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Abstract - Known vulnerabilities which have been discov-

ered but not patched represents a security risk which can 

lead to considerable financial damage or loss of reputation. 

They include vulnerabilities that have either no patches 

available or for which patches are applied after some delay. 

Exploitation is even possible before public disclosure of a 

vulnerability. This paper formally defines risk measures and 

examines possible approaches for assessing risk using actu-

al data. We explore the use of CVSS vulnerability metrics 

which are publically available and are being used for rank-

ing vulnerabilities. Then, a general stochastic risk evalua-

tion approach is proposed which considers the vulnerability 

lifecycle starting with discovery. A conditional risk measure 

and assessment approach is also presented when only 

known vulnerabilities are considered. The proposed ap-

proach bridges formal risk theory with industrial approach-

es currently being used, allowing IT risk assessment in an 

organization, and a comparison of potential alternatives for 

optimizing remediation. These actual data driven methods 

will assist managers with software selection and patch ap-

plication decisions in quantitative manner.

Keywords - Security vulnerabilities; Software Risk Eval-

uation; CVSS; Vulnerability liefcycle 

1   Introduction 

To ensure that the overall security risk stays within ac-
ceptable limits, managers need to measure risks in their or-
ganization.  As Lord Calvin stated “If you cannot measure it, 
you cannot improve it,” quantitative methods are needed to 
ensure that the decisions are not based on subjective percep-
tions only. 

Quantitative measures have been commonly used to 
measure some attributes of computing such as performance 
and reliability. While quantitative risk evaluation is common 
in some fields such as finance [1], attempts to quantitatively 
assess security are relatively new. There has been criticism 
of the quantitative attempts of risk evaluation [2] due to the 
lack of data for validating the methods.  Related data has 
now begun to become available. Security vulnerabilities that 
have been discovered but remain unpatched for a while rep-
resent considerable risk for an organization. Today online 
banking, stock market trading, transportation, even military 
and governmental exchanges depend on the Internet based 
computing and communications. Thus the risk to the society 
due to the exploitation of vulnerabilities is massive. Yet peo-

ple are willing to take the risk since the Internet has made the 
markets and the transactions much more efficient [3]. In spite 
of the recent advances in secure coding, it is unlikely that 
completely secure systems will become possible anytime 
soon [4]. Thus, it is necessary to assess and contain risk us-
ing precautionary measures that are commensurate.  

While sometimes risk is informally stated as the possibil-
ity of a harm to occur [5], formally, risk is defined to be a 
weighted measure depending on the consequence. For a po-
tential adverse event, the risk is stated as [6]: 

Risk = Likelihood of an adverse event   (1)M

Impact of the adverse event 

This presumes a specific time period for the evaluated 
likelihood.  For example, a year is the time period for which 
annual loss expectancy is evaluated. Equation (1) evaluates 
risk due to a single specific cause. When statistically inde-
pendent multiple causes are considered, the individual risks 
need to be added to obtain the overall risk. A risk matrix is 
often constructed that divides both likelihood and impact 
values into discrete ranges that can be used to classify appli-
cable causes [7] by the degree of risk they represent.  

In the equation above, the likelihood of an adverse event 
is sometimes represented as the product of two probabilities: 
probability that an exploitable weakness is present, and the 
probability that such a weakness is exploited [7].  The first is 
an attribute of the targeted system itself whereas the second 
probability depends on external factors, such as the motiva-
tion of potential attackers. In some cases, the Impact of the 
adverse event can be split into two factors, the technical im-
pact and the business impact [8]. Risk is often measured 
conditionally, by assuming that some of the factors are equal 
to unity and thus can be dropped from consideration. For 
example, sometimes the external factors or the business im-
pact is not considered. If we would replace the impact factor 
in Equation (1) by unity, the conditional risk simply becomes 
equal to the probability of the adverse event, as considered in 
the traditional reliability theory. The conditional risk 
measures are popular because it can alleviate the formidable 
data collections and analysis requirements. As discussed in 
section 4 below, different conditional risk measures have 
been used by different researchers. 

