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Abstract— In some adaptive filtering applications, the least-mean-square (LMS) algo-
rithm may be too computationally- and memory-intensive to implement. In this pa-
per, we analyze two adaptive algorithms that update only a portion of the coefficients
of the adaptive filter per iteration. These algorithms use decimated versions of the er-
ror and regressor signals, respectively. Simulations verify the accuracy of the analyses,

and the robustness of the algorithms is also explored.
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1 Introduction

This paper explores algorithms for updating the coefficients of an adaptive filter in which only
a portion of the parameters are adjusted at each sample time. In this way, the overall com-
plexity of the adaptive system is less than that of the least-mean-square (LMS) adaptive filter.
These algorithms are particularly suited for real-time applications that place great demands on
computational and/or memory resources. For example, in acoustic echo cancellation, an adaptive
finite-impulse-response (FIR) filter may require thousands of coefficients to accurately model the
echo return path [1]. An LMS-based, L-coefficient FIR echo canceller employing at least 21 multi-
plication/addition, L signal read, L coefficient read, and L coefficient write operations per iteration
could require overly-expensive processors and memory to meet the sampling-rate requirements of
this application. Partial updating of the LMS adaptive filter coefficients has been used success-
fully in high-data-rate communications systems [2], and the general concept has undoubtedly been
employed in numerous other undocumented applications to lower the implementation costs of the
system.

In this paper, we analyze and compare two algorithms that employ decimated versions of the
error and regressor signals, respectively. Each of these algorithms has particular advantages over the
other depending on the nature of the chosen application and its implementation in hardware. For
example, in feedforward active noise control, an adaptive algorithm employing decimated regressor
vector signals that are computed by separate filters can be much less costly to implement compared
to the standard filtered-X LMS adaptive controller. This benefit is particularly important for
multichannel systems, as the computational complexity of the coefficient updates is often several
times that of the controller output computation alone [3].

It should be noted that there exist several other methods for reducing the computational com-
plexity of the LMS adaptive update. These methods include adaptive algorithms that employ
quantization in the updates, such as the sign-error, sign-data, sign-sign, and power-of-two quan-
tized algorithms [4, 5, 6, 7]. These algorithms require dedicated VLSI hardware to take advantage
of their computational structure. The block LMS adaptive algorithm also can ease the computa-
tional requirements associated with the coefficient updates [8]; however, this algorithm also places
significant demands upon processor memory and program storage [9]. Note that the algorithms
described in this paper are similar to a recently-proposed algorithm based upon the Gauss-Seidel
iterative method for solving a set of linear equations [10]. However, the motivation for the algorithm
in [10] is different from ours, as the algorithm in [10] is more complex than the LMS algorithm.

The organization of the paper is as follows. The algorithms are presented in Section 2, and

analyses of the algorithms’ behaviors for statistically-stationary random inputs is presented in



Section 3. The robustness of the algorithms for periodic inputs is discussed in Section 4. Section 5
presents simulations of the algorithms, verifying the predictions of the analyses. Section 6 presents

our conclusions.

2 Algorithm Descriptions

For the following descriptions of the algorithms, we assume a standard FIR adaptive filter
configuration, in which the regressor signal is simply the input signal.

The first algorithm we consider is a slight variation on the partial update LMS algorithm
described in [2, 11]. Termed the periodic LMS algorithm, the coefficient updates are given by

w; g+ pery_; .y if (k4 1)modN =0 and [ = N |k/N|
w; K otherwise
er = d— WLXy, (2)
where Wy = [wyp wop --- wLJg]T is the coefficient vector of the adaptive filter at time k, X =
[T Tp—q -+ xk_L_H]T is the input signal vector, dj is the desired response signal, e, is the error

signal, and [-| denotes the truncation operation. For N = 1 and N = L, this algorithm reduces
to the LMS and partial update LMS adaptive algorithms, respectively. For N > 1, the number of
multiplies and coefficient memory accesses required for this algorithm are fewer than those required
for the LMS algorithm. In addition, the coefficient updates for this algorithm are regular, as only
L/N coefficients! are changed at each iteration.

