
Defining and Assessing Quantitative Security Risk

Measures Using Vulnerability Lifecycle and CVSS Metrics

HyunChul Joh
1
, and Yashwant K. Malaiya

1

1Computer Science Department, Colorado State University, Fort Collins, CO 80523, USA

Abstract - Known vulnerabilities which have been discov-

ered but not patched represents a security risk which can

lead to considerable financial damage or loss of reputation.

They include vulnerabilities that have either no patches

available or for which patches are applied after some delay.

Exploitation is even possible before public disclosure of a

vulnerability. This paper formally defines risk measures and

examines possible approaches for assessing risk using actu-

al data. We explore the use of CVSS vulnerability metrics

which are publically available and are being used for rank-

ing vulnerabilities. Then, a general stochastic risk evalua-

tion approach is proposed which considers the vulnerability

lifecycle starting with discovery. A conditional risk measure

and assessment approach is also presented when only

known vulnerabilities are considered. The proposed ap-

proach bridges formal risk theory with industrial approach-

es currently being used, allowing IT risk assessment in an

organization, and a comparison of potential alternatives for

optimizing remediation. These actual data driven methods

will assist managers with software selection and patch ap-

plication decisions in quantitative manner.

Keywords - Security vulnerabilities; Software Risk Eval-

uation; CVSS; Vulnerability liefcycle

1 Introduction

To ensure that the overall security risk stays within ac-
ceptable limits, managers need to measure risks in their or-
ganization. As Lord Calvin stated “If you cannot measure it,
you cannot improve it,” quantitative methods are needed to
ensure that the decisions are not based on subjective percep-
tions only.

Quantitative measures have been commonly used to
measure some attributes of computing such as performance
and reliability. While quantitative risk evaluation is common
in some fields such as finance [1], attempts to quantitatively
assess security are relatively new. There has been criticism
of the quantitative attempts of risk evaluation [2] due to the
lack of data for validating the methods. Related data has
now begun to become available. Security vulnerabilities that
have been discovered but remain unpatched for a while rep-
resent considerable risk for an organization. Today online
banking, stock market trading, transportation, even military
and governmental exchanges depend on the Internet based
computing and communications. Thus the risk to the society
due to the exploitation of vulnerabilities is massive. Yet peo-

ple are willing to take the risk since the Internet has made the
markets and the transactions much more efficient [3]. In spite
of the recent advances in secure coding, it is unlikely that
completely secure systems will become possible anytime
soon [4]. Thus, it is necessary to assess and contain risk us-
ing precautionary measures that are commensurate.

While sometimes risk is informally stated as the possibil-
ity of a harm to occur [5], formally, risk is defined to be a
weighted measure depending on the consequence. For a po-
tential adverse event, the risk is stated as [6]:

Risk = Likelihood of an adverse event (1)M

Impact of the adverse event

This presumes a specific time period for the evaluated
likelihood. For example, a year is the time period for which
annual loss expectancy is evaluated. Equation (1) evaluates
risk due to a single specific cause. When statistically inde-
pendent multiple causes are considered, the individual risks
need to be added to obtain the overall risk. A risk matrix is
often constructed that divides both likelihood and impact
values into discrete ranges that can be used to classify appli-
cable causes [7] by the degree of risk they represent.

In the equation above, the likelihood of an adverse event
is sometimes represented as the product of two probabilities:
probability that an exploitable weakness is present, and the
probability that such a weakness is exploited [7]. The first is
an attribute of the targeted system itself whereas the second
probability depends on external factors, such as the motiva-
tion of potential attackers. In some cases, the Impact of the
adverse event can be split into two factors, the technical im-
pact and the business impact [8]. Risk is often measured
conditionally, by assuming that some of the factors are equal
to unity and thus can be dropped from consideration. For
example, sometimes the external factors or the business im-
pact is not considered. If we would replace the impact factor
in Equation (1) by unity, the conditional risk simply becomes
equal to the probability of the adverse event, as considered in
the traditional reliability theory. The conditional risk
measures are popular because it can alleviate the formidable
data collections and analysis requirements. As discussed in
section 4 below, different conditional risk measures have
been used by different researchers.