A vulnerability is a software defect or weakness in the 
security system which might be exploited by a malicious 
user causing loss or harm [5]. A stochastic model [9] of the 
vulnerability lifecycle could be used for calculating the Like-
lihood of an adverse event in Equation (1) whereas impact 
related metrics from the Common Vulnerability Scoring Sys-
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tem (CVSS) [10] can be utilized for estimating Impact of the 
adverse event. While a preliminary examination of some of 
the vulnerability lifecycle transitions has recently been done 
by researchers [11][12], risk evaluation based on them have 
been received little attention. The proposed quantitative ap-
proach for evaluating the risk associated with software sys-
tems will allow comparison of alternative software systems 
and optimization of risk mitigation strategies.  

The paper is organized as follows. Section 2 introduces 
the risk matrix. Section 3 discusses the CVSS metrics that 
are now being widely used. The interpretation of the CVSS 
metrics in terms of the formal risk theory is discussed in sec-
tion 4. Section 5 introduces the software vulnerability lifecy-
cle and the next section gives a stochastic method for risk 
level measurement. Section 7 presents a conditional risk as-
sessing method utilizing CVSS base scores which is illus-
trated by simulated data. Finally, conclusions are presented 
and  the future research needs are identified. 

2   Risk matrix: scales & Discretization 

In general, a system has multiple weaknesses. The risk 
of exploitation in each weakness i is given by Equation (1). 
Assuming that the potential exploitation of a weakness is 
statistically independent of others, the system risk is given 
by the summation of individual risk values: 

 (2) M

where Li is the likelihood of exploitation of weakness i and 
Ii is the corresponding impact. A risk matrix provides a vis-
ual distribution of potential risks [13][14]. In many risk 
evaluation situations, a risk matrix is used, where both im-
pact and likelihood are divided into a set of discrete inter-
vals, and each risk is assigned to likelihood level and an 
impact level. Impact can be used for the x-axis and likeli-
hood can be represented using then y-axis, allowing a visual 
representation of the risk distribution. For example, the 
ENISA Cloud Computing report [15] defines five impact 
levels from Very Low to Very High, and five likelihood lev-
els from Very Unlikely to Frequent. Each level is associated 
with a rating. A risk matrix can bridge quantitative and 
qualitative analyses. Tables have been compiled that allow 
on to assign a likelihood and an impact level to a risk, often 
using qualitative judgment or a rough quantitative estima-
tion.  

The scales used for likelihood and impact can be linear, 
or more often non-linear. In Homeland Security’s 
RAMCAP (Risk Analysis and Management for Critical As-
set Protection) approach, a logarithmic scale is used for 
both. Thus, 0-25 fatalities is assigned a rating “0”, while 25-
50 is assigned a rating of “1”, etc. For the likelihood scale, 
probabilities between 0.5-1.0 is assigned the highest rating 
of “5”, between 0.25-0.5 is assigned rating “4”, etc.  

Using a logarithmic scale for both has a distinct ad-
vantage. Sometimes the overall rating for a specific risk is 
found by simply adding its likelihood and impact ratings. 
Thus, it would be easily explainable if the rating is propor-
tional to the logarithm of the absolute value. Consequently, 
Equation (1) can be re-written as: 

kj  
 (3) 

When a normalized value of the likelihood, impact or 
the risk is used, it will result in a positive or negative con-
stant added to the right hand side. In some cases, higher 
resolution is desired in the very high as well as very low 
regions; in such cases a suitable non-linear scale such as 
using the logit or log-odds function [16] can be used.  

The main use of risk matrices is to rank the risks so that 
higher risks can be identified and mitigated. For determining 
ranking, the rating can be used instead of the raw value. Cox 
[7] has pointed out that the discretization in a risk matrix 
can potentially result in incorrect ranking, but risk matrices 
are often used for convenient visualization. It should be not-
ed that the risk ratings are not additive.  

We will next examine the CVSS metrics that has 
emerged recently for software security vulnerabilities, and 
inspect the relationship (likelihood, impact) in risk and (ex-
ploitability, impact) in CVSS vulnerability metric system. 

3   CVSS metrics and Related Works 

Common Vulnerability Scoring System (CVSS) [10] has 

now become almost an industrial standard for assessing the 

security vulnerabilities although some alternatives are some-

times used. It attempts to evaluate the degree of risks posed 

by vulnerabilities, so mitigation efforts can be prioritized. 

