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1 IntroductionThis paper explores algorithms for updating the coe�cients of an adaptive �lter in which onlya portion of the parameters are adjusted at each sample time. In this way, the overall com-plexity of the adaptive system is less than that of the least-mean-square (LMS) adaptive �lter.These algorithms are particularly suited for real-time applications that place great demands oncomputational and/or memory resources. For example, in acoustic echo cancellation, an adaptive�nite-impulse-response (FIR) �lter may require thousands of coe�cients to accurately model theecho return path [1]. An LMS-based, L-coe�cient FIR echo canceller employing at least 2L multi-plication/addition, L signal read, L coe�cient read, and L coe�cient write operations per iterationcould require overly-expensive processors and memory to meet the sampling-rate requirements ofthis application. Partial updating of the LMS adaptive �lter coe�cients has been used success-fully in high-data-rate communications systems [2], and the general concept has undoubtedly beenemployed in numerous other undocumented applications to lower the implementation costs of thesystem.In this paper, we analyze and compare two algorithms that employ decimated versions of theerror and regressor signals, respectively. Each of these algorithms has particular advantages over theother depending on the nature of the chosen application and its implementation in hardware. Forexample, in feedforward active noise control, an adaptive algorithm employing decimated regressorvector signals that are computed by separate �lters can be much less costly to implement comparedto the standard �ltered-X LMS adaptive controller. This bene�t is particularly important formultichannel systems, as the computational complexity of the coe�cient updates is often severaltimes that of the controller output computation alone [3].It should be noted that there exist several other methods for reducing the computational com-plexity of the LMS adaptive update. These methods include adaptive algorithms that employquantization in the updates, such as the sign-error, sign-data, sign-sign, and power-of-two quan-tized algorithms [4, 5, 6, 7]. These algorithms require dedicated VLSI hardware to take advantageof their computational structure. The block LMS adaptive algorithm also can ease the computa-tional requirements associated with the coe�cient updates [8]; however, this algorithm also placessigni�cant demands upon processor memory and program storage [9]. Note that the algorithmsdescribed in this paper are similar to a recently-proposed algorithm based upon the Gauss-Seideliterative method for solving a set of linear equations [10]. However, the motivation for the algorithmin [10] is di�erent from ours, as the algorithm in [10] is more complex than the LMS algorithm.The organization of the paper is as follows. The algorithms are presented in Section 2, andanalyses of the algorithms' behaviors for statistically-stationary random inputs is presented in1



Section 3. The robustness of the algorithms for periodic inputs is discussed in Section 4. Section 5presents simulations of the algorithms, verifying the predictions of the analyses. Section 6 presentsour conclusions. 2 Algorithm DescriptionsFor the following descriptions of the algorithms, we assume a standard FIR adaptive �ltercon�guration, in which the regressor signal is simply the input signal.The �rst algorithm we consider is a slight variation on the partial update LMS algorithmdescribed in [2, 11]. Termed the periodic LMS algorithm, the coe�cient updates are given bywi;k+1 = ( wi;k + �elxl�i+1 if (k + i)modN = 0 and l = Nbk=Ncwi;k otherwise (1)ek = dk �WTkXk ; (2)where Wk = [w1;k w2;k � � � wL;k]T is the coe�cient vector of the adaptive �lter at time k, Xk =[xk xk�1 � � � xk�L+1]T is the input signal vector, dk is the desired response signal, ek is the errorsignal, and b�c denotes the truncation operation. For N = 1 and N = L, this algorithm reducesto the LMS and partial update LMS adaptive algorithms, respectively. For N > 1, the number ofmultiplies and coe�cient memory accesses required for this algorithm are fewer than those requiredfor the LMS algorithm. In addition, the coe�cient updates for this algorithm are regular, as onlyL=N coe�cients1 