A vulnerability is a software defect or weakness in the
security system which might be exploited by a malicious
user causing loss or harm [5]. A stochastic model [9] of the
vulnerability lifecycle could be used for calculating the Like-
lihood of an adverse event in Equation (1) whereas impact
related metrics from the Common Vulnerability Scoring Sys-

10 Int'l Conf. Security and Management | SAM'11 |

tem (CVSS) [10] can be utilized for estimating Impact of the
adverse event. While a preliminary examination of some of
the vulnerability lifecycle transitions has recently been done
by researchers [11][12], risk evaluation based on them have
been received little attention. The proposed quantitative ap-
proach for evaluating the risk associated with software sys-
tems will allow comparison of alternative software systems
and optimization of risk mitigation strategies.

The paper is organized as follows. Section 2 introduces
the risk matrix. Section 3 discusses the CVSS metrics that
are now being widely used. The interpretation of the CVSS
metrics in terms of the formal risk theory is discussed in sec-
tion 4. Section 5 introduces the software vulnerability lifecy-
cle and the next section gives a stochastic method for risk
level measurement. Section 7 presents a conditional risk as-
sessing method utilizing CVSS base scores which is illus-
trated by simulated data. Finally, conclusions are presented
and the future research needs are identified.

2 Risk matrix: scales & Discretization

In general, a system has multiple weaknesses. The risk
of exploitation in each weakness i is given by Equation (1).
Assuming that the potential exploitation of a weakness is
statistically independent of others, the system risk is given
by the summation of individual risk values:

 (2) M

where Li is the likelihood of exploitation of weakness i and
Ii is the corresponding impact. A risk matrix provides a vis-
ual distribution of potential risks [13][14]. In many risk
evaluation situations, a risk matrix is used, where both im-
pact and likelihood are divided into a set of discrete inter-
vals, and each risk is assigned to likelihood level and an
impact level. Impact can be used for the x-axis and likeli-
hood can be represented using then y-axis, allowing a visual
representation of the risk distribution. For example, the
ENISA Cloud Computing report [15] defines five impact
levels from Very Low to Very High, and five likelihood lev-
els from Very Unlikely to Frequent. Each level is associated
with a rating. A risk matrix can bridge quantitative and
qualitative analyses. Tables have been compiled that allow
on to assign a likelihood and an impact level to a risk, often
using qualitative judgment or a rough quantitative estima-
tion.

The scales used for likelihood and impact can be linear,
or more often non-linear. In Homeland Security’s
RAMCAP (Risk Analysis and Management for Critical As-
set Protection) approach, a logarithmic scale is used for
both. Thus, 0-25 fatalities is assigned a rating “0”, while 25-
50 is assigned a rating of “1”, etc. For the likelihood scale,
probabilities between 0.5-1.0 is assigned the highest rating
of “5”, between 0.25-0.5 is assigned rating “4”, etc.

Using a logarithmic scale for both has a distinct ad-
vantage. Sometimes the overall rating for a specific risk is
found by simply adding its likelihood and impact ratings.
Thus, it would be easily explainable if the rating is propor-
tional to the logarithm of the absolute value. Consequently,
Equation (1) can be re-written as:

kj
 (3)

When a normalized value of the likelihood, impact or
the risk is used, it will result in a positive or negative con-
stant added to the right hand side. In some cases, higher
resolution is desired in the very high as well as very low
regions; in such cases a suitable non-linear scale such as
using the logit or log-odds function [16] can be used.

The main use of risk matrices is to rank the risks so that
higher risks can be identified and mitigated. For determining
ranking, the rating can be used instead of the raw value. Cox
[7] has pointed out that the discretization in a risk matrix
can potentially result in incorrect ranking, but risk matrices
are often used for convenient visualization. It should be not-
ed that the risk ratings are not additive.

We will next examine the CVSS metrics that has
emerged recently for software security vulnerabilities, and
inspect the relationship (likelihood, impact) in risk and (ex-
ploitability, impact) in CVSS vulnerability metric system.

3 CVSS metrics and Related Works

Common Vulnerability Scoring System (CVSS) [10] has

now become almost an industrial standard for assessing the

security vulnerabilities although some alternatives are some-

times used. It attempts to evaluate the degree of risks posed

by vulnerabilities, so mitigation efforts can be prioritized.

The measures termed scores are computed using assessments

(called metrics) of vulnerability attributes based on the opin-

ions of experts in the field. Initiated in 2004, now it is in its

second version released in 2007.
The CVSS scores for known vulnerabilities are readily

available on the majority of public vulnerability databases on
the Web. The CVSS score system provides vendor inde-
pendent framework for communicating the characteristics
and impacts of the known vulnerabilities [10]. A few re-
searchers have started to use some of the CVSS metrics for
their security risk models.