The measures termed scores are computed using assessments 

(called metrics) of vulnerability attributes based on the opin-

ions of experts in the field. Initiated in 2004, now it is in its 

second version released in 2007. 
The CVSS scores for known vulnerabilities are readily 

available on the majority of public vulnerability databases on
the Web. The CVSS score system provides vendor inde-
pendent framework for communicating the characteristics 
and impacts of the known vulnerabilities [10]. A few re-
searchers have started to use some of the CVSS metrics for 
their security risk models.  

CVSS defines a number of metrics that can be used to 
characterize a vulnerability. For each metric, a few qualita-
tive levels are defined and a numerical value is associated 
with each level. CVSS is composed of three major metric 
groups: Base, Temporal and Environmental. The Base metric 
represents the intrinsic characteristics of a vulnerability, and
is the only mandatory metric. The optional Environmental 
and Temporal metrics are used to augment the Base metrics, 
and depend on the target system and changing circumstanc-
es. The Base metrics include two sub-scores termed exploit-
ability and impact. The Base score formula [10], as shown in 
Equation (4), is chosen and adjusted such that a score is a 
decimal number in the range [0.0, 10.0]. The value for 
f(Impact) is zero when Impact is zero otherwise it has the 
value of 1.176. 

Base score = Round to 1 decimal{MMMMMMMMMM  

[(0.6×Impact)+(0.4×Exploitability)-1.5]×f(Impact)} (4) 
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The formula for Base score in Equation (4) has not been 
formally derived but has emerged as a result of discussions 
in a committee of experts. It is primarily intended for ranking 
of vulnerabilities based on the risk posed by them. It is nota-
ble that the Exploitability and Impact sub-scores are added 
rather than multiplied. One possible interpretation can be that 
the two sub-scores effectively use a logarithmic scale, as 
given in Equation (3). Then possible interpretation is that 
since the Impact and Exploitability sub-scores have a fairly 
discrete distribution as shown in Fig. 1 (b) and (c), addition 
yields the distribution, Fig 1 (a), which would not be greatly 
different if we had used a multiplication. We have indeed 
verified that using   yields a dis-
tribution extremely similar to that in Fig. 1 (a). We have also 
found that multiplication generates about twice as many 
combinations with wider distribution, and it is intuitive since 
it is based on the definition of risk given in Equation (1).  

The Impact sub-score measures how a vulnerability will 
impact an IT asset in terms of the degree of losses in confi-
dentiality, integrity, and availability which constitute three of 
the metrics. Below, in our proposed method, we also use 
these metrics. The Exploitability sub-score uses metrics that 
attempt to measure how easy it is to exploit the vulnerability. 
The Temporal metrics measure impact of developments such 
as release of patches or code for exploitation. The Environ-
mental metrics allow assessment of impact by taking into 
account the potential loss based on the expectations for the 
target system. Temporal and Environmental metrics can add 
additional information to the two sub-scores used for the 
Base metric for estimating the overall software risk.

A few researchers have started to use the CVSS scores in 
their proposed methods. Mkpong-Ruffin et al. [17] use 
CVSS scores to calculate the loss expectancy. The average 
CVSS scores are calculated with the average growth rate for 
each month for the selected functional groups of vulnerabili-
ties. Then, using the growth rate with the average CVSS 
score, the predicted impact value is calculated for each func-
tional group. Houmb et al. [19] have discussed a model for 
the quantitative estimation of the security risk level of a sys-
tem by combining the frequency and impact of a potential 
unwanted event and is modeled as a Markov process. They 
estimate frequency and impact of vulnerabilities using reor-
ganized original CVSS metrics. And, finally, the two esti-
mated measures are combined to calculate risk levels. 

4   Defining conditional risk meaures 

Researchers have often investigated measures of risk that 
seem to be defined very differently. Here we show that they 
are conditional measures of risk and can be potentially com-
bined into a single measure of total risk. The likelihood of 
the exploitation of a vulnerability depends not only on the 
nature of the vulnerability but also how easy it is to access 
the vulnerability, the motivation and the capabilities of a 
potential intruder.  

The likelihood Li , in Equation (2), can be expressed in
more detail by considering factors such as  probability of 
presence of a vulnerability vi and how much exploitation is 
expected as shown below: 

where  represents the inherent exploitability of the vul-
nerability,  is the probability of accessing the vulnerabil-
ity, and , represents the external factors. The impact fac-
tor, Ii , from Equation (1) can be given as: 

 

 

       

 

 

where the security attribute j=1,2,3 represents confidentiali-
ty, integrity and availability.  is the CVSS Base Impact 
sub-score whereas   is the CVSS Environmental ConfReq,

IntegReq or AvailReq metric. 
The two detailed expressions for likelihood and impact 

above in terms of constituent factors, allow defining condi-
tional risk measures. Often risk measures used by different 
authors differ because they are effectively conditional risks 
which consider only some of the risk components. The 
components ignored are then effectively equal to one. 