are changed at each iteration.By considering N iterations of the updates in (1), it can be shown that this algorithm ismathematically-equivalent to the following N -fold coe�cient vector update:Wk+N = Wk + �ekXk: (3)Equation (3) describes a modi�ed version of the LMS adaptive algorithm that uses every Nthinstantaneous gradient to update the �lter coe�cients [12].The second proposed algorithm, termed the sequential LMS algorithm, is given bywi;k+1 = ( wi;k + �ekxk�i+1 if (k � i+ 1)modN = 0wi;k otherwise : (4)For N = 1, this algorithm reduces to the LMS algorithm. This algorithm uses every Nth ele-ment of the regressor vector signal, saving computation if this signal must be computed. Likethe periodic LMS algorithm, this algorithm allows a regular processing strategy. However, it is1For ease in reporting analytical results, we assume throughout the paper that L=N is an integer; this restrictionis not necessary for implementation purposes, however. 2



Number per Iteration (Ave.) DataAlgorithm Multiplies Adds MemoryLMS 2L+ 1+ [Lh] 2L+ [Lh � 1] 2L+ [Lh]Periodic LMS 1N (2L+ 1) + 1N + [Lh] 2LN + [Lh � 1] 2L+ 1 + [Lh]Sequential LMS �1 + 1N �L+ 1 + �LhN � �1 + 1N �L+ �Lh � 1N � 2L+ �LhN �Table 1: Complexity of the LMS, periodic LMS, and sequential LMS adaptive algorithms.not mathematically-equivalent to (3), and its performance and stability behavior are in generaldi�erent from that of the periodic LMS algorithm.Table 1 shows the complexity of the three FIR adaptive �ltering algorithms in terms of theaverage number of multiplies, adds, and memory locations required for each per iteration. Shownin brackets are the additional operations and storage required for a �ltered-X implementation aswould be employed in a single-channel feedforward adaptive control task, where Lh is the lengthof the plant modelling �lter. The computational advantages of each of the algorithms depend onthe type of application in which it is used. For example, if only the coe�cient vectorWk is neededin a standard FIR �ltering task, the periodic LMS algorithm is to be preferred as it uses the leastamount of resources by not computing the error signal at every iteration. In a feedforward adaptivecontrol task, the sequential LMS algorithm is to be preferred as it reduces the number of regressorvector elements to be computed. 3 AnalysisFor our analysis, we assume that the desired response is generated from a �nite-impulse-response(FIR) model such that dk = WToptXk + nk ; (5)where Wopt are a set of optimal coe�cients to be matched and fnkg is a zero-mean i.i.d. sequencethat is independent of the input sequence fxkg. In addition, we assume that the L � (L=N)-dimensional matrices Xk+m(L=N) and Xk+n(L=N) are independent for m 6= n, with fXkg de�nedas Xk = [Xk Xk+1 � � � Xk+(L=N)�1]: (6)3



Technically, this assumption is not true, as these matrices share input signal elements for jm�nj <L+ (L=N). Even so, it yields accurate descriptions of adaptation behaviors for small step sizes.For our analyses, we de�ne a coe�cient error vector asVk = Wk �Wopt: (7)Then, using our assumptions, we can determine evolution equations for the mean coe�cient errorvector E[Vk] and the coe�cient error correlation matrix E[VkVTk ] for each algorithm.3.1 Periodic LMS AlgorithmFor comparative purposes, we summarize the results of the analysis for the periodic LMS algorithmgiven in [12]. For zero-mean signals, the evolution equation for the mean of the coe�cient errorvector is given by E[Vk+N ] = (IL � �R)E[Vk]; (8)where IL is the L-dimensional identity matrix and R = E[XkXTk ] is the input signal autocorrelationmatrix. For zero-mean Gaussian signals, the evolution equation for the coe�cient error correlationmatrix is given byE[Vk+NVTk+N ] = E[VkVTk ]� � �RE[VkVTk ] + E[VkVTk ]R�+ �2�2nR+ �2(2RE[VkVTk ]R+Rtr[RE[VkVTk ]]): (9)From this equation, we can determine a simple expression for the steady-state value of the excessmean-square-error (MSE) by neglecting the last term in (9) because it is much smaller than theother terms in the equation for small values of �. The resulting expression islimk!1E[(VTkXk)2] = ��2ntrR2 : (10)Moreover, it can be shown that a su�cient condition to guarantee the stability of (9) is0 < � < 23trR: (11)For i.i.d. input signals, it is su�cient to describe the evolution equation for the trace of thecoe�cient error correlation matrix, as given bytrE[Vk+NVTk+N ] = (1� 2��2x + �2((N � 1)�4x + �))trE[VkVTk ] + �2�2n�2xL; (12)where E[x2k] = �2x and E[x4k] = �. The steady-state excess MSE for i.i.d. input signals islimk!1E[(VTkXk)2] = ��2n�4xL2�2x � �((L� 1)�2x + �) : (13)4



