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Abstract— Swarm robotics is a new approach to the 

coordination of multi-robot systems which consist of large 

numbers of relatively simple robots which takes its inspiration 

from social insects. The most remarkable characteristic of 

swarm robots are the ability to work cooperatively to achieve a 

common goal.  In this paper, classification of existing 

researches, problems and algorithms aroused in the study of 

swarm robotics are presented. The existing studies are 

classified into major areas and relevant sub-categories in the 

major areas. 
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I.  INTRODUCTION  

The term “Swarm Intelligence” refers to sophisticated 
collective behavior that can emerge from the combination of 
many simple individuals, each operating autonomously [1]. 
According to Cao et al. [2], swarm intelligence is “a property 
of systems of non-intelligent robots exhibiting collectively 
intelligent behavior”. Nonetheless, based on the definitions, 
we can see that the essential characteristics of swarm 
intelligence consist of a biologically inspired emphasis on 
decentralized local control and local communication, and on 
the emergence of global behavior as the result of self-
organization [3]. The application of swarm intelligence 
principles to collective robotics can be termed “Swarm 
Robotics” [1]. 

Swarm robotics is a new approach to the coordination of 
large numbers of relatively simple robots [4], that are 
autonomous, not controlled centrally, capable of local 
communication and operates based on some sense of 
biological inspiration [1]. Swarm robotic systems have 
become a major research area since 1980’s [5], as new 
solution approaches are being developed and validated, it is 
often possible to realize the advantages of swarm robotic 
systems [2, 6, 7].  

The early work on classification of research areas of 
swarm robotic systems was done by Dudek et al. [8] in 1993. 
The paper classified the areas into five areas which are 
swarm size, communication range, communication topology, 
communication bandwidth, swarm reconfigurability and 
swarm unit processing ability. Cao et al. [2] presented the 
survey of cooperative robotics in a hierarchical way. They 
split the publications into five main axes: group architecture, 
resource conflicts, origins of cooperation, learning and 
geometric problems. Luca Iocchi et al. [9] presented an 
analysis of multi robot systems by looking at their 

cooperative aspects. They have also proposed taxonomy of 
multi robot systems and a characterization of reactive and 
social deliberative behaviors of the multi robot system as a 
whole. Rather than summarizing the research area of swarm 
robots into a taxonomy of cooperating systems [2, 8, 9], 
Lynne [10] have organized the areas by the principal topics 
that have generated significant levels of research. Open 
research issues within each topic area have also been 
identified and discussed clearly in this paper. Section II of 
this paper will use the classification reported in [10] as the 
main research axes and further classify the sub-categories in 
these areas. 

II. RESEARCH DOMAINS 

A. Biological Inspiration 

Swarm robotics and the related concept of swarm 
intelligence, is inspired by an understanding of the 
decentralized mechanisms that underlie the organization of 
natural swarms such as ants, bees, birds, fish, wolfs and even 
humans. Social insects provide one of the best-known 
examples of biological self organized behavior. By means of 
local and limited communication, they are able to 
accomplish impressive behavioral feats: maintaining the 
health of the colony, caring for their young, responding to 
invasion and so on [11]. Thomas et al. [12] has analyzed the 
behavior of a group of robots involved in an object retrieval 
task where the robots’ control system is inspired by a model 
of ants’ foraging behaviors. The sub-tasks assigned to the 
robots are extracted from simple behavior of ant swarms 
such as search, retrieve, deposit, return and rest. Ideas 
inspired from such collective behaviors have led to the use of 
pheromone [13], a chemical substance deposited by ants and 
similar social insects in order to mark the environment with 
information to assist other ants at a later time.  

Similarly David et al. [14] and Cazangi et al. [15] used 
pheromones to achieve inter-robot communication 
mechanism in their research. A higher level of research in 
this area, leaded to the studies of cooperation and interaction 
abilities in mammals.. Bill Tomlinson et al. [16] created an 
interactive virtual multi-agent system based on the behavior 
of packs of gray wolves (Canis lupus). Their virtual wolves 
are able to form social relationships with each other thru the 
mechanism of social relationship formation involves 
emotion, perception, and learning. In [17], Terrence Fong et 
al. have reviewed on socially interactive robots. They have 
modeled their robots to adopt humans’ social interactions. As 
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research progresses in this area, more sophisticated 
teamwork architectures are being explored into to cater the 
increase in problem complexity. Such sophisticated 
teamwork architectures was demonstrated in [18]. 

