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1 IntroductionThe wavelet transform has emerged as an exciting new tool for statistical signal and image processing. Thewavelet domain provides a natural setting for many applications involving real-world signals, includingestimation [1{3], detection [4], classi�cation [4], compression [5], prediction and �ltering [6], and synthesis[7]. The remarkable properties of the wavelet transform have led to powerful signal processing methodsbased on simple scalar transformations of individual wavelet coe�cients. These methods implicitly treateach wavelet coe�cient as though it were independent of all others. Methods that exploit dependenciesbetween wavelet coe�cients should perform even better. The goal of this paper is to develop new wavelet-domain probability models that match the statistical dependencies and nonGaussian statistics oftenencountered in practice. These new models lead to sophisticated processing techniques that coordinate thenonlinear processing amongst coe�cients to outperform current wavelet-based algorithms. The modelsare designed with the intrinsic properties of the wavelet transform in mind.1.1 The discrete wavelet transformThe discrete wavelet transform is an atomic decomposition that represents a one-dimensional signal z(t)in terms of shifted and dilated versions of a prototype bandpass wavelet function  (t), and shifted versionsof a lowpass scaling function �(t) [8,9]. For special choices of the wavelet and scaling functions the atoms J;K(t) � 2�J=2  �2�J t�K� ; �J0;K(t) � 2�J0 ��2�J0t �K� ; J;K 2 ZZ (1)form an orthonormal basis, and we have the signal representation [8, 9]z(t) = XK uK �J0;K(t) + J0XJ=�1XK wJ;K  J;K(t); (2)with wJ;K � R z(t) �J;K(t) dt, and uK � R z(t)��J0;K(t) dt.In this representation, J indexes the scale or resolution of analysis | smaller J corresponds to higherresolution analysis. J0 indicates the coarsest scale or lowest resolution of analysis. K indexes the spatiallocation of analysis. For a wavelet  (t) centered at time zero and frequency f0, the wavelet coe�cient wJ;Kmeasures the signal content around time 2JK and frequency 2�Jf0 (see Figure 1). The scaling coe�cientuK measures the local mean around time 2J0K. (To keep the notation manageable in the sequel, wewill adopt an abstract single index system for wavelet atoms and coe�cients:  J;K !  i, wJ;K ! wi.)In wavelet-based signal processing, we process the signal z(t) by operating on its wavelet coe�cientsfwig and scaling coe�cients fuKg. In practice, we work with a �nite-resolution representation of z(t),replacing the semi-in�nite sum in (2) with a sum over a �nite number of scales J1 � J � J0; J1; J0 2 ZZ.For more information on wavelet systems and their construction, see [8, 9].1
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fFigure 1: Tiling of the time-frequency plane by the atoms of the wavelet transform. Each box depicts the idealizedsupport of a scaling atom �K (top row) or a wavelet atom  i (other rows) in time-frequency; the solid dot at thecenter corresponds to the scaling coe�cient uK or wavelet coe�cient wi. Each di�erent row of wavelet atomscorresponds to a di�erent scale or frequency band. (We run the frequency axis down rather than up for laterconvenience.)The wavelet transform has several attractive properties that make it natural for signal processing.We call these the primary properties of the wavelet transform:Locality: Each wavelet atom  i is localized simultaneously in time and frequency.Multiresolution: Wavelet atoms are compressed and dilated to analyze at a nested set of scales.Compression: The wavelet transforms of real-world signals tend to be sparse.Together the Locality and Multiresolution properties enable the wavelet transform to e�ciently matcha wide range of signal characteristics, from high-frequency transients to slowly-varying harmonics. Thewavelet transform's ability to match a wide variety of signals leads to the Compression property. Compli-cated signals can often be represented using only a handful of wavelet and scaling functions. As a resultof these properties, statistical signal modeling and processing methods based in the wavelet-domain are,in many cases, much more e�ective than classical time-domain or frequency-domain approaches.1.2 Wavelet-domain statistical modelsIn this paper, we adopt a statistical approach to wavelet-based signal processing. To this end, ourobjective is to develop probability models for the wavelet transform of signals that are rich and exibleenough to capture the structure of a wide variety of data, yet concise, tractable, and e�cient for practicalapplication in real-world problems.Until recently, wavelet coe�cients have been modeled either as jointly Gaussian [4, 6, 10, 11], oras nonGaussian but independent [2, 3, 12, 13]. Jointly Gaussian models can e�ciently capture linearcorrelations between wavelet coe�cients. However, Gaussian models are in conict with the Compressionproperty, which implies the wavelet transforms of most signals are sparse, resulting in a large numberof small coe�cients and a small number of large coe�cients. A typical wavelet coe�cient density orhistogram is thus much more \peaky" at zero and heavy-tailed than the Gaussian.2
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f(a) (b)Figure 2: Clustering and Persistence across Scale illustrated, respectively, in Donoho and Johnstone's (a) Dopplerand (b) Bumps test signals [1]. The signals lie atop the time-frequency tiling (Figure 1) provided by a seven-scalewavelet transform. Each tile is colored as a monotonic function of the wavelet coe�cient energy w2i , with darkertiles indicating greater energy.NonGaussian models have also been formulated, but usually the coe�cients are assumed to be sta-tistically independent of each other. Justi�cation for independent nonGaussian models is based on theprimary properties plus the interpretation of the wavelet transform as a \decorrelator" that attempts tomake each wavelet coe�cient statistically independent of all others. However, the wavelet transform can-not completely decorrelate real-world signals | a residual dependency structure always remains betweenthe wavelet coe�cients. In words, we have the following secondary properties of the wavelet transform:Clustering: If a particular wavelet coe�cient is large/small, then adjacent coe�cients are very likely toalso be large/small [14].Persistence across Scale: Large/small values of wavelet coe�cients tend to propagate across scales [15,16].As we see in Figure 2, these are striking features of the wavelet transform. They have been exploited withgreat success by the compression community [5, 14]. Our goal is to do the same for signal processing.1.3 Modeling FrameworkCompletely modeling the joint probability density function of all of the wavelet coe�cients, f(w) withw = fwig, would characterize the dependencies between the coe�cients. However, the complete jointprobability density is usually intractable to use and impossible to estimate. At the other extreme,modeling the wavelet coe�cients as statistically independent, with f(w) = Qi f(wi), is simple butdisregards the inter-coe�cient dependencies. To strike a balance between these two extremes, we mustrepresent the key dependencies, and only the key dependencies. The primary and secondary propertiesof the wavelet transform suggest natural candidates: Persistence suggests that wavelet coe�cients can3
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fFigure 3: Statistical models for the wavelet transform. (a) Independent Mixture (IM) model. To match thenonGaussian nature of the wavelet coe�cients, we model each coe�cient as a mixture with a hidden state variable.Each black node represents a continuous wavelet coe�cient Wi. Each white node represents the mixture statevariable Si for Wi. (b) To match the inter-coe�cient dependencies, we link the hidden states. Connecting discretenodes horizontally across time (dashed links) yields the Hidden Markov Chain model. Connecting discrete nodesvertically across scale (solid links) yields the Hidden Markov Tree (HMT) model.have strong dependencies across scale (vertically in Figure 1), while Clustering and Locality suggest thatcoe�cients can have strong dependencies within scale (horizontally in Figure 1).In this paper, we introduce a new modeling framework that neatly summarizes the probabilisticstructure of the coe�cients of the wavelet transform [17]. Our models owe their richness and exibilityto the following features:Mixture Densities: To match the nonGaussian nature of the wavelet coe�cients, we model themarginal probability f(wi) of each coe�cient as a mixture density with a hidden state variable(see Figure 3(a)).Probabilistic Graphs: To characterize the key dependencies between the wavelet coe�cients, we intro-duce Markovian dependencies between the hidden state variables. These dependencies are describedby a probabilistic graph or tree (see Figure 3(b)).Models of this type, commonly referred to as Hidden Markov Models (HMMs), have proved tremendouslyuseful in a variety of applications, including speech recognition [18,19] and arti�cial intelligence [20].We will investigate three simple probabilistic graphs, with state-to-state connectivities shown inFigure 3(b). The Independent Mixture (IM) model leaves the state variables unconnected and henceignores any inter-coe�cient dependencies. The Hidden Markov Chain model connects the state variableshorizontally within each scale. The Hidden Markov Tree (HMT) model connects the state variablesvertically across scale. We will refer to these models collectively as wavelet-domain HMMs.We will show that the wavelet-domain HMM framework e�ectively captures key wavelet coe�cientcharacteristics, leading to computationally e�cient and statistically robust wavelet-based modeling ofreal-world signals. This framework provides a natural setting for exploiting the structure inherent inreal-world signals for estimation, detection, classi�cation, prediction and �ltering, and synthesis. InSection 5.1 we will apply this machinery to signal estimation and derive a new wavelet denoising scheme4