3.2 Sequential LMS Algorithm3.2.1 Analysis Using the Independence AssumptionsWe now analyze the sequential LMS algorithm's performance using the independence assumptionspreviously described. We can express the algorithm in (4) using the de�nition of Vk in (7) asvi;k+1 = ( vi;k � �xk�i+1XTkVk + �nkxk�i+1 if (k � i+ 1)modN = 0vi;k otherwise : (14)Considering N iterations of this algorithm, the coe�cient error vector update isVk+N = AkVk +Bk; (15)where the elements of the N � N matrix Ak and vector Bk depend only on the elements of theinput and noise signals. The exact form of Ak and Bk can be generated by successive applicationof the update relation in (14) over N iterations.At this point, update equations for E[Vk] and E[VkVTk ] can be developed by appropriate useof the relationship in (15). Unfortunately, the forms of Ak and Bk in (15) cannot be compactlydescribed, and thus general forms of the expectations of these terms cannot be expressed. Evenso, the technique for determining these evolution equations given the input and noise statistics isstraightforward. We have used the computer-automated analysis technique described in [13] toderive the update equations for the mean coe�cient error vector, given byE[Vk+N ] = E[Ak]E[Vk] +E[Bk]; (16)as well as the coe�cient error correlation matrix, given byE[Vk+NVTk+N ] = E[AkE[VkVTk ]ATk ] +E[BkBTk ]; (17)for input signals that is generated from the modelxk = ATUk ; (18)where A = [a0 a1 � � � aM�1]T de�nes the correlation statistics of the input signal and Uk =[uk uk�1 � � � uk�M+1]T , where uk is a zero-mean i.i.d. signal. A description of the automatedanalysis technique appears in [13]. In this case, we enforce the assumptions previously describedto simplify the forms of the equations produced by the analysis.3.2.2 Approximate Analysis for Small Step SizesWe now present a second analysis of the sequential LMS algorithm for small step sizes. For thisanalysis, we note that (4) can be written aswi;k+1 = ( wi;k + �em;lxk�i+1 +O(�2) if (k � i+ 1)modN = 0, l = Nbk=Nc, m = kmodN .`wi;k otherwise (19)5



ej;k = dk+j �WTkXk+j ; (20)where O(�2) represents terms that are of order �2 and higher. For small step sizes, these termscan be ignored. Collecting N updates of this equation yields the update given byWk+N = Wk + � eXk 
 Ek; (21)where Ek = [e0;k e1;k � � �e(L=N)�1;k]T is an (L=N)-dimensional vector of errors, eXk = [xk xk�N � � �xk�L+N ]T is an N -dimensional decimated version of the regressor vector, and 
 denotes the Kro-nnecker product.The mean- and mean-square analyses of the update in (21) are similar to those for other blockupdating schemes [14]. Using (7), we can write an update for the coe�cient error vector asVk+N = (IL � � eXk 
XTk )Vk + � eXk 
Nk; (22)where Nk = [nk � � � nk+(L=N)�1]T and Xk is as de�ned in (6).For the evolution of the mean coe�cient error vector, we can take expectations on both sidesof (22) using our assumptions, which givesE[Vk+N ] = (IL � �E[ eXk 
XTk ])E[Vk]: (23)It can be shown for stationary input signals thatE[ eXk 
XTk ] = R; (24)where R is the input signal autocorrelation matrix. Thus, from (23), we haveE[Vk+N ] = (IL � �R)E[Vk ]: (25)This equation is the same as (8) for the periodic LMS algorithm in the mean.We now examine the mean-square behavior of the sequential LMS algorithm for small step sizes.For this analysis, we assume that the input signal is zero mean and either Gaussian-distributed ori.i.d.-distributed with a known probability density. This additional assumption is necessary in orderto evaluate the fourth-order moments within the analysis. The resulting equations are summarizedhere; the corresponding derivations are provided in the Appendix.For zero-mean Gaussian input signals, the update equation for E[VkVTk ] is given byE[Vk+NVTk+N ] = E[VkVTk ]� � �RE[VkVTk ] + E[VkVTk ]R�+ �2�2n eR
 I(L=N)+ �2(2RE[VkVTk ]R+ eR
 F (E[VkVTk ])); (26)6