CVSS defines a number of metrics that can be used to
characterize a vulnerability. For each metric, a few qualita-
tive levels are defined and a numerical value is associated
with each level. CVSS is composed of three major metric
groups: Base, Temporal and Environmental. The Base metric
represents the intrinsic characteristics of a vulnerability, and
is the only mandatory metric. The optional Environmental
and Temporal metrics are used to augment the Base metrics,
and depend on the target system and changing circumstanc-
es. The Base metrics include two sub-scores termed exploit-
ability and impact. The Base score formula [10], as shown in
Equation (4), is chosen and adjusted such that a score is a
decimal number in the range [0.0, 10.0]. The value for
f(Impact) is zero when Impact is zero otherwise it has the
value of 1.176.

Base score = Round to 1 decimal{MMMMMMMMMM

[(0.6×Impact)+(0.4×Exploitability)-1.5]×f(Impact)} (4)

Int'l Conf. Security and Management | SAM'11 | 11

The formula for Base score in Equation (4) has not been
formally derived but has emerged as a result of discussions
in a committee of experts. It is primarily intended for ranking
of vulnerabilities based on the risk posed by them. It is nota-
ble that the Exploitability and Impact sub-scores are added
rather than multiplied. One possible interpretation can be that
the two sub-scores effectively use a logarithmic scale, as
given in Equation (3). Then possible interpretation is that
since the Impact and Exploitability sub-scores have a fairly
discrete distribution as shown in Fig. 1 (b) and (c), addition
yields the distribution, Fig 1 (a), which would not be greatly
different if we had used a multiplication. We have indeed
verified that using yields a dis-
tribution extremely similar to that in Fig. 1 (a). We have also
found that multiplication generates about twice as many
combinations with wider distribution, and it is intuitive since
it is based on the definition of risk given in Equation (1).

The Impact sub-score measures how a vulnerability will
impact an IT asset in terms of the degree of losses in confi-
dentiality, integrity, and availability which constitute three of
the metrics. Below, in our proposed method, we also use
these metrics. The Exploitability sub-score uses metrics that
attempt to measure how easy it is to exploit the vulnerability.
The Temporal metrics measure impact of developments such
as release of patches or code for exploitation. The Environ-
mental metrics allow assessment of impact by taking into
account the potential loss based on the expectations for the
target system. Temporal and Environmental metrics can add
additional information to the two sub-scores used for the
Base metric for estimating the overall software risk.

A few researchers have started to use the CVSS scores in
their proposed methods. Mkpong-Ruffin et al. [17] use
CVSS scores to calculate the loss expectancy. The average
CVSS scores are calculated with the average growth rate for
each month for the selected functional groups of vulnerabili-
ties. Then, using the growth rate with the average CVSS
score, the predicted impact value is calculated for each func-
tional group. Houmb et al. [19] have discussed a model for
the quantitative estimation of the security risk level of a sys-
tem by combining the frequency and impact of a potential
unwanted event and is modeled as a Markov process. They
estimate frequency and impact of vulnerabilities using reor-
ganized original CVSS metrics. And, finally, the two esti-
mated measures are combined to calculate risk levels.

4 Defining conditional risk meaures

Researchers have often investigated measures of risk that
seem to be defined very differently. Here we show that they
are conditional measures of risk and can be potentially com-
bined into a single measure of total risk. The likelihood of
the exploitation of a vulnerability depends not only on the
nature of the vulnerability but also how easy it is to access
the vulnerability, the motivation and the capabilities of a
potential intruder.

The likelihood Li , in Equation (2), can be expressed in
more detail by considering factors such as probability of
presence of a vulnerability vi and how much exploitation is
expected as shown below:

where represents the inherent exploitability of the vul-
nerability, is the probability of accessing the vulnerabil-
ity, and , represents the external factors. The impact fac-
tor, Ii , from Equation (1) can be given as:

where the security attribute j=1,2,3 represents confidentiali-
ty, integrity and availability. is the CVSS Base Impact
sub-score whereas is the CVSS Environmental ConfReq,

IntegReq or AvailReq metric.
The two detailed expressions for likelihood and impact

above in terms of constituent factors, allow defining condi-
tional risk measures. Often risk measures used by different
authors differ because they are effectively conditional risks
which consider only some of the risk components. The
components ignored are then effectively equal to one.