that performs substantially better than current approaches (see Figure 8 and Table 1). In Section 5.2,we will apply our models to two di�cult problems in detection and classi�cation.Although for illustrative purposes we will focus on one-dimensional signals in this paper, we candevelop wavelet-domain HMMs for images and higher-dimensional data as well. For example, the HMTmodels for one-dimensional signals have a natural binary tree structure, with each wavelet coe�cientconnected to two \child" coe�cients below it (see Figure 3(b)). The HMT models for images have anatural quadtree structure, with each wavelet coe�cient adjacent to four \child" coe�cients below it.1.4 Related workOur approach in this paper di�ers considerably from previous approaches to modeling wavelet transforms.In the signal estimation arena, research has concentrated primarily on modeling the nonGaussianity of thewavelet coe�cients rather than their inter-dependencies [2,3,12,13]. In the compression arena, techniquesincorporating both coe�cient nonGaussianity and inter-coe�cient dependence lie at the heart of the state-of-the-art compression systems. In particular, the zero-tree coder of Shapiro [5] has revolutionized waveletimage compression, signi�cantly improving compression performance by exploiting dependencies betweenwavelet coe�cients. Recently, new compression algorithms have been developed that combine the idea ofexploiting dependencies with probabilistic models for the wavelet coe�cients [21, 22]. Although similarin spirit to the probability models presented in this paper, none of these new compression algorithms usean HMM framework. Hence, they are quite separate from the wavelet-domain HMMs considered here.Wavelet-domain HMMs also di�er discernably from the multiscale stochastic models developed in[6,10]. In these multiscale stochastic models, the wavelet coe�cients themselves (rather than the hiddenstate variables) are modeled using a Markov structure. In addition, Basseville et al. emphasize linearGaussian models [6]. Wavelet-domain HMMs are nonlinear, nonGaussian, and do not constrain thewavelet coe�cients to be strictly Markov.The multiscale models of [23] have a Markov tree of state variables similar to that of the HMT model.However, they are applied directly to the signal (which is not tree-structured), rather than the wavelettransform of the signal (which is tree-structured). This distinction can be visualized as removing all thedark nodes from Figure 3(b) except those at the bottom scale, which now represent signal samples insteadof wavelet coe�cients. Di�ering both in content and purpose from wavelet-domain HMMs, these modelsclearly do not provide feasible wavelet-domain models.Wavelet-domain HMMs are also distinct from the traditional HMMs used in time series analysis andspeech recognition. Traditional HMMs model local correlations of a signal across time. Wavelet-domainHMMs model dependencies in the two-dimensional time-frequency plane | an entirely di�erent topologyrequiring new modeling techniques. In addition, wavelet-domain HMMs are designed to characterizeproperties of wavelet coe�cients such as Clustering, Persistence, and Compression. These properties5
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2 3Figure 4: Organization of a wavelet transform as a forest of binary trees. Tilings of the time-frequency plane andtree structures for (a) full decomposition (one tree), (b) decomposition with two fewer scale bands (four trees). Ascaling coe�cient sits above the root of each tree. Associated with each index i is a pair of nodes representingthe wavelet coe�cient Wi (black node) and its state variable Si (white node). See Figure 3(b) for a waveletdecomposition with two trees.are not necessarily present in time-series data, and hence can lead to substantially di�erent modelingassumptions than those typically used for time-series data.After dispensing with de�nitions and notation in Section 2, we turn to wavelet transform modelingusing HMMs in Section 3. We discuss the training of these models in Section 4. (Details of a new EMtraining algorithm for the HMT are provided in the Appendix.) In Section 5, we apply this machineryto several problems in signal estimation and detection and classi�cation. We close in Section 6 with adiscussion and conclusions.2 PreliminariesGraphs and trees will play a central role in this paper. An undirected graph consists of a set of nodesfv1; v2; : : : ; vNg and a set of connections linking the nodes. A path is a set of connections between twonodes. A rooted tree is an undirected acyclic graph. In a tree there is a unique path linking any twonodes. All nodes that lie on the path from vi to the root are called ancestors of vi; all nodes that lie onpaths from vi away from the root are called descendants of vi. The parent of vi is its immediate ancestorand is denoted by v�(i). A node is a child of vi if vi is its parent. We denote the children of node viby fvjgj2c(i). A node may have several children, but only one parent; nodes with no children are calledleaves of the tree. In a binary tree, each node that is not itself a leaf has two children.When viewed in the time-frequency plane as in Figure 1, a wavelet transforms has a natural organi-zation as a forest of binary trees [24].1 The tree(s) are rooted at the wavelet coe�cients in the coarsestscale (lowest frequency) band; a single scaling coe�cient sits above each root. Depending on the lengthof the signal and the number of scale bands computed in the transform, the forest of trees will containfrom one to several distinct trees (see Figures 3(b) and Figure 4). For instance, if we analyze a length-Ndiscrete signal over L wavelet scales, we obtain N2L wavelet trees. In our abstract indexing scheme, wewill denote the i-th wavelet coe�cient from the k-th tree as wki .1Do not confuse our use of trees with so-called tree-structured �lter banks [9].6



