
Markov Decision Processes: Concepts and Algorithms

Martijn van Otterlo (otterlo@cs.kuleuven.be)

Compiled ∗for the SIKS course on ”Learning and Reasoning” – May 2009

Abstract

Situated in between supervised learning and unsupervised learning, the paradigm of reinforce-
ment learning deals with learning in sequential decision making problems in which there is

limited feedback. This text introduces the intuitions and concepts behind Markov decision pro-

cesses and two classes of algorithms for computing optimal behaviors: reinforcement learning
and dynamic programming. First the formal framework of Markov decision process is defined,

accompanied by the definition of value functions and policies. The main part of this text deals

with introducing foundational classes of algorithms for learning optimal behaviors, based on
various definitions of optimality with respect to the goal of learning sequential decisions. Ad-

ditionally, it surveys efficient extensions of the foundational algorithms, differing mainly in the
way feedback given by the environment is used to speed up learning, and in the way they con-

centrate on relevant parts of the problem. For both model-based and model-free settings these

efficient extensions have shown useful in scaling up to larger problems.

M
ARKOV DECISION PROCESSES (MDP) (Puterman, 1994) are an intuitive and fundamen-

tal formalism for decision-theoretic planning (DTP) (Boutilier et al., 1999; Boutilier,

1999), reinforcement learning (RL) (Bertsekas and Tsitsiklis, 1996; Sutton and Barto,

1998; Kaelbling et al., 1996) and other learning problems in stochastic domains. In

this model, an environment is modelled as a set of states and actions can be performed to control

the system’s state. The goal is to control the system in such a way that some performance criterium

is maximized. Many problems such as (stochastic) planning problems, learning robot control and

game playing problems have successfully been modelled in terms of an MDP. In fact MDPs have

become the de facto standard formalism for learning sequential decision making.

DTP (Boutilier et al., 1999), e.g. planning using decision-theoretic notions to represent uncer-

tainty and plan quality, is an important extension of the AI planning paradigm, adding the ability

to deal with uncertainty in action effects and the ability to deal with less-defined goals. Further-

more it adds a significant dimension in that it considers situations in which factors such as resource

consumption and uncertainty demand solutions of varying quality, for example in real-time deci-

sion situations. There are many connections between AI planning, research done in the field of

operations research (Winston, 1991) and control theory (Bertsekas, 1995), as most work in these

fields on sequential decision making can be viewed as instances of MDPs. The notion of a plan in

AI planning, i.e. a series of actions from a start state to a goal state, is extended to the notion

of a policy, which is mapping from all states to an (optimal) action, based on decision-theoretic

measures of optimality with respect to some goal to be optimized.

As an example, consider a typical planning domain, involving boxes to be moved around and

where the goal is to move some particular boxes to a designated area. This type of problems can

be solved using AI planning techniques. Consider now a slightly more realistic extension in which

some of the actions can fail, or have uncertain side-effects that can depend on factors beyond the

∗Compiled from draft material from ”The Logic of Adaptive Behavior” by Martijn van Otterlo (van Otterlo, 2008).

1

operator’s control, and where the goal is specified by giving credit for how many boxes are put on

the right place. In this type of environment, the notion of a plan is less suitable, because a sequence

of actions can have many different outcomes, depending on the effects of the operators used in

the plan. Instead, the methods in this chapter are concerned about policies that map states onto

actions in such a way that the expected outcome of the operators will have the intended effects.

The expectation over actions is based on a decision-theoretic expectation with respect to their

probabilistic outcomes and credits associated with the problem goals. The MDP framework allows

for online solutions that learn optimal policies gradually through simulated trials, and additionally,

it allows for approximated solutions with respect to resources such as computation time. Finally, the

model allows for numeric, decision-theoretic measurement of the quality of policies and learning

performance. For example, policies can be ordered by how much credit they receive, or by how

much computation is needed for a particular performance.

This chapter will cover the broad spectrum of methods that have been developed in the lit-

erature to compute good or optimal policies for problems modelled as an MDP. The term RL is

associated with the more difficult setting in which no (prior) knowledge about the MDP is pre-

sented. The task then of the algorithm is to interact, or experiment with the environment (i.e. the

MDP), in order to gain knowledge about how to optimize its behavior, being guided by the eval-

uative feedback (rewards). The model-based setting, in which the full transition dynamics and

reward distributions are known, is usually characterized by the use of dynamic programming (DP)

techniques. However, we will see that the underlying basis is very similar, and that mixed forms

occur.

1. Learning Sequential Decision Making

RL is a general class of algorithms in the field of machine learning that aims at allowing an agent

to learn how to behave in an environment, where the only feedback consists of a scalar reward

signal. RL should not be seen as characterized by a particular class of learning methods, but rather

as a learning problem or a paradigm. The goal of the agent is to perform actions that maximize the

reward signal in the long run.

The distinction between the agent and the environment might not always be the most intuitive

one. We will draw a boundary based on control (see Sutton and Barto, 1998). Everything the agent

cannot control is considered part of the environment. For example, although the motors of a robot

agent might be considered part of the agent, the exact functioning of them in the environment is

beyond the agent’s control. It can give commands to gear up or down, but their physical realization

can be influenced by many things.

An example of interaction with the environment is given in Figure 1. It shows how the interac-

tion between an agent and the environment can take place. The agent can choose an action in each

state, and the perceptions the agent gets from the environment are the environment’s state after

each action plus the scalar reward signal at each step. Here a discrete model is used in which there

are distinct numbers for each state and action. The way the interaction is depicted is highly general

in the sense that one just talks about states and actions as discrete symbols. In the rest of this book

we will be more concerned about interactions in which states and actions have more structure, such

that a state can be something like there are two blue boxes and one white one and you are standing

next to a blue box. However, this figure clearly shows the mechanism of sequential decision making.

There are several important aspects in learning sequential decision making which we will de-

scribe in this section, after which we will describe formalizations in the next sections.

Approaching Sequential Decision Making. There are several classes of algorithms that deal

with the problem of sequential decision making. In this book we deal specifically with the topic of

learning, but some other options exist.

2

environment You are in state 65. You have 4 possible actions.

agent I’ll take action 2.

environment You have received a reward of 7 units. You are now in state 15.

You have 2 possible actions.

agent I’ll take action 1.

environment You have received a reward of −4 units. You are now in state 65.

You have 4 possible actions.

agent I’ll take action 2.

environment You have received a reward of 5 units. You are now in state 44.

You have 5 possible actions.

.

Figure 1: Example of interaction between an agent and its environment, from a RL perspective.

The first solution is the programming solution. An intelligent system for sequential decision

making can – in principle – be programmed to handle all situations. For each possible state an

appropriate or optimal action can be specified a priori. However, this puts a heavy burden on

the designer or programmer of the system. All situations should be foreseen in the design phase

and programmed into the agent. This is a tedious and almost impossible task for most interesting

problems, and it only works for problems which can be modelled completely. In most realistic

problems this is not possible due to the sheer size of the problem, or the intrinsic uncertainty in the

system. A simple example is robot control in which factors such as lighting or temperature can have

a large, and unforeseen, influence on the behavior of camera and motor systems. Furthermore,

in situations where the problem changes, for example due to new elements in the description

of the problem or changing dynamic of the system, a programmed solution will no longer work.

Programmed solutions are brittle in that they will only work for completely known, static problems

with fixed probability distributions.

A second solution uses search and planning for sequential decision making. The successful chess

program Deep Blue (Schaeffer and Plaat, 1997) was able to defeat the human world champion Gary

Kasparov by smart, brute force search algorithms that used a model of the dynamics of chess, tuned

to Kasparov’s style of playing. When the dynamics of the system are known, one can search or plan

from the current state to a desirable goal state. However, when there is uncertainty about the

action outcomes standard search and planning algorithms do not apply. Admissible heuristics can

solve some problems concerning the reward-based nature of sequential decision making, but the

probabilistic effects of actions pose a difficult problem. Probabilistic planning algorithms exist (e.g.

Kushmerick et al., 1995), but their performance is not as good as their deterministic counterparts.

An additional problem is that planning and search focus on specific start and goal states. In con-

trast, we are looking for policies which are defined for all states, and are defined with respect to

rewards.

The third solution is learning, and this will be the main topic of this book. Learning has several

advantages in sequential decision making. First, it relieves the designer of the system from the

difficult task of deciding upon everything in the design phase. Second, it can cope with uncertainty,

goals specified in terms of reward measures, and with changing situations. Third, it is aimed at

solving the problem for every state, as opposed to a mere plan from one state to another. Addition-

ally, although a model of the environment can be used or learned, it is not necessary in order to

compute optimal policies, such as is exemplified by RL methods. Everything can be learned from

interaction with the environment.