By considering N iterations of the updates in (1), it can be shown that this algorithm is

mathematically-equivalent to the following N-fold coefficient vector update:
Wiy = Wi+ pepXy. (3)

Equation (3) describes a modified version of the LMS adaptive algorithm that uses every Nth
instantaneous gradient to update the filter coefficients [12].
The second proposed algorithm, termed the sequential LMS algorithm, is given by

(4)

' B w; g+ pepry i if (k—i41)modN =0
Wikt = w; g otherwise

For N = 1, this algorithm reduces to the LMS algorithm. This algorithm uses every Nth ele-
ment of the regressor vector signal, saving computation if this signal must be computed. Like

the periodic LMS algorithm, this algorithm allows a regular processing strategy. However, it is

!For ease in reporting analytical results, we assume throughout the paper that L/N is an integer; this restriction
is not necessary for implementation purposes, however.



Number per Iteration (Ave.) Data
Algorithm Multiplies Adds Memory
LMS 20 + 14 [Ly] 2L + [Ly — 1] 2L + [ L]
Periodic TMS | = (21 4 1) + — + [L] 2 - 2L 41+ (L]
N N h N h h
) 1 Ly, 1 Ly, — 1] [Lh]
Sequential LMS <1+N)L+1+[N] (1—|—N)L—|—[ ~ 2L + ~

Table 1: Complexity of the LMS, periodic LMS, and sequential LMS adaptive algorithms.

not mathematically-equivalent to (3), and its performance and stability behavior are in general
different from that of the periodic LMS algorithm.

Table 1 shows the complexity of the three FIR adaptive filtering algorithms in terms of the
average number of multiplies, adds, and memory locations required for each per iteration. Shown
in brackets are the additional operations and storage required for a filtered-X implementation as
would be employed in a single-channel feedforward adaptive control task, where L, is the length
of the plant modelling filter. The computational advantages of each of the algorithms depend on
the type of application in which it is used. For example, if only the coefficient vector Wy, is needed
in a standard FIR filtering task, the periodic LMS algorithm is to be preferred as it uses the least
amount of resources by not computing the error signal at every iteration. In a feedforward adaptive
control task, the sequential LMS algorithm is to be preferred as it reduces the number of regressor

vector elements to be computed.

3 Analysis

For our analysis, we assume that the desired response is generated from a finite-impulse-response

(FIR) model such that

dy, WoTthk + ny, (5)

where W,,; are a set of optimal coefficients to be matched and {ny} is a zero-mean i.i.d. sequence
that is independent of the input sequence {zy}. In addition, we assume that the L x (L/N)-
dimensional matrices Xy, (z/n) and Xy i,z n) are independent for m # n, with {X\} defined

as
Xp = X Xy - Xy ywy—1l- (6)
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Technically, this assumption is not true, as these matrices share input signal elements for |m —n| <
L+ (L/N). Even so, it yields accurate descriptions of adaptation behaviors for small step sizes.

For our analyses, we define a coefficient error vector as
Vk = Wk - Wopt- (7)

Then, using our assumptions, we can determine evolution equations for the mean coeflicient error

vector E[V}] and the coefficient error correlation matrix E[V; V1] for each algorithm.

3.1 Periodic LMS Algorithm

For comparative purposes, we summarize the results of the analysis for the periodic LMS algorithm
given in [12]. For zero-mean signals, the evolution equation for the mean of the coefficient error

vector is given by
EViin] = (UL — pR)E[Vy], (8)

where I, is the I-dimensional identity matrix and R = E[XX}]is the input signal autocorrelation
matrix. For zero-mean Gaussian signals, the evolution equation for the coefficient error correlation

matrix is given by
EVin Vi) = E[ViVE] = (RE[ViVE + E[ViVEIR) + 20 R
+ *(2RE[ViVL]R + Rtr[RE[V, VL]]). (9)
From this equation, we can determine a simple expression for the steady-state value of the excess

mean-square-error (MSE) by neglecting the last term in (9) because it is much smaller than the

other terms in the equation for small values of . The resulting expression is

2tr R
lim E[(ViX)'] = %

(10)
Moreover, it can be shown that a sufficient condition to guarantee the stability of (9) is
2
0<p< 57— (11)

For i.i.d. input signals, it is sufficient to describe the evolution equation for the trace of the

coeflicient error correlation matrix, as given by
B[V nVien] = (1=2u07 + 12 (N = D)oy + n))eE[ViVi] + por ol L, (12)

where E[z}] = 02 and E[z}] = 1. The steady-state excess MSE for i.i.d. input signals is