Finally, some simple notation: When dealing with random quantities, we will use capital letters todenote the random variable and lower case to refer to a realization of this variable. We will use pS(s) todenote the probability mass function (pmf) of the discrete random variable S and fW (w) to denote theprobability density function (pdf) of the continuous random variable W . We will use the shorthand iidfor independent and identically distributed. We will denote vectors with boldface letters.3 Wavelet Domain Probability Models for Observational DataRecall that our objective is to develop probability models for the wavelet transform that capture complexdependencies and nonGaussian statistics, yet remain tractable so that they can be applied to real-worldproblems. To this end, we develop our model in two steps. We begin with a simple model in whichthe wavelet coe�cients are assumed to be independent of each other. This model is based on the pri-mary properties of the wavelet transform and motivated by the fact that the wavelet transform \nearly"decorrelates a wide variety of signal.Next, we extend the independent coe�cient model in order to account for residual dependenciesthat remain between the wavelet coe�cients. This extension is accomplished with simple Markovianstructures on the wavelet tree. We consider Markov models across both time and scale to account for thesecondary properties of the wavelet transform: Clustering and Persistence across Scale. Our structuresreect Markov dependencies between the states of the wavelet coe�cients, rather than the values of thewavelet coe�cients themselves (as in [6]). The tandem of marginal Gaussian mixtures and �rst-orderMarkovian dependencies leads to practical hidden Markov models for the wavelet coe�cients.3.1 Probabilistic Models for an Individual Wavelet Coe�cientThe Compression property of the wavelet transform states that the transform of a typical signal consistsof a small number of large coe�cients and a large number of small coe�cients. This property, combinedwith our view of the signal as a random realization from a family or distribution of signals, leads to thefollowing simple model for an individual wavelet coe�cient. Most wavelet coe�cients contain very littlesignal information and hence these coe�cients have small, random values. A few wavelet coe�cients havelarge values that represent signi�cant signal information. Thus we can model each coe�cient as beingin one of two states: \high," corresponding to a wavelet component containing signi�cant contributionsof signal energy, or \low," representing coe�cients with little signal energy. If we associate with eachstate a probability density | say a high-variance, zero-mean density for the \high" state and a low-variance, zero-mean density for the \low" state | the result is a two-state mixture model for eachwavelet coe�cient.As we see from Figure 5, the two-state, zero-mean mixture model is completely parameterized by thepmf of the state variable Si, pSi(1); 1� pSi(1), and the variances of the Gaussian pdfs corresponding to7
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wFigure 5: A two-state, zero-mean Gaussian mixture model for a random variableW . We denote the state variableS with a white dot, the random variable W with a closed dot. Illustrated are the Gaussian conditional pdf's forW jS as well as the overall nonGaussian pdf for W . In our application, we model each wavelet coe�cient Wi (eachblack dot in Figure 1) in this way.Figure 6: A two-state, zero-mean Gaussian mixture model can closely �t real wavelet coe�cient data. Here wecompare the model pdf to a histogram of one scale of the Daubechies-4 wavelet transform of the \fruit" image inthe Georgia Tech database.each state, �2i;j ; j = 1; 2. Several factors support the model's validity. Empirical results from estimationhave shown the this mixture model to be simple, yet e�ective [2, 3]. Our experience corroborates theseresults; in Figure 6 we demonstrate the �t that this model provides for an actual signal. Furthermore,theoretical connections have been made between wavelet coe�cient mixture models and the fundamentalparameters of Besov spaces | function spaces that have proved extremely useful for characterizing real-world signals [12].For any given set of wavelet data, the two-state, zero-mean Gaussian mixture model may not providea �t to fW (w) with the desired �delity. To improve accuracy, we can use Gaussian mixture models withM > 2 states or non-zero means in the Gaussian mixing densities. By increasing the number of statesand allowing non-zero means, we can make the �t arbitrarily close for densities with a �nite number ofdiscontinuities [25]. We can even mix nonGaussian densities, such as conditional densities belonging tothe exponential family of distributions [26]. However, the two-state, zero-mean Gaussian mixture model issimple, robust, and easy-to-use | attractive features for many applications. For purposes of instruction,we will focus on the simple two-state model in this paper, but develop machinery capable of handlingmore general mixture models.In general, an M -state Gaussian mixture model for a random variable W consists of1. a discrete random state variable S taking the values s 2 1; 2; : : : ;M according to the pmf pS(s).2. the Gaussian conditional pdfs fW jS(wjS = s), s 2 1; 2; : : : ;M .8



To generate a realization of W using the mixture model, we �rst draw a state value s according topS(s) and then draw an observation w according to fW jS(wjS = s). The pdf of W is given byfW (w) = MXm=1 pS(m) fW jS(wjS = m): (3)In most applications of mixture models, the value w is observed, but the value of the state variableS is not; we say that the value of S is hidden. Although each wavelet coe�cient W is conditionallyGaussian given its state variable S, the wavelet coe�cient has an overall nonGaussian density due to therandomness of S.Unlike wavelet coe�cients, scaling coe�cients typically are not zero mean. Therefore, a two-state,zero-mean Gaussian mixture model may be inappropriate. One approach is to model the scaling coe�-cients as Gaussian with non-zero mean. Since scaling coe�cients are essentially weighted averages of alarge number signal samples, this approximation is reasonable in light of the Central Limit Theorem. Amore exible (but less robust) approach is to apply a Gaussian mixture model as before, but with mixingdensities that have non-zero means.3.2 Probabilistic Models for a Wavelet TreeSince a Gaussian mixture model can accurately characterize the pdf of a single wavelet coe�cient, it seemslogical to use Gaussian mixture models to characterize the joint pdf of the entire wavelet transform. Thesimplest approach would be to model the wavelet coe�cients as independent Gaussian mixtures. We callthis approach the Independent Mixture (IM) model. Because the wavelet transform nearly decorrelates awide variety of signals, this model for the wavelet tree is intuitively plausible. Moreover, as demonstratedby the denoising results in [2, 3], the IM is a substantial improvement over deterministic signal modelsthat do not explicitly take the distribution of signal's wavelet coe�cient values into account.Nevertheless, the Clustering and Persistence properties lead to local dependencies between waveletcoe�cients. Characterization of these dependencies has resulted in signi�cant performance gains incompression [5, 14]. Ideally, we would like a model that both matches each individual coe�cient's pdfand captures dependencies between coe�cients.We motivate our approach by extending the Gaussian mixture model for one wavelet coe�cient tojointly model two wavelet coe�cients that represent components of the signal close in time and/or scale.We say that two such coe�cients are neighbors. By Clustering and Persistence, if one coe�cient is in ahigh-variance (low-variance) state, then the neighbor is very likely also in a high-variance (low-variance)state. Thus, the two neighboring wavelet coe�cients can be modeled as Gaussian mixtures with inter-dependent state variables. This two-coe�cient example suggests a natural generalization to the multiplecoe�cients in a wavelet transform: model each coe�cient as a Gaussian mixture, but allow probabilisticdependencies between the state variables of each mixture.9



What remains is to specify an appropriate model for these dependencies between the state variables.A complete joint pdf taking into account all possible dependencies is clearly intractable, since the numberof di�erent state variable combinations grows exponentially in the number of wavelet coe�cients. For-tunately, the Locality and Multiresolution properties of the wavelet transform suggest that dependenciesdie o� quickly as we move away from the local neighborhood about a coe�cient of interest. Hence,very accurate and practical models can be obtained with probabilistic links between the states of onlyneighboring wavelet coe�cients. In the next Sections, we apply probabilistic graph theory [20,27,28] todevelop these models.3.2.1 Graph models for wavelet transformsProbabilistic graphs are useful tools for modeling the local dependencies between a set of random vari-ables [20, 27, 28]. Roughly speaking, a probabilistic graph associates each random variable with a nodein a graph; dependencies between pairs of variables are represented by connecting the correspondingnodes. The Locality and Multiresolution properties of the wavelet transform suggest three simple waysto \connect the dots" representing the wavelet coe�cients and states in Figure 1: (1) a graph with nodependencies between wavelet state variables, (2) a graph linking wavelet state variables across time usingchains, and (3) a graph linking wavelet state variables across scale using trees. In Figure 3, we illustratethese three simple graphs.We are by no means limited to just these three graphs. We can develop graphs that capture evenmore inter-dependencies by placing additional connections between the states. Unfortunately, the com-putational complexity increases substantially for graphs more sophisticated than trees. Although we canstill formulate algorithms for training and applying more complicated graphs [20, 28], to keep our pre-sentation and analysis simple we will concentrate on the three special cases described in Figure 3. Weelaborate on these here.Independent Mixture (IM) Model: A mixture model with no connections, as in Figure 3(a), cor-responds to the IM presented in [2, 3] and discussed above. It treats wavelet state variables (andhence wavelet coe�cients) as independent random variables.Hidden Markov Chain Model: Connecting the state variables Si horizontally in Figure 3(b) speci�esa Markov-1 chain dependency between the state variables within each scale [18]. This new modeltreats wavelet state variables as dependent within each scale, but independent from scale to scale.Hidden Markov Tree (HMT) Model: By connecting state variables vertically across scales in Fig-ure 3(b), we obtain a graph with tree-structured dependencies between state variables. We call thisnew model a tree model to emphasize the underlying dependencies between parent and child statevariables. 10



