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Abstract

Size and code coverage are two important attributes that characterize a set of tests.
When a program P is executed on elements of a test set 7', we can observe the fault
detecting capacity of T for P. We can also observe the degree to which T induces code
coverage on P according to some coverage criterion. We would like to know whether it is
the size of T or the coverage of T on P which determines the fault revealing effectiveness of T'
for P. In an earlier study, we found that there is little or no reduction in the fault detection
effectiveness of a test set when its size is reduced while keeping the all-uses coverage fixed.
These data suggest, indirectly, that coverage is more correlated than the size with the fault
detection effectiveness. To further investigate this suggestion, we report here an empirical
study to compare the statistical correlation between (1) fault detection effectiveness and
coverage, and (2) fault detection effectiveness and the size. Results from our experiments
indicate that the correlation between effectiveness and block coverage is higher than that
between effectiveness and size.
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1 Introduction

Random testing is a long standing testing technique and many researchers have studied its
fault detection effectiveness [6, 7, 12, 17, 18]. The results of these studies are diverse. Some
researchers [4, 6, 7, 13] conclude that random testing can be used to replace coverage based
testing such as data flow and mutation testing. They make such conclusions based on the
advantages of random testing such as reduced cost, high coverage in branch testing, and high
coverage in mutation testing. Other researchers [14] tend to reject random testing for its poor
fault detection capability with respect to certain types of faults such as the boundary value and
loop termination conditions.

In random testing, one generates test cases randomly in accordance with some input distri-
bution. In coverage based testing, one generates test cases to increase some form of coverage.
The stopping criteria for random testing are based on statistical principles [6, 7, 12, 13]. For
coverage based testing, the coverage criterion provides a stopping rule. A test set generated
using random testing is likely to contain test cases that do not improve the coverage of interest.
Depending on the stopping rule used, the size of a randomly generated test set might also be
larger than that generated using coverage based testing. In both cases, a tester is interested in
generating a test set which reveals hidden faults in the program. An interesting question arises
when we consider the size and coverage of a test set as two of its attributes. How are these two
attributes related to the fault detection capability of a test set?

An answer to this question is indicative of the relative importance of these two attributes.
If test sets generated by random testing are assumed to be larger than those generated using
coverage based testing for the same program, then an answer to the above question directs our
confidence to one of these testing methods. In this paper we report experiments designed to
investigate the above question.

Another motivation for the experiments reported here came from our results [19] that showed
little or no reduction in the fault detection effectiveness of a test set when its size is reduced
while keeping the all-uses coverage fixed. These data suggest, indirectly, that coverage is more
correlated than the number of test cases with the fault detection effectiveness. To further
investigate this suggestion, a study to compare the statistical correlation between (1) fault
detection effectiveness and coverage, and (2) fault detection effectiveness and the number of
test cases is necessary. Hereafter, we refer to the number of test cases in a test set as its size.

The remainder of this paper is organized as follows. Section 2 provides a brief overview

of the block coverage, fault detection effectiveness, and various correlation coefficients used



in our experiments. Qur experimental methodology is described in detail in Section 3. Data
collected from experiments and resulting analyses appear in Section 4. Section 5 explains how
a practicing tester can benefit from our study. Conclusions and on-going work are presented in

Section 6.

2 Basic concepts and terminology

In this section we review the notions of block coverage, fault detection effectiveness, and the
Spearman, Kendall, and Pearson correlation coefficients required for an understanding of the
rest of the paper. Let P denote a program under test with D as its input domain. A test case
t is a sequence of values input to P during one execution of P. A test set T C D consists of

one or more test cases on which P is executed during testing.

