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Pre�x-free codes are very useful as they are instantaneously decodable. Relaxingthe pre�x property and keeping the non-singularity of the code (i.e., the encoding isa one-to-one mapping), we obtain a larger class of possible encodings. Clearly, theexpected length of the best one-to-one encoding is at most Lpre.Two di�erent frameworks have been considered in the literature depending onwhether the empty codeword is used. We refer to encodings using the empty codewordas f0;1g*-encodings and to encodings not using the empty codeword as f0;1g+-encodings.f0;1g*-encodings. If � is used then the codebook is f�; 0; 1; 00; 01; 10; 11; 000; :::::g.Clearly, the best f0;1g*-encoding uses the N shortest codewords of the codebook. It iseasy to see that the length of the i-th shortest codeword isni = blog ic: (2)All logarithms in this paper are to the base 2. We denote by L� the expected lengthof the best f0;1g*-encoding.Recently, Alon and Orlitsky [1] proved thatL� � H � log(H + 1)� log e: (3)Wyner [5] proved that L� � H: (4)Bound (4) is achieved by the constant random variable.In this correspondence we prove thatH � L� + (L� + 1)H� 1L� + 1� (5)extending the result of [4]. Previous bound is achievable for any value of H.We also provide an explicit lower bound on L�,L� � H � log(H + 1)�H log�1 + 1H� : (6)improving on (3).We denote by H the binary entropy. We prove thatL� � �H + p1 log p1 for 0 < p1 � 0:5H + 1� p1 �H(p1) for 0:5 < p1 � 1 (7)slightly improving on (4). 2



f0;1g+-encodings. If � is not used then the codebook, that is the set of possiblecodewords, is f0; 1; 00; 01; 10; 11; 000; 001; :::::g: Clearly, the best f0;1g+-encoding usesthe N shortest codewords of the codebook. It is easy to see that the length of thei-th shortest codeword is ni = �log� i2 + 1�� : (8)We denote by L the expected length of the best f0;1g+-encoding.Leung-Yan-Cheong and Cover [2] proved the following boundL � H � log�(H + 1)� 6 (9)where log� x 4= log x + log log x + � � � stopping at last positive term. Alon andOrlitsky's bound (3) improves on previous bound (any lower bound for L� holds forL as well).Verriest [4] proved that when H � 1H � L�1 +H� 1L�� : (10)Since L � Lpre we have that L � H + 1: (11)The above bound is achieved by the constant random variable.Since L � L�, bound (6) holds for L, too. Thus, we haveL � H � log(H + 1)�H log �1 + 1H� : (12)Moreover, improving on (11), we prove thatL � (H + `p12 + 1+p12`+1 + p1 log p1 for 0 � p1 � 0:5H + 5�p14 �H(p1) for 0:5 < p1 � 1; (13)where ` = blog(1 + 1=p1)c.This correspondence is organized as follows. In Section 2 we consider f0;1g*-encodings and we prove the upper and the lower bounds on L�. In Section 3 weaddress the case of f0;1g+-encodings providing the upper and the lower bounds on L.2 f0;1g*-encodingsIn this section we consider the case of encodings that do use the empty codeword.We employ the technique of [4] based on Lagrange's multipliers. We will prove thatL� is related to the entropy H byH � L� + (L� + 1)H� 1L� + 1� : (14)3



Before showing how to obtain (14) we need some technical lemmas. In the nextlemma, given a random variable X of �xed entropy H taking on in�nitely manyvalues, we compute the probability distribution of entropy H minimizing (1) (i.e.,among all probability distributions of a given �xed entropy H, we want to �nd theone minimizing the expected length).Lemma 2.1 Let X be a discrete random variable with entropy H. Suppose that Xtakes on in�nitely many values. The function L(X) = 1Xi=1 pini, where ni = blog ic,achieves the minimum at pi = p1 �1 � p12 �ni :Proof. We want to minimize the function L(X) = 1Xi=1 pini under the constraints1Xi=1 pi = 1 (15)and 1Xi=1 pi log 1pi = H: (16)Using the Lagrange's multipliers � and �, the Lagrangian L to be studied is thefollowing. L = 1Xi=1 pini + � 1Xi=1 pi � � 1Xi=1 pi log pi:For the optimality we get@L@pi = ni + �� �(log pi + log e) = 0:Therefore, pi = 2ni=�+(��� log e)=�. Setting � = 2(��� log e)=� and � = 1=� we obtain thatpi = �2�ni. Recalling that n1 = blog 1c = 0 we get that � = p1. Hence, pi = p12�ni.For j � 0, with Nj we denote the number of codewords of length j. Therefore,Nj = 2j . Substituting the pi's in (15), we �nd the value of �. Indeed,1 = 1Xi=1 pi = 1Xi=1 p12�ni = p1 1Xj=0Nj2�j = p1(1 + 1Xj=1Nj2�j)= p1 0@1 + 1Xj=1(2�+1)j1A = p1  1 + 2�+11 � 2�+1! = p11 � 2�+1 :Hence, p1 = 1 � 2�+1 from which we obtain that � = log 1�p12 . Therefore, pi =p1 �1�p12 �ni and the lemma is proved. 4



