
August 1, 2001 / Vol. 26, No. 15 / OPTICS LETTERS 1131
Effects of precompensation and postcompensation on timing
jitter in dispersion-managed systems

J. Santhanam

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627

C. J. McKinstrie

Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627

T. I. Lakoba and Govind P. Agrawal

Institute of Optics, University of Rochester, Rochester, New York 14627
Received March 1, 2001

We present an analytic theory of timing jitter in dispersion-managed light-wave systems that is based on
the moment method and the assumption of a chirped Gaussian pulse. We apply the theory to a soliton
system and show that 50% postcompensation of the accumulated dispersion can reduce the jitter by a factor
of 2. We also apply the theory to a low-power light-wave system employing the return-to-zero format and
find that timing jitter can be minimized along the fiber link for an optimal choice of precompensation and
postcompensation. © 2001 Optical Society of America
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Gordon–Haus timing jitter is known to impose a
fundamental limitation on periodically amplified
light-wave systems.1,2 Recently, it was recognized
that timing jitter can occur with any transmission for-
mat, including the nonreturn-to-zero, chirped-return-
to-zero (CRZ), and dispersion-managed (DM) soliton
formats,3 and timing jitter can be calculated with
the moment method.4 In this Letter we present a
simplified form of the moment method and show
that it can provide approximate analytic expressions
for the timing jitter as long as each bit in the DM
system can be approximated by a chirped Gaussian
pulse. We apply this technique to study the effects
of precompensation and postcompensation on timing
jitter in DM light-wave systems for both low-power
CRZ and DM-soliton formats. We find that we can
reduce timing jitter signif icantly by choosing the
precompensation and postcompensation of residual
dispersion judiciously.

Optical pulse propagation inside periodically am-
plified f iber links is governed by the nonlinear
Schrödinger equation2:
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where A represents the pulse envelope, b2 is the
group-velocity dispersion (GVD) coefficient, and g
is the nonlinear parameter. A typical DM system
consists of a precompensation fiber, followed by a
periodic sequence of anomalous and normal f ibers and
a postcompensation fiber. Fiber losses and periodic
amplification are included in Eq. (1) through g�z� such
that g�z� � 2a everywhere except at the location
of lumped amplifiers. The parameters a, b2, and
g are different for the anomalous- and normal-GVD
fibers used to form the dispersion map. Although
the nonlinear Schrödinger equation can be solved
numerically, calculation of the timing jitter is time
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consuming because of the statistical nature of the
problem.

In the moment method,4 the temporal and frequency
shifts of an optical pulse are calculated with
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where At stands for the time derivative. The pulse
energy, E�z� �

R
`

2` jA�z, t�j2dt, itself varies along the
link in a periodic fashion because of periodic compen-
sation of f iber losses through amplifiers. Using the
nonlinear Schrödinger equation and adding the ran-
dom shifts occurring at each amplifier, we find that
the frequency W and the temporal position T of the
pulse evolve as
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where dWj and dTj are the random frequency and time
shifts imposed on the pulse at the jth amplif ier located
at zj and N is the total number of amplifiers used
within the DM system.

Further analysis requires the selection of a spe-
cific pulse shape. An exact calculation of timing
jitter should use the numerical solution of Eq. (1),
as discussed in Ref. 3. We use the Gaussian-shaped
ansatz that is commonly used for variational analysis
of DM systems and is found to be reasonable through
numerical simulations.5 – 8 In this approach
© 2001 Optical Society of America
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A � a exp�if 2 iW �t 2 T � 2 �1 1 iC� �t 2 T �2�2t2� ,

(4)

where the amplitude a, phase f, frequency W , time
delay T , chirp C, and width t all are functions of z.
Each amplifier changes these parameters randomly by
a small amount. If we denote changes in T and W by
dT and dW, their variances and cross correlation can
be obtained by substitution of Eq. (4) into the general
formulas derived in Ref. 3. After some algebra, we
obtain
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where B � Aexp�iWt�, S � nsphn�G 2 1�, nsp is the
population-inversion factor, hn is the photon energy,
and G is the gain of each amplif ier.

We can use Eqs. (5)–(7) in combination with Eqs. (3)
to calculate the total timing jitter st. A relatively
simple expression for st is obtained when we consider
the jitter at the end of last amplifier. For a periodic
DM system with N amplif iers, we obtain
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where t, C, and E represent the width, chirp, and
energy, respectively, of input pulses launched into the
DM system. Note that t � t0�1 1 C2�1�2, where t0 is
the width of the unchirped pulse (at the transmitter).
Details of the dispersion map enter into Eq. (8) through
a single parameter, d � t

22
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where LA is amplifier spacing and b2 is the average
GVD over LA. Equation (8) is valid even when LA
is a multiple of the map period (dense dispersion
management).