where eR is an N -dimensional matrix whose i; jth value is de�ned byh eRii;j = r(i�j)N ; (27)with rm = E[xkxk�m], and F (�) is a (L=N)� (L=N) matrix-valued function whose i; jth element ishF (E[VkVTk ])ii;j = tr[Ri�jE[VkVTk ]]; (28)with Rm = E[XkXTk+m]. Because of the structure of F (�), the mean-square analysis depends uponautocorrelation lags that are not contained in the L-dimensional matrix R, and thus the abovemean-square analysis cannot be simpli�ed without further assumptions. However, if � is smallsuch that the last term in (26) can be neglected, then it can be shown that the steady-state excessMSE is approximately given bylimk!1E[(VTkXk)2] = tr[RE[VkVTk ]] (29)= ��2nNtr eR2 (30)= ��2ntrR2 (31)for stationary Gaussian input signals. Thus, the excess MSE in steady-state is approximately thesame as that for the LMS adaptive �lter with corresponding step size.Because of the complexity of the form of (17), it is di�cult to determine stability bounds onthe step size � from this equation. We instead use (26) to determine bounds on � to guaranteeconvergence of the approximate mean-square analysis. The derivation is provided in the Appendix,and the resulting bounds are 0 < � < 23tr[R] : (32)These bounds are the same as those for the LMS algorithm for Gaussian input signals. As with allapproximate analyses of the LMS algorithm, these bounds should be used as guidelines towards agood step size choice, as the actual stability bounds will di�er somewhat from these results.For i.i.d. input signals, it is shown in the Appendix that the update for trE[VkVTk ] is given bytrE[Vk+NVTk+N ] = (1� 2��2x + �2((N � 1)�4x + �))trE[VkVTk ] + �2�2n�2xL; (33)which the same as that for the periodic LMS algorithm.To summarize these results, the overall behavior of the sequential LMS algorithm is approxi-mately the same as that of the periodic LMS algorithm for stationary inputs. It should be noted,however, that both algorithms' convergence rates are approximately 1=Nth that of the LMS algo-rithm, from (8). That the LMS algorithm outperforms these simpli�ed algorithms is not surprising,as the LMS algorithm coe�cient updates require N times more arithmetical and memory operationsthan that required by the simpli�ed algorithms. 7



4 Robustness IssuesIn this section, we explore the stability properties of the periodic and sequential LMS algorithms.It is well known that the LMS adaptive �lter is exponentially asymptotically stable for inputs thatsatisfy persistence of excitation conditions given by the following [15]: for all k, there exists K <1,�1 > 0, and �2 > 0 such that �1IL < k+KXi=k XiXTi < �2IL: (34)This result can be naturally extended to the periodic and sequential LMS algorithms. It is easilyseen that the �rst algorithm is exponentially asymptotically stable for signals that satisfy similarconditions for all k and for all j, 1 � j < L=N :�1IL < (k+K)L=N+jXi=kL=N+j XiXTi < �2IL; (35)where K, L, N , �1, and �2 are as de�ned previously. As � tends to zero, it can be shown that thepersistence of excitation conditions to be satis�ed for the sequential LMS algorithm are�1IL < (k+K)L=N+jXi=kL=N+j eXi 
XTi < �2IL: (36)We now show that there exists signals that satisfy the persistence of excitation condition forthe LMS algorithm that destabilize the sequential LMS algorithm. Consider the case N = L, suchthat the sequential LMS algorithm updates one coe�cient per sample time. De�ne the input signalxk as xk = ( 1 if (k � n+ 1)modL = 0a otherwise. (37)for some integer value of n. This signal satis�es the persistence of excitation condition in (34) forthe LMS algorithm for all real values of a except a = 1 and a = �1=(L� 1). However, fora < � 1L� 1 ; (38)the sequential LMS algorithm is unstable with this input for vanishingly small � if N = L. Anexact expression for the transition matrix Ak in (15) for this input signal isAk = (IL + �UT )�1(IL � �(IL + U)) (39)= IL � �XTk + �2 (UT + UTU + 1Xi=2(��)i�2(UT )i(IL � �(IL + U))) ; (40)8