We will focus on the IM and HMT models in the sequel.The HMT model matches both the Clustering and Persistence across Scale properties of the wavelettransform. Its structure is reminiscent of the zerotree wavelet compression system [5], which exploitstree-structured dependencies for substantial compression gains. Furthermore, this graph has a naturalparent-child dependency interpretation. State variable dependencies are modeled via state transitionprobabilities from each parent state variable Si to its childrens' states, the two state variables connectedto it from below (if they exist). For example, in Figure 4(a), state variables S4 and S5 are both children ofS2, and hence causally dependent on S2. Dependency is not simply limited to parent-child interactions,however. State variables S4 and S5 may be highly dependent due to their joint interaction with S2.Moreover, if we do not restrict ourselves to zero-mean, two-state Gaussian mixture model, but ratheruse Gaussian mixture models with more than two states and non-zero means, this simple tree-structureis capable of approximating the joint parent-child wavelet coe�cient pdf to arbitrary precision. To seethis, consider what happens as we increase the number of mixture components, M , used to model themarginal parent and child distributions.Recall the components of the parent-child model. The parent is modeled usingM Gaussian univariatemixing densities and an M -vector of probabilities that weight the densities. Conditioned on the parentstate variable, the child wavelet coe�cient is modeled using its ownM Gaussian univariate densities andan M �M matrix of probabilities for transitions from the parent's state to the child's state. The jointmodel for parent and child is thus a mixture ofM2 bivariate Gaussians, which are the Cartesian productsof the univariate mixing densities. The mixture weights for these M2 bivariate Gaussians are productsof the parent state probabilities with the M �M matrix of transition probabilities. Hence we have M2degrees of freedom in choosing the mixture weights and we can realize any weighted mixture of the M2bivariate Gaussians we desire. Appealing to the approximation capabilities of Gaussian mixtures [25](analogous to radial basis function networks [29]), as M increases the bivariate Gaussian mixture iscapable of approximating any bivariate parent-child pdf with a �nite number of discontinuities to arbitraryprecision.Using an M -state Gaussian mixture model for each wavelet coe�cient Wi, the parameters for theHMT model are:1. pS1(m), the pmf for the root node S1.2. �mri;�(i) = pSi jS�(i)(mjS�(i) = r), the conditional probability that Si is in state m given S�(i) is in stater.3. �i;m and �2i;m, the mean and variance, respectively, of the wavelet coe�cient Wi given Si is in statem. 11



These parameters can be grouped into a model parameter vector �. Recall that we will primarily focuson the case M = 2 with the means �i;m set to zero.In the HMT model, we have the following conditional independence relationships among the waveletcoe�cients fWig. First, we observe thatfWi�wijfWjgj 6=i; fSj = sjgj 6=i; Si = si� = fWi (wijSi = si) : (4)In words, Wi is conditionally independent of all other random variables given its state Si. Hence, theindependence properties for the states also lead to independence properties for the wavelet coe�cients.We next investigate the independence properties for the wavelet coe�cients and wavelet states in tandem.The tree-structured connections lead to several conditional independence relationships for the statesand wavelet coe�cients. Given the parent state S�(i), the pair of nodes (Si;Wi) are independent of theentire tree except for Si's descendants. Conversely, given the child state Sj; j2c(i), the pair (Si;Wi) areindependent of Sj 's descendants. Combining these properties shows us that (Si;Wi) are conditionallyindependent of the entire tree given only the parent state S�(i) and the children states fSjgj2c(i).Using Figure 4(a), we can see concrete examples of these independence properties. Given the parentS1, the pair of nodes (S2;W2) are conditionally independent of the subtree rooted at S3. E�ectively,conditioning on the parent state separates (S2;W2) from the right side of the tree. Conversely, giventhe child S4, the pair (S2;W2) are conditionally independent of the subtrees rooted at S8 and S9; giventhe other child S5, (S2;W2) are conditionally independent of the subtrees rooted at S10 and S11. Ap-plying these together, we see that that given the parent S1 and children fS4; S5g, the pair (S2;W2) areconditionally independent of the rest of the tree.It is important to note that the Markov structure is on the states of the wavelet coe�cients, not thecoe�cients themselves. This is an important distinction between our model and other multiscale Markovsignal representations such as those considered in [6,10]. Because the states are never known exactly, ourHMM framework does not place a Markov structure on the wavelet coe�cients directly. Let J(i) denotethat the scale of Wi (and Si), and assume that scales are ordered from �nest, J = 1, to coarsest, J = L.In our model fWi�wijfWlgJ(l)>J(i)� 6= fWi�wijW�(i)� : (5)However, observe that even though the wavelet coe�cients are generally not Markov, signal processingusing wavelet-domain HMMs remains e�cient due to the Markov nature of the wavelet state variables.The question remains of how to capture inter-dependencies in the scaling coe�cients. One simplepossibility is to use a jointly Gaussian model for the scaling coe�cients; this captures correlations betweenscaling coe�cients, but treats them as independent of the wavelet coe�cients. If instead we use Gaussianmixture models, then the simplest approach is to treat the scaling coe�cients as independent mixturesas shown in Figure 4(b). To capture scaling coe�cient correlations, we can link the states of the scaling12



coe�cients across time in a hidden Markov chain model. Alternatively, to capture dependencies betweenwavelet and scaling coe�cients, we can link the states of the scaling coe�cients across scale with thoseof the coarsest scale wavelet coe�cients. Other possibilities exist, but the above models are naturaland straightforward to implement. The question of which model is best, or even whether any modelis necessary, depends on the application at hand. In wavelet denoising, for example, the noisy scalingcoe�cients typically contain much more signal energy than noise energy; hence, they are viewed as reliableestimates of the signal scaling coe�cients and left unprocessed [1, 3].3.2.2 Three standard problems of HMMsThere are three canonical problems associated with the wavelet-domain HMMs we have described [18]:Training: Given one or more sets of observed wavelet coe�cients, determine the wavelet-domain HMMparameters that best characterize the wavelet coe�cients.Likelihood Determination: Given a �xed wavelet-domain HMM, determine the likelihood of an ob-served set of wavelet coe�cients.State estimation: Given a �xed wavelet-domain HMM, determine the most likely sequence of hiddenstates for an observed set of wavelet coe�cients. This is useful for problems such as segmentation(see [23]), where the hidden states represent a physically meaningful quantity.We next focus on training and likelihood determination, since they are crucial for the applications wethat we develop in Section 5.4 Training and Likelihood Determination via the EM AlgorithmIn training, we seek the parameters of a wavelet-based HMM that best �t a given set of data. The trainingdata W = fWig consists of the wavelet coe�cients of a set of observed signals; the model parameters �consist of the mixture state probabilities and the mean and variance of each Gaussian component. Forparameter estimation, we apply the maximum likelihood (ML) principle: We choose the model parametersthat maximize the probability of the observed wavelet data. ML estimates are asymptotically e�cient,unbiased, and consistent as the number of training observations increases.Direct ML estimation of model parameters � from the observed data W is intractable, since inestimating � we are characterizing the states S = fSig of the wavelet coe�cientsW, which are unobserved(hidden). Yet, given the values of the states, ML estimation of � is simple (merely ML estimation ofGaussian means and variances). Therefore, we employ an iterative Expectation Maximization (EM)approach [30], which jointly estimates both the model parameters � and the hidden states S given theobserved wavelet coe�cients W. In the context of HMMs, the EM algorithm is often known as theBaum-Welch algorithm. 13