2 4L
lim E[(VIX.)?Y] = K70 .
A PIOVEXT = oo @ - ez v )



3.2 Sequential LMS Algorithm
3.2.1 Analysis Using the Independence Assumptions

We now analyze the sequential LMS algorithm’s performance using the independence assumptions

previously described. We can express the algorithm in (4) using the definition of Vi in (7) as

vk — ,uwk_H_lX;‘ka +pngwy oy if (k—i41)modN =0
?Ji7k_|_1 = ) . (14)
Vi otherwise
Considering N iterations of this algorithm, the coefficient error vector update is
Vien = ApVi+ By, (15)

where the elements of the N x N matrix A and vector By depend only on the elements of the
input and noise signals. The exact form of Ay and By can be generated by successive application
of the update relation in (14) over N iterations.

At this point, update equations for E[Vy] and E[VyV}] can be developed by appropriate use
of the relationship in (15). Unfortunately, the forms of Ay and By in (15) cannot be compactly
described, and thus general forms of the expectations of these terms cannot be expressed. Even
so, the technique for determining these evolution equations given the input and noise statistics is
straightforward. We have used the computer-automated analysis technique described in [13] to

derive the update equations for the mean coeflicient error vector, given by
E[Vign] = E[AR]E[Vi] + E[By], (16)
as well as the coefficient error correlation matrix, given by
E[VienVign] = E[AE[VL VAL + E[BB(], (17)

for input signals that is generated from the model

zp, = ATU, (18)
where A = [ap a1 --- aM_l]T defines the correlation statistics of the input signal and U =
[up wp—1 - uk_M_H]T, where wuy is a zero-mean i.i.d. signal. A description of the automated

analysis technique appears in [13]. In this case, we enforce the assumptions previously described

to simplify the forms of the equations produced by the analysis.

3.2.2 Approximate Analysis for Small Step Sizes

We now present a second analysis of the sequential LMS algorithm for small step sizes. For this

analysis, we note that (4) can be written as

' . 2 o _ _ _ ‘
Wik = { Wik T MU Tp_ipq T O(*) if(k—i4+1)modN =0,l=N|k/N|, m kmodN.(lg)

W; L otherwise
?



ejh = dij — Wi Xy, (20)

where O(pu?) represents terms that are of order y? and higher. For small step sizes, these terms

can be ignored. Collecting N updates of this equation yields the update given by
Wiy = Wi+ X, 0 Ey, (21)

where Ei, = [eg ;s €15 - - ‘e(L/N)—l,k]T is an (L /N )-dimensional vector of errors, X, = [k Tp_n -
xk_L_|_N]T is an N-dimensional decimated version of the regressor vector, and @ denotes the Kro-
nnecker product.

The mean- and mean-square analyses of the update in (21) are similar to those for other block

updating schemes [14]. Using (7), we can write an update for the coefficient error vector as
Vien = (I —p1Xe @ X Vi + pXp @ Ny, (22)

where Ni = [ng - - nk_|_(L/N)_1]T and Xy is as defined in (6).
For the evolution of the mean coeflicient error vector, we can take expectations on both sides

of (22) using our assumptions, which gives
E[Vien] = (I — pEXp @ XT)E[Vy]. (23)
It can be shown for stationary input signals that
E[X;® X]] =R, (24)
where R is the input signal autocorrelation matrix. Thus, from (23), we have
ElVign] = U — pR)E[Vi]. (25)

This equation is the same as (8) for the periodic LMS algorithm in the mean.

We now examine the mean-square behavior of the sequential LMS algorithm for small step sizes.
For this analysis, we assume that the input signal is zero mean and either Gaussian-distributed or
i.i.d.-distributed with a known probability density. This additional assumption is necessary in order
to evaluate the fourth-order moments within the analysis. The resulting equations are summarized
here; the corresponding derivations are provided in the Appendix.

