0.6 0.8 T

Figure 1: Upper bounds on L — H as provided by (26), dashed, and (13), solid.

Finally, we remark that bound (22) can be further improved either by simply using
a more accurate lower bound on the function log(2/ — 1) — |log(2’ — 1)] (for example
0.58496 instead of 0.5), or by providing a lower bound on log(2/ — 1) — |log(2’ — 1)]
for j > k and considering the first £ terms apart. As an example, fixed k£ = 3, for any
7 > 3, we have that log(2/ — 1) — [log(2/ — 1)] > log 7 — |log 7| > 0.80735). However,
the improved bounds that can be obtained slightly differ from the ones provided in
Theorem 3.2 and their expressions are quite complicate.
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