2.1 Block coverage

A block is a sequence of consecutive statements or expressions containing no branches except at
the end, so that if one element of it is executed all are. A block is feasible if there exists a test
case t € D such that ¢ running on P executes this block. A block of dead code, for example,
is an infeasible block. A test set T may be evaluated against the block coverage criterion by
computing the ratio of the number of blocks covered to the total number of blocks. A ratio of
unity implies that T is fully adequate with respect to this criterion. Full adequacy is rare in
practice because of the presence of infeasible blocks. Determining whether a block is infeasible

is in general undecidable. More details of the block criterion may be found in [3, 15].

2.2 Fault detection effectiveness

In the experiments reported below, we consider £ = { ¢; | 1 < i < n } as a set of possible
faults to be injected into P. For each e¢; € I, a P/ is constructed by injecting e; into P. A test
set T' is said to be able to detect e; in P! if there exists a test case ¢t € T such that P/ behaves
differently from P when executed against . We define the fault detection effectiveness of T in

terms of P and F as:

Upp(T) = number of faults in F detected by T" when injected into P . 100% (1)

total number of faults in F

Clearly, the fault detection effectiveness of T" depends on how well it distinguishes the behavior
of P and P! for the faults in E. In general, it is impossible to determine the fault detection
effectiveness for all programs with an arbitrary set of faults. Hereafter, we refer to fault detection

effectiveness as effectiveness.



2.8 Correlation Coefficient

We used different correlation coefficients to measure the correlation between two variables. Such
correlation coefficients are useful because they are designed to indicate how closely two variables
move together. Below we present an overview of different coefficients used in our analysis with

only the necessary details. More of these coefficients can be found in [10, 16, 20].

1. Spearman Rank Correlation Coefficient: «

This coefficient was the earliest to be developed and is perhaps the most well studied
among statistics based on rank. It requires both variables to be measured on an ordinal
scale so that every subject can be ranked in two ordered series. The coefficient v is

computed using

Y(x—-% (vi—¥)
VE (i —X)2 X (yi - 7)?

where x; and y; are the ranks of the ith # and y values, respectively, and T and 7 are the

(2)

means of the a; and y; values, respectively. In case of ties, averaged ranks are used. The

index ¢ varies from 1 to n, n being the number of subjects.

2. Kendall Rank Correlation Coeflicient: 7

This coefficient requires the same type of data as v does. One may regard 7 as a function
of the minimum number of interchanges required between neighbors to transform one

rank into another. The coefficient 7 is measured as:

Yicj sgn(xi — xj) sgn(yi — vj) (3)
(To—Tx) /(To—Ty)
where Ty = @, n being the number of subjects; T, = Ew and Ty = Ew, t;

and u; being the number of tied x and y values in the ¢th group of tied = and y values,
respectively. The function sgn(z) = 1 if z is greater than 0, 0 if z is equal to 0, and —1 if

z is less than 0.

Although 7 and v have different underlying scales and numerically are not directly com-
parable to each other, both use the same amount of information for a given set of data

and reject the null hypothesis® at the same level of significance.

!Null hypothesis: two variables under study are independent.



3. Partial Rank Correlation Coefficient: 7., . and ygy .-

When correlation is measured between two variables, it is possible that this correlation
is due to the correlation between each of these two variables and a third variable. For
example, the correlation between the effectiveness and the block coverage of a given test
set in our study may not reflect the real correlation between these two variables. Instead, it
may be the result of two other pairs of correlation: (1) the effectiveness and the number of
test cases, and (2) the block coverage and the number of test cases. One way to overcome
this problem is to measure the partial rank correlation coefficients. In such a measure,
the effects of varying a third variable on the correlation between two given variables are
eliminated by keeping the third variable constant while measuring the coeflicient between
the two given variables. For example, the partial rank correlation coeflicient between the
effectiveness and the block coverage of a given test set is measured by keeping the number

of test cases constant. The partial correlation coefficients 7, . and 7,,.. are measured as:

ny - sz Cyz
V=@ - )

where (yy, (z», and (. are the appropriate Spearman or Kendall correlation coefficients.