As mentioned above, for a weakness i, risk is defined as
. The conditional risk measures can

Figure 1. Distributions for CVSS base metric scores (100 bins); NVD [17] on JAN 2011 (44615 vuln.)

12 Int'l Conf. Security and Management | SAM'11 |

(a) Base Score

Base score

F
re

q
u
e
n
c
y

0 2 4 6 8 10

0
2
0
0
0

6
0
0
0

1
0
0
0
0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

D
e
n
s
it
y

Frequency

Density

(b) Impact Subscore

Impact subscore

F
re

q
u
e
n
c
y

0 2 4 6 8 10
0

5
0
0
0

1
0
0
0
0

1
5
0
0
0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

D
e
n
s
it
y

Frequency

Density

(c) Exploitability Subcore

Exploitability subscore

F
re

q
u
e
n
c
y

0 2 4 6 8 10

0
5
0
0
0

1
5
0
0
0

0
.0

0
.5

1
.0

1
.5

D
e
n
s
it
y

Frequency

Density

be defined by setting some of the factors in the above equa-
tions to unity:

R1: by setting as unity. The CVSS Base

score is a R1 type risk measure.

R2: by setting as unity. The CVSS temporal

score is a R2 type risk measure.
R3: by setting as unity. The CVSS temporal score is a

R3 type risk measure.
R4: is the total risk considering all the factors.

In the next two sections, we examine a risk measure that
is more general compared with other perspectives in the
sense that we consider the discovery of hitherto unknown
vulnerabilities. This would permit us to consider 0-day at-
tacks within our risk framework. In the following section a
simplified perspective is presented which considers only the
known vulnerabilities.

5 Software vulnerability Lifecycle

A vulnerability is created as a result of a coding or speci-
fication mistake. Fig. 2 shows possible vulnerability lifecycle
journeys. After the birth, the first event is discovery. A dis-
covery may be followed by any of these: internal disclosure,
patch, exploit or public disclosure. The discovery rate can be
described by vulnerability discovery models (VDM) [20]. It

has been shown that VDMs are also applicable when the
vulnerabilities are partitioned according to severity levels
[21]. It is expected that some of the CVSS base and tem-
poral metrics impact the probability of a vulnerability exploi-
tation [10], although no empirical studies have yet been con-
ducted.

When a white hat researcher discovers a vulnerability,
the next transition is likely to be the internal disclosure lead-
ing to patch development. After being notified of a discovery
by a white hat researcher, software vendors are given a few
days, typically 30 or 45 days, for developing patches [22].
On the other hand, if the disclosure event occurred within a
black hat community, the next possible transition may be an
exploitation or a script to automate exploitation. Informally,
the term zero day vulnerability generally refers to an un-
published vulnerability that is exploited in the wild [23].
Studies show that the time gap between the public disclosure
and the exploit is getting smaller [24]. Norwegian Honeynet
Project [25] found that from the public disclosure to the ex-
ploit event takes a median of 5 days (the distribution is high-
ly asymmetric).

When a script is available, it enhances the probability of
exploitations. It could be disclosed to a small group of peo-
ple or to the public. Alternatively, the vulnerability could be
patched. Usually, public disclosure is the next transition right
after the patch availability. When the patch is flawless, ap-
plying it causes the death of the vulnerability although some-
times a patch can inject a new fault [26].

Frei has [11] found that 78% of the examined exploita-
tions occur within a day, and 94% by 30 days from the pub-
lic disclosure day. In addition, he has analyzed the distribu-
tion of discovery, exploit, and patch time with respect to the
public disclosure date, using a very large dataset.

6 Evaluating lifecycle risk

We first consider evaluation of the risk due to a single
vulnerability using stochastic modeling [9]. Fig. 3 presents a
simplified model of the lifecycle of a single vulnerability,
described by six distinct states. Initially, the vulnerability
starts in State 0 where it has not been found yet. When the
discovery leading to State 1 is made by white hats, there is
no immediate risk, whereas if it is found by a black hat, there
is a chance it could be soon exploited. State 2 represents the
situation when the vulnerability is disclosed along with the
patch release and the patch is applied right away. Hence,
State 2 is a safe state and is an absorbing state. In State 5, the
vulnerability is disclosed with a patch but the patch has not
been applied, whereas State 4 represents the situation when
the vulnerability is disclosed without a patch. Both State 4
and State 5 expose the system to a potential exploitation
which leads to State 3. The two white head arrows (and

) are backward transitions representing a recovery which
might be considered when multiple exploitations within the
period of interest need to be considered. In the discussion
below we assume that State 3 is an absorbing state.