As mentioned above, for a weakness i, risk is defined as 
. The conditional risk measures  can 

Figure 1. Distributions for CVSS base metric scores (100 bins); NVD [17] on JAN 2011 (44615 vuln.)
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be defined by setting some of the factors in the above equa-
tions to unity: 

R1: by setting  as unity. The CVSS Base 

score is a R1 type risk measure.

R2: by setting  as unity. The CVSS temporal 

score is a R2 type risk measure. 
R3: by setting  as unity. The CVSS temporal score is a 

R3 type risk measure. 
R4:  is the total risk considering all the factors. 

In the next two sections, we examine a risk measure that 
is more general compared with other perspectives in the 
sense that we consider the discovery of hitherto unknown 
vulnerabilities. This would permit us to consider 0-day at-
tacks within our risk framework. In the following section a 
simplified perspective is presented which considers only the 
known vulnerabilities. 

5 Software vulnerability Lifecycle 

A vulnerability is created as a result of a coding or speci-
fication mistake. Fig. 2 shows possible vulnerability lifecycle 
journeys. After the birth, the first event is discovery. A dis-
covery may be followed by any of these: internal disclosure, 
patch, exploit or public disclosure. The discovery rate can be 
described by vulnerability discovery models (VDM) [20]. It 

has been shown that VDMs are also applicable when the 
vulnerabilities are partitioned according to severity levels 
[21].  It is expected that some of the CVSS base and tem-
poral metrics impact the probability of a vulnerability exploi-
tation [10], although no empirical studies have yet been con-
ducted. 

When a white hat researcher discovers a vulnerability, 
the next transition is likely to be the internal disclosure lead-
ing to patch development. After being notified of a discovery 
by a white hat researcher, software vendors are given a few 
days, typically 30 or 45 days, for developing patches [22].
On the other hand, if the disclosure event occurred within a 
black hat community, the next possible transition may be an
exploitation or a script to automate exploitation. Informally, 
the term zero day vulnerability generally refers to an un-
published vulnerability that is exploited in the wild [23]. 
Studies show that the time gap between the public disclosure 
and the exploit is getting smaller [24]. Norwegian Honeynet 
Project [25] found that from the public disclosure to the ex-
ploit event takes a median of 5 days (the distribution is high-
ly asymmetric). 

When a script is available, it enhances the probability of 
exploitations. It could be disclosed to a small group of peo-
ple or to the public. Alternatively, the vulnerability could be 
patched. Usually, public disclosure is the next transition right 
after the patch availability. When the patch is flawless, ap-
plying it causes the death of the vulnerability although some-
times a patch can inject a new fault [26].

Frei has [11] found that 78% of the examined exploita-
tions occur within a day, and 94% by 30 days from the pub-
lic disclosure day. In addition, he has analyzed the distribu-
tion of discovery, exploit, and patch time with respect to the 
public disclosure date, using a very large dataset. 

6   Evaluating lifecycle risk  

We first consider evaluation of the risk due to a single 
vulnerability using stochastic modeling [9]. Fig. 3 presents a 
simplified model of the lifecycle of a single vulnerability, 
described by six distinct states. Initially, the vulnerability 
starts in State 0 where it has not been found yet. When the 
discovery leading to State 1 is made by white hats, there is 
no immediate risk, whereas if it is found by a black hat, there 
is a chance it could be soon exploited. State 2 represents the 
situation when the vulnerability is disclosed along with the 
patch release and the patch is applied right away. Hence, 
State 2 is a safe state and is an absorbing state. In State 5, the 
vulnerability is disclosed with a patch but the patch has not
been applied, whereas State 4 represents the situation when 
the vulnerability is disclosed without a patch. Both State 4 
and State 5 expose the system to a potential exploitation 
which leads to State 3. The two white head arrows (  and 

) are backward transitions representing a recovery which 
might be considered when multiple exploitations within the 
period of interest need to be considered. In the discussion 
below we assume that State 3 is an absorbing state.  