4.1 EM algorithms for TrainingOur discussion of EM algorithms focuses on the speci�c problem of parameter estimation in wavelet-based HMMs; for a more general treatment, see [30]. Our goal is to maximize the incomplete log-likelihood function ln f(Wj�), with � the parameters of our HMM. The EM algorithm decouples thisdi�cult maximization into two simpler steps. The E step calculates the expected value (over S) ofthe complete log-likelihood function ln f(W;Sj�). The M step maximizes this value as a function of�. Iterating between the E step and M leads, under mild conditions, to a local maximum of the log-likelihood function ln f(Wj�) [30]. E�cient EM algorithms for HMMs exist under the assumption thatthe underlying probabilistic graph is chordal [20, 28]. A graph is chordal if all cycles of length greaterthan 3 have a chord.2 The HMMs considered in this paper do not contain cycles, and therefore they aretrivially chordal and hence admit e�cient EM training.For HMMs, the complexity of one EM iteration is linear in the number of observations [18, 28]. Asthe graph models underlying the HMMs become more complicated, each iteration of the EM algorithmbecomes slower (still linear complexity, but with a large constant factor), and the algorithm may takelonger to converge. Hence, it is important to keep the HMMs as simple as possible.The speci�c EM steps for the IM and hidden Markov chain models have been developed thoroughlyin [18,26], so we do not include them in this paper. For more general tree models, Ronen et al. providespeci�c EM steps for discrete variables in [31]. Since the observed wavelet data in the HMT model iscontinuous-valued, we provide a new EM algorithm for this model in the Appendix.4.2 Likelihood DeterminationThe E step is useful in its own right, since it calculates ln f(Wj�), the likelihood of the observed datagiven the model. (The E step is often referred to as the forward-backward algorithm in the HMMliterature [18] and as the upward-downward or inward-outward algorithm in the arti�cial intelligenceliterature [20,27,31].) The likelihood calculation basically measures how well the model � describes thedata W. Hence, it is useful for detection and classi�cation applications, as we will see in Section 5.2.The calculation can also be used to predict or estimate the values of wavelet coe�cients with the model.4.3 Robust Training via TyingHMMs are very rich models; thus we must ensure that we have enough training data to prevent \over�t-ting." By averaging over only one or very few signal observations, we cannot expect to robustly estimatethe marginal densities of the wavelet coe�cients, let alone a joint density for the entire wavelet transform.This brings us to a key problem: If limited training data are available, how can we make our modeling2A cycle of a graph is a path starting and ending at the same node | a closed-loop. A chord is a connection betweentwo non-consecutive nodes in a cycle. 14
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fFigure 7: Tying in the HMT model. (a) Tying across wavelet trees. (b) Tying within a wavelet tree.more robust? We do so by modeling random variables that have similar properties using a commondensity or a common set of density parameters. For example, if we expect two random variables to haveroughly the same variability, we can describe them with a common variance. In this way, we obtain morereliable parameter estimates by increasing the amount of training data associated with each parameter.This practice is known as \tying" in the HMM literature [18], and we use it to more robustly estimatethe means, variances, and transition probabilities of our wavelet-domain HMMs.In Figure 7, we distinguish between two di�erent types of tying in the HMT model, tying betweenwavelet trees and tying within wavelet trees. Recall from Section 2 (see also Figures 3(b) and 4) thatin general, the wavelet decomposition of even a single signal observation can result in multiple wavelettrees.3 By tying across trees | which assumes that the coe�cients of these trees have the same density| we can train as if we had multiple signal observations. We can also tie within trees | by tying allcoe�cients within the same scale of a tree, for example. In the Appendix, we discuss both types of tyingfor training HMT models.5 ApplicationsThe development of wavelet-domain HMMs is motivated by the intrinsic properties of the wavelet trans-form, and we have discussed how several aspects of the model are supported by empirical and theoret-ical evidence. However, the true test of our modeling framework lies in its application to real signalprocessing \benchmark" problems. To this end, we consider applications in signal estimation and de-tection/classi�cation. We compare the estimation performance of our new models for signal estimationin additive noise to state-of-the-art wavelet denoising methods. We show that our new framework o�erssigni�cant improvements in several well-studied benchmark problems. Wavelet-domain HMMs are alsowell-suited to signal detection and classi�cation. In this Section, we approach these problems by assum-ing that no prior signal models are available and that only \training" data are available for the designof the detector/classi�er. We compare the wavelet-domain HMM-based detectors to classical detectors.Our results demonstrate the HMM's high performance and extremely e�cient use of training data in twodi�cult signal detection problems.3A full-scale wavelet decomposition of a single signal results in only a single tree. In this case, the notion of tying acrosstree is superuous. 15



5.1 Signal EstimationWavelets have proved remarkably successful for estimating signals in additive white Gaussian noise [1,3].The Compression property indicates that the wavelet transform typically compresses signals into a fewcoe�cients of large magnitude, and because the wavelet transform is orthogonal it leaves noise evenlydistributed across many coe�cients of small magnitude. Therefore, by setting small wavelet coe�cientsto zero, one e�ectively removes noise without degrading the signal.Existing denoising methods usually ignore possible dependencies between signal wavelet coe�cients,and hence these methods do not exploit key Clustering and Persistence Across Scale properties. Inthis Section, we illustrate the power of the HMT model by developing a novel signal denoising methodbased on this framework. The new denoising method coordinates the noise removal among the waveletcoe�cients and automatically adjusts to subtle structure within the signal [17].Consider the problem of estimating a length-N signal in zero-mean white Gaussian noise with power�2n. Taking the wavelet transform of the noisy signal, we obtain K = N=2L trees of noisy waveletcoe�cients fwki g (see Section 2). Since the orthogonal wavelet transform of zero-mean white Gaussiannoise is zero-mean white Gaussian noise of the same power, the estimation problem can be expressed inthe wavelet domain as wki = yki + nki ; (6)where wki , yki , and nki denote the wavelet coe�cients of the observed data, the signal, and the noise,respectively.Our approach is succinctly described as follows. We �rst estimate a HMT model for the yki 's fromthe noisy data and then use this estimate as a prior signal distribution to compute the conditional meanestimates of the yki 's given wki . In e�ect, this approach is an \empirical" Bayesian estimation procedure,since we estimate our Bayesian prior from the data itself. To estimate an HMM for the noisy waveletcoe�cients, we apply the EM algorithm from the Appendix. We begin by estimating the parametersnpS1(m); �mri;�(i); �2i;mo for the signal wavelet coe�cients using the noisy signal observation.4The basic idea is that if the signal has a wavelet-domain HMM pdf, then the noisy signal noise doesas well. Given the values of their hidden state variables, the signal wavelet coe�cients are Gaussian,and that the sum of independent Gaussian random variables is also Gaussian. Therefore, adding theindependent zero-mean white Gaussian noise nki increases each mixture model variance �2i;m by �2n, butleaves the other parameters unchanged. Hence, we can obtain the signal wavelet model from the noisysignal by training a model for the noisy signal wavelet coe�cients and then subtracting the added variancedue to noise. If we denote the mixture variance of the noisy wavelet coe�cient at location i in the mth4As in [2, 3], we assume that the wavelet coe�cients are zero-mean. The scaling coe�cients, though not zero-mean, arerelatively noise-free and hence are not processed. 16