For zero-mean Gaussian input signals, the update equation for E[VkV;‘f] is given by

ElVinVien] = E[ViVI] - p (RE[ViVIT+ EIVAVIIR) + p202 R © Iipyn)
+ 122RE[Vi VIR + R F(EIVVT])), (26)



where R is an N-dimensional matrix whose 1, 7th value is defined by

[EL] = T(i—j)Na (27)

)

with r, = Elagag_y,], and F(-)is a (L/N) x (L/N ) matrix-valued function whose 7, jth element is

[FEVAVED] = wlREVEVED, (28)

27]

with R, = E[XkX;‘f_l_m] Because of the structure of F'(-), the mean-square analysis depends upon
autocorrelation lags that are not contained in the L-dimensional matrix R, and thus the above
mean-square analysis cannot be simplified without further assumptions. However, if g is small
such that the last term in (26) can be neglected, then it can be shown that the steady-state excess
MSE is approximately given by

klim E[(VIXp)?] = tr[RE[VRVE]] (29)
2Nt R
- HT. R (30)
2
2
t
_ ,uan2rR (31)

for stationary Gaussian input signals. Thus, the excess MSE in steady-state is approximately the
same as that for the LMS adaptive filter with corresponding step size.

Because of the complexity of the form of (17), it is difficult to determine stability bounds on
the step size p from this equation. We instead use (26) to determine bounds on u to guarantee
convergence of the approximate mean-square analysis. The derivation is provided in the Appendix,

and the resulting bounds are

0<p< (32)

3tr[R]
These bounds are the same as those for the LMS algorithm for Gaussian input signals. As with all
approximate analyses of the LMS algorithm, these bounds should be used as guidelines towards a
good step size choice, as the actual stability bounds will differ somewhat from these results.

Fori.i.d. input signals, it is shown in the Appendix that the update for trE[VkV;‘f] is given by
B[V nVien] = (1=2u07 + 12 (N = D)oy + n))eE[ViVi] + por ol L, (33)

which the same as that for the periodic LMS algorithm.

To summarize these results, the overall behavior of the sequential LMS algorithm is approxi-
mately the same as that of the periodic LMS algorithm for stationary inputs. It should be noted,
however, that both algorithms’ convergence rates are approximately 1/Nth that of the LMS algo-
rithm, from (8). That the LMS algorithm outperforms these simplified algorithms is not surprising,
as the LMS algorithm coefficient updates require N times more arithmetical and memory operations

than that required by the simplified algorithms.



4 Robustness Issues

In this section, we explore the stability properties of the periodic and sequential LMS algorithms.
It is well known that the LMS adaptive filter is exponentially asymptotically stable for inputs that
satisfy persistence of excitation conditions given by the following [15]: for all k, there exists K < oo,

b1 > 0, and 63 > 0 such that

k+K
sl < XX < 61 (34)
i=k

This result can be naturally extended to the periodic and sequential LMS algorithms. It is easily
seen that the first algorithm is exponentially asymptotically stable for signals that satisfy similar
conditions for all k£ and for all j, 1 <j < L/N:

(k+K)L/N+j

ol < Yo XX < &I, (35)
i=kL/N+j

where K, L, N, 61, and 6, are as defined previously. As p tends to zero, it can be shown that the

persistence of excitation conditions to be satisfied for the sequential LMS algorithm are
(k+E)L/N+j
oy < Yoo XeX! < &I (36)
i=kL/N+j
We now show that there exists signals that satisfy the persistence of excitation condition for
the LMS algorithm that destabilize the sequential LMS algorithm. Consider the case N = L, such
that the sequential LMS algorithm updates one coefficient per sample time. Define the input signal
TE as

(37)

a otherwise.

{ 1 if (k—n+1)modl =0
T =

for some integer value of n. This signal satisfies the persistence of excitation condition in (34) for

the LMS algorithm for all real values of ¢ except @ =1 and ¢ = —1/(L — 1). However, for

- 38
@ < -7 (38)

the sequential LMS algorithm is unstable with this input for vanishingly small g if ¥ = L. An
exact expression for the transition matrix Ay in (15) for this input signal is
Ay = U+ pU") ™ L = (I, + U)) (39)

= I - pX! 4R {UT +UTU + i(_ﬂ)i_Q(UT)i(IL — (I, + U))} , (40)

=2



where U is an upper-triangular matrix with zeros on the diagonal and values of a for all entries
above the diagonal and Xg =UL+U+ UT). Clearly, as p tends to zero, the matrix Ay tends to
the matrix (I, — ,qu). An eigenvalue analysis of Xg shows that it has L — 1 eigenvalues equal to
(1 — a) and one eigenvalue equal to (14 (L — 1)a). Thus, if @ < —1/(L — 1), the matrix X has
both positive and negative eigenvalues, and the resulting system is unstable with this input signal.