B. Communication 

When a task requires cooperation, there is a need for 
some form of communication between the participating 
agents. There has been much debate about the level of 
communication that should be allowed between such 
systems. Most of the open literatures have made distinctions 
between implicit/indirect and explicit/direct 
communications. Implicit communication (sometimes also 
called stigmergy [19, 20, 21]) is a method of communicating 
through the environment.  

Pheromone communication is a type of implicit 
communication. There a many papers that have explored the 
use of pheromone signal to convey messages within the 
robots in the swarm [22]. A higher level of pheromone called 
“virtual pheromone” was introduced in [23-25] to employ 
simple communication and coordination to achieve large 
scale results in the areas of surveillance, reconnaissance, 
hazard detection, and path finding.  

Explicit communication is the type of communication in 
which the robots directly pass messages to each other and/or 
to the human operator [26]. McPartland et al. [27] has made 
comparison between implicit and explicit communications 
theory by applying it to two different swarms of robot which 
is assigned to explore a given environment in the shortest 
period of time. Paul et al. [28] introduced and explored 
simple communication strategies which implemented 
implicit and explicit communication. Hayes et al. [29] 
described a distributed algorithm for solving the full odor 
localization task, and shown that group performance can 
exceed that of a single robot using explicit communication.  

Communication between robots can multiply their 
capabilities and increase the efficiency. Even though there is 
no clear conclusion on what type of communication is better 
for robot swarms, but most of the current research is aiming 
towards implicit communication for its robust characteristics. 

C. Control Approach 

Iocchi et al. [9] has clearly distinguished between 
distributed and centralized control as: 

• Centralized: the organization of a system having a 
robotic agent (a leader) that is in charge of 
organizing the work of the other robots; the leader is 
involved in the decisional process for the whole 
team, while the other members act according to the 
directions of the leader. 

• Distributed: the organization of a system composed 
by robotic agents which are completely autonomous 
in the decisional process with respect to each other; 
in this class of systems a leader does not exist. 

Lynne [30] experimented on the advantages and the 
disadvantages of the control approaches and reported that 
deciding the proper balance between centralized and 
distributed control is the key to achieve the desired emergent 
group behavior in a swarm of robots. Steele et al. [31] 

introduced “Directed Stigmergy-Based Control” which 
incorporates the advantages of distributed control and 
centralized control. However, both distributed and 
centralized control approaches have contributed individually 
to the study of swarm robotics and have generated interesting 
experimental results. 

D. Mapping and Localization 

Mapping is a representation of the physical environments 
through the mobile robots sensory data into spatial models 
[32]. Localization is defined as finding the absolute or 
rational location of robot in the spatial models generated 
[33]. Since the development of research in mapping and 
localization progressed, the problems that addresses mapping 
and localization has been referred to as simultaneous 
localization and mapping (SLAM) or concurrent mapping 
and localization (CML).  SLAM or CML is the problem of 
acquiring a map of an unknown environment with a moving 
robot, while simultaneously localizing the robot relative to 
this map [32]. The SLAM problem addresses situations 
where the robot lacks a global positioning sensor. Instead, it 
has to rely on a of incremental egomotion for robot position 
estimation (e.g., odometry). To solve the problem of 
odometry in SLAM, many approaches have been made thru 
the application of various filters introduced in [34-35].  

There are two distinct mapping approaches available 
namely topological mapping and geometric mapping. A 
topological map is an abstract encoding of the structural 
characteristics of an environment. Often, topological maps 
[35-36] represent the environment as a set of distinctive 
places using points (e.g., rooms), connected by sequences of 
robot behaviors using lines (e.g., wall-following). A 
geometric map, on the other hand, is a representation of the 
precise geometric characteristics of the environment, much 
like a floor plan. 