3

Online versus Off-line Learning. One important aspect in the learning task we consider in this

book is the distinction between online and off-line learning. The difference between these two

types is influenced by factors such as whether one wants to control a real-world entity – such as

a robot player robot soccer or a machine in a factory – or whether all necessary information is

available. Online learning performs learning directly on the problem instance. Off-line learning

uses a simulator of the environment as a cheap way to get many training examples for safe and fast

learning.

Learning the controller directly on the real task is often not possible. For example, the learning

algorithms in this chapter sometimes need millions of training instances which can be too time-

consuming to collect. Instead, a simulator is much faster, and in addition it can be used to provide

arbitrary training situations, including situations that rarely happen in the real system. Further-

more, it provides a ”safe” training situation in which the agent can explore and make mistakes.

Obtaining negative feedback in the real task in order to learn to avoid these situations, might entail

destroying the machine that is controlled, which is unacceptable. Often one uses a simulation to ob-

tain a reasonable policy for a given problem, after which some parts of the behavior are fine-tuned

on the real task. For example, a simulation might provide the means for learning a reasonable

robot controller, but some physical factors concerning variance in motor and perception systems of

the robot might make additional fine-tuning necessary. A simulation is just a model of the real prob-

lem, such that small differences between the two are natural, and learning might make up for that

difference. Many problems in the literature however, are simulations of games and optimization

problems, such that the distinction disappears.

Credit Assignment. An important aspect of sequential decision making is the fact that deciding

whether an action is ”good” or ”bad” cannot be decided upon right away. The appropriateness of

actions is completely determined by the goal the agent is trying to pursue. The real problem is

that the effect of actions with respect to the goal can be much delayed. For example, the opening

moves in chess have a large influence on winning the game. However, between the first opening

moves and receiving a reward for winning the game, a couple of tens of moves might have been

played. Deciding how to give credit to the first moves – which did not get the immediate reward

for winning – is a difficult problem called the temporal credit assignment problem. Each move in

a winning chess game contributes more or less to the success of the last move, although some

moves along this path can be less optimal or even bad. A related problem is the structural credit

assignment problem, in which the problem is to distribute feedback over the structure representing

the agent’s policy. For example, the policy can be represented by a structure containing parameters

(e.g. a neural network). Deciding which parameters have to be updated forms the structural credit

assignment problem.

The Exploration-Exploitation Trade-off. If we know a complete model of dynamics of the prob-

lem, there exist methods (e.g. DP) that can compute optimal policies from this model. However, in

the more general case where we do not have access to this knowledge (e.g. RL), it becomes neces-

sary to interact with the environment to learn by trial-and-error a correct policy. The agent has to

explore the environment by performing actions and perceiving their consequences (i.e. the effects

on the environments and the obtained rewards). The only feedback the agent gets are rewards,

but it does not get information about what is the right action. At some point in time, it will have a

policy with a particular performance. In order to see whether there are possible improvements to

this policy, it sometimes has to try out various actions to see their results. This might result in worse

performance because the actions might also be less good than the current policy. However, without

trying them, it might never find possible improvements. In addition, if the world is not stationary,

the agent has to explore to keep its policy up-to-date. So, in order to learn it has to explore, but in

order to perform well it should exploit what it already knows. Balancing these two things is called

4

the exploration-exploitation problem.

Feedback, Goals and Performance. Compared to supervised learning, the amount of feedback

the learning system gets in RL, is much less. In supervised learning, for every learning sample

the correct output is given in a training set. The performance of the learning system can be mea-

sured relative to the number of correct answers, resulting in a predictive accuracy. The difficulty

lies in learning this mapping, and whether this mapping generalizes to new, unclassified, examples.

In unsupervised learning, the difficulty lies in constructing a useful partitioning of the data such

that classes naturally arise. In reinforcement there is only some information available about per-

formance, in the form of one scalar signal. This feedback system is evaluative rather than being

instructive. Using this limited signal for feedback renders a need to put more effort in using it to

evaluate and improve behavior during learning.

A second aspect about feedback and performance is related to the stochastic nature of the

problem formulation. In supervised and unsupervised learning, the data is usually considered

static, i.e. a data set is given and performance can be measured with respect to this data. The

learning samples for the learner originate from a fixed distribution, i.e. the data set. From a RL

perspective, the data can be seen as a moving target. The learning process is driven by the current

policy, but this policy will change over time. That means that the distribution over states and

rewards will change because of this. In machine learning the problem of a changing distribution

of learning samples is termed concept drift (Maloof, 2003) and it demands special features to deal

with it. In RL this problem is dealt with by exploration, a constant interaction between evaluation

and improvement of policies and additionally the use of learning rate adaption schemes.

A third aspect of feedback is the question ”where do the numbers come from?”. In many se-

quential decision tasks, suitable reward functions present themselves quite naturally. For games

in which there are winning, losing and draw situations, the reward function is easy to specify. In

some situations special care has to be taken in giving rewards for states or actions, and also their

relative size is important. When the agent will encounter a large negative reward before it finally

gets a small positive reward, this positive reward might get overshadowed. All problems posed will

have some optimal policy, but it depends on whether the reward function is in accordance with the

right goals, whether the policy will tackle the right problem. In some problems it can be useful to

provide the agent with rewards for reaching intermediate subgoals. This can be helpful in problems

which require very long action sequences.

Representations. One of the most important aspects in learning sequential decision making is

representation. Two central issues are what should be represented, and how things should be rep-

resented. The first issue is dealt with in this chapter. Key components that can or should be repre-

sented are models of the dynamics of the environment, reward distributions, value functions and

policies. For some algorithms all components are explicitly stored in tables, for example in classic

DP algorithms. Actor-critic methods keep separate, explicit representations of both value functions

and policies. However, in most RL algorithms just a value function is represented whereas policy

decisions are derived from this value function online. Methods that search in policy space do not

represent value functions explicitly, but instead an explicitly represented policy is used to compute

values when necessary. Overall, the choice for not representing certain elements can influence the

choice for a type of algorithm, and its efficiency.

The question of how various structures can be represented is dealt with extensively in this book,

starting from the next chapter. Structures such as policies, transition functions and value functions

can be represented in more compact form by using various structured knowledge representation

formalisms and this enables much more efficient solution mechanisms and scaling up to larger

domains.

5

2. A Formal Framework

The elements of the RL problem as described in the introduction to this chapter can be formalized

using the Markov decision process (MDP) framework. In this section we will formally describe

components such as states and actions and policies, as well as the goals of learning using different

kinds of optimality criteria. MDPs are extensively described in (Puterman, 1994) and (Boutilier

et al., 1999). They can be seen as stochastic extensions of finite automata and also as Markov

processes augmented with actions.

Although general MDPs may have infinite (even uncountable) state and action spaces, we limit

the discussion to finite-state and finite-action problems. In the next chapter we will encounter

continuous spaces and in later chapters we will encounter situations arising in the first-order logic

setting in which infinite spaces can quite naturally occur.

2.1 Markov Decision Processes.

MDPs consist of states, actions, transitions between states and a reward function definition. We

consider each of them in turn.

States. The set of environmental states S is defined as the finite set {s1, . . . , sN} where the size

of the state space is N , i.e. |S| = N . A state is a unique characterization of all that is important

in a state of the problem that is modeled. For example, in chess a complete configuration of board

pieces of both black and white, is a state. In the next chapter we will encounter the use of features

that describe the state. In those contexts, it becomes necessary to distinguish between legal and

illegal states, for some combinations of features might not result in an actually existing state in the

problem. In this chapter, we will confine ourselves to the discrete state set S in which each state is

represented by a distinct symbol, and all states s ∈ S are legal.

Actions. The set of actions A is defined as the finite set {a1, . . . , aK} where the size of the action

space is K, i.e. |A| = K. Actions can be used to control the system state. The set of actions that

can be applied in some particular state s ∈ S, is denoted A(s), where A(s) ⊆ A. In some systems,

not all actions can be applied in every state, but in general we will assume that A(s) = A for all

s ∈ S. In more structured representations (e.g. by means of features), the fact that some actions are

not applicable in some states, is modeled by a precondition function pre : S × A → {true, false},

stating whether action a ∈ A is applicable in state s ∈ S.

The Transition Function. By applying action a ∈ A in a state s ∈ S, the system makes a transition

from s to a new state s′ ∈ S, based on a probability distribution over the set of possible transitions.