(4)

4. Pearson Correlation Coefficient: p

Given two variables, the Pearson correlation measures the extent of a linear relationship
between them. If there exists a perfect positive linear relation between these two variables,
p has the maximal value of +1. If the linear relation is perfect negative, then p has the
minimal value of —1. Since p is a measure of linearity only, a zero value for p does not
necessarily mean these two variables are independent. It only means that there is no

linear relation between them. The following equation shows the formula to compute p.

cov(x, y)
var(x) var(y) (5)

where var(z) and var(y) are the variance of  and y variables, respectively, and cov(z, y)

is the covariance of = and y.

One distinction between these coeflicients is that Pearson uses the values of the variables

while others use the ranks of the variables.



SAS procedure CORR

We used the SAS procedure CORR [10] to compute the above correlation coefficients between (1)
fault detection effectiveness and coverage, and (2) fault detection effectiveness and the number

of test cases for each subject program.

3 Experimental methodology

We used the tool ATAC [8, 9] in our experiments. ATAC is a data flow coverage measurement
tool for C programs. Given a program and a test set, ATAC can compute the block coverage.
The sequence of steps used in our experiments is given below; details follow in subsequent
sections. It is important to note that the injection of faults in subject programs was completely

independent of the generation of test sets for the programs.

Step 1: Prepare subject programs.

Step 2: Construct test case pools.

Step 3: Generate test sets of fixed size.

Step b: Inject faults in subject programs.

Step 6: Compute block coverage and fault detection effectiveness of test sets .
Step 7: Compute correlation coeflicients.

Step 8: Analyze data.

3.1 Program selection and preparation

A suite of ten C programs described in Table 1 was selected. Together, these ten programs
represent 2310 lines of C code. One virtue of these programs in experimentation is that since
they have been so thoroughly used, they serve as reliable oracles in evaluating the behavior
of fault injected programs derived from them. Moreover, they are unlikely to have naturally
occurring faults; thus the failure during execution of a derived fault injected program may be

attributed to the injected fault with great confidence.

3.2 Test set generation

For each program, a test case pool of 1000 test cases was generated quasi-randomly in confor-
mance with the specifications of the program. The technique was to construct a generator from
the Unix specifications of the program. Where input data were required, as for the Sort pro-
gram, they were both generated and gathered from existing files. Then random strings meeting

the input signature of the program were generated from the data and the specifications.
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Table 1: Characteristics of subject programs

|| Program || Objectivef ||
Cal Print a calendar for a specified year or month
Checkeq || Report missing or unbalanced delimiters and .EQ/.EN pairs
Col Filter reverse paper motions from nroff output for display on a terminal
Comm Select or reject lines common to two sorted files
Crypt Encrypt and decrypt a file using a user supplied password
Look Find words in the system dictionary or lines in a sorted list
Sort Sort and merge files
Spline Interpolate smooth curve based on given data
Tr Translate characters
Uniq Report or remove adjacent duplicate lines

1Details can be found in the Unix manual.

If test cases t; and ty executed the same path, only one of these was selected randomly for
inclusion in the pool. Table 2 lists the size and maximal cumulative data flow coverage for each
test case pool. However, full coverage was seldom achieved because the test cases were generally
not manually tuned to achieve high coverage. Furthermore, there was no effort (beyond the
heuristics in ATAC) to eliminate infeasible blocks, decisions, or data flow objects.

Based on these pools, multiple distinct test sets of size n, 2 < n < 10, were generated for
each program. Duplicate test cases were removed from each test set. Table 3 lists the number of
distinct test sets generated for each program. Although 60 test sets of size n, 2 < n < 10, were
constructed for each program, some of them are duplicates. An example of this occurs in Cal
for which we found three duplicate test set pairs. Since only one test set from each duplicate
pair was selected, there were 57, instead of 60, distinct test sets of size 2 for Cal. Figure 1
shows the sequence of steps used for test set generation. A few characteristics pertinent to our

test set generation are listed below.

(1) All test cases were generated quasi-randomly.