E. Object Transportation and Manipulation 

Researches in this area of swarm robotics have drafted 
three types object manipulation method which are namely 
grasping, pushing and caging. Grasping [37-38] incorporates 
form closure and force closure techniques. Force closure is a 
condition that implies that the grasp can resist any external 
force applied to the object.  

Pushing [39-40] on the other hand doesn’t guarantee 
form closure or force closure, but requires external forces to 
be applied to the object such as gravity and friction. Pushing 
behaviors gives an advantage where any objects that can’t be 
grasped to be moved and as well as to perform pushing to 
multiple objects.  

Caging [41-42] introduces a bounded movable area for 
the object. Then, the contact between object and robotics 
mechanism need not be maintained by robot's control. This 
makes motion planning and control of each robotic 
mechanism to be simple and robust. This condition is called 
object closure. 

F. Reconfigurable Robotics 

Self-reconfiguring robots are able to deliberately change 
their own shape by rearranging the connectivity of their 
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parts, in order to adapt to new circumstances, perform new 
tasks, or recover from damage [43]. 

Modular self-reconfigurable robotic systems can be 
generally classified into several architectural groups by the 
geometric arrangement of their units [44]. Lattice 
architectures [45-46] have units that are arranged and 
connected in some regular, three-dimensional pattern, such 
as a simple cubic or hexagonal grid. Lattice architectures 
usually offer simpler reconfiguration, as modules move to a 
discrete set of neighboring locations in which motions can be 
made open-loop.  

Chain architectures [47-48] have units that are connected 
together in a string or tree topology. This chain or tree can 
fold up to become space filling, but the underlying 
architecture is serial. Through articulation, chain 
architectures can potentially reach any point or orientation in 
space, and are therefore more versatile but computationally 
more difficult to represent and analyze and more difficult to 
control. 

Mobile architectures [49-50] have units that use the 
environment to maneuver around and can either hook up to 
form complex chains or lattices or form a number of smaller 
robots that execute coordinated movements and together 
form a larger “virtual” network.Self-reconfigurable robots 
have an advantage over fixed-shape robots in these 
environments because of their special abilities which include 
versatility, robustness, adaptability, scale extensibility and 
even self-repair. 

G. Motion Coordination 

Exploring into this domain, path-planning in swarm 
robotics has attracted a lot of attention in the past two 
decades. The problem of mobile robots path-planning is 
defined as follows: "for a given robot and an environment 
description, plan a route between two specific locations, 
which must be clear of obstacles and attend all the 
optimizations criteria" [51]. Studies in path-planning can be 
divided to local path-planning and global path-planning. In 
local path-planning, the planning is based on the information 
given by sensors installed on the robot, which provide details 
about the unknown environment [52]. In the global planning 
case, the environment's model is precisely defined [53-55], 
and the navigation is performed with the information known 
in priori. 

The basic path-planning problem deals with static 
environments [53-54], in which the workspaces solely 
containing stationary obstacles of which the geometry is 
known. A natural extension to the basic path planning 
problem is planning in dynamic environments [56-57], in 
which besides stationary obstacles, also moving obstacles are 
present.  

Various algorithms has been introduced to tackle the 
problems in path-planning for example fuzzy-logics [52], 
particle-swarm optimization (PSO) [58], ant-colony 
optimization (ACO) [53], D*[56] and K-Bug [51]. Most of 
the algorithms aim to solve the shortest path [53-54] problem 
in path-planning. Nearly all the previous work has been 
aimed at 2D environment; only some papers considered 3D 

environments such as the work presented by Yoshifumi et al 
[59] and Atsushi et al. [60]. 

The formation generation problem is defined as the 
coordination of a group of robots to get into and maintain a 
formation with a certain shape, such as circle [61], line [62-
63] or even arbitrary shapes [64]. Erkin et al. [65] has 
divided formation generation into two groups. The first 
group includes studies where the coordination is done by a 
centralized [66] unit that can oversee the whole group and 
command the individual robots accordingly. The second 
group contains distributed [62] strategies for achieving the 
coordination. Various control strategies in formation 
generation such as behavior-based approach [63], potential 
field approach [67] and leader-follower approach [68] can be 
adopted to achieve coordination. 