The transition function T is defined as T : S × A × S → [0, 1], i.e. the probability of ending up in

state s′ after doing action a in state s is denoted T (s, a, s′). It is required that for all actions a, and

all states s and s′, T (s, a, s′) ≥ 0 and T (s, a, s′) ≤ 1. Furthermore, for all states s and actions a,
∑

s′∈S T (s, a, s′) = 1, i.e. T defines a proper probability distribution over possible next states. Instead

of a precondition function, it is also possible to set1 T (s, a, s′) = 0 for all states s′ ∈ S if a is not

applicable in s. For talking about the order in which actions occur, we will define a discrete global

clock, t = 1, 2, Using this, the notation st denotes the state at time t and st+1 denotes the state

at time t + 1. This enables to compare different states (and actions) occurring ordered in time

during interaction.

The system being controlled is Markovian if the result of an action does not depend on the

previous actions and visited states (history), but only depends on the current state, i.e.

P (st+1 | st, at, st−1, at−1, . . .) = P (st+1 | st, at) = T (st, at, st+1)

1Although this is the same, the explicit distinction between an action not begin applicable in a state and a zero

probability for transitions with that action, is lost in this way.

6

The idea of Markovian dynamics is that the current state s gives enough information to make an

optimal decision; if is not important which states and actions preceded s. Another way of saying

this, is that if you select an action a, the probability distribution over next states is the same as the

last time you tried this action in the same state. More general models can be characterized by being

k-Markov, i.e. the last k are states sufficient, such that Markov is actually 1-Markov. Though, each

k-Markov problem can be transformed into an equivalent Markov problem. The Markov property

forms a boundary between the MDP and more general models such as POMDPs.

The Reward Function. The reward function2 specifies rewards for being in a state, or doing some

action in a state. The state reward function is defined as R : S → R, and it specifies the reward

obtained in states. However, two other definitions exist. One can define either R : S × A → R or

R : S ×A× S → R. The first one gives rewards for performing an action in a state, and the second

gives rewards for particular transitions between states. All definitions are interchangeable though

the last one is convenient in model-free algorithms (see Section 6), because there we usually need

both the starting state and the resulting state in backing up values. Throughout this book we will

mainly use R(s, a, s′), but deviate from this when more convenient.

The reward function is an important part of the MDP that specifies implicitly the goal of learn-

ing. For example, in episodic tasks such as in the games Tic-Tac-Toe and chess, one can assign all

states in which the agent has won a positive reward value, all states in which the agent loses a

negative reward value and a zero reward value in all states where the final outcome of the game

is a draw. The goal of the agent is to reach positive valued states, which means winning the game.

Thus, the reward function is used to give direction in which way the system, i.e. the MDP, should

be controlled. Often, the reward function assigns non-zero reward to non-goal states as well, which

can be interpreted as defining sub-goals for learning.

The Markov Decision Process. Putting all elements together results in the definition of a Markov

decision process, which will be the base model for the large majority of methods described in this

book.

Definition 2.1

A Markov decision process is a tuple 〈S,A, T,R〉 in which S is a finite set of states, A a finite set

of actions, T a transition function defined as T : S×A×S → [0, 1] and R a reward function defined

as R : S × A × S → R.

The transition function T and the reward function R together define the model of the MDP. Often

MDPs are depicted as a state transition graph for an example) where the nodes correspond to

states and (directed) edges denote transitions. A typical domain that is frequently used in the MDP

literature is the maze (Matthews, 1922), in which the reward function assigns a positive reward for

reaching the exit state.

There are several distinct types of systems that can be modelled by this definition of an MDP.

In episodic tasks, there is the notion of episodes of some length, where the goal is to take the agent

from a starting state to a goal state. An initial state distribution I : S → [0, 1] gives for each state the

probability of the system being started in that state. Starting from a state s the system progresses

through a sequence of states, based on the actions performed. In episodic tasks, there is a specific

subset G ⊆ S, denoted goal state area containing states (usually with some distinct reward) where

the process ends. We can furthermore distinguish between finite, fixed horizon tasks in which each

2Although we talk about rewards here, with the usual connotation of something positive, the reward function merely

gives a scalar feedback signal. This can be interpreted as negative (punishment) or positive (reward). The various origins

of work in MDPs in the literature creates an additional confusion with the reward function. In the operations resarch

literature, one usually speaks of a cost function instead and the goal of learning and optimization is to minimize this

function.

7

episode consists of a fixed number of steps, indefinite horizon tasks in which each episode can end

but episodes can have arbitrary length, and infinite horizon tasks where the system does not end at

all. The last type of model is usually called a continuing task.

Episodic tasks, i.e. in which there so-called goal states, can be modelled using the same model

defined in Definition 2.1. This is usually modelled by means of absorbing states or terminal states,

e.g. states from which every action results in a transition to that same state with probability 1 and

reward 0. Formally, for an absorbing state s, it holds that T (s, a, s) = 1 and R(s, a, s′) = 0 for all

states s′ ∈ S and actions a ∈ A. When entering an absorbing state, the process is reset and restarts

in a new starting state. Episodic tasks and absorbing states can in this way be elegantly modelled

in the same framework as continuing tasks.

2.2 Policies

Given an MDP 〈S,A, T,R〉, a policy is a computable function that outputs for each state s ∈ S an

action a ∈ A (or a ∈ A(s)). Formally, a deterministic policy π is a function defined as π : S → A.

It is also possible to define a stochastic policy as π : S × A → [0, 1] such that for each state s ∈ S,

it holds that π(s, a) ≥ 0 and
∑

a∈A π(s, a) = 1. We will assume deterministic policies in this book

unless stated otherwise.

Application of a policy to an MDP is done in the following way. First, a start state s0 from the

initial state distribution I is generated. Then, the policy π suggest the action a0 = π(s0) and this

action is performed. Based on the transition function T and reward function R, a transition is made

to state s1, with probability T (s0, a, s1) and a reward r0 = R(s0, a0, s1) is received. This process

continues, producing s0, a0, r0, s1, a1, r1, s2, a2, If the task is episodic, the process ends in state

sgoal and is restarted in a new state drawn from I. If the task is continuing, the sequence of states

can be extended indefinitely.

The policy is part of the agent and its aim is to control the environment modeled as an MDP.

A fixed policy induces a stationary transition distribution over the MDP which can be transformed

into a Markov system3 〈S′, T ′〉 where S′ = S and T ′(s, s′) = T (s, a, s′) whenever π(s) = a.

2.3 Optimality Criteria and Discounting

In the previous sections, we have defined the environment (the MDP) and the agent (i.e. the

controlling element, or policy). Before we can talk about algorithms for computing optimal policies,

we have to define what that means. That is, we have to define what the model of optimality is. There

are two ways of looking at optimality. First, there is the aspect of what is actually being optimized,

i.e. what is the goal of the agent? Second, there is the aspect of how optimal the way in which

the goal is being optimized, is. The first aspect is related to gathering reward and is treated in

this section. The second aspect is related to the efficiency and optimality of algorithms, and this is

briefly touched upon and dealt with more extensively in Section 4 and further.

The goal of learning in an MDP is to gather rewards. If the agent was only concerned about

the immediate reward, a simple optimality criterion would be to optimize E[rt]. However, there

are several ways of taking into account the future in how to behave now. There are basically

three models of optimality in the MDP, which are sufficient to cover most of the approaches in the

literature. They are strongly related to the types of tasks that were defined in Section 2.1.

3In other words, if π is fixed, the system behaves as a stochastic transition system with a stationary distribution over

states.

8

E

[h
∑

t=0

rt

]

E

[∞
∑

t=1

γtrt

]

lim
h→∞

E

[

1

h

h
∑

t=0

rt

]

Figure 2: Optimality: a) finite horizon, b) discounted, infinite horizon, c) average reward.

The finite horizon model simply takes a finite horizon of length h and states that the agent should

optimize its expected reward over this horizon, i.e. the next h steps (see Figure 2a)). One can

think of this in two ways. The agent could in the first step take the h-step optimal action, after this

the (h− 1)-step optimal action, and so on. Another way is that the agent will always take the h-step

optimal action, which is called receding-horizon control. The problem, however, with this model, is

that the (optimal) choice for the horizon length h is not always known.

In the infinite-horizon model, the long-run reward is taken into account, but the rewards that

are received in the future are discounted according to how far away in time they will be received.

A discount factor γ, with 0 ≤ γ < 1 is used for this (see Figure 2b)). Note that in this discounted

case, rewards obtained later are discounted more than rewards obtained earlier. Additionally, the

discount factor ensures that – even with infinite horizon – the sum of the rewards obtained is finite.