state as 2i;m, then �2i;m = �2i;m � �2n�+; (7)with (x)+ = x for x � 0 and (x)+ = 0 for x < 0. The noise power �2n can be estimated using the medianestimate of [1] performed on the �nest scale wavelet coe�cients (where the signal energy is expected tobe negligible).Of course, we typically have only a single noisy signal observation at hand. Therefore, in order toinsure reliable parameter estimation for the signal we must \share" statistical information between relatedwavelet coe�cients. We accomplish this by assuming that all wavelet coe�cients and state variableswithin a common scale are identically distributed (corresponding to tying both within and across treesfrom Section 4.3). The resulting HMT model is completely parameterized by two mixture variances forthe wavelet coe�cients at each scale, two probabilities for the root state variable at the coarsest scale,and 2� 2 state transition probability matrices for the state variables at all other scales.Once a trained HMM is obtained, estimation of the true signal wavelet coe�cients (denoising) isvery straightforward. Note that if the states Ski of the signal wavelet coe�cients yki are known, thenthe estimation problem becomes a series of simple one-dimensional estimation problems of estimatingzero-mean Gaussian random variables in zero-mean additive Gaussian noise. The optimal conditionalmean estimate of yki , given wki and the state ski , isE hY ki ���W ki = wki ; Ski = mi = �2i;m�2n + �2i;m wki : (8)Now recall that by-products of the EM algorithm are the hidden state probabilities p �Ski jWk; �� giventhe model and the observed wavelet coe�cients. (See the Appendix for how these probabilities arecalculated.) Using these state probabilities, we obtain conditional mean estimates for yki via the chainrule for conditional expectationE hyki jWk; �i = Xm p �Ski = mjWk; �� �2i;m�2n + �2i;m wki : (9)The �nal signal estimate (denoised signal) is computed as the inverse wavelet transform of these estimatesof the signal wavelet coe�cients. Note that only the wavelet coe�cients are processed. The original scalingcoe�cients are used in the inverse transform.We next compare our \empirical" Bayesian denoising procedure using the IM and HMT with currentstate-of-the-art wavelet denoising algorithms.5 Table 1 compares the estimation performance of the IM5For each estimation algorithm, Bumps was transformed using the Daubechies-4 wavelet, Blocks using the Haar wavelet,and Doppler and Heavisine using the Daubechies-8 most-nearly-symmetric wavelet. The IM and HMT algorithms used aseven-scale wavelet decomposition. The error results of Table 1 for SureShrink and the Bayesian algorithm of Chipman etal. were quoted from [3]. More details of these two algorithms are provided in [1, 3]. Error results for IM and HMT wereobtained by averaging over 1000 trials. For Figure 8, SureShrink was implemented using the \hybrid" shrinkage estimatorin the WaveLab software. The Bayesian mixture algorithm [3] was not implemented for Figure 8, but is similar to IM bothin its Bayesian formulation and MSE performance. 17



Table 1: Denoising results for Donoho and Johnstone's length-1024 test signals [1]. Noise variance �2n = 1.Method Mean-squared errorBumps Blocks Doppler HeavisineSureShrink [1] 0.683 0.222 0.228 0.095Bayesian [3] 0.350 0.099 0.165 0.087IM 0.335 0.105 0.170 0.080HMT 0.268 0.079 0.132 0.081and the HMT models with two state-of-the-art scalar algorithms. Donoho and Johnstone's SureShrinkalgorithm [1] performs scalar thresholding in the wavelet domain. The Bayesian mixture algorithm ofChipman et al. [3] operates in a similar fashion to the denoising method using the IM model, except thattheir mixture model is a true Bayesian prior and is not inferred from the data. MSE results are tabulatedfor denoising Donoho and Johnstone's length-1024 test signals Bumps, Blocks, Doppler, and Heavisine [1]in additive white Gaussian noise of power �2n = 1. Inspection of Table 1 shows that signi�cant MSE gainscan be achieved by exploiting wavelet-domain dependencies via the HMT model. The only exception isthe Heavisine signal, which has less wavelet-domain structure for the HMT model to exploit. In this case,the IM and HMT model perform roughly equivalently.Figure 8 illustrates the subjective improvement6 of the HMT model for denoising the Doppler signalin white Gaussian noise of power �2n = 2:25. The HMT denoising method o�ers two signi�cant advantagesover the other methods: (1) HMT denoising is often smoother than both SureShrink and IM, and (2) HMTdenoising preserves the high-frequency components at the beginning of the signal better than the othertwo methods. This demonstrates how exploiting the statistical dependencies between wavelet coe�cientsenables HMT denoising to better separate signal from noise | even in regions where signal and noise arevisually indistinguishable.5.2 Signal Detection and Classi�cationOur marriage of wavelet transforms and HMMs yields a exible framework for generalized likelihood-based signal detection and classi�cation that both matches the properties of the wavelet transform andexploits the structure inherent in real-world signals. Given iid signal observations from two or moreclasses of signals, we can train HMMs for each class. We use the trained HMMs to detect or classify anew signal observation by determining which describes the new observation best. This task boils downto computing the likelihood of the new signal observation for each HMM and then selecting the classwhose HMM provides the greatest likelihood. This approach is analogous to the use of HMMs for speechrecognition [19], where each signal class is a speci�c word or utterance. A slightly di�erent approachdeveloped for time-domain HMMs has been shown to be asymptotically optimal in the Neyman-Pearson6Although results can vary depending on the noise realization, the �gure is chosen as a representative example of thesubjective results observed over several realizations. 18
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Figure 8: Denoising the Doppler test signal in white Gaussian noise, �2n = 2:25. On each plot a dotted line is usedto depict the original signal, a solid line the noisy or denoised signal. The leftmost plots depict the entire signals;the rightmost plots depict the signals \zoomed" to the interval [0,0.04], where it is di�cult to distinguish high-frequency signal from noise. (a) Noisy length-1024 Doppler signal, MSE = 2.42. (b) Denoised via SureShrink [1],MSE = 0.43. (c) Denoised via wavelet-based Bayesian IM model, MSE = 0.34 (d) Denoised via wavelet-basedBayesian HMT model, MSE = 0.26. 19