where U is an upper-triangular matrix with zeros on the diagonal and values of a for all entriesabove the diagonal and XTk = (IL + U + UT ). Clearly, as � tends to zero, the matrix Ak tends tothe matrix (IL� �XTk ). An eigenvalue analysis of XTk shows that it has L� 1 eigenvalues equal to(1� a) and one eigenvalue equal to (1 + (L� 1)a). Thus, if a < �1=(L� 1), the matrix XTk hasboth positive and negative eigenvalues, and the resulting system is unstable with this input signal.We have simulated the behavior of the sequential LMS adaptive algorithm and have veri�edthat divergence does occur with this signal. This instability is sensitive to the phase of the inputsignal; thus, it may be possible to achieve either stable or unstable behavior of the sequentialalgorithm by a shift of the time axis. While we have not identi�ed other signals that destabilize thealgorithm, we suspect that there are other input signals, particularly those that contain sinusoidalcomponents or that have cyclostationary statistics, that lead to algorithm instability. Problems ofthis nature have been observed before in other adaptive systems, most notably those that use blindequalization methods [16]. To stabilize the sequential algorithms, a multiplicative leak factor canbe introduced into the updates [11], as follows:wi;k+1 = ( �wi;k + �ekxk�i+1 if (k � i+ 1)modN = 0wi;k otherwise ; (41)where 0 � � < 1. Considering the previous example, the corresponding transition matrix forthe leaky algorithm will have eigenvalues bounded by one in magnitude for a < �1=(L � 1) if0 < � < 1 + �(1 + (L � 1)a). Care must be taken with this approach, however, as the sloweradaptation speeds of the sequential algorithm can limit the performance of such a modi�ed system.5 Simulations5.1 Analysis Veri�cationWe have evaluated the mean-square behaviors of the periodic and sequential LMS algorithms us-ing our statistical analyses. For the sequential LMS algorithm, we have directly evaluated theexpectations appearing in (17) using the automated techniques described in [13]. We �rst study athree-tap system identi�cation problem with N = L = 3. The inputs to the two adaptive �ltersare zero-mean Gaussian with E[x2k] = 1, E[xkxk+1] = 0:5, and E[xkxk+i] = 0 for i � 2. For oursimulations, the initial values of the �lter coe�cients have been chosen to be wj;0 = wj;opt + 2 forj 2 f1; 2; 3g. The results of one thousand trials have been averaged together to produce simulatedconvergence curves for comparison with the theoretical results.Figure 1 shows the convergence of the total coe�cient error powers trE[VkVTk ] for the periodicand sequential LMS adaptive �lters as predicted by Equations (9), (17), and (26) and as foundfrom simulations. As can be seen, the convergence behaviors of the two algorithms are similar9



initially; however, the steady-state coe�cient error power for the sequential LMS adaptive �lter istwo-thirds greater than that for the periodic LMS adaptive �lter for this input signal. This resultcan be predicted from (26) by neglecting the last term on the right-hand-side of this equation andsolving for the steady-state value of the coe�cient error covariance matrix aslimk!1 trE[VkVTk ]seqtrE[VkVTk ]per = �2xtrR�1L : (42)Using the fact that �2x = PLi=1 �i=L, where f�ig are the eigenvalues of R, it is straightforwardto show that �2xtrR�1=L � 1 for any positive de�nite covariance matrix. Thus, the steady-statecoe�cient error power produced by the sequential LMS algorithm is unlikely to be smaller thanthat of the periodic LMS algorithm for a given step size. Note that both analyses for the sequentialLMS algorithm are quite accurate in predicting simulated behavior; thus, the simpler approximateanalysis of Section 3.2.2 is to be preferred.Equations (10) and (31) indicate that the excess MSEs of the algorithms will be similar, andFigure 2 shows the excess MSEs of the two algorithms for this example. As can be seen, theconvergence of the two algorithms is quite similar throughout all stages of adaptation. The minordi�erences in convergence of the algorithms can be predicted by the di�erences in the fourth-momentterms in equations (9) and (26).We now explore the behaviors of the two algorithms for a L = 50 coe�cient system identi�cationexample. In this case, the correlated Gaussian input signals used for the experiments are zeromean with rm = 0:7jmj, and the initial values of the �lter coe�cients were chosen randomly from auniform distribution over [-0.1,0.1]. One hundred simulations have been averaged for comparisonwith the theoretical predictions. Figures 3 and 4 show the total coe�cient error powers and excessMSEs for both algorithms, respectively, for N = 2, N = 5, and N = 10. Also shown are thetheoretical predictions of the systems' performances, showing that the theory is accurate. As canbe seen, the speed of adaptation decreases proportionally