In episodic tasks, i.e. in tasks where the horizon is finite, the discount factor is not needed or

can equivalently be set to 1. If γ = 0 the agent is said to be myopic, which means that it is only

concerned about immediate rewards. The discount factor can be interpreted in several ways; as an

interest rate, probability of living another step, or the mathematical trick for bounding the infinite

sum. The discounted, infinite-horizon model is mathematically more convenient, but conceptually

similar to the finite horizon model. Most algorithms in this book use this model of optimality.

A third optimality model is the average-reward model, maximizing the long-run average reward

(see Figure 2c)). Sometimes this is called the gain optimal policy and in the limit, as the discount

factor approaches 1, it is equal to the infinite-horizon discounted model. A difficult problem with

this criterion that we cannot distinguish between two policies in which one receives a lot of reward

in the initial phases and another one which does not. This initial difference in reward is hidden

in the long-run average. This problem can be solved in using a bias optimal model in which the

long-run average is still being optimized, but policies are preferred if they additionally get initially

extra reward. See (Mahadevan, 1996) for a survey on average reward RL.

Choosing between these optimality criteria can be related to the learning problem. If the length

of the episode is known, the finite-horizon model is best. However, often this is not known, or

the task is continuing, the infinite-horizon model is more suitable. Koenig and Liu (2002) give an

extensive overview of different modelings of MDPs and their relationship with optimality.

The second kind of optimality in this section is related to the more general aspect of the opti-

mality of the learning process itself. We will encounter various concepts in the remainder of this

book. We will briefly summarize three important notions here.

Learning optimality can be explained in terms of what the end result of learning might be. A first

concern is whether the agent is able to obtain optimal performance in principle. For some algorithms

there are proofs stating this, but for some not. In other words, is there a way to ensure that the

learning process will reach a global optimum, or merely a local optimum, or even an oscillation

between performances? A second kind of optimality is related to the speed of converging to a

solution. We can distinguish between two learning methods by looking at how many interactions

are needed, or how much computation is needed per interaction. And related to that, what will

the performance be after a certain period of time? In supervised learning the optimality criterion is

often defined in terms of predictive accuracy which is different from optimality in the MDP setting.

Also, it is important to look at how much experimentation is necessary, or even allowed, for reaching

optimal behavior. For example, a learning robot or helicopter might not be allowed to make many

mistakes during learning. A last kind of optimality is related to how much reward is not obtained

9

by the learned policy, as compared to an optimal one. This is usually called the regret of a policy.

3. Value Functions and Bellman Equations

In the preceding sections we have defined MDPs and optimality criteria that can be useful for

learning optimal policies. In this section we define value functions, which are a way to link the

optimality criteria to policies. Most learning algorithms for MDPs compute optimal policies by

learning value functions. A value function represents an estimate how good it is for the agent to be

in a certain state (or how good it is to perform a certain action in that state). The notion of how

good is expressed in terms of an optimality criterion, i.e. in terms of the expected return. Value

functions are defined for particular policies.

The value of a state s under policy π, denoted V π(s) is the expected return when starting in s

and following π thereafter. We will use the infinite-horizon, discounted model in this section, such

that this can be expressed4 as:

V π(s) = Eπ

{ ∞
∑

k=0

γkrt+k|st = s

}

(1)

A similar state-action value function Q : S × A → R can be defined as the expected return starting

from state s, taking action a and thereafter following policy π:

Qπ(s, a) = Eπ

{ ∞
∑

k=0

γkrt+k|st = s, at = a

}

One fundamental property of value functions is that they satisfy certain recursive properties. For

any policy π and any state s the expression in Equation 1 can recursively be defined in terms of a

so-called Bellman Equation (Bellman, 1957):

V π(s) = Eπ

{

rt + γrt+1 + γ2rt+2 + . . . |st = t

}

= Eπ

{

rt + γV π(st+1)|st = s

}

=
∑

s′

T (s, π(s), s′)

(

R(s, a, s′) + γV π(s′)

)

(2)

It denotes that the expected value of state is defined in terms of the immediate reward and values

of possible next states weighted by their transition probabilities, and additionally a discount factor.

V π is the unique solution for this set of equations. Note that multiple policies can have the same

value function, but for a given policy π, V π is unique.

The goal for any given MDP is to find a best policy, i.e. the policy that receives the most reward.

This means maximizing the value function of Equation 1 for all states s ∈ S. An optimal policy,

denoted π∗, is such that V π∗

(s) ≥ V π(s) for all s ∈ S and all policies π. It can be proven that the

optimal solution V ∗ = V π∗

satisfies the following Equation:

V ∗(s) = max
a∈A

∑

s′∈S

T (s, a, s′)

(

R(s, a, s′) + γV ∗(s′)

)

(3)

This expression is called the Bellman optimality equation. It states that the value of a state under

an optimal policy must be equal to the expected return for the best action in that state. To select

4Note that we use Eπ for the expected value under policy π.

10

an optimal action given the optimal state value function V ∗ the following rule can be applied:

π∗(s) = arg max
a

∑

s′∈S

T (s, a, s′)

(

R(s, a, s′) + γV ∗(s′)

)

(4)

We call this policy the greedy policy, denoted πgreedy(V) because it greedily selects the best action

using the value function V . An analogous optimal state-action value is:

Q∗(s, a) =
∑

s′

T (s, a, s′)

(

R(s, a, s′) + γ max
a′

Q∗(s′, a′)

)

Q-functions are useful because they make the weighted summation over different alternatives (such

as in Equation 4) using the transition function unnecessary. No forward-reasoning step is needed

to compute an optimal action in a state. This is the reason that in model-free approaches, i.e. in

case T and R are unknown, Q-functions are learned instead of V -functions. The relation between

Q∗ and V ∗ is given by

Q∗(s, a) =
∑

s′∈S

T (s, a, s′)

(

R(s, a, s′) + γV ∗(s′)

)

(5)

V ∗(s) = max
a

Q∗(s, a) (6)

Now, analogously to Equation 4, optimal action selection can be simply put as:

π∗(s) = arg max
a

Q∗(s, a) (7)

That is, the best action is the action that has the highest expected utility based on possible next

states resulting from taking that action. One can, analogous to the expression in Equation 4, define

a greedy policy πgreedy(Q) based on Q. In contrast to πgreedy(V) there is no need to consult the

model of the MDP; the Q-function suffices.

4. Solving Markov decision processes

Now that we have defined MDPs, policies, optimality criteria and value functions, it is time to

consider the question of how to compute optimal policies. Solving a given MDP means computing

an optimal policy π∗. Several dimensions exist along which algorithms have been developed for this

purpose. The most important distinction is that between model-based and model-free algorithms.

Model-based algorithms exist under the general name of DP. The basic assumption in these

algorithms is that a model of the MDP is known beforehand, and can be used to compute value

functions and policies using the Bellman equation (see Equation 3). Most methods are aimed at

computing state value functions which can, in the presence of the model, be used for optimal action

selection. In this chapter we will focus on iterative procedures for computing value functions and

policies.

Model-free algorithms, under the general name of RL, do not rely on the availability of a perfect

model. Instead, they rely on interaction with the environment, i.e. a simulation of the policy thereby

generating samples of state transitions and rewards. These samples are then used to estimate state-

action value functions. Because a model of the MDP is not known, the agent has to explore the

MDP to obtain information. This naturally induces a exploration-exploitation trade-off which has

to be balanced to obtain an optimal policy.

A very important underlying mechanism, the so-called generalized policy iteration (GPI) prin-

ciple, present in all methods is depicted in Figure 3. This principle consists of two interaction

11

π V

evaluation

improvement

V →V
π

π→greedy(V)

Vπ

starting
V π

V = V π

π = gree d y (V)

V*

π*

Figure 3: a) The algorithms in Section 4 can be seen as instantiations of Generalized Policy Iteration (GPI)

(picture taken from Sutton and Barto, 1998). The policy evaluation step estimates V π, the policy’s performance.

The policy improvement step improves the policy π based on the estimates in V π. b) The gradual convergence

of both the value function and the policy to optimal versions.

processes. The policy evaluation step estimates the utility of the current policy π, that is, it com-

putes V π. There are several ways for computing this. In model-based algorithms, one can use

the model to compute it directly or iteratively approximate it. In model-free algorithms, one can

simulate the policy and estimate its utility from the sampled execution traces. The main purpose

of this step is to gather information about the policy for computing the second step, the policy

improvement step. In this step, the values of the actions are evaluated for every state, in order

to find possible improvements, i.e. possible other actions in particular states that are better than

the action the current policy proposes. This step computes an improved policy π′ from the current

policy π using the information in V π. Both the evaluation and the improvement steps can be im-

plemented in various ways, and interleaved in several distinct ways. The bottom line is that there

is a policy that drives value learning, i.e. it determines the value function, but in turn there is a

value function that can be used by the policy to select good actions. Note that it is also possible to

have an implicit representation of the policy, which means that only the value function is stored,

and a policy is computed on-the-fly for each state based on the value function when needed. This

is common practice in model-free algorithms (see Section 6). And vice versa it is also possible to

have implicit representations of value functions in the context of an explicit policy representation.