In the following we will show how to express the entropy H of a random variablewith probability distribution pi = p1(1�p12 )ni , in terms of x = 1 � p1 and H(x). If wesubstitute the values of the pi's we getH + log p1 + log 1 � p12 1Xi=1 nip1 �1� p12 �ni = 0: (17)Considering the expected length L̂� of the pi's, we haveL̂� = 1Xi=1 nip1 �1� p12 �ni = 1Xj=0 jNjp1 �1 � p12 �j (18)= 1Xj=0 j2jp1 �1 � p12 �j = p1 1Xj=0 j(1� p1)j = 1 � p1p1 :Substituting (18) in (17) after some algebra we getH + p1 log p1 + (1� p1) log(1 � p1)� (1� p1)p1 = 0: (19)Setting x = 1 � p1 we obtain H = H(x) + x1 � x : (20)In [4] it has been proved that the function y(x) = H(x)+x1�x , de�ned in the interval[0; 1[ is invertible. It follows that for any given value of the entropy H there exists anunique solution in [0; 1[ of the equation (20).Next we proveTheorem 2.2 For any discrete random variable X, the entropy H and the expectedlength L� of the best f0;1g*-encoding, are related byH � L� + (L� + 1)H� 1L� + 1� :Proof. Suppose that the random variable X takes on in�nitely many values and thatits entropy is H. Let L̂� be the achievable minimum average codeword length, thatis, the minimum of (1) seen as function of the pi's once that the value assumed bythe entropy H has been �xed. The achievable minimum average codeword length L̂�has been computed in (18). Recalling that x = 1� p1, we obtainL̂� = x1� x or equivalently x = 1� 1L̂� + 1 :Since H(x) = H(1 � x), substituting x = 1 � 1=(L̂� + 1) in (20), we getH = L̂� + (L̂� + 1)H 1L̂� + 1! : (21)5



Let Y be a random variable having the same entropy as X. Clearly, the expectedlength L� of the best f0;1g*-encoding of Y is at least L̂�. Since the function x + (x+1)H(1=(x + 1)) is a non-decreasing function, we getH � L� + (L� + 1)H� 1L� + 1�and the theorem is proved.The next theorem gives a bound on the expected length L� of any f0;1g*-encodingof a random variable X in term of the entropy H of X.Theorem 2.3 For any discrete random variable X, with entropy H, the expectedlength L� of the best f0;1g*-encoding satis�esL � H � log(H + 1)�H log(1 + 1H ):Proof. We getL� � H � (L� + 1)H� 1L� + 1� (from Theorem 2.2)� H � (H + 1)H� 1H + 1� (from (4))= H � log(H + 1)�H log �1 + 1H� :A simple algebra shows that the above bound improves on (3) for any value of H(though the di�erence between the two bounds tends to 0 as H tends to in�nity).In the following we will prove an upper bound on L�. The only known upperbound is the Wyner's upper bound (4).Theorem 2.4 For any discrete random variable X, with entropy H, the expectedlength L� of the best f0;1g*-encoding satis�esL� � (H � p1 log 1p1 for 0 < p1 � 0:5H + 1� p1 �H(p1) for 0:5 < p1 � 1.Proof. First, we prove thatL� �Xi�2 pi log i� 0:5 Xi=2j�1j�2 pi: (22)6



Indeed, recalling that n1 = blog 1c = 0, we haveL� = Xi�1 pini = Xi�1 piblog ic = Xi6=2j�1j�1 piblog ic+ Xi=2j�1j�2 piblog ic= Xi6=2j�1j�1 piblog ic+ Xi=2j�1j�2 pi log i� Xi=2j�1j�2 pi(log i� blog ic)� Xi�2 pi log i� Xi=2j�1j�2 pi(log i� blog ic)The function log(2j � 1) � blog(2j � 1)c is an increasing function of j. For j � 2, itreaches its minimum at j = 2. This minimum is equal to log 3�blog 3c > 0:5. Thus,relation (22) holds.Next, we prove that L� � H � p1 log 1p1 � 0:5 Xi=2j�1j�2 pi: (23)Indeed, since pi � 1=i, we haveL� � Xi�2 pi log i� 0:5 Xi=2j�1j�2 pi� Xi�2 pi log 1pi � 0:5 Xi=2j�1j�2 pi= H � p1 log 1p1 � 0:5 Xi=2j�1j�2 pi:Finally, we prove thatL� � H �H(p1) + 1� p1 � 0:5 Xi=2j�1j�2 pi: (24)Indeed, observing that for any i � 2, it holds that pi � (1� p1)=(i� 1) � 2(1� p1)=i,we get L� � Xi�2 pi log i� 0:5 Xi=2j�1j�2 pi � Xi�2 pi log 2(1 � p1)pi � 0:5 Xi=2j�1j�2 pi= Xi�2 pi log 1pi + (1 + log(1 � p1))Xi�2 pi � 0:5 Xi=2j�1j�2 pi= H � p1 log 1p1 + (1 + log(1 � p1))(1� p1)� 0:5 Xi=2j�1j�2 pi= H �H(p1) + 1� p1 � 0:5 Xi=2j�1j�2 pi:7