for both algorithms as the number ofcoe�cients updated per iteration is reduced. In this case, all systems produce the same steady-state excess MSE; however, the sequential LMS algorithms' steady-state coe�cient error powersare approximately three times those of the periodic LMS algorithms. Thus, the periodic LMSalgorithm is to be preferred if the most accurate estimates of the actual �lter coe�cient values aredesired.5.2 Multichannel Control ExampleWe now consider an example from the �eld of active noise and vibration control, in which an electro-acoustic system is used to cancel unwanted acoustical energy via destructive interference. For detailson the system structure, notation, and the multichannel �ltered-X LMS adaptive algorithm, the10



reader is referred to [3, 14]. For an Nx-input, Ny-output system with Ne feedback error sensors,the multichannel �ltered-X LMS update isWk+1 = Wk � �UkEk; (43)where Wk is an NxNyLw-dimensional vector describing the NxNy controller transfer functions, Lwis the �lter length of each controller, Ek = [e(1)k � � � e(Ne)k ]T is a vector of error measurements fromthe Ne error sensors, and Uk is an (NxNyLw)�Ne matrix of �ltered input signal values derived fromthe input signal channels and the output-actuator-to-error-sensor paths. The coe�cient updatein (43) can be di�cult to implement in many real-world cases for several reasons. Firstly, thenumber of coe�cients per controller channel often number in the hundreds for typical samplingrates, controller tasks, and input signals. Secondly, forming the �ltered signal matrix Uk involvesNyNeLh multiply/adds per time sample, and this computation can become signi�cantly large formoderately-sized systems. Thirdly, the memory for storing Uk is Ne times that required to store thecontroller coe�cients. Finally, the update calculation in (43) requires NxNyNeLw multiply/addsto implement. These factors make the update in (43) unwieldly for many noise control tasks.We can simplify the coe�cient updates by using a partial update of the controller coe�cientsat each iteration. In this case, the following algorithm is suggested:wi;k+1 = wi;k � �[Uk]i;je(j)k ; 1 � i � NxNy; (44)where [�]i;j denotes the i; jth element of the matrix and j = (k � i+ 1)modNe. In this case, everycontroller coe�cient is updated at each iteration using only one of the Ne error measurements, andeach error measurement is used to adjust NxNyLw=Ne �lter coe�cients. After Ne time samples,all controller coe�cients have been adjusted using measurements taken from all Ne error sensors.This update only requires NxNyLw multiplies per iteration to adjust the controller coe�cients.Moreover, since only subsampled versions of the �ltered input signals are used in the update,this algorithm only needs NxNyLh multiplies and NxNyLw storage locations for the decimated�ltered-signal matrix. The computational load of the algorithm is regular, and the programmingmethodology for implementing the algorithm is straightforward as well.Figure 5a shows the total average mean-square error of the standard �ltered-X controller ina four-input, four-output, four-error active noise control simulation example with a Gaussian dis-turbance as described in [14]. Figure 5b shows the corresponding convergence behavior for theproposed algorithm in (44). Note the di�erence in time scales for the two plots. The proposed al-gorithm converges at one-quarter the rate of the original controller; however, the update portion ofthe proposed algorithm requires approximately one-quarter the number of operations as comparedto that of the original algorithm, and it requires only one-quarter the data storage of the original11



algorithm. Since the coe�cient update represents approximately 80% of the total computationalrequirements of the system in this example, the overall controller's complexity is reduced by 60%.These savings are signi�cant in that they enable a complex control system to be implemented on asigni�cantly-simpler processor. 6 ConclusionsIn this paper, we have analyzed and compared two adaptive algorithms that update only aportion of the coe�cients of an adaptive system per iteration on average. Our analyses of thesealgorithms indicate that they achieve approximately the same level of misadjustment as the LMSalgorithm for a given step size; however, their convergence speeds are reduced approximately inproportion to the number of coe�cients updated per iteration divided by the �lter length. Thesealgorithms have di�erent stability properties than that of the LMS adaptive algorithm, and wehave shown that the sequential LMS algorithm can exhibit unstable behavior for certain periodicinput signals. These algorithms are potentially useful for real-time applications of adaptive �lters.AppendixTo derive an update for E[VkVTk ] for the algorithm in (19), we post-multiply the expressionfor Vk+N in (22) by its transpose and take expectations. The resulting equation isE[Vk+NVTk+N ] = E[VkVTk ]� ��E[ eXk 