sense for two-class problems [32].Several other wavelet-based detection and classi�cation schemes have been proposed [4, 24, 33, 34].Our purpose is not to provide a comprehensive review of wavelet-based detection algorithms, but ratherto demonstrate the potential of the new wavelet-domain HMM framework for signal detection and clas-si�cation. Note that this approach is quite di�erent from the other wavelet-based detection schemesmentioned above.The properties of the wavelet transform make our framework particularly appropriate for the classi-�cation and detection of real-world signals. To demonstrate the power and potential of wavelet-domainHMMs for signal classi�cation, we tackle two di�cult problems | classi�cation of nonlinear processesand change detection. These problems arise in many applications, including sonar and radar, machineryand process monitoring, and biomedical signal analysis. We do not suggest that this framework is theoptimal one for either speci�c problem, rather we chose these two examples to demonstrate the exibilityand adaptability of the approach. In situations where the data is known to obey a simple probabilitymodel, then optimal detection and classi�cation methods should be used. However, in complicated real-world applications where the only prior information is a set of training data, our approach o�ers a usefulframework for detection and classi�cation. In combination, wavelet HMMs and training data provide ane�cient and powerful framework for generalized likelihood ratio testing. Both examples considered hereare binary hypothesis problems, but the framework is applicable to multiple hypothesis testing as well.In these examples, we applied a Haar transform with a single wavelet tree and a single scalingcoe�cient. We modeled the wavelet coe�cients using two-component (M = 2) IM and HMT modelswith non-zero mixture means. These models were trained using multiple signal observations (withouttying). We did not model the scaling coe�cient, since it provides the global mean of the signal, which inboth examples was the same under the two hypotheses. In other scenarios the scaling coe�cient(s) mayprovide vital discriminating information.For the purposes of illustration, we only considered a very special form of the wavelet-domain HMMframework | one based on the Haar transform and two-component mixture models. Although theHaar transform is appropriate for edge detection, di�erent wavelet transforms may work better for otherapplications. Generally, we expect the transforms that best compress the signals of interest will providethe best performance. In addition, we could use more-exible models with M > 2 mixture components,but in using such models we may risk \over�tting" the training data.5.2.1 Classi�cation and Detection of NonlinearityFor the purposes of demonstration, we have designed a numerical experiment that captures many of thenuances that make nonlinearity classi�cation/detection so di�cult. We consider two classes of random20
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Figure 9: Typical autoregressive (AR) signals used in nonlinear classi�cation experiment. (a) Linear AR process(Class I). (b) Linear AR process passed through a mild cubic nonlinearity (Class II).processes described mathematically by:Class I: x1(t) = ax1(t � 1) + n1(t) (10)Class II: x2(t) = y2(t) + 0:2y32(t); with y2(t) = by2(t� 1) + n2(t) (11)Both n1 and n2 are white Gaussian noise processes, and the autoregressive (AR) parameters a and bare iid and uniform over the interval (0:4; 0:8). The signals are discrete-time and organized into signalvectors of length 128 with (t = 1; 2; : : : ; 128). Class I signals are linear AR(1) processes. Class II signalsare produced by passing linear AR(1) processes through a memoryless cubic nonlinearity. Examples ofsignals from each class are shown in Figure 9 (generated with the same AR parameter and white noiseexcitation for comparison).The �rst task at hand is to train wavelet-domain HMMs for the two classes based on labeled obser-vations from each class. We generated NT iid AR signals from each class for training purposes. (Note:the AR parameter varies independently for each realization.) For comparison, we constructed a mini-mum probability of error quadratic detector under the assumption that the two classes have Gaussiandistributions with di�erent means and covariances [35], with the means and covariances estimated fromthe training data. The quadratic detector is not optimal, since the second class is nonGaussian.In cases where the number of training observations NT was smaller than the dimension of the obser-vations, we formed the quadratic detector in the subspace spanned by the training data. After trainingthe classi�ers, we tested their performance with 1000 additional iid observations from each class. Toobtain reliable estimates of the error rates, we repeated the training and testing procedure 10 times ineach case. The error rates for the IM model, HMT model, and quadratic detector, as a function of thenumber of training vectors NT from each class, are shown in Figure 10.Given a limited amount of training data, the quadratic detector had a di�cult time distinguishing theclasses and thus o�ers very poor performance. In contrast, the wavelet-domain HMMs make much moree�cient use of the training data. With only 128 training vectors from each class, the performances ofthe HMMs have stabilized to their minimum error rates. Additional training data does not increase theirperformance. The performance of the quadratic detector does improve as NT increases, but requires21
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Figure 11: Typical signals for the abrupt change detection experiment. (a) Gaussian white noise added to constantsignal (Class I). (b) Gaussian white noise added to signal with abrupt change (Class II).
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6 ConclusionsThe primary properties of the wavelet transform | Locality, Multiresolution, and Compression | haveled to powerful new approaches to statistical signal processing. However, existing methods usually modelthe wavelet coe�cients as statistically independent or jointly Gaussian. The Compression propertydictates the need for nonGaussian models for individual wavelet coe�cients. Moreover, the secondaryproperties of the wavelet transform | Clustering and Persistence across Scale | indicate that statisticaldependencies between coe�cients must be characterized in order to derive optimal signal processingalgorithms. In this paper, we have developed a new framework for statistical signal processing basedon wavelet-domain HMMs. The framework enables us to concisely model the non-Gaussian statisticsof individual wavelet coe�cients and capture statistical dependencies between coe�cients. We havedeveloped an e�cient Expectation Maximization algorithm for �tting the HMMs to observational signaldata, and we have demonstrated the utility, exibility, and performance of our framework in severalestimation and detection problems.We believe that the HMM framework presented here could serve as a powerful new tool for wavelet-based statistical signal and image processing, with applications in signal estimation, detection, classi�-cation, compression, and synthesis. Although the examples we have provided here are one-dimensional,two-dimensional wavelet domain HMMs are easily derived from our results, since the models and train-ing algorithms apply to quadtrees as well as binary trees. Furthermore, these HMMs apply not onlyfor modeling wavelet-domain data, but also for modeling data from other multiresolution transforms orsignal representations. Finally, the knowledge base that has already accumulated in statistics, speechrecognition, arti�cial intelligence, and related �elds may lead to wavelet-domain HMMs that are evenmore accurate and sophisticated, yet still tractable, robust, and e�cient for signal processing.A Appendix | EM Algorithm for Hidden Markov TreesAlthough the EM algorithm is classical with a well-known basic structure, the exact EM steps are problemdependent. In fact, the EM steps for estimating the parameters of tree-structured probability modelshave been derived only recently [27,31], with work primarily focusing on trees of discrete-valued randomvariables. Following [31], we will develop an EM algorithm for HMTs generalized to handle continuous-valued wavelet coe�cients and specialized to the tree structure provided by the wavelet transform. Themajor change is that we replace maximum-likelihood estimation of pmf values for the leaves of the treewith maximum-likelihood estimation of Gaussian mixture means and variances. In addition, we willdemonstrate the e�ect of tying on the algorithm.In applying the EM algorithm for HMTs, our task is to �t an M -state HMT model, parameterizedvia � = npSi(m); �nmi;�(i); �i;m; �2i;m j i = 1; : : : ; P ; n;m = 1; : : : ;Mo, to K > 1 trees of observed wavelet24