From (23) and (24), since Xi=2j�1j�2 pi � 0, we getL� � H � p1 log 1p1and L� � H �H(p1) + 1 � p1:It is easy to check that p1 log 1p1 � H(p1)+p1�1 for 0 < p1 � 0:5. Thus, the theoremholds.The above bound improves on (4) for 0 < p1 < 1; when p1 = 1 they coincide.3 f0;1g+-encodingsIn this section we consider the case of encodings that do not use the empty codeword.The following relation between L and L� holds:L = L� +Xi�1 p2i�1: (25)Clearly L� < L � L� + 1. Therefore, the bound (6) holds for f0;1g+-encodings aswell, and from (7) we obtainL � �H + 1 + p1 log p1 for 0 < p1 � 0:5H + 2 � p1 �H(p1) for 0:5 < p1 � 1 (26)improving on (11).In the sequel we improve previous upper bound, providing a sharper upper boundon Xi�1 p2i�1.Lemma 3.1 For any integer ` � 1 it holds thatXi�1 p2i�1 � (`� 1)p1 + 1 + p12` :Proof. Recall that the pi's are in non-increasing order. First, we prove that for any` � 1 Xi�`+1 p2i�1 � 1 �P2`�1j=1 pj2` (27)Indeed,1� 2`�1Xj=1 pj = Xj�2` pj � Xi�`+1 2`�1Xk=1 p2i�1�k � Xi�`+1 2`�1Xk=1 p2i�1 = 2` Xi�`+1 p2i�1:8



Next, we prove that for any ` � 12`�1Xj=1 pj � X̀i=1 2i�1p2i�1: (28)In fact, 2`�1Xj=1 pj = X̀i=1 2i�1�1Xk=0 p2i�1�k � X̀i=1 2i�1�1Xk=0 p2i�1 = X̀i=1 2i�1p2i�1:Whence,Xi�1 p2i�1 = X̀i=1 p2i�1 + Xi�`+1 p2i�1� X̀i=1 p2i�1 + 12` � X̀i=1 2i�1�`p2i�1 (from (27) and (28))= 12` + X̀i=1(1� 2i�`�1)p2i�1� 12` + p1 X̀i=1(1 � 2i�`�1)= (`� 1)p1 + 1 + p12` :Thus, the lemma holds.A simple algebra shows that the bound of Lemma 3.1 for `+1 is sharper than theone for ` if and only if p1 � 12`+1�1 . This implies that when p1 2]1=(2`+1�1); 1=(2`�1)]the best bound is the one for `. Therefore, for any p1 the value of ` achieving thesharpest bound is ` = blog(1 + 1=p1)c. Thus, we haveXi�1 p2i�1 � (`� 1)p1 + 1 + p12` ; (29)where ` = blog(1 + 1=p1)c.We can use the bound of Lemma 3.1 to improve on bound (26). Indeed, from(23), (24), and (25) we have thatL � 8>><>>:H + p1 log p1 + p1=2 + 0:5Xi�1 p2i�1 for 0 < p1 � 0:5H + 1� p1=2 �H(p1) + 0:5Xi�1 p2i�1 for 0:5 < p1 � 1.From (29) we obtain the following theorem.Theorem 3.2 For any discrete random variable X with entropy H, the expectedlength L of the best f0;1g+-encoding satis�esL � (H + `p12 + 1+p12`+1 + p1 log p1 for 0 < p1 � 0:5H + 5�p14 �H(p1) for 0:5 < p1 � 1;where ` = blog(1 + 1=p1)c. 9



Previous bound improves on (26). Figure 1 shows upper bounds on L � H asprovided by (13) and (26).
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Figure 1: Upper bounds on L�H as provided by (26), dashed, and (13), solid.Finally, we remark that bound (22) can be further improved either by simply usinga more accurate lower bound on the function log(2j � 1)�blog(2j � 1)c (for example0:58496 instead of 0:5), or by providing a lower bound on log(2j � 1)� blog(2j � 1)cfor j � k and considering the �rst k terms apart. As an example, �xed k = 3, for anyj � 3, we have that log(2j � 1)�blog(2j � 1)c � log 7�blog 7c > 0:80735). However,the improved bounds that can be obtained slightly di�er from the ones provided inTheorem 3.2 and their expressions are quite complicate.AcknowledgementsThe authors would like to express their gratitude to Alfredo De Santis and Ugo Vac-caro for helpful discussions and suggestions. The authors wish to thank Alon Orlitskyand one of the referees for useful comments on this correspondence. Alon Orlitskypointed out that the bound of Theorem 2.2 can be obtained using the derivation ofLemma 1 in [1], noticing that H = logE+(E� 1) log(E=(E� 1)), where E = E(X),and continuing as in that proof.References[1] N. Alon and A. Orlitsky, \A Lower Bound on the Expected Length of One-to-OneCodes", IEEE Trans. Inform. Theory, vol. IT{40, no. 5, pp. 1670{1672, Sept. 1994.10
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