In the case of DM solitons, we find input pulse pa-
rameters by use of the variational equations5 – 8 and use
Eq. (8) to calculate timing jitter. In practice, postcom-
pensation can be used to reduce jitter. We have cal-
culated the jitter at the end of the postcompensating
fiber, using Eqs. (3). The result is

s2
c � s2
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0 �2NCdc 1 Ndc��N 2 1�d 1 dc�	 ,

(9)

where dc � b2Lc�t2
0 is the dispersion length of the post-

compensating f iber.
To study how postcompensation affects timing jit-
ter, we consider a 40-Gbit�s soliton system with a dis-
persion map consisting of 10.5 km of anomalous-GVD
fiber �D � 4 ps��km nm�� and 9.7 km of normal-GVD
fiber �D � 24 ps��km nm��. We choose LA � 4Lmap to
ensure a realistic amplif ier spacing of 80.8 km and use
a � 0.2 dB�km and g � 1.7 W21�km as typical values
of the fiber parameters. The input width t � 6.87 ps
and chirp C � 0.560 are found by use of the peri-
odicity conditions �t0 � 5.99 ps�. The soliton’s peak
power is 33 mW for periodic propagation and is used
to find the pulse energy E. The spectral density S is
calculated with nsp � 1.3 (noise figure, 4.1 dB). Fig-
ure 1 shows how sc varies with N for several values
of y � 2dc��Nd�, where y represents the fraction of
postcompensation. Even a small value of postcompen-
sation � y � 0.25� reduces jitter. Three most notewor-
thy features are that (i) jitter cannot be eliminated
through postcompensation, (ii) jitter can be minimized
with an optimum length of postcompensation fiber, and
(iii) 100% postcompensation makes the situation worse
compared with no compensation.

To estimate the maximum jitter reduction possible
with postcompensation, we note that, for a long-haul
system �N ¿ 1�, the N3 term dominates in Eq. (8).
The dominant terms in Eq. (9) are found to vary with
y as

s2
c 
 �S�E�t2

0N
3d2

µ
1
3

2 y 1 y2
∂
. (10)

The minimum value occurs for y � 0.5, and the jitter
variance is reduced by a factor of 4 for this minimum
value. The same conclusion was reached in an earlier
study of constant-dispersion fibers.9 Even though the
N3d2 dependence of jitter is well known from previous
work on constant-dispersion fibers, our approach is
unique, as it provides simple analytic expressions
for DM systems with arbitrary maps. It can also

Fig. 1. Effect of postcompensation on the timing jitter of
a 40-Gbit�s DM-soliton system for the dispersion map de-
scribed in the text (four map periods over 80.8 km of am-
plifier spacing). Jitter, sc, is plotted as a function of the
number of amplifiers for four values of y (the fraction of
postcompensation).
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Fig. 2. Effect of precompensation and postcompensation
on timing jitter of a 40-Gbit�s low-power (2.5-mW peak
power) CRZ system for the dispersion map used in Fig. 1.
(a) No precompensation and complete postcompensation,
(b) complete precompensation and no postcompensation,
(c) 75% precompensation and 25% postcompensation. The
dots represent the results of numerical simulations.

be extended to the case of multiple amplif iers per
map period.

We now consider a low-power CRZ system designed
with precompensation and postcompensation fibers.
Pulse evolution is not periodic in this case, but the
dependence of the chirp and width on distance can be
calculated analytically for a linear system.2 Using
the method described above, we obtain, the following
simple analytic expression for the timing jitter:
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where dp � b2pLp�t
2
0 is the dispersion length of the

precompensation fiber used to chirp the CRZ pulse be-
fore it enters the DM system. As before, the domi-
nant term varies as N3 when the average dispersion of
the map is not zero. However, the jitter increases only
linearly with N when Nd 1 dp 1 dc � 0, a condition
that corresponds to zero net dispersion over the entire
link.

One may ask if there is an optimum choice of
dp and dc that would optimize such a CRZ system.
To answer this question, in Fig. 2 we plot sc as a
function of N , using Eq. (11) and the same dispersion
map that was used in Fig. 1. The solid curves
represent the analytical solution of Eqs. (3), and the
dots represent their numerical solution averaged over
104 realizations. Figure 2 shows that our analytical
predictions are consistent with numerical solutions of
the moment equations on which they are based. More
importantly, it shows that a specif ic choice of pre-
compensation and postcompensation can minimize the
jitter along the CRZ system. This may be desirable
in practice to minimize pulse-to-pulse interactions.
Curve (C) in Fig. 2 represents the optimum situation
and corresponds to the choice dp 
 3dc. We should
stress that Fig. 2 shows jitter only at the amplif ier
locations. Jitter variation between two amplif iers
should also be considered for a complete optimization.

In conclusion, we have presented an analytic theory
of timing jitter in DM light-wave systems based on
the moment method and the assumption of a chirped
Gaussian pulse. We have applied it to a soliton
system and found that postcompensation of the total
accumulated dispersion by 50% can reduce the jitter
by a factor of 2. We also applied our analytic theory
to a low-power CRZ system and found that the jitter
can be minimized all along the fiber link for an opti-
mum choice of precompensation and postcompensation
fibers. A comparison of DM versus CRZ systems
shows that jitter is larger for CRZ systems when
d fi 0 because of lower pulse energies. Jitter becomes
smaller when a CRZ system is designed with zero net
dispersion, but this conclusion holds only for a truly
linear system.
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