In the figure, for a single vulnerability, the cumulative
risk in a specific system at time t can be expressed as proba-

Figure 2. Possible vulnerability lifecycle journey

Figure 3. Stochastic model for a single vulnerability

Int'l Conf. Security and Management | SAM'11 | 13

Birth Discovery
Internal

Disclosure

Patch

Public

Disclosure
Death

Exploit Script

State3

Exploitation

State4
Disclosure

without
Patch

State5
Disclosure
with Patch
Not applied

State 2
Disclosure

with Patch

Applied

State 1

Discovery
λ3

λ5

λ2

λ7

λ8

λ6

λ9

λ11

λ4

λ1

λ10

State 0
Vuln. Not

discovered

bility of the vulnerability being in State 3 at time t multiplied
by the consequence of the vulnerability exploitation.

If the system behavior can be approximated using a Mar-
kov process, the probability that a system is in a specific
state at t could be obtained by using Markov modeling.
Computational methods for semi-Markov [27] and non-
Markov [28] processes exist, however, since they are com-
plex, we illustrate the approach using the Markov assump-
tion. Since the process starts at State 0, the vector giving the
initial probabilities is α = (P0(0) P1(0) P2(0) P3(0) P4(0) P5(0))
= (1 0 0 0 0 0), where Pi(t) represents the probability that a
system is in State i at time t. Let be as the state transi-
tion matrix for a single vulnerability where t is a discrete
point in time. Let the xth element in a row vector of v as vx ,
then the probability that a system is in State 3 at time n is

. Therefore, according to the Equation (1),
the risk for a vulnerability i for time window (0, t) is:

 (5) M

The impact may be estimated from the CVSS scores for
Confidentiality Impact (IC), Integrity Impact (II) and Avail-
ability Impact (IA) of the specific vulnerability, along with
the weighting factors specific to the system being compro-
mised. It can be expressed as:

where is a suitably chosen function. CVSS defines envi-
ronmental metrics termed Confidentiality Requirement, In-
tegrity Requirement and Availability Requirement that can
used for RC, RI and RA. The function may be chosen to be
additive or multiplicative. CVSS also defines a somewhat
complex measure termed AdjustedImpact, although no justi-
fication is explicitly provided. A suitable choice of the im-
pact function needs further research.

We now generalize the above discussion to the general
case when there are multiple potential vulnerabilities in a
software system. If we assume statistical independence of the
vulnerabilities (occurrence of an event for one vulnerability
is not influenced by the state of other vulnerabilities), the
total risk in a software system can be obtained by the risk
due to each single vulnerability given by Equation (5). We
can measure risk level as given below for a specific software
system.

The method proposed here could be utilized to measure
risks for various units, from single software on a machine to
an organization-wide risk due to a specific software. Estimat-
ing the organizational risk would involve evaluating the vul-
nerability risk levels for systems installed in the organiza-
tions. The projected organizational risk values can be used
for optimization of remediation within the organization.

7 Risk from known unpatches

vulnerabilities

It can take considerable effort to estimate the transition
rates among the states as described in the previous section. A
conditional risk measure for a software system could be de-
fined in terms of the intervals between the disclosure and
patch availability dates that represent the gaps during which
the vulnerabilities are exposed.

We can use CVSS metrics to assess the threat posed by a
vulnerability. Let us make a preliminary assumption that the
relationships between the Likelihood (L) and the Exploitabil-
ity sub-score (ES), as well as the Impact (I) and the Impact
sub-score (IS) for a vulnerability i are linear:

and

Because the minimum values of ES and IS are zero, a0

and b0 are zero. That permits us to define normalized risk
values, as can be seen below.

Now, a conditional risk, for a vulnerability i can
be stated as:

For the aggregated conditional risk is:

A normalized risk measure can be defined by
multiplying the constant , expressed as:

 (6) M

This serves as an aggregated risk measure for known and
exposed vulnerabilities. Its estimation is illustrated below
using numerical data.

Fig. 4 is a conceptual diagram to illustrate the risk gap
between vulnerability discoveries and patch releases on top
of the simplified three phase vulnerability lifecycle in AML
model [20]. In the initial learning phase, the software is gain-
ing market share gradually. In the linear phase, the discovery
rate reaches the maximum due to the peak popularity of the

Figure 4. Example of the vulnerability discovery and patch in a

system with simplified three phase vulnerability lifecycle

14 Int'l Conf. Security and Management | SAM'11 |
N

u
m

b
e

r
o

f
v

u
ln

e
ra

b
il

it
ie

s

Time t

v1

v2

v4 ,v5,v6

v7

v8

v3

v9

Learning Linear Saturation

software, and finally, in the saturation phase, vulnerability
discovery rate slows down.