(2) All test cases were generated before any fault detection experiment was conducted. This

was done to avoid test cases aimed specifically at a certain type of fault.

(3) Since a large number of test sets may satisfy a given size for a given program, selecting
only one of these may possibly lead to false conclusions. To assure the validity of our

experiments we attempted to generate multiple test sets for each size.

11



Table 2: Characteristics of test case pool

Program || number of Maximal cumulative data flow coverage
test cases || block % | decision % | c-use % | p-use % | all-uses %

Cal 65 100.00 100.00 93.62 91.86 92.78
Checkeq 61 100.00 86.96 81.48 75.28 78.24
Col 100 87.66 87.50 80.53 80.98 80.75
Comm 482 100.00 86.96 98.15 82.14 90.00
Crypt 77 89.86 71.79 94.34 83.33 88.50
Look 100 96.59 84.62 96.15 89.66 92.73
Sort 862 94.09 83.25 79.95 74.74 77.53
Spline 230 98.96 94.21 87.89 85.88 87.00
Tr 247 95.05 84.15 80.43 64.74 70.56
Unig 325 98.81 94.83 95.31 98.33 96.77

Table 3: Number of distinct test sets of various size

Function || Size 2 | Size 3 | Size 4 | Size b | Size 6 | Size 7 | Size 8 | Size 9 | Size 10 || b)) ||

Cal 57 60 60 60 60 60 60 60 60 [ 537
Checkeq || 58 60 60 60 60 60 60 60 60 || 538
Col 59 60 60 60 60 60 60 60 60 || 539
Comn 60 60 60 60 60 60 60 60 60 || 540
Crypt 59 60 60 60 60 60 60 60 60 || 539
Look 59 60 60 60 60 60 60 60 60 || 539
Sort 60 60 60 60 60 60 60 60 60 || 540
Spline 60 60 60 60 60 60 60 60 60 || 540
Tr 60 60 60 60 60 60 60 60 60 || 540
Unig 60 60 60 60 60 60 60 60 60 || 540
= [ 592 | 600 | 600 | 600 | 600 | 600 | 600 | 600 | 600 [ 5392 ]

12
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Compute the block coverage of T =

Y
End

Figure 1: Procedure for generating test sets of size n, 2 < n < 10.
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3.3 Fault injection and detection

Common fault types described in [1, 2, 5, 11] served as the basis for our experiments. For
each of the ten programs in our suite, a graduate student? injected the fault so as to produce
syntactically correct programs. Each student was instructed to use experience and judgment
to inject one or more faults of each type listed in Table 4. As discussed in Section 2.2, one
erroneous program was created for each fault. The number of erroneous programs created for
a given program equals the number of faults selected for injection into that program. To make
the injection process more objective, students were required to work independently. Faults that
could not be detected by any test case from its corresponding test case pool were excluded from
the study. The number of faults examined in each program appears in Table 6. Listings of
these faults can be found in [19].

By excluding faults that were not detectable by the test case pools, we have probably
eliminated extremely difficult faults from our investigation. These difficult faults may represent
the faults that persist in field deployed software. However, these were not the faults we were
concerned with. The kinds of faults that we hoped to characterize by our fault injection method
were those that the programmer might encounter during thorough unit or multi-unit testing.
Such faults are likely to be more readily excited than the secretive faults only detectable in field
use.

Although the faults we have selected may be representative of faults found in unit testing,
the single fault seeding method is artificial. One might expect a fault density of between four
and 40 faults in one thousand lines of code before a program is unit tested. Therefore, if we
were to model the natural unit testing process for the 842 line Sort program, all 25 faults (see
Table 6) should be seeded in a single erroneous program. The reasons we did not follow this
path are practical. Single fault programs are easier to run and control than are multiple fault
programs. What is more, if a test case fails on a multiply fault seeded program, it is extremely
difficult to determine which of the faults produced the failure, and, therefore, it is difficult to
determine which faults are detected. Finally, we feel that the testing-failure-debugging cycle
is fairly represented by the single fault seeded programs. If test case ¢; can detect multiple
faults in a multiply fault seeded program, it can do so only as debugging eliminates and testing
reveals faults one at a time. Thus the testing of singly seeded faults is a fair representation of
the test-failure-debug cycle.