H. Learning 

At present most learning algorithms can be classified as 
supervised and unsupervised learning. Supervised learning 
requires the use of an external supervisor. With supervised 
learning the robot knows what the best output is in a certain 
situation as the supervisor provides the corrective 
information to the learner. Unsupervised learning is a 
method of learning with minor or without any external 
corrective feedback from the environment [69]. This method 
is useful for allowing robots to adapt to situations where the 
task/environment is unknown beforehand or is constantly 
changing [70].  

Inductive learning is one of the supervised learning 
paradigms which is a method that generalize from observed 
training examples by identifying features that empirically 
distinguish positive from negative training examples [71]. 
Decision tree learning [72], neural network learning [73] and 
inductive logic programming [74] are all examples of 
inductive methods that operate in this fashion. Another well 
studied paradigm would be explanation-based learning 
(EBL) [75-76] where prior knowledge is used to analyze, or 
explain, how each observed training examples satisfies the 
target concept. This explanation is then used to distinguish 
the relevant features of the training example from the 
irrelevant, so that examples can be generalized based on 
logical reasoning [71]. Other common paradigms that have 
been applied to robot learning are case-based learning (CBL) 
and memory-based learning (MBL) which are reported in 
[77].  

Similarly, in unsupervised learning, paradigms such as 
evolutionary learning and reinforcement learning (RL) 
received major attention from the researchers recently. 
Genetic algorithms [78-79] and genetic programming [80-
81] are the most prominent computational techniques for 
evolutionary learning. Reinforcement leaning (RL) is defined 
as learning what to do, how to map situations to actions so as 
to maximize a numerical reward signal. The learner is not 
told which actions to take, as in most forms of machine 
learning, but instead must discover which actions yield the 
most reward by trying them. Actions may affect not only the 
immediate reward but also the next situation and, through 
that, all subsequent rewards [82]. Examples of 
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implementation of reinforcement learning can be viewed in 
[83-84]. 

I. Task Allocation 

Task allocation means assigning tasks among the robots 
in swarm in a productive and efficient manner. Task 
allocation must ensure that not only the global mission is 
achieved, but also the tasks are well distributed among the 
robots. An effective task allocation approach considers the 
available resources, the entities to optimize (time energy, 
quality and etc.), the capabilities of the deployable robots 
and appropriately allocates the tasks accordingly [85]. Tasks 
can be discrete or continuous and also can vary in a number 
of other ways, including time scale, complexity and 
specificity [86].  

Often in task allocation problems, the comparison 
between heterogeneous system and homogeneous systems 
are made. Such comparison results can be found in papers 
presented by Goldberg and Mataric [87-88]. 

The problem of multi-robot task allocation (MRTA) has 
been investigated using different techniques such as physical 
modeling [89], distributed planning [90], market-based 
techniques [91], auction based techniques [92] and 
ALLIANCE [93-94]. One of the first algorithms for market 
based solutions for the MRTA problem was described in the 
MURDOCH system developed by Gerkey et al. [95, 96].  

III. CONCLUSION 

Most of the research conducted was based on the 
biological inspirations adopted from the behaviors of ants, 
bees and birds. Implicit communication seems to give more 
robustness in the communication architecture of swarm 
robotics. Distributed control architecture was preferred 
compared to centralized architecture to prevent single point 
failures. As far as mapping and localization is concerned, 
work is still being carried out to fine tune the problems faced 
in this domain. In object transportation and manipulation, 
caging is preferred over the available methods as the 
constraints in the domain can be reduced and kept simple. In 
last two decades, research in reconfigurable robotics has 
taken a good progress. Even so, this domain is still at its 
infant stage. Path-planning and formation generation is one 
of the main domains that received a lot of attention from the 
authors. A lot of new heuristics and algorithms were 
introduced to solve the problems in this domain. In the 
learning domain, reinforcement learning (RL) was given 
much interest by the researchers. In task allocation domain, 
heterogeneous and homogenous systems are widely 
discussed. This domain has contributed in development of 
various techniques as listed in the paper. 
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