In the figure, each horizontal line represents the duration
for an individual vulnerability from discovery date to patch
availability date. When there are multiple dots at the right,
the horizontal line represents multiple vulnerabilities discov-
ered at the same time, but with different patch dates. A white
dot is used when a patch is not hitherto available. For exam-
ple, in Fig 4, at time t marked with the vertical red dashed
line, there are nine known vulnerabilities with no patches. To
calculate the conditional risk level at that time point, each
single vulnerability risk level need to be calculated first and
then added as shown in Equation (6).

We illustrate the approach using simulated data that has
been synthesized using real data. Actual vulnerability disclo-
sure dates [17] are used but the patch dates are simulated. XP
is currently (Jan. 2011 [29]) the most popular OS with
55.26% share. Also, Snow Leopard is the most popular
among non-Windows OSes. IE 8 and Safari 5 are the most
adopted Web browsers for the two OSes. Considerable effort

and time would be needed for gathering the actual patch re-
lease dates [22], thus simulated patch dates are used here for
the four systems. The patch dates are simulated using the
aggregate data [11] representing the fraction of vulnerabili-
ties patched, on average, within 0, 30, 90 and 180 as shown
in Table 1. Note that 6% and 12% of the vulnerabilities for
Microsoft and Apple respectively are not patched by 180
days. Many of them are patched later, however because of
lack of data, the simulated data treats them as unpatched
vulnerabilities which would cause the data to differ from real
data.

The simulated data sets are listed in Table 2; note that
while OS 1, OS 2, Browser 1 and Browser 2 are based on
XP, Snow Leopard, IE 8 and Safari 5 respectively, they are
used here only to illustrate the procedure and not for evalua-
tion the risk levels of the actual software.

Fig. 5 (a, b, d, e) give the risk gaps for the four datasets.
The linear trend observed arises as special cases of the lo-
gistic process [30]. Fig. 5 (c, f) give the normalized risk lev-
els calculated daily. As shown in the plots, OS 1 risk level
has started to decline while OS 2 risk level is still rising. For
the browsers, Browser 2 risk level rises sharply right after
the release due to the two sets of vulnerability clusters with
no available immediate patches. The long term rising trend
observed might be caused by vulnerabilities we have pre-
sumed to be unpatched after 180 days. Since the data sets are
simulated, the results only serve as an illustration of the ap-
proach and do not represent any actual products.

8 Conclusions

This paper presents formal measures of security risk that
are amenable to evaluation using actual vulnerability data. It

Figure 5. Evaluated risk gaps (a, b, d, e) and normalized risk level (c, f)

Table 1. Average patch time [11]

0-day 30-day 90-day 180- day

Microsoft 61% 75% 88% 94%

Apple 32% 49% 71% 88%

Table 2. Simulated datasets for patch date

 OS 1 OS 2 Browser 1 Browser 2

S
im

u
la

te
d

#
 o

f
v
u

ln
.

 0 day 289 33 54 14

 1-30 66 18 12 7

 31-90 61 23 11 9

 91-180 28 18 5 7

 No patch 30 14 7 7

Total [17] 474 106 89 44

Int'l Conf. Security and Management | SAM'11 | 15

●

2000 2002 2004 2006 2008 2010

0
1
0
0

2
0
0

3
0
0

4
0
0

OS 1

(a)

N
u
m

b
e
r

o
f

v
u
ln

e
ra

b
ili

ti
e
s

● ●●●●
●●●●●●

●●●●●● ●●●●
●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●
●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●
●●●●●●●
●●
●●●●●●●●●

●●●
●●●●●●●●●●●
●●●●●
●●●●●
●●●●
●●●●●●●
●●●●●●
●●●●●●●●●
●●
●●●●
●●●●●●●●●
●●●●●●

●●●
●●●●

●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●

●●●●●
●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●
●●●●●●●●●●●●●
●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●

● Disclosure
Patch (simulated)
Risk Gap (simulated)
Released

●

2004 2006 2008 2010

0
2
0

4
0

6
0

8
0

1
0
0

OS 2

(b)