Since all ten programs in our suite had been extensively used, we assumed that these

2All participating students were from the Department of Computer Science, Purdue University and had at
least three years of programming experience in C.
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Table 4: Description of fault types

missing path faults

incorrect predicate faults relational operator replacement
logical operator replacement
incorrect initialization

incorrect constant

incorrect precedence

incorrect computation statement || incorrect array element reference
incorrect pointer operation
same type variable replacement
arithmetic operator replacement
miscellaneous

missing computation statement delete a complete statement
delete a part of a statement

incorrect number of loop iterations
missing clause in predicates

programs were fault-free and could serve as oracles for fault detection. The set of faults detected
by a test set is the union of the sets of faults detected by its member test cases. Thus, to compute
the set of faults detected by a test set we only needed to determine faults detected by each test
case. For example: given a test set T with three test cases, 1, 3, and t3 which detect faults
{e1, €2}, {e2, e3}, and {es, e4}, respectively, T is said to be able to detect faults {eq, eq, €3,
e4}. After the faults detected by a test set were determined, its fault detection effectiveness

was computed using Equation (1).

4 Experimental Results and Analysis

Tables 5 and 6 list the number of lines, blocks, decisions, and faults examined in each of the
ten programs studied. These metrics serve as indicators of the relative complexity of programs
considered in our experiments. Among these programs, Sort and Crypt are, respectively, the

largest and smallest programs, with 500 and 69 blocks of code.

4.1 Comparing correlation coefficients

Various correlation coefficients computed for each program listed in Table 1 are presented in
Table 7. From our experimental data and the summary in this table, we make the following

observations:

15



Table 5: Program size metrics!

|| Program || LOC | 7t of blocks | 7t of decisions ||
Cal 163 96 50
Checkeq 90 74 69
Col 274 154 104
Comm 144 100 69
Crypt 121 69 39
Look 135 88 52
Sort 842 508 394
Spline 289 193 121
Tr 127 101 82
Uniq 125 84 58
[ Average [ 231 | 1467 | 103.8 |

fLoc (lines of code) excluding comment and declaration
lines. All other metrics were computed by ATAC.

Table 6: Number of faults examined in each program

Program || # of faults ||

Cal 20
Checkeq 20
Col 29
Comm 15
Crypt 17
Look 13
Sort 25
Spline 14
Tr 12
Uniq 18
[= [ 183 |

16



e For all ten programs, the Spearman and Pearson coefficients between effectiveness and

block coverage are higher than that between effectiveness and size.

¢ In nine out of ten programs, the Kendall, Spearman partial, and Kendall partial coeffi-
cients between effectiveness and block coverage are higher than that between effectiveness

and size.

e Program Comm is the only program whose Kendall, Spearman partial, and Kendall partial
coeflicients between effectiveness and block coverage are lower than that between effec-
tiveness and size. However, in all these cases, effectiveness and block coverage is only

slightly® less correlated than effectiveness and size.

¢ In six out of ten programs, Cal, Col, Crypt, Sort, Spline, and Uniq, the Pearson coef-
ficient between effectiveness and block coverage is greater than 0.83 which suggests some
kind of linear relationship between these two variables. An example of this appears in
Figure 2. (See Appendix A for other figures.) From this figure, we observe that effective-
ness is linear in block coverage from 70% to 90%. On the other hand, the same correlation

coefficient between effectiveness and size is less than 0.68 for all ten programs.

The above observations indicate that effectiveness and block coverage are more correlated

than effectiveness and size.