We have simulated the behavior of the sequential LMS adaptive algorithm and have verified
that divergence does occur with this signal. This instability is sensitive to the phase of the input
signal; thus, it may be possible to achieve either stable or unstable behavior of the sequential
algorithm by a shift of the time axis. While we have not identified other signals that destabilize the
algorithm, we suspect that there are other input signals, particularly those that contain sinusoidal
components or that have cyclostationary statistics, that lead to algorithm instability. Problems of
this nature have been observed before in other adaptive systems, most notably those that use blind
equalization methods [16]. To stabilize the sequential algorithms, a multiplicative leak factor can

be introduced into the updates [11], as follows:

T { Bw; i + HeRT )iy if (k—i4 1)modN =0 7 (41)

w; K otherwise
where 0 € 3 < 1. Considering the previous example, the corresponding transition matrix for
the leaky algorithm will have eigenvalues bounded by one in magnitude for @ < —1/(L — 1) if
0 <pf <14 pu(l4+ (L —1)a). Care must be taken with this approach, however, as the slower

adaptation speeds of the sequential algorithm can limit the performance of such a modified system.

5 Simulations
5.1 Analysis Verification

We have evaluated the mean-square behaviors of the periodic and sequential LMS algorithms us-
ing our statistical analyses. For the sequential LMS algorithm, we have directly evaluated the
expectations appearing in (17) using the automated techniques described in [13]. We first study a
three-tap system identification problem with N = L = 3. The inputs to the two adaptive filters
are zero-mean Gaussian with E[2?] = 1, E[zgvi41] = 0.5, and E[azaps;] = 0 for ¢ > 2. For our
simulations, the initial values of the filter coefficients have been chosen to be w;o = wj . + 2 for
Jj € {1, 2, 3}. The results of one thousand trials have been averaged together to produce simulated
convergence curves for comparison with the theoretical results.

Figure 1 shows the convergence of the total coefficient error powers trE[V, V1] for the periodic
and sequential LMS adaptive filters as predicted by Equations (9), (17), and (26) and as found

from simulations. As can be seen, the convergence behaviors of the two algorithms are similar



initially; however, the steady-state coeflficient error power for the sequential LMS adaptive filter is
two-thirds greater than that for the periodic LMS adaptive filter for this input signal. This result
can be predicted from (26) by neglecting the last term on the right-hand-side of this equation and
solving for the steady-state value of the coefficient error covariance matrix as

tr B[V, VL oltrR™1
dim, ﬁ = T (42)
Using the fact that o2 = "2, \;/L, where {)\;} are the eigenvalues of R, it is straightforward
to show that o2trR=!/L > 1 for any positive definite covariance matrix. Thus, the steady-state
coeflicient error power produced by the sequential LMS algorithm is unlikely to be smaller than
that of the periodic LMS algorithm for a given step size. Note that both analyses for the sequential
LMS algorithm are quite accurate in predicting simulated behavior; thus, the simpler approximate
analysis of Section 3.2.2 is to be preferred.

Equations (10) and (31) indicate that the excess MSEs of the algorithms will be similar, and
Figure 2 shows the excess MSEs of the two algorithms for this example. As can be seen, the
convergence of the two algorithms is quite similar throughout all stages of adaptation. The minor
differences in convergence of the algorithms can be predicted by the differences in the fourth-moment
terms in equations (9) and (26).

We now explore the behaviors of the two algorithms for a L = 50 coeflicient system identification
example. In this case, the correlated Gaussian input signals used for the experiments are zero
mean with r,,, = 0.7l and the initial values of the filter coefficients were chosen randomly from a
uniform distribution over [-0.1,0.1]. One hundred simulations have been averaged for comparison
with the theoretical predictions. Figures 3 and 4 show the total coefficient error powers and excess
MSEs for both algorithms, respectively, for N = 2, N = 5, and N = 10. Also shown are the
theoretical predictions of the systems’ performances, showing that the theory is accurate. As can
be seen, the speed of adaptation decreases proportionally for both algorithms as the number of
coefficients updated per iteration is reduced. In this case, all systems produce the same steady-
state excess MSE; however, the sequential LMS algorithms’ steady-state coeflicient error powers
are approximately three times those of the periodic LMS algorithms. Thus, the periodic LMS
algorithm is to be preferred if the most accurate estimates of the actual filter coefficient values are

desired.