N
u
m

b
e
r

o
f

v
u
ln

e
ra

b
ili

ti
e
s

●
●

●
●●
●

●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●
●

●●●●
●
●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●● Disclosure

Patch (simulated)
Risk Gap (simulated)
Released

2000 2002 2004 2006 2008 2010

0
5
0
0

1
5
0
0

2
5
0
0

OS 1 v.s. OS 2

(c)

R
is

k
 L

e
v
e
l

OS 1
OS 2

●

2005 2006 2007 2008 2009 2010 2011

0
2
0

4
0

6
0

8
0

1
0
0

Browser 1

(d)

N
u
m

b
e
r

o
f

v
u
ln

e
ra

b
ili

ti
e
s

●
●

●
●

●●●●
●

●●●●●●
●
●

●
●

●●●
●
●
●

●●●
●
●
●

●●●●●●●●●●●●
●
●

●●●
●

●●●●●
●

●●

●●●
●
●
●

●●●●●

●●●●●
●
●

●●●●●●●
●

●●●●
●
●

● Disclosure
Patch (simulated)
Risk Gap (simulated)
Released

●

2006 2007 2008 2009 2010 2011

0
1
0

2
0

3
0

4
0

5
0

Browser 2

(e)

N
u
m

b
e
r

o
f

v
u
ln

e
ra

b
ili

ti
e
s

●
●

●

●●●●●●●●●●●●●●●
●
●

●●●
●

●

●●●●●●●●●●●●●●●●●●●

● Disclosure
Patch (simulated)
Risk Gap (simulated)
Released

2005 2006 2007 2008 2009 2010 2011

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Browser 1 v.s. Browser 2

(f)

R
is

k
 L

e
v
e
l

Browser 1
Browser 2

also explores the relationship of CVSS metrics and scores
with formal expressions of risk.

While a preliminary examination of some of the software
lifecycle transitions has recently been done by some re-
searchers [11][12], risk evaluation considering the vulnera-
bility lifecycle has so far received very little attention. In this
paper, a formal quantitative approach for software risk eval-
uation is presented which uses a stochastic model for the
vulnerability lifecycle and the CVSS metrics. The model
incorporates vulnerability discovery and potential 0-day at-
tacks. The risk values for individual vulnerabilities can be
combined to evaluate risk for an entire software system,
which can in turn be used for evaluating the risk for an entire
organization. A simplified approach for risks due to known
but unpatched vulnerabilities is also given.

While some data has started to become available, further
research is needed to develop methods for estimating the
applicable transition rates [11][19][31]. In general, the com-
putational approaches need to consider the governing proba-
bility distributions for the state sojourn times. Since the im-
pact related scores may reflect a specific non-linear scale,
formulation of the impact function also needs further re-
search.

The proposed approach provides a systematic approach
for software risk evaluation. It can be used for comparing
the risk levels for alternative systems. The approach can be
incorporated into a methodology for allocating resources
optimally by both software developers and end users.

9 References
[1] C. Alexander, Market Risk Analysis: Quantitative Methods in

Finance, Wiley, 2008.

[2] V. Verendel, Quantified security is a weak hypothesis: a
critical survey of results and assumptions, Proc. 2009
workshop on New security paradigms workshop, Sept.08-11,
2009, Oxford, UK. pp. 37-49.

[3] R. L. V. Scoy, Software development risk: Opportunity, not
problem (cmu/sei-92-tr-030), Software Engineering Institute
at Carnegie Mellon University, Pittsburgh, Pennsylvania,
Tech. Rep., 1992.

[4] S. Farrell, Why Didn’t We Spot That?, IEEE Internet
Computing, 14(1), 2010, pp. 84-87.

[5] C. P. Pfleeger and S. L Pfleeger, Security in Computing, 3rd
ed. Prentice Hall PTR, 2003.

[6] National Institute of Standards and Technology (NIST), Risk
management guide for information technology systems, 2001.
Special Publication 800-30.

[7] L. A. (Tony) Cox, Jr, Some Limitations of Risk = Threat ×
Vulnerability × Consequence for Risk Analysis of Terrorist
Attacks, Risk Analysis, 28(6), 2008, pp. 1749-1761.

[8] Open Web Application Security Project (OWASP) Top 10
2010 - The Ten Most Critical Web Application Security
Risks, http://www.owasp.org/index.php/Top_10_2010-Main

[9] H. Joh and Y. K. Malaiya, A Framework for Software
Security Risk Evaluation using the Vulnerability Lifecycle
and CVSS Metrics, Proc. International Workshop on Risk and
Trust in Extended Enterprises, November 2010, pp. 430-434.