4.2 Why Are Some Partial Correlation Coefficients Negative ?

From Table 7, we find that the Spearman partial rank correlation coefficients between the
size and the effectiveness are negative for programs Sort and Spline. Since the effectiveness
increases with size, negative coeflicients appear to be logically invalid. A careful examination
of Equation (4) indicates that such negative values arise because the product of (. and (. is
greater than (,, with z, y, and » being size, effectiveness, and coverage, respectively. Hence,
rather than violate our intuition, such negative values strongly support our claim that coverage

is more correlated to effectiveness than size.

5 Practical Implications

In this section we answer how the results reported here can be used in practice. Since our
results are from a single case study, we caution that more experiments are necessary to further

strengthen the following conclusions.

®The difference between these two coefficients is < 0.02.
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Table 7: Correlation between size, effectiveness, and coverage§

Program Correlation coefficient Partial correlation coefficient
Spearman || Kendall || Pearson Spearman || Kendall
Cal (0.59 : 0.73 ) || (0.49 : 0.63) || (0.57 : 0.90) (0.21 : 0.56) (0.24 : 0.51)
Checkeq || (0.60: 0.63) || (0.49: 0.52) || (0.55: 0.77) (0.34 : 0.42) (0.32: 0.38)
Col (0.63 : 0.84) || (0.51:0.73) || (0.63: 0.85) (0.41: 0.77) (0.34 : 0.67)
Comm (0.65 : 0.65) || (0.53: 0.52) || (0.64 : 0.71) (0.31: 0.29) (0.30 : 0.29)
Crypt (0.54: 0.99) || (0.46 : 0.93) || (0.52: 0.83) (0.09 : 0.98) (0.13: 0.91)
Look (0.33: 0.46 ) || (0.26 : 0.36) || (0.32: 0.47) (0.00 : 0.35) (0.07 : 0.28)
Sort (0.59 : 0.87) || (0.45:0.71) || (0.59: 0.85) || (-0.20 : 0.81) } || (0.07 : 0.62)
Spline (0.44 : 0.77) || (0.33: 0.62) || (0.44 : 0.92) || (-0.17: 0.72) } || (0.02 : 0.56)
Tr (0.57 : 0.68 ) || (0.44 : 0.56) || (0.58 : 0.67) (0.24 : 0.50) (0.21: 0.43)
Uniq (0.67 : 0.84) || (0.53: 0.69) || (0.68: 0.83) (0.22 : 0.69) (0.25 : 0.57)

§In entry (a : b), a is the coefficient between size and effectiveness and b is the coefficient
between coverage and effectiveness.
7See Section 4.2 for explanations.

100
I

Effectiveness (%)

T T T T T T
0 20 40 60 80 100

Block coverage(%)

Figure 2: A scatter plot of effectiveness versus block coverage for the 539 test sets of Col.
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Table 8: Average effectiveness (%) of test sets with fixed size

Program || Size-2 || Size-3 || Size-4 || Size-h || Size-6 || Size-T || Size-8 || Size-9 || Size-10 ||

Cal 72.11 || 80.00 | 83.92 || 86.25 || 89.08 || 90.08 || 90.08 || 91.50 90.75
Checkeq || 82.93 || 87.83 || 91.25 || 92.08 || 93.00 || 95.92 | 95.75 | 95.83 96.33
Col 79.37 || 89.31 || 90.29 || 92.41 || 94.83 || 95.57 || 96.21 96.78 96.84
Comm 45.11 || 53.33 || 60.22 || 64.89 || 66.67 | 70.00 || 68.67 || 69.33 71.56
Crypt 86.64 || 90.69 || 93.73 || 97.65 || 99.12 || 99.12 || 99.61 || 100.00 || 100.00
Look 42.37 || 43.72 || 49.10 || 51.67 || 72.44 || 67.18 || 68.21 71.16 70.00
Sort 23.60 || 33.33 || 36.13 || 39.47 || 42.27 || 46.93 || 50.60 || 53.47 96.33
Spline 29.88 || 44.05 || 48.09 || 52.97 || 70.59 || 69.88 || 68.81 72.26 74.28
Tr 32.08 || 42.22 || 49.44 || 55.83 || 59.31 || 63.75 || 68.19 || 68.33 71.81
Uniq 52.59 || 66.94 || 72.78 || 78.33 || 80.92 || 87.22 || 89.35 || 90.74 91.39