Another interesting aspect is that in general a value function does not have to be perfectly accu-

rate. In many cases it suffices that sufficient distinction is present between suboptimal and optimal

actions, such that small errors in values do not have to influence policy optimality. This is also

important in approximation and abstraction methods discussed in the next chapter.

Planning as a RL Problem. The MDP formalism is a general formalism for decision-theoretic

planning, which entails that standard (deterministic) planning problems can be formalized as such

too. All the algorithms in this chapter can – in principle – be used for these planning problems

too. In order to solve planning problems in the MDP framework we have to specify goals and

rewards. We can assume that the transition function T is given, accompanied by a precondition

function. In planning we are given a goal function G : S → {true, false} that defines which states

are goal states. The planning task is compute a sequence of actions at, at+1, . . . , at+n such that

applying this sequence from a start state will lead to a state s ∈ G. All transitions are assumed to

be deterministic, i.e. for all states s ∈ S and actions a ∈ A there exists only one state s′ ∈ S such

that T (s, a, s′) = 1. All states in G are assumed to be absorbing. The only thing left is to specify the

12

reward function. We can specify this in such a way that a positive reinforcement is received once a

goal state is reached, and zero otherwise:

R(st, at, st+1) =

{

1, if st 6∈ G and st+1 ∈ G

0, otherwise

Now, depending on whether the transition function and reward function are known to the agent,

one can solve this planning task with either model-based or model-free learning. The difference

with classic planning is that the learned policy will apply to all states.

5. Dynamic Programming: Model-based Solution Techniques

The term DP refers to a class of algorithms that is able to compute optimal policies in the presence of

a perfect model of the environment. The assumption that a model is available will be hard to ensure

for many applications. However, we will see that from a theoretical viewpoint, as well as from

an algorithmic viewpoint, DP are very relevant because they define fundamental computational

mechanisms which are also used when no model is available. The methods in this section all

assume a standard MDP 〈S,A, T,R〉, where the state and action sets are finite and discrete such

that they can be stored in tables. Furthermore, transition, reward and value functions are assumed

to store values for all states and actions separately.

5.1 Fundamental DP Algorithms

Two core DP methods are policy iteration (Howard, 1960) and value iteration (Bellman, 1957). In

the first, the GPI mechanism is clearly separated into two steps, whereas the second represents a

tight integration of policy evaluation and improvement. We will consider both these algorithms in

turn.

5.1.1 POLICY ITERATION

Policy iteration (PI) (Howard, 1960) iterates between the two phases of GPI. The policy evaluation

phase computes the value function of the current policy and the policy improvement phase computes

an improved policy by a maximization over the value function. This is repeated until converging to

an optimal policy.

Policy Evaluation: The Prediction Problem. A first step is to find the value function V π of a

fixed policy π. This is called the prediction problem. It is a part of the complete problem, that of

computing an optimal policy. Remember from the previous sections that for all s ∈ S,

V π(s) =
∑

s′∈S

T (s, π(s), s′)

(

R(s, π(s), s′) + γV π(s′)

)

(8)

If the dynamics of the system is known, i.e. a model of the MDP is given, then these equations form

a system of |S| equations in |S| unknowns (the values of V π for each s ∈ S). This can be solved by

linear programming (LP). However, an iterative procedure is possible, and in fact common in DP

and RL. The Bellman equation is transformed into an update rule which updates the current value

function V π
k into V π

k+1 by ’looking one step further in the future’, thereby extending the planning

horizon with one step:

V π
k+1(s) = Eπ

{

rt + γV π
k (st+1)|st = s

}

=
∑

s′

T (s, π(s), s′)

(

R(s, π(s), s′) + γV π
k (s′)

)

(9)

13

The sequence of approximations of V π
k as k goes to infinity can be shown to converge. In order

to converge, the update rule is applied to each state s ∈ S in each iteration. It replaces the old

value for that state by a new one that is based on the expected value of possible successor states,

intermediate rewards and weighted by the transition probabilities. This operation is called a full

backup because it is based on all possible transitions from that state.

A more general formulation can be given by defining a backup operator Bπ over arbitrary real-

valued functions ϕ over the state space (e.g. a value function):

(Bπϕ)(s) =
∑

s′∈S

T (s, π(s), s′)

(

R(s, π(s), s′) + γϕ(s′)

)

(10)

The value function V π of a fixed policy π satisfies the fixed point of this backup operator as V π =
BπV π. A useful special case of this backup operator is defined with respect to a fixed action a:

(Baϕ)(s) = R(s) + γ
∑

s′∈S

T (s, a, s′)ϕ(s′)

Now LP for solving the prediction problem can be stated as follows. Computing V π can be accom-

plished by solving the Bellman equations (see Equation 3) for all states. The optimal value function

V ∗ can be found by using a LP problem solver that computes V ∗ = arg maxV

∑

s V (s) subject to

V (s) ≥ (BaV)(s) for all a and s.

Policy Improvement. Now that we know the value function V π of a policy π as the outcome of

the policy evaluation step, we can try to improve the policy. First we identify the value of all actions

by using:

Qπ(s, a) = Eπ

{

rt + γV π(st+1)|st = s, at = a

}

(11)

=
∑

s′

T (s, a, s′)

(

R(s, a, s′) + γV π(s′)

)

(12)

If now Qπ(s, a) is larger than V π(s) for some a ∈ A then we could do better by choosing action

a instead of the current π(s). In other words, we can improve the current policy by selecting a

different, better, action in a particular state. In fact, we can evaluate all actions in all states and

choose the best action in all states. That is, we can compute the greedy policy π′ by selecting the

best action in each state, based on the current value function V π:

π′(s) = arg max
a

Qπ(s, a)

= arg max
a

E

{

rt + γV π(st+1)|st = s, at = a

}

= arg max
a

∑

s′

T (s, a, s′)

(

R(s, a, s′) + γV π(s′)

)

(13)

Computing an improved policy by greedily selecting the best action with respect to the value func-

tion of the original policy is called policy improvement. If the policy cannot be improved in this way,

it means that the policy is already optimal and its value function satisfies the Bellman equation for

the optimal value function. In a similar way one can also perform these steps for stochastic policies

by blending the action probabilities into the expectation operator.

Summarizing, policy iteration (Howard, 1960) starts with an arbitrary initialized policy π0. Then

a sequence of iterations follows in which the current policy is evaluated after which it is improved.

14

Require: V (s) ∈ R and π(s) ∈ A(s) arbitrarily for all s ∈ S

{POLICY EVALUATION}
repeat

∆ := 0
for each s ∈ S do

v := V π(s)

V (s) :=
∑

s′ T (s, π(s), s′)

(

R(s, π(s), s′) + γV (s′)

)

∆ := max(∆, |v − V (s)|)
until ∆ < σ

{POLICY IMPROVEMENT}
policy-stable := true
for each s ∈ S do

b := π(s)

π(s) := arg maxa

∑

s′ T (s, a, s′)

(

R(s, a, s′) + γ · V (s′)

)

if b 6= π(s) then policy-stable := false
if policy-stable then stop; else go to POLICY EVALUATION

Algorithm 1: Policy Iteration (Howard, 1960)

The first step, the policy evaluation step computes V πk , making use of Equation 9 in an iterative

way. The second step, the policy improvement step, computes πk+1 from πk using V πk . For each

state, using equation 4, the optimal action is determined. If for all states s, πk+1(s) = πk(s), the

policy is stable and the policy iteration algorithm can stop. Policy iteration generates a sequence of

alternating policies and value functions

π0 → V π0 → π1 → V π1 → π2 → V π2 → π3 → V π3 → . . . → π∗

The complete algorithm can be found in Algorithm 1.

For finite MDPs, i.e. state and action spaces are finite, policy iteration converges after a finite

number of iterations. Each policy πk+1 is a strictly better policy than πk unless in case πk = π∗, in

which case the algorithm stops. And because for a finite MDP, the number of different policies is

finite, policy iteration converges in finite time. In practice, it usually converges after a small number

of iterations. Although policy iteration computes the optimal policy for a given MDP in finite time,

it is relatively inefficient. In particular the first step, the policy evaluation step, is computationally

expensive. Value functions for all intermediate policies π0, . . . , πk, . . . , π
∗ are computed, which

involves multiple sweeps through the complete state space per iteration. A bound on the number

of iterations is not known (Littman et al., 1995) and depends on the MDP transition structure, but

it often converges after few iterations in practice.