In the figure, for a single vulnerability, the cumulative 
risk in a specific system at time t can be expressed as proba-

Figure 2. Possible vulnerability lifecycle journey

Figure 3. Stochastic model for a single vulnerability
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bility of the vulnerability being in State 3 at time t multiplied 
by the consequence of the vulnerability exploitation. 

If the system behavior can be approximated using a Mar-
kov process, the probability that a system is in a specific 
state at t could be obtained by using Markov modeling.
Computational methods for semi-Markov [27] and non-
Markov [28] processes exist, however, since they are com-
plex, we illustrate the approach using the Markov assump-
tion.  Since the process starts at State 0, the vector giving the 
initial probabilities is α = (P0(0) P1(0) P2(0) P3(0) P4(0) P5(0))
= (1 0 0 0 0 0), where Pi(t) represents the probability that a 
system is in State i at time t. Let be as the state transi-
tion matrix for a single vulnerability where t is a discrete 
point in time. Let the xth element in a row vector of v as vx ,
then the probability that a system is in State 3 at time n is 

. Therefore, according to the Equation (1), 
the risk for a vulnerability i for time window (0, t) is: 

 (5) M

The impact may be estimated from the CVSS scores for 
Confidentiality Impact (IC), Integrity Impact (II) and Avail-
ability Impact (IA) of the specific vulnerability, along with 
the weighting factors specific to the system being compro-
mised. It can be expressed as: 

where  is a suitably chosen function. CVSS defines envi-
ronmental metrics termed Confidentiality Requirement, In-
tegrity Requirement and Availability Requirement that can 
used for RC, RI and RA. The function  may be chosen to be 
additive or multiplicative. CVSS also defines a somewhat 
complex measure termed AdjustedImpact, although no justi-
fication is explicitly provided. A suitable choice of the im-
pact function needs further research. 

We now generalize the above discussion to the general 
case when there are multiple potential vulnerabilities in a 
software system. If we assume statistical independence of the 
vulnerabilities (occurrence of an event for one vulnerability 
is not influenced by the state of other vulnerabilities), the 
total risk in a software system can be obtained by the risk 
due to each single vulnerability given by Equation (5). We 
can measure risk level as given below for a specific software 
system. 

The method proposed here could be utilized to measure 
risks for various units, from single software on a machine to
an organization-wide risk due to a specific software. Estimat-
ing the organizational risk would involve evaluating the vul-
nerability risk levels for systems installed in the organiza-
tions. The projected organizational risk values can be used 
for optimization of remediation within the organization.  

7   Risk from known unpatches 

vulnerabilities 

It can take considerable effort to estimate the transition 
rates among the states as described in the previous section. A
conditional risk measure for a software system could be de-
fined in terms of the intervals between the disclosure and 
patch availability dates that represent the gaps during which 
the vulnerabilities are exposed. 

We can use CVSS metrics to assess the threat posed by a 
vulnerability. Let us make a preliminary assumption that the 
relationships between the Likelihood (L) and the Exploitabil-
ity sub-score (ES), as well as the Impact (I) and the Impact 
sub-score (IS) for a vulnerability i are linear: 

and    

Because the minimum values of ES and IS are zero, a0

and b0 are zero. That permits us to define normalized risk 
values, as can be seen below. 

Now, a conditional risk,  for a vulnerability i can 
be stated as: 

For the aggregated conditional risk is: 

A normalized risk measure  can be defined by 
multiplying the constant  , expressed as: 

 (6) M

This serves as an aggregated risk measure for known and 
exposed vulnerabilities. Its estimation is illustrated below 
using numerical data. 

Fig. 4 is a conceptual diagram to illustrate the risk gap 
between vulnerability discoveries and patch releases on top 
of the simplified three phase vulnerability lifecycle in AML 
model [20]. In the initial learning phase, the software is gain-
ing market share gradually. In the linear phase, the discovery 
rate reaches the maximum due to the peak popularity of the 

Figure 4. Example of the vulnerability discovery and patch in a 

system with simplified three phase vulnerability lifecycle 
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software, and finally, in the saturation phase, vulnerability 
discovery rate slows down.  