[10] P. Mell, K. Scarfone, and S. Romanosky, CVSS: A complete
Guide to the Common Vulnerability Scoring System Version
2.0, Forum of Incident Response and Security Teams
(FIRST), 2007.

[11] S. Frei, Security Econometrics: The Dynamics of (IN)Security,
Ph.D. dissertation at ETH Zurich, 2009.

[12] W. A. Arbaugh, W. L. Fithen, and J. McHugh, Windows of
vulnerability: A case study analysis, Computer, 33(12), 2000,
pp. 52–59.

[13] P. A. Engert, Z. F. Lansdowne, Risk Matrix 2.20 User's
Guide, November 1999, http://www.mitre.org/work/sepo/
toolkits/risk/ToolsTechniques/files/UserGuide220.pdf

[14] J. P. Brashear, J. W. Jones, Risk Analysis and Management
for Critical Asset Protection (RAMCAP Plus), Wiley
Handbook of Science and Technology for Homeland Security,
2008.

[15] European Network and Information Security Agency
(ENISA), Cloud Computing - Benefits, risks and
recommendations for information security, Ed. Daniele
Catteddu and Giles Hogben, Nov 2009.

[16] L. Cobb, A Scale for Measuring Very Rare Events, April,
1998, http://www.aetheling.com/docs/Rarity.htm

[17] NIST, National Vulnerability Database (NVD),
http://nvd.nist.gov/, Accessed on Feb. 2011

[18] I. Mkpong-Ruffin, D. Umphress, J. Hamilton, and J. Gilbert,
Quantitative software security risk assessment model, ACM
workshop on Quality of protection, 2007, pp. 31–33.

[19] S. H. Houmb and V. N. L. Franqueira, Estimating ToE Risk
Level Using CVSS, International Conference on Availability,
Reliability and Security, 2009, pp.718-725.

[20] O. H. Alhazmi and Y. K. Malaiya, Application of
vulnerability discovery models to major operating systems,
Reliability, IEEE Transactions on, 57(1), 2008, pp. 14–22.

[21] S.-W. Woo, H. Joh, O. H. Alhazmi and Y. K. Malaiya,
Modeling Vulnerability Discovery Process in Apache and IIS
HTTP Servers, Computers & Security, Vol 30(1), pp. 50-62,
Jan. 2011

[22] A. Arora, R. Krishnan, R. Telang, and Y. Yang, An Empirical
Analysis of Software Vendors’ Patch Release Behavior:
Impact of Vulnerability Disclosure, Information Systems
Research, 21(1), 2010, pp. 115-132.

[23] E. Levy, Approaching Zero, IEEE Security and Privacy, 2(4),
2004, pp. 65-66.

[24] R. Ayoub. An analysis of vulnerability discovery and
disclosure: Keeping one step ahead of the enemy, Tech.
Report, Frost & Sullivan, 2007.

[25] Norwegian Honeynet Project, Time to Exploit,
http://www.honeynor.no/research/time2exploit/, Accessed on
Feb. 2011

[26] S. Beattie, S. Arnold, C. Cowan, P. Wagle, and C. Wright,
Timing the application of security patches for optimal uptime,
Proceedings of the 16th USENIX conference on System
administration, Berkeley, CA, 2002, pp. 233-242.

[27] V. S. Barbu, and N. Limnios, Semi-Markov Chains and
Hidden Semi-Markov Models Toward Applications: Their Use
in Reliability and DNS Analysis, Springer, New York, 2008.

[28] Y. K. Malaiya and S. Y. H. Su, Analysis of an Important
Class of Non-Markov Systems, IEEE Transactions on
Reliability, R-31(1), April 1982, pp. 64 - 68.

[29] NetMarketShare, Operating System Market Share,
http://marketshare.hitslink.com/operating-system-market-
share.aspx?qprid=10, Accessed on Feb. 2011

[30] G. Schryen, Security of open source and closed source
software: An empirical comparison of published
vulnerabilities. Proceedings of the 15th Americas Conference
on Information Systems. 2009.

[31] M. D. Penta, L. Cerulo, and L. Aversano, The life and death
of statically detected vulnerabilities: An empirical study,
Information and Software Technology, 51(10), 2009, pp. 1469
-1484.

16 Int'l Conf. Security and Management | SAM'11 |