5.1.2 VALUE ITERATION

The policy iteration algorithm completely separates the evaluation and improvement phases. In

the evaluation step, the value function must be computed in the limit. However, it is not necessary

to wait for full convergence, but it is possible to stop evaluating earlier and improve the policy

based on the evaluation so far. The extreme point of truncating the evaluation step is the value

iteration (Bellman, 1957) algorithm. It breaks off evaluation after just one iteration. In fact, it

immediately blends the policy improvement step into its iterations, thereby purely focusing on

estimating directly the value function. Necessary updates are computed on-the-fly. In essence, it

combines a truncated version of the policy evaluation step with the policy improvement step, which

15

Require: initialize V arbitrarily (e.g. V (s) := 0,∀s ∈ S)

repeat

∆ := 0
for each s ∈ S do

v := V (s)
for each a ∈ A(s) do

Q(s, a) :=
∑

s′ T (s, a, s′)

(

R(s, a, s′) + γV (s′)

)

V (s) := maxa Q(s, a)
∆ := max(∆, |v − V (s)|)

until ∆ < σ

Algorithm 2: Value Iteration (Bellman, 1957)

is essentially Equation 3 turned into one update rule:

Vt+1(s) = max
a

∑

s′

T (s, a, s′)

(

R(s, a, s′) + γVt(s
′)

)

(14)

= max
a

Qt+1(s, a). (15)

Using Equations (14) and (15), the value iteration algorithm (see Figure 2) can be stated as

follows: starting with a value function V0 over all states, one iteratively updates the value of each

state according to (14) to get the next value functions Vt (t = 1, 2, 3, . . .). It produces the following

sequence of value functions:

V0 → V1 → V2 → V3 → V4 → V5 → V6 → V7 → . . . V ∗

Actually, in the way it is computed it also produces the intermediate Q-value functions such that

the sequence is

V0 → Q1 → V1 → Q2 → V2 → Q3 → V3 → Q4 → V4 → . . . V ∗

Value iteration is guaranteed to converge in the limit towards V ∗, i.e. the Bellman optimality

Equation (3) holds for each state. A deterministic policy π for all states s ∈ S can be computed

using Equation 4. If we use the same general backup operator mechanism used in the previous

section, we can define value iteration in the following way.

(B∗ϕ)(s) = max
a

∑

s′∈S

T (s, a, s′)

{

R(s, a, s′) + γϕ(s)

}

(16)

The backup operator B∗ functions as a contraction mapping on the value function. If we let π∗

denote the optimal policy and V ∗ its value function, we have the relationship (fixed point) V ∗ =
B∗V ∗ where (B∗V)(s) = maxa(B

aV)(s). If we define Q∗(s, a) = BaV ∗ then we have π∗(s) =
πgreedy(V

∗)(s) = arg maxa Q∗(s, a). That is, the algorithm starts with an arbitrary value function

V 0 after which it iterates Vt+1 = B∗V t until ‖Vt+1 − Vt‖S < ǫ, i.e. until the distance between

subsequent value function approximations is small enough.

6. Reinforcement Learning: Model-Free Solution Techniques

The previous section has reviewed several methods for computing an optimal policy for an MDP

assuming that a (perfect) model is available. RL is primarily concerned with how to obtain an

16

for each episode do

s ∈ S is initialized as the starting state

t := 0
repeat

choose an action a ∈ A(s)
perform action a

observe the new state s′ and received reward r

update T̃ , R̃, Q̃ and/or Ṽ

using the experience 〈s, a, r, s′〉
s := s′

until s′ is a goal state

Algorithm 3: A general algorithm for online RL

optimal policy when such a model is not available. RL adds to MDPs a focus on approximation and

incomplete information, and the need for sampling and exploration. In contrast with the algorithms

discussed in the previous section, model-free methods do not rely on the availability of priori known

transition and reward models, i.e. a model of the MDP. The lack of a model generates a need to

sample the MDP to gather statistical knowledge about this unknown model. Many model-free RL

techniques exist that probe the environment by doing actions, thereby estimating the same kind of

state value and state-action value functions as model-based techniques. This section will review

model-free methods along with several efficient extensions.

In model-free contexts one has still a choice between two options. The first one is first to

learn the transition and reward model from interaction with the environment. After that, when

the model is (approximately or sufficiently) correct, all the DP methods from the previous section

apply. This type of learning is called indirect RL. The second option, called direct RL, is to step right

into estimating values for actions, without even estimating the model of the MDP. Additionally,

mixed forms between these two exists too. For example, one can still do model-free estimation of

action values, but use an approximated model to speed up value learning by using this model to

perform more, and in addition, full backups of values. Most model-free methods however, focus on

direct estimation of (action) values.

A second choice one has to make is what to do with the temporal credit assignment. It is difficult

to assess the utility of some action, if the real effects of this particular action can only be perceived

much later. One possibility is to wait until the ”end” (e.g. of an episode) and punish or reward

specific actions along the path taken. However, this will take a lot of memory and often, with

ongoing tasks, it is not known beforehand whether, or when, there will be an ”end”. Instead, one

can use similar mechanisms as in value iteration to adjust the estimated value of a state based on the

immediate reward and the estimated (discounted) value of the next state. This is generally called

temporal difference learning which is a general mechanism underlying the model-free methods in

this section. The main difference with the update rules for DP approaches (such as Equation 14)

is that the transition function T and reward function R cannot appear in the update rules now.

The general class of algorithms that interact with the environment and update their estimates after

each experience is called online.

A general template for online RL is depicted in Figure 3. It shows an interaction loop in which

the agent selects an action (by whatever means) based on its current state, gets feedback in the form

of the resulting state and an associated reward, after which it updates its estimated values stored

in Ṽ and Q̃ and possibly statistics concerning T̃ and R̃ (in case of some form of indirect learning).

The selection of the action is based on the current state s and the value function (either Q or V). To

solve the exploration-exploitation problem, usually a separate exploration mechanism ensures that

17

sometimes the best action (according to current estimates of action values) is taken (exploitation)

but sometimes a different action is chosen (exploration). Various choices for exploration, ranging

from random to sophisticated, exist.

Exploration. One important aspect of model-free algorithms is that there is a need for exploration.

Because the model is unknown, the learner has to try out different actions to see their results. A

learning algorithm has to strike a balance between exploration and exploitation, i.e. in order to

gain a lot of reward the learner has to exploit its current knowledge about good actions, although

it sometimes must try out different actions to explore the environment for possible better actions.

The most basic exploration strategy is the ǫ-greedy policy, i.e. the learner takes its current best

action with probability (1 − ǫ) and a (randomly selected) other action with probability ǫ. There

are many more ways of doing exploration (see Wiering, 1999; Reynolds, 2002; Ratitch, 2005, for

overviews). One additional method that is often used in combination with the algorithms in this

section is the Boltzmann (or: softmax) exploration strategy. It is only slightly more complicated

than the ǫ-greedy strategy. The action selection strategy is still random, but selection probabilities

are weighted by their relative Q-values. This makes it more likely for the agent to choose very good

actions, whereas two actions that have similar Q-values will have almost the same probability to

get selected. Its general form is

P (an) =
e

Q(s,a)
T

∑

i e
Q(s,ai)

T

(17)

in which P (an) is the probability of selecting action an and T is the temperature parameter. Higher

values of T will move the selection strategy more towards a purely random strategy and lower val-

ues will move to a fully greedy strategy. A combination of both ǫ-greedy and Boltzmann exploration

can be taken by taking the best action with probability (1 − ǫ) and otherwise an action computed

according to Equation 17 (Wiering, 1999).

Another simple method to stimulate exploration is optimistic Q-values initialization; one can

initialize all Q-values to high values – e.g. an a priori defined upperbound – at the start of learning.

Because Q-values will decrease during learning, actions that have not been tried a number of times

will have a large enough value to get selected when using Boltzmann exploration for example.

Another solution with a similar effect is to keep counters on the number of times a particular

state-action pair has been selected.

6.1 Temporal Difference Learning

Temporal difference learning algorithms learn estimates of values based on other estimates. Each

step in the world generates a learning example which can be used to bring some value in accordance

to the immediate reward and the estimated value of the next state or state-action pair. An intuitive

example, along the lines of (Sutton and Barto, 1998, Chapter 6), is the following.