In the figure, each horizontal line represents the duration 
for an individual vulnerability from discovery date to patch 
availability date. When there are multiple dots at the right,
the horizontal line represents multiple vulnerabilities discov-
ered at the same time, but with different patch dates. A white 
dot is used when a patch is not hitherto available. For exam-
ple, in Fig 4, at time t marked with the vertical red dashed 
line, there are nine known vulnerabilities with no patches. To 
calculate the conditional risk level at that time point, each 
single vulnerability risk level need to be calculated first and 
then added as shown in Equation (6). 

We illustrate the approach using simulated data that has 
been synthesized using real data. Actual vulnerability disclo-
sure dates [17] are used but the patch dates are simulated. XP
is currently (Jan. 2011 [29]) the most popular OS with 
55.26% share. Also, Snow Leopard is the most popular 
among non-Windows OSes. IE 8 and Safari 5 are the most 
adopted Web browsers for the two OSes. Considerable effort 

and time would be needed for gathering the actual patch re-
lease dates [22], thus simulated patch dates are used here for 
the four systems. The patch dates are simulated using the 
aggregate data [11] representing the fraction of vulnerabili-
ties patched, on average, within 0, 30, 90 and 180 as shown 
in Table 1.  Note that 6% and 12% of the vulnerabilities for 
Microsoft and Apple respectively are not patched by 180 
days. Many of them are patched later, however because of 
lack of data, the simulated data treats them as unpatched 
vulnerabilities which would cause the data to differ from real 
data. 

The simulated data sets are listed in Table 2; note that 
while OS 1, OS 2, Browser 1 and Browser 2 are based on 
XP, Snow Leopard, IE 8 and Safari 5 respectively, they are 
used here only to illustrate the procedure and not for evalua-
tion the risk levels of the actual software. 

Fig. 5 (a, b, d, e) give the risk gaps for the four datasets. 
The linear trend observed arises as special cases of the lo-
gistic process [30]. Fig. 5 (c, f) give the normalized risk lev-
els calculated daily. As shown in the plots, OS 1 risk level 
has started to decline while OS 2 risk level is still rising. For 
the browsers, Browser 2 risk level rises sharply right after 
the release due to the two sets of vulnerability clusters with 
no available immediate patches. The long term rising trend 
observed might be caused by vulnerabilities we have pre-
sumed to be unpatched after 180 days. Since the data sets are 
simulated, the results only serve as an illustration of the ap-
proach and do not represent any actual products. 

8   Conclusions  

This paper presents formal measures of security risk that 
are amenable to evaluation using actual vulnerability data. It 

Figure 5. Evaluated risk gaps (a, b, d, e) and normalized risk level (c, f)

Table 1. Average patch time [11]

0-day 30-day 90-day 180- day

Microsoft 61% 75% 88% 94%

Apple 32% 49% 71% 88%

Table 2.  Simulated datasets for patch date 

 OS 1 OS 2 Browser 1 Browser 2 

S
im

u
la

te
d

 

#
 o

f 
v
u

ln
. 

 0 day 289 33 54 14 

 1-30 66 18 12 7 

 31-90 61 23 11 9 

 91-180 28 18 5 7 

 No patch 30 14 7 7 

Total [17] 474 106 89 44 
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also explores the relationship of CVSS metrics and scores 
with formal expressions of risk. 

While a preliminary examination of some of the software 
lifecycle transitions has recently been done by some re-
searchers [11][12], risk evaluation considering the vulnera-
bility lifecycle has so far received very little attention. In this 
paper, a formal quantitative approach for software risk eval-
uation is presented which uses a stochastic model for the 
vulnerability lifecycle and the CVSS metrics. The model 
incorporates vulnerability discovery and potential 0-day at-
tacks. The risk values for individual vulnerabilities can be 
combined to evaluate risk for an entire software system,
which can in turn be used for evaluating the risk for an entire 
organization. A simplified approach for risks due to known 
but unpatched vulnerabilities is also given. 

While some data has started to become available, further 
research is needed to develop methods for estimating the 
applicable transition rates [11][19][31]. In general, the com-
putational approaches need to consider the governing proba-
bility distributions for the state sojourn times. Since the im-
pact related scores may reflect a specific non-linear scale, 
formulation of the impact function also needs further re-
search. 

The proposed approach provides a systematic approach 
for software risk evaluation.  It can be used  for comparing 
the risk levels for alternative systems. The approach can be 
incorporated into a methodology for allocating resources 
optimally by both software developers and end users.  
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