Effectiveness and size

Intuitively, the effectiveness of a test set increases as its size increases. Qur experimental data in
Table 8 support such an intuition. However, as shown in Figure 3, we observe a wide variation
in the effectiveness for test sets with a small size. (See Appendix B for other figures.) Such
variation becomes less significant for test sets with larger sizes. For example, the effectiveness
variation among test sets of size 2 for Cal is more than that among tests sets of size 10. In
addition, we find that although the effectiveness tends to increase as the size increases, this
does not necessarily mean that a test set with a smaller size must be less effective in detecting
faults than a test set with a larger size. For example, for Cal, some test sets of size 6 are more

effective than some test sets of size 10.

Block coverage and size

Intuitively, the block coverage of a test set increases with size. Our experimental data in Table 9
support such an intuition. We also observe a wide variation in the block coverage for test sets
with the same size. As shown in Figure 4, although block coverage tends to increase with
size, this does not necessarily mean that a test set with a smaller size must have a lower block
coverage than a test set with a larger size. (See Appendix C for other figures.) For example,

some test sets of size 2 have higher block coverage than some test sets of size 5.

Effectiveness and block coverage

Intuitively, the effectiveness of a test set increases as its block coverage increases. Our experi-

mental data in Table 10 support such an intuition. However, as shown in Figure 5, there exists
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Figure 3: Effectiveness (%) of test sets of size 2, 6, and 10 for Cal.

Table 9: Average block coverage (%) of test sets with fixed size

| Program || Size-2 || Size-3 || Size-4 || Size-h || Size-6 || Size-T || Size-8 || Size-9 || Size-10 ||
Cal 66.87 || 76.95 || 80.09 || 82.02 || 85.44 || 86.96 | 86.53 || 88.91 88.49
Checkeq || 86.56 || 90.27 || 92.30 || 92.52 || 94.21 || 95.47 || 95.23 || 96.76 96.17
Col 78.63 || 82.01 || 83.31 || 84.11 || 84.76 || 85.09 || 85.35 || 85.50 85.71
Comm 74.52 || 81.13 || 83.85 || 86.05 || 87.35 || 88.32 || 89.12 || 89.18 89.98
Crypt 84.87 || 86.67 || 87.78 || 88.87 || 89.40 || 89.45 || 89.72 || 89.86 89.86
Look 78.56 || 79.96 || 82.42 || 85.25 || 86.29 || 86.40 || 86.93 || 87.48 87.59
Sort 46.81 || 54.87 || 59.86 || 62.49 || 64.10 || 68.63 || 70.54 || 72.02 73.11
Spline 66.28 || 75.45 || 78.90 || 81.06 || 88.07 || 89.23 || 88.33 || 90.99 91.41
Tr 81.97 || 86.47 || 89.52 || 90.30 || 92.11 || 93.83 || 93.45 || 94.13 94.01
Unig 73.71 || 79.54 || 81.53 || 85.04 || 86.85 || 88.24 || 90.32 || 90.44 92.26
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Figure 4: A scatter plot of block coverage versus size for the 540 test sets of Sort.