XTk ]E[VkVTk ] + E�Vk �E[ eXk 
XTk ]Vk�T ��+ �2E� eXk 
Nk � eXk 
Nk�T �+ �2E� eXk 
XTkVk � eXk 
XTk Vk�T � ;(45)where we have used our assumptions to separate expectations that depend upon input signal andcoe�cient vector terms. The input signal expectation terms of the form E[ eX
 XTk ] that appearin the second term of (45) evaluate to the input signal autocorrelation matrix, from (24).To evaluate the third term of (45), we note thatE� eXk 
Nk � eXk 
Nk�T � = Eh� eXk eXTk �
 �NkNTk �i (46)= eR
 �2nI(L=N); (47)where we have used the i.i.d. nature of the noise sequence and where eR is as de�ned in (27). Toevaluate the expectation within the fourth term of (45), we note thatE� eXk 
XTk Vk � eXk 
XTk Vk�T� = Eh� eXk eXTk �
 �XTk VkVTkXk�i : (48)12



Thus, the (m�1)N+i; (n�1)N+jth element of the matrix in (48), for 1 � m � L=N , 1 � n � L=N ,1 � i � N , and 1 � j � N , isEh� eXk eXTk �
 �XTk VkVTkXk�i(m�1)N+i;(n�1)N+j= LXl=1 LXp=1E[xk�(m�1)Nxk�(n�1)Nxk+i�lxk+j�p]E[vl;kvp;k]: (49)For Gaussian input signals, we can evaluate the expectation in (49) asE[xk�(m�1)Nxk�(n�1)Nxk+i�lxk+j�p] = r(m�1)N�i+lr(n�1)N�j+p + r(n�1)N�i+lr(m�1)N�j+p+r(m�n)Nri�j+p�l: (50)Combining (49) and (50), it is easy to show that we can express the matrix in (48) asEh eXk eXTk 
XTkVkVTkXki = 2RE[VkVTk ]R+ eR
 F (E[VkVTk ]); (51)where F (�) is as de�ned in (28) and Rm = E[XkXTk+m]. Combining (24), (45), (47), and (51) givesthe update in (26).To determine su�cient bounds on the step size � to guarantee convergence of the mean-squareanalysis equation in (26), we �rst note that for any 1 � i � j � L,����hF (E[VkVTk ])ii;j���� � tr[RE[VkVTk ]]; (52)a result that can be easily shown using the Cauchy-Schwartz inequality. Thus, by taking the traceof both sides of (26), we havetr[E[Vk+NVTk+N ]]� tr[E[VkVTk ]] � ��(2 � 3�tr[R])tr[RE[VkVTk ]] + ��2n�2xL: (53)Now, to guarantee convergence of the �lter coe�cients in mean square, it is necessary to make theright hand side of (53) negative. For �2n�2xL=(2� 3�tr[R]) < tr[RE[VkVTk ]] <1, this will be trueif � satis�es the bounds as given in (32).For i.i.d. input signals, the expectation in (49) evaluates toE[xk�(m�1)Nxk�(n�1)Nxk+i�lxk+j�p] = 8>>><>>>: � if (m� 1)N = (n� 1)N = l � i = p� j�4x if l � i = (m� 1)N 6= p� j = (n� 1)Nor l � i = (n� 1)N 6= p� j = (m� 1)N0 otherwise. (54)Thus, by taking the traces of both sides of (45) and noting that E[ eXk 
XTk ] = �2xIL, we can �ndan update for trE[VkVTk ]. The resulting expression is given in (33).13
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Figure 1: Convergence of total coe�cient error power, theory and simulation: sequential andperiodic LMS adaptive �lters, correlated Gaussian input signals, L = N = 3, � = 0:05.
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Figure 2: Convergence of excess MSE, theory and simulation: sequential and periodic LMS adaptive�lters, correlated Gaussian input signals, L = N = 3, � = 0:05.
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Figure 3: Convergence of total coe�cient error power, theory and simulation: sequential andperiodic LMS adaptive �lters, correlated Gaussian input signals, L = 50, � = 0:003.
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N = 2Figure 4: Convergence of excess MSE, theory and simulation: sequential and periodic LMS adaptive�lters, correlated Gaussian input signals, L = 50, � = 0:003.
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Figure 5: Convergence of total MSE, a) �ltered-X LMS and b) sequential �ltered-X LMS algorithms:Nx = Ny = Ne = 4, exponentially-decaying actuator �lters, unit-variance white Gaussian inputsignal channels, � = 0:0001.
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