Imagine you have to predict at what time your guests can arrive for a small diner in your house.

Before cooking, you have to go to the supermarket, the butcher and the wine seller, in that order.

You have estimates of driving times between all locations, and you predict that you can manage to

visit the two last stores both in 10 minutes, but given the crowdy time on the day, your estimate

about the supermarket is a half hour. Based on this prediction, you have notified your guests that

they can arrive no earlier than 18.00h. Once you have found out while in the supermarket that

it will take you only 10 minutes to get all the things you need, you can adjust your estimate on

arriving back home with 20 minutes less. However, once on your way from the butcher to the wine

seller, you see that there is quite some traffic along the way and it takes you 30 minutes longer to

get there. Finally you arrive 10 minutes later than you predicted in the first place. The bottom line

of this example is that you can adjust your estimate about what time you will be back home every

18

Require: discount factor γ, learning parameter α

initialize Q arbitrarily (e.g. Q(s, a) = 0,∀s ∈ S,∀a ∈ A)

for each episode do

s is initialized as the starting state

repeat

choose an action a ∈ A(s) based on an exploration strategy

perform action a

observe the new state s′ and received reward r

Q(s, a) := Q(s, a) + α

(

r + γ · maxa′∈A(s′) Q(s′, a′) − Q(s, a)

)

s := s′

until s′ is a goal state

Algorithm 4: Q-Learning (Watkins and Dayan, 1992)

time you have obtained new information about in-between steps. Each time you can adjust your

estimate on how long it will still take based on actually experienced times of parts of your path.

This is the main principle of TD learning: you do not have to wait until the end of a trial to make

updates along your path.

TD methods learn their value estimates based on estimates of other values, which is called

bootstrapping. They have an advantage over DP in that they do not require a model of the MDP.

Another advantage is that they are naturally implemented in an online, incremental fashion such

that they can be easily used in various circumstances. No full sweeps through the full state space

are needed; only along experienced paths values get updated, and updates are effected after each

step.

TD(0). TD(0) is a member of the family of TD learning algorithms (Sutton, 1988). It solves the

prediction problem, i.e. it estimates V π for some policy π, in an online, incremental fashion. TD(0)
can be used to evaluate a policy and works through the use of the following update rule5:

Vk+1(s) := Vk(s) + α

(

r + γVk(s
′) − Vk(s)

)

where α ∈ [0, 1] is the learning rate, that determines by how much values get updated. This

backup is performed after experiencing the transition from state s to s′ based on the action a, while

receiving reward r. The difference with DP backups such as used in Equation 14 is that the update

is still done by using bootstrapping, but it is based on an observed transition, i.e. it uses a sample

backup instead of a full backup. Only the value of one successor state is used, instead of a weighted

average of all possible successor states. When using the value function V π for action selection, a

model is needed to compute an expected value over all action outcomes (e.g. see Equation 4).

The learning rate α has to be decreased appropriately for learning to converge. Sometimes the

learning rate can be defined for states separately as in α(s), in which case it can be dependent on

how often the state is visited. The next two algorithms learn Q-functions directly from samples,

removing the need for a transition model for action selection.

Q-learning. One of the most basic and popular methods to estimate Q-value functions in a model-

free fashion is the Q-learning algorithm by Watkins (1989); Watkins and Dayan (1992), see Algo-

rithm 4.

The basic idea in Q-learning is to incrementally estimate Q-values for actions, based on feed-

back (i.e. rewards) and the agent’s Q-value function. The update rule is a variation on the theme

5The learning parameter α should comply with some criteria on its value, and the way it is changed. In the algorithms

in this section, one often chooses a small, fixed learning parameter, or it is decreased every iteration.

19

of TD learning, using Q-values and a built-in max-operator over the Q-values of the next state in

order to update Qt into Qt+1:

Qk+1(st, at) = Qk(st, at) + α

(

rt + γ max
a

Qk(st+1, a) − Qk(st, at)

)

(18)

The agent makes a step in the environment from state st to st+1 using action at while receiving

reward rt. The update takes place on the Q-value of action at in the state st from which this action

was executed.

Q-learning is exploration-insensitive. It means that it will converge to the optimal policy re-

gardless of the exploration policy being followed, under the assumption that each state-action pair

is visited an infinite number of times, and the learning parameter α is decreased appropriately

(Watkins and Dayan, 1992; Bertsekas and Tsitsiklis, 1996).

SARSA. Q-learning is an off-policy learning algorithm, which means that while following some

exploration policy π, it aims at estimating the optimal policy π∗. A related on-policy algorithm that

learns the Q-value function for the policy the agent is actually executing is the SARSA (Rummery

and Niranjan, 1994; Rummery, 1995; Sutton, 1996) algorithm, which stands for State–Action–

Reward–State–Aaction. It uses the following update rule:

Qt+1(st, at) = Qt(st, at) + α

(

rt + γQt(st+1, at+1) − Qt(st, at)

)

(19)

where the action at+1 is the action that is executed by the current policy for state st+1. Note

that the max-operator in Q-learning is replaced by the estimate of the value of the next action

according to the policy. This learning algorithm will still converge in the limit to the optimal value

function (and policy) under the condition that all states and actions are tried infinitely often and

the policy converges in the limit to the greedy policy, i.e. such that exploration does not occur

anymore. SARSA is especially useful in non-stationary environments. In these situations one will

never reach an optimal policy. It is also useful if function approximation is used, because off-policy

methods can diverge when this is used. However, off-policy methods are needed in many situations

such as in learning using hierarchically structured policies.

Actor-Critic Learning. Another class of algorithms that precede Q-learning and SARSA are actor–

critic methods (Witten, 1977; Barto et al., 1983; Konda and Tsitsiklis, 2003), which learn on-policy.

This branch of TD methods keeps a separate policy independent of the value function. The policy

is called the actor and the value function the critic. The critic – typically a state-value function –

evaluates, or: criticizes, the actions executed by the actor. After action selection, the critic evaluates

the action using the TD-error:

δt = rt + γV (st+1) − V (st)

The purpose of this error is to strengthen or weaken the selection of this action in this state. A

preference for an action a in some state s can be represented as p(s, a) such that this preference can

be modified using:

p(st, at) := p(st, at) + βδt

where a parameter β determines the size of the update. There are other versions of actor–critic

methods, differing mainly in how preferences are changed, or experience is used (for example

using eligibility traces, see next section). An advantage of having separate policy representation is

that if there are many actions, or when the action space is continuous, there is no need to consider

all actions’ Q-values in order to select one of them. A second advantage is that they can learn

stochastic policies naturally. Furthermore, a priori knowledge about policy constraints can be used

(e.g. see Främling, 2005).

20

Average Reward Temporal Difference Learning. We have explained Q-learning and related

algorithms in the context of discounted, infinite-horizon MDPs. Q-learning can also be adapted

to the average-reward framework, for example in the R-learning algorithm by Schwartz (1993).

Other extensions of algorithms to the average reward framework exist (see Mahadevan, 1996, for

an overview).

6.2 Monte Carlo Methods

Other algorithms that use more unbiased estimates are Monte Carlo (MC) techniques. They keep

frequency counts of transitions and rewards and base their values on these estimates. MC methods

only require samples to estimate average sample returns. For example, in MC policy evaluation,

for each state s ∈ S all returns obtained from s are kept and the value of a state s ∈ S is just

their average. In other words, MC algorithms treat the long-term reward as a random variable

and take as its estimate the sampled mean. In contrast with one-step TD methods, MC estimates

values based on averaging sample returns observed during interaction. Especially for episodic tasks

this can be very useful, because samples from complete returns can be obtained. One way of using

MC is by using it for the evaluation step in policy iteration. However, because the sampling is

dependent on the current policy π, only returns for actions suggested by π are evaluated. Thus,

exploration is of key importance here, just as in other model-free methods.

A distinction can be made between every-visit MC, which averages over all visits of a state s ∈ S

in all episodes, and first-visit MC, which averages over just the returns obtained from the first visit

to a state s ∈ S for all episodes. Both variants will converge to V π for the current policy π over

time. MC methods can also be applied to the problem of estimating action values. One way of

ensuring enough exploration is to use exploring starts, i.e. each state-action pair has a non-zero

probability of being selected as the initial pair. MC methods can be used for both on-policy and

off-policy control, and the general pattern complies with the generalized policy iteration procedure.

The fact that MC methods do not bootstrap makes them less dependent on the Markov assumption.

TD methods too focus on sampled experience, although they do use bootstrapping.

Learning a Model. We have described MC methods in the context of learning value functions.