Table 10: Average effectiveness (%) of test sets with fixed block coverage

| Program || (50 — 55) || (60 — 65) || (70— 75) || (830 —85) || (90 —95) ||

Cal 57.86 64.50 73.79 87.41 91.67
Checkeq 35.00 46.00 63.33 76.75 91.38
Col NA 44 .83 66.96 87.40 NA

Comm 23.53 37.78 37.93 54.44 71.78
Crypt NA NA 50.80 81.57 NA

Look 7.69 14.20 20.74 38.98 82.57
Sort 24.00 36.40 54.14 71.31 NA

Spline 7.14 7.14 11.26 60.24 75.00
Tr NA 8.33 16.11 33.06 50.83
Uniq 22.22 40.12 55.37 67.22 92.04

NA: not available.
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Figure 5: Effectiveness (%) of test sets with (50-55), (60-65), (70-75), (80-85), and (90-95) block

coverage (%) on Cal.

6 Conclusions and future work

Data collected during experimentation have shown that the correlation between effectiveness
and block coverage is higher than that between effectiveness and size. In another study [19],
we showed that when the size of a test set is reduced while the coverage is kept fixed, there is
little or no reduction in test fault detection effectiveness. These two results lead us to believe

that test cases, unless with some special characteristics, that do not add coverage to a test set
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are likely to be ineffective in detecting faults. Thus, a randomly generated test set which is
“boiled down” to preserve its coverage is likely to be as effective as originally at less cost.

We believe the results of this study support the thesis that coverage based testing has a
cost/benefit advantage over random testing, although our conclusions may need to be tempered
by the relatively narrow scope of our experiment. A similar study on naturally occurring faults

in large and varied programs is on-going which will provide more confident conclusions.
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Appendix A: Scatter plots of effectiveness versus size
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Figure 6: A scatter plot of effectiveness versus block coverage for the 537 test sets of Cal.
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Figure 7: A scatter plot of effectiveness versus block coverage for the 538 test sets of Checkeq.
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Figure 8: A scatter plot of effectiveness versus block coverage for the 540 test sets of Comm.
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Figure 9: A scatter plot of effectiveness versus block coverage for the 539 test sets of Crypt.
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Figure 10: A scatter plot of effectiveness versus block coverage for the 539 test sets of Look.
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Figure 11: A scatter plot of effectiveness versus block coverage for the 540 test sets of Sort.
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Figure 12: A scatter plot of effectiveness versus block coverage for the 540 test sets of Spline.
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Figure 13: A scatter plot of effectiveness versus block coverage for the 540 test sets of Tr.
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Figure 14: A scatter plot of effectiveness versus block coverage for the 540 test sets of Uniq.
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Figure 16: Effectiveness (%) of test sets of size 2, 6, and 10 for Col.
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Figure 18: Effectiveness (%) of test sets of size 2, 6, and 10 for Crypt.
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Figure 20: Effectiveness (%) of test sets of size 2, 6, and 10 for Sort.
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Figure 22: Effectiveness (%) of test sets of size 2, 6, and 10 for Tr.
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Figure 23: Effectiveness (%) of test sets of size 2, 6, and 10 for Uniq.
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Figure 25: A scatter plot of block coverage versus size for the 538 test sets of Checkeq.
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Figure 27: A scatter plot of block coverage versus size for the 540 test sets of Comm.
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Figure 29: A scatter plot of block coverage versus size for the 539 test sets of Look.
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Figure 31: A scatter plot of block coverage versus size for the 540 test sets of Tr.
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Figure 32: A scatter plot of block coverage versus size for the 540 test sets of Uniq.
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Figure 34: Effectiveness (%) of test sets with (60-65), (70-75), and (80-85) block coverage (%)
on Col.
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Figure 36: Effectiveness (%) of test sets with (70-75), and (80-85) block coverage (%) on Crypt.
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Figure 38: Effectiveness (%) of test sets with (50-55), (60-65), (70-75), and (80-85) block
coverage (%) on Sort.

42



Figure 40: Effectiveness (%) of test sets with (60-65), (70-75), (80-85), and (90-95) block
coverage (%) on Tr.
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Figure 41: Effectiveness (%) of test sets with (50-55), (60-55), (70-55), (80-85), and (90-95)
block coverage (%) on Uniq.
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