coe�cients, with P the number of wavelet coe�cients in each tree. We omit modeling the single scalingcoe�cient associated with each tree. We can obtain the K trees either by wavelet-transforming K signalobservations, each into a single tree, or by wavelet-transforming one signal observation into K di�erentwavelet trees as shown in Figure 4(b). In the later case, we actually tie across trees, modeling di�erenttrees using the same set of parameters (see Section 4.3 for details). The EM steps are identical for eithercase.Recall from Section 4.1 that the EM algorithm is iterative, and for HMTs converges to a locally-optimal ML �t. The iterative structure in this case is as follows:Initialization: Select an initial model estimate �.1. E step (upward-downward algorithm): Estimate probabilities for the hidden state variables ofthe wavelet coe�cients.a. Up step: Propagate hidden state information up the tree.b. Down step: Propagate hidden state information down the tree.2. M step: Update the model � to maximize the expected likelihood function.3. Convergence test: Iterate between the E step and M step until converged.For HMTs, the M step is simple | the key step is the E step, also known as the upward-downwardalgorithm. To keep things clear and simple, we �rst develop the E step for a single tree. We then developthe EM steps for multiple trees.7 We �nish by incorporating into the EM steps the notion of tying withintrees from Section 4.3.A.1 E step for a single wavelet treeWe �rst focus on processing a single size-P wavelet tree, with wavelet coe�cients W = [W1 W2 : : : WP ]having hidden states S = [S1 S2 : : : SP ] that take on values m = 1; : : : ;M . The primary task of the Estep is to calculate hidden state probabilities p (Si = mjW; �) and p �Si = m;S�(i) = njW; �� given themodel �. To obtain these probabilities, we introduce a number of intermediate variables.We �rst introduce notation for trees of observed wavelet coe�cients. Similar in structure to the treesof Figure 4, these trees are formed by linking the wavelet coe�cients rather than the hidden states. Wede�ne Ti to be the subtree of observed wavelet coe�cients with root at node i, so that the subtree Ticontains coe�cient Wi and all its descendants. We also de�ne Tinj; j>i to be the set of observed waveletcoe�cients obtained by removing the subtree Tj from Ti, with Tini the null tree. Without loss of generalitywe order W so that W1 is at the root of the entire tree. Thus, T1 is the entire tree of observed wavelet7Note that with no tying, the M step for a single tree is meaningless, since it entails �tting Gaussian mixtures tosingle-coe�cient histograms. 25



coe�cients (a tree-structured version of the vector W), so in our probability expressions we interchangeT1 and W when convenient.For each subtree Ti, we de�ne the conditional likelihoods�i(m) = f (TijSi = m; �) (14)�i;�(i)(m) = f �TijS�(i) = m; �� (15)��(i)ni(m) = f �T�(i)nijS�(i) = m; �� ; (16)and the joint probability functions �i(m) = p �Si = m; T1nij�� ; (17)with Si taking discrete values and the elements of T1ni taking continuous values.Based on the HMT properties from Section 3.2, the trees Ti and T1ni are independent given thestate variable Si. This fact, along with the chain rule of probability calculus, leads to the desired stateprobabilities in terms of the �'s and �'s. First we obtainp (Si = m; T1j�) = �i(m) �i(m) (18)p �Si = m;S�(i) = n; T1j�� = ��(i)(n) ��(i)ni(n) �i(m) �nmi;�(i): (19)The likelihood of W is thenf(Wj�) = f(T1j�) = MXm=1 p (Si = m; T1j�) = MXm=1 �i(m) �i(m): (20)Bayes rule applied to equations (18)-(20) leads to the desired conditional probabilitiesp (Si = mjW; �) = �i(m) �i(m)PMn=1 �i(n) �i(n) (21)p �Si = m;S�(i) = njW; �� = ��(i)(n) ��(i)ni(n) �i(m) �nmi;�(i)PMn=1 �i(n) �i(n) : (22)All state variables within our HMT model are inter-dependent; in determining probabilities for thesestate variables, we must propagate state information throughout the tree. The upward-downward al-gorithm is an e�cient method for propagating this information. The up step calculates the �'s bypropagating information from the leaves to the root; the down step calculates the �'s by propagatinginformation from the root to the leaves. Combining information from the �'s and �'s via equations(21)-(22), we obtain probabilities for each hidden state in the tree.For our derivation, we will focus on models with mixing components that are Gaussian with proba-bility density function. g �w;�; �2� = 1p2��2 exp �(w � �)22�2 ! : (23)26



More general densities can also be treated. Recall that we assign to each node i in the tree a scaleJ(i) 2 f1; : : : ; Lg, with L the depth of the wavelet decomposition, J = 1 the �nest scale and J = L thecoarsest scale. Also recall that �(i) is the parent of node i and c(i) the set of children to node i.A.1.1 Up StepInitialize: For all state variables Si at the coarsest scale J = 1, calculate�i(m) = g(wi;�i;m; �2i;m); m = 1; : : : ;M:1. For all state variables Si at scale J , compute for m = 1; : : : ;M;�i;�(i)(m) = MXn=1 �nmi;�(i) �i(n)��(i)(m) = g(w�(i);��(i);m; �2�(i);m) Yi2c(�(i))��(i);i(m)��(i)ni(m) = ��(i)(m)�i;�(i)(m) :2. Set J = J + 1 (move up the tree one scale).3. If J = L then quit. Else return to step 1.A.1.2 Down StepInitialize: For state variable S1 at scale J = L, calculate�1(m) = pS1(m); m = 1; : : : ;M:1. Set J = J � 1 (move down the tree one scale).2. For all state variables Si at scale l, compute�i(m) = MXn=1��(i) �mni;�(i) ��(i)ni(n); m = 1; : : : ;M:3. If J = 1, then quit. Else return to step 1.A.2 EM steps for multiple wavelet treesTo handle K > 1 trees, we add a superscript k to denote the tree number. We denote the observedwavelet coe�cients as W = [W1 W2 : : : WK ] and the hidden states as S = [S1 S2 : : : SK ]. Wk =hW k1 W k2 : : : W kN�1i and Sk = hSk1 Sk2 : : : SkN�1i are vectors containing the wavelet coe�cient and statesof the kth tree, respectively. 27



To implement the E step, we apply the upward-downward algorithm independently to eachof the K wavelet trees. This allows us to calculate the probabilities p �Ski = mjWk; �� andp �Ski = m;Sk�(i) = njWk; �� for each tree via equations (21) and (22).Once probabilities for the hidden states are known, the ML parameter updates of M step are relativelysimple: pSi(m) = 1K KXk=1 p �Ski = mjWk; �� (24)�nmi;�(i) = 1K pS�(i)(m) KXk=1 p �Ski = n; Sk�(i) = mjWk; �� : (25)�i;m = 1K pSi(m) KXk=1wki p �Ski = mjWk; �� (26)�2i;m = 1K pSi(m) KXk=1(wki � �i;m)2 p �Ski = mjWk; �� (27)The updates for the state probabilities pSi(m) and �nmi;�(i) are performed by summing the individualstate probabilities and then normalizing so the probabilities sum to one. Just as for the IM model [26]or the hidden Markov (chain) model [18], the updates for the Gaussian mixture means and variancesare performed by a weighted averaging of the empirical means and variances, with weights chosen inproportion to the probabilities of each mixture.As should be clear from the E and M steps, the complexity of the EM algorithm is only linear inthe number of observed wavelet coe�cients. The linear complexity may involve a large multiplicativeconstant depending on the number of hidden states used and the number of iterations required to converge.However, as shown throughout this paper, even the simplest two-state HMT model can capture manydensities quite well.A.2.1 Tying within treesThe M step changes slightly when tying is performed within trees, such as tying wavelet coe�cients andtheir states within a certain subband or scale. (See Section 4.3 for the basic idea behind tying.) Withtying, we perform extra statistical averaging over coe�cients that are tied together within each tree. Forthe kth observation Wk with wavelet coe�cients wki , we write i � j if wki and wkj (and their states) aretied, modeled with the same underlying density. The set [i] = fjjwkj � wki g is the equivalence class of i,with j[i]j the number of elements in the class.For simplicity, we assume that all trees are tied in the same fashion (that is, coe�cients in Wk aretied in the same way as those in Wj) according to a collection of equivalence classes given by the [i]'s.28
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