Methods similar to MC can also be used to estimate a model of the MDP. An average over sample

transition probabilities experienced during interaction can be used to gradually estimate transition

probabilities. The same can be done for immediate rewards. Indirect RL algorithms make use of this

to strike a balance between model-based and model-free learning. They are essentially model-free,

but learn a transition and reward model in parallel with model-free RL, and use this model to do

more efficient value function learning (see also the next section). An example of this is the DYNA

model by Sutton (1991). Another method that often employs model learning is prioritized sweeping

(Moore and Atkeson, 1993). Learning a model can also be very useful to learn in continuous spaces

where the transition model is defined over a discretized version of the underlying (infinite) state

space (Großmann, 2000).

Relations with Dynamic Programming. The methods in this section solve essentially similar

problems as DP techniques. RL approaches can be seen as asynchronous DP. There are some

important differences in both approaches though.

RL approaches avoid the exhaustive sweeps of DP by restricting computation on, or in the

neighborhood of, sampled trajectories, either real or simulated. This can exploit situations in which

many states have low probabilities of occurring in actual trajectories. The backups used in DP

are simplified by using sampling. Instead of generating and evaluating all of a state’s possible

immediate successors, the estimate of a backup’s effect is done by sampling from the appropriate

distribution. MC methods use this to base their estimates completely on the sample returns, without

bootstrapping using values of other, sampled, states. Furthermore, the focus on learning (action)

21

value functions in RL is easily amenable to function approximation approaches. Representing value

functions and or policies can be done more compactly than lookup-table representations by using

numeric regression algorithms without breaking the standard RL interaction process; one can just

feed the update values into a regression engine.

An interesting point here is the similarity between Q-learning and value iteration on the one

hand and SARSA and policy iteration on the other hand. In the first two methods, the updates

immediately combine policy evaluation and improvement into one step by using the max-operator.

In contrast, the second two methods separate evaluation and improvement of the policy. In this

respect, value iteration can be considered as off-policy because it aims at directly estimating V ∗

whereas policy iteration estimates values for the current policy and is on-policy. However, in the

model-based setting the distinction is only superficial, because instead of samples that can be influ-

enced by an on-policy distribution, a model is available such that the distribution over states and

rewards is known.

References

Barto A.G., Sutton R.S. and Anderson C.W. Neuronlike Elements that can Solve Difficult Learning

Control Problems. IEEE Transactions on Systems, Man, and Cybernetics, volume 13:pp. 835–846,

1983.

Bellman R.E. Dynamic Programming. Princeton University Press, Princeton, New Jersey, 1957.

Bertsekas D. Dynamic Programming and Optimal Control, volumes 1 and 2. Athena Scientific,

Belmont, MA, 1995.

Bertsekas D.P. and Tsitsiklis J. Neuro-Dynamic Programming. Athena Scientific, Belmont, MA, 1996.

Boutilier C. Knowledge Representation for Stochastic Decision Processes. Lecture Notes in Computer

Science, volume 1600:pp. 111–152, 1999.

Boutilier C., Dean T. and Hanks S. Decision Theoretic Planning: Structural Assumptions and Com-

putational Leverage. Journal of Artificial Intelligence Research, volume 11:pp. 1–94, 1999.

Främling K. Bi-Memory Model for Guiding Exploration by Pre-Existing Knowledge. In K. Driessens,

A. Fern and M. van Otterlo (editors), Proceedings of the ICML-2005 Workshop on Rich Representa-

tions for Reinforcement Learning, (pp. 21–26). 2005.

Großmann A. Adaptive state-space quantisation and multi-task reinforcement learning using con-

structive neural networks. In J.A. Meyer, A. Berthoz, D. Floreano, H.L. Roitblat and S.W. Wilson

(editors), From Animals to Animats: Proceedings of The International Conference on Simulation of

Adaptive Behavior (SAB), (pp. 160–169). 2000.

Howard R.A. Dynamic Programming and Markov Processes. The MIT Press, Cambridge, Mas-

sachusetts, 1960.

Kaelbling L.P., Littman M.L. and Moore A.W. Reinforcement Learning: A Survey. Journal of Artificial

Intelligence Research, volume 4:pp. 237–285, 1996.

Koenig S. and Liu Y. The Interaction of Representations and Planning Objectives for Decision-

Theoretic Planning. Journal of Experimental and Theoretical Artificial Intelligence, 2002.

Konda V. and Tsitsiklis J. Actor-Critic Algorithms. SIAM Journal on Control and Optimization,

volume 42(4):pp. 1143–1166, 2003.

Kushmerick N., Hanks S. and Weld D.S. An algorithm for probabilistic planning. Artificial Intelli-

gence, volume 76(1–2):pp. 239–286, 1995.

Littman M.L., Dean T.L. and Kaelbling L.P. On the Complexity of Solving Markov Decision Problems.

In Proceedings of the National Conference on Artificial Intelligence (AAAI), (pp. 394–402). 1995.

Mahadevan S. Average Reward Reinforcement Learning: Foundations, Algorithms, and Empirical

Results. Machine Learning, volume 22:pp. 159–195, 1996.

22

Maloof M.A. Incremental rule learning with partial instance memory for changing concepts. In

Proceedings of the International Joint Conference on Neural Networks, (pp. 2764–2769). 2003.

Matthews W.H. Mazes and Labyrinths: A General Account of their History and Developments. Long-

mans, Green and Co., London, 1922. Reprinted in 1970 by Dover Publications, New York, under

the title ’Mazes & Labyrinths: Their History & Development.

Moore A.W. and Atkeson C.G. Prioritized Sweeping: Reinforcement Learning with Less Data and

Less Time. Machine Learning, volume 13(1):pp. 103–130, 1993.

Puterman M.L. Markov Decision Processes—Discrete Stochastic Dynamic Programming. John Wiley

& Sons, Inc., New York, NY, 1994.

Ratitch B. On Characteristics of Markov Decision Processes and Reinforcement Learning in Large

Domains. Ph.D. thesis, The School of Computer Science, McGill University, Montreal, 2005.

Reynolds S.I. Reinforcement Learning with Exploration. Ph.D. thesis, The School of Computer

Science, The University of Birmingham, UK, 2002.

Rummery G.A. Problem Solving with Reinforcement Learning. Ph.D. thesis, Cambridge University,

Engineering Department, Cambridge, England, 1995.

Rummery G.A. and Niranjan M. On-Line Q-Learning using Connectionist Systems. Technical Report

CUED/F-INFENG/TR 166, Cambridge University, Engineering Department, 1994.

Schaeffer J. and Plaat A. Kasparov versus Deep Blue: The re-match. International Computer Chess

Association Journal, volume 20(2):pp. 95–101, 1997.

Schwartz A. A Reinforcement Learning Method for Maximizing Undiscounted Rewards. In Proceed-

ings of the International Conference on Machine Learning (ICML), (pp. 298–305). 1993.

Sutton R.S. Learning to Predict by the Methods of Temporal Differences. Machine Learning, vol-

ume 3:pp. 9–44, 1988.

———. DYNA, an Integrated Architecture for Learning, Planning and Reacting. In Working Notes

of the AAAI Spring Symposium on Integrated Intelligent Architectures, (pp. 151–155). 1991.

———. Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Cod-

ing. In D.S. Touretzky, M.C. Mozer and M.E. Hasselmo (editors), Proceedings of the Neural Infor-

mation Processing Conference (NIPS), volume 8, (pp. 1038–1044). 1996.

Sutton R.S. and Barto A.G. Reinforcement Learning: an Introduction. The MIT Press, Cambridge,

1998.

van Otterlo M. The Logic of Adaptive Behavior: Knowledge Representation and Algorithms for the

Markov Decision Process Framework in First-Order Domains. Ph.D. thesis, Department of Com-

puter Science, University of Twente, Enschede, The Netherlands, 2008. May, 512pp.

Watkins C.J.C.H. Learning from Delayed Rewards. Ph.D. thesis, King’s College, Cambridge, England,

1989.

Watkins C.J.C.H. and Dayan P. Q-Learning. Machine Learning, volume 8(3/4), 1992. Special Issue

on Reinforcement Learning.

Wiering M.A. Explorations in Efficient Reinforcement Learning. Ph.D. thesis, Faculteit der Wiskunde,

Informatica, Natuurkunde en Sterrenkunde, Universiteit van Amsterdam, 1999.

Winston W.L. Operations research applications and algorithms. Thomson Information/Publishing

Group, Boston, 2nd edition, 1991.

Witten I.H. An Adaptive Optimal Controller for Discrete-Time Markov Environments. Information

and Control, volume 34:pp. 286–295, 1977.

23