5.2 Multichannel Control Example

We now consider an example from the field of active noise and vibration control, in which an electro-
acoustic system is used to cancel unwanted acoustical energy via destructive interference. For details

on the system structure, notation, and the multichannel filtered-X LMS adaptive algorithm, the
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reader is referred to [3, 14]. For an N,-input, N,-output system with N, feedback error sensors,

the multichannel filtered-X LMS update is
Wi = W, - pULEy, (43)

where W is an N, N, L,-dimensional vector describing the N, N, controller transfer functions, L,,

is the filter length of each controller, E, = [egj) e eECNe)]T

is a vector of error measurements from
the N, error sensors, and Uy is an (N, N, L,,) X N. matrix of filtered input signal values derived from
the input signal channels and the output-actuator-to-error-sensor paths. The coefficient update
in (43) can be difficult to implement in many real-world cases for several reasons. Firstly, the
number of coefficients per controller channel often number in the hundreds for typical sampling
rates, controller tasks, and input signals. Secondly, forming the filtered signal matrix Uy involves
NyN.Ljp multiply /adds per time sample, and this computation can become significantly large for
moderately-sized systems. Thirdly, the memory for storing Uy is N, times that required to store the
controller coefficients. Finally, the update calculation in (43) requires N, N,N.L,, multiply/adds
to implement. These factors make the update in (43) unwieldly for many noise control tasks.

We can simplify the coeflicient updates by using a partial update of the controller coefficients

at each iteration. In this case, the following algorithm is suggested:
wigpr = wik— plUizel),  1<i< NN, (44)

where [-]; ; denotes the 7, jth element of the matrix and j = (k — ¢ + 1)modN.. In this case, every
controller coefficient is updated at each iteration using only one of the N, error measurements, and
each error measurement is used to adjust NyN, L, /N, filter coefficients. After N, time samples,
all controller coefficients have been adjusted using measurements taken from all V. error sensors.
This update only requires N,N,L,, multiplies per iteration to adjust the controller coefficients.
Moreover, since only subsampled versions of the filtered input signals are used in the update,
this algorithm only needs N,N,L; multiplies and N,N,L,, storage locations for the decimated
filtered-signal matrix. The computational load of the algorithm is regular, and the programming
methodology for implementing the algorithm is straightforward as well.

Figure ha shows the total average mean-square error of the standard filtered-X controller in
a four-input, four-output, four-error active noise control simulation example with a Gaussian dis-
turbance as described in [14]. Figure 5b shows the corresponding convergence behavior for the
proposed algorithm in (44). Note the difference in time scales for the two plots. The proposed al-
gorithm converges at one-quarter the rate of the original controller; however, the update portion of
the proposed algorithm requires approximately one-quarter the number of operations as compared

to that of the original algorithm, and it requires only one-quarter the data storage of the original

11



algorithm. Since the coefficient update represents approximately 80% of the total computational
requirements of the system in this example, the overall controller’s complexity is reduced by 60%.
These savings are significant in that they enable a complex control system to be implemented on a

significantly-simpler processor.

6 Conclusions

In this paper, we have analyzed and compared two adaptive algorithms that update only a
portion of the coeflicients of an adaptive system per iteration on average. Our analyses of these
algorithms indicate that they achieve approximately the same level of misadjustment as the LMS
algorithm for a given step size; however, their convergence speeds are reduced approximately in
proportion to the number of coeflicients updated per iteration divided by the filter length. These
algorithms have different stability properties than that of the LMS adaptive algorithm, and we
have shown that the sequential LMS algorithm can exhibit unstable behavior for certain periodic

input signals. These algorithms are potentially useful for real-time applications of adaptive filters.

Appendix

To derive an update for E[V,VE] for the algorithm in (19), we post-multiply the expression

for V4 in (22) by its transpose and take expectations. The resulting equation is
~ ~ T
BV Vi) = EVivTl - (B o XTIEVVE + E| Vi (B 0 XTIVE) ] )
~ ~ T ~ ~ T
+ ,UQE[Xk ® Ny (Xk ® Nk) ] + HQE[Xk ® X[ Vi (Xk ® XkTVk) ] (45)

where we have used our assumptions to separate expectations that depend upon input signal and
coeflicient vector terms. The input signal expectation terms of the form E[f( ® Xg] that appear
in the second term of (45) evaluate to the input signal autocorrelation matrix, from (24).

To evaluate the third term of (45), we note that

- B[R o (i) )

= R0y, (47)

E [Xk ® Ny (Xk ® Nk)T

where we have used the i.i.d. nature of the noise sequence and where R is as defined in (27). To

evaluate the expectation within the fourth term of (45), we note that

E [Xk 9 XV (X X,{Vk)T] = p[(XXe) o (XIVivix)] . (48)

12



Thus, the (m—1)N +i, (n—1)N +jth element of the matrixin (48),for1 <m < L/N,1<n < L/N,
1<¢<N,and 1 <j<N,is

E[(%:X1) 0 (XIVivix)]
L

= Z Z E[9%—(m—1)ka—(n—1)N$k+z’—l$k+j—p]E[?fl,k”p,k]- (49)
=1 p=1

(m—=1)N+¢,(n—1)N+j

For Gaussian input signals, we can evaluate the expectation in (49) as

E[9%—(m—1)N$k—(n—1)N$k+i—l$k+j—p] = T(m-1)N—i+iT(n—1)N—jt+p T T(n=1)N—i+1T(m—1)N—j+p

+T ()N Ti—jtp—1- (50)
Combining (49) and (50), it is easy to show that we can express the matrix in (48) as
E[XXy, 0 XEViVEX,] = 2REViVIR+ R @ F(EVVT)), (51)

where F(+) is as defined in (28) and R, = E[X;X{,,,]. Combining (24), (45), (47), and (51) gives
the update in (26).
To determine sufficient bounds on the step size u to guarantee convergence of the mean-square

analysis equation in (26), we first note that for any 1 <i¢<j < L,

< w[RE[V,V{]], (52)

27]

IGEAAG)

a result that can be easily shown using the Cauchy-Schwartz inequality. Thus, by taking the trace
of both sides of (26), we have

[V yn Ve = 6[EIVAVIT] € —p(2 = 3uta[ RNU[REIV,VIT + po2o?L.  (53)

Now, to guarantee convergence of the filter coeflicients in mean square, it is necessary to make the
right hand side of (53) negative. For 0202L/(2 — 3utr[R]) < tr[RE[V;VL]] < oo, this will be true
if pu satisfies the bounds as given in (32).
For i.i.d. input signals, the expectation in (49) evaluates to
n if(m-—1)N=n-1)N=I1l-i=p—7

ifl—i=(m—-1)N#p—j=(n-1)N
Bl mog NSOV it Pt =n ] = 4 05 oy ()N Ep— = (m— DN

0 otherwise.

Thus, by taking the traces of both sides of (45) and noting that E[Xj X1 = a1y, we can find
an update for trE[V, V1 ]. The resulting expression is given in (33).
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Figure 4: Convergence of excess MSE, theory and simulation: sequential and periodic LMS adaptive
filters, correlated Gaussian input signals, L = 50, ¢ = 0.003.

Figure 5: Convergence of total MSE, a) filtered-X LMS and b) sequential filtered-X LMS algorithms:
N, = N, = N. = 4, exponentially-decaying actuator filters, unit-variance white Gaussian input
signal channels, ¢ = 0.0001.
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Figure 1: Convergence of total coeflicient error power, theory and simulation: sequential and
periodic LMS adaptive filters, correlated Gaussian input signals, L = N = 3, p = 0.05.
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Figure 2: Convergence of excess MSE, theory and simulation: sequential and periodic LMS adaptive
filters, correlated Gaussian input signals, L = N = 3, p = 0.05.
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Figure 3: Convergence of total coeflicient error power, theory and simulation: sequential and
periodic LMS adaptive filters, correlated Gaussian input signals, L = 50, ¢ = 0.003.
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Figure 4: Convergence of excess MSE, theory and simulation: sequential and periodic LMS adaptive
filters, correlated Gaussian input signals, L = 50, ¢ = 0.003.
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Figure 5: Convergence of total MSE, a) filtered-X LMS and b) sequential filtered-X LMS algorithms:
N, = N, = N. = 4, exponentially-decaying actuator filters, unit-variance white Gaussian input
signal channels, ¢ = 0.0001.
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