
E�ect of Test Set Size and Block Coverage on theFault Detection E�ectiveness �W. Eric Wong, Joseph R. Horgan, Saul London, and Aditya P. MathurApril 27, 1994AbstractSize and code coverage are two important attributes that characterize a set of tests.When a program P is executed on elements of a test set T , we can observe the faultdetecting capacity of T for P . We can also observe the degree to which T induces codecoverage on P according to some coverage criterion. We would like to know whether it isthe size of T or the coverage of T on P which determines the fault revealing e�ectiveness of Tfor P . In an earlier study, we found that there is little or no reduction in the fault detectione�ectiveness of a test set when its size is reduced while keeping the all-uses coverage �xed.These data suggest, indirectly, that coverage is more correlated than the size with the faultdetection e�ectiveness. To further investigate this suggestion, we report here an empiricalstudy to compare the statistical correlation between (1) fault detection e�ectiveness andcoverage, and (2) fault detection e�ectiveness and the size. Results from our experimentsindicate that the correlation between e�ectiveness and block coverage is higher than thatbetween e�ectiveness and size.Keywords: Block coverage, fault detection e�ectiveness, correlation coe�cient, test set size
� W. Eric Wong is with Hughes Network Systems, Germantown, MD 20876. Joseph R. Horgan and SaulLondon are with Bell Communications Research, Morristown, NJ 07962. Aditya P. Mathur is with the SoftwareEngineering Research Center, Department of Computer Sciences, Purdue University, W. Lafayette, IN 47907.1



Contents1 Introduction 62 Basic concepts and terminology 72.1 Block coverage : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72.2 Fault detection e�ectiveness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72.3 Correlation Coe�cient : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83 Experimental methodology 103.1 Program selection and preparation : : : : : : : : : : : : : : : : : : : : : : : : : : 103.2 Test set generation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103.3 Fault injection and detection : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 144 Experimental Results and Analysis 154.1 Comparing correlation coe�cients : : : : : : : : : : : : : : : : : : : : : : : : : : 154.2 Why Are Some Partial Correlation Coe�cients Negative ? : : : : : : : : : : : : : 175 Practical Implications 176 Conclusions and future work 22Appendix A: Scatter plots of e�ectiveness versus size 25Appendix B: E�ectiveness of test sets of �xed size 30Appendix C: Scatter plots of block coverage versus size 35Appendix D: E�ectiveness of test sets of �xed block coverage 40
2



List of Figures1 Procedure for generating test sets of size n, 2 � n � 10. : : : : : : : : : : : : : : 132 A scatter plot of e�ectiveness versus block coverage for the 539 test sets for Col. 183 E�ectiveness (%) of test sets of size 2, 6, and 10 for Cal. : : : : : : : : : : : : : 204 A scatter plot of block coverage versus size for Sort. : : : : : : : : : : : : : : : : 215 E�ectiveness (%) of test sets with (50-55), (60-65), (70-75), (80-85), and (90-95)block coverage (%) on Cal. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 226 A scatter plot of e�ectiveness versus block coverage for the 537 test sets for Cal. 257 A scatter plot of e�ectiveness versus block coverage for the 538 test sets forCheckeq. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 258 A scatter plot of e�ectiveness versus block coverage for the 540 test sets for Comm. 269 A scatter plot of e�ectiveness versus block coverage for the 539 test sets for Crypt. 2610 A scatter plot of e�ectiveness versus block coverage for the 539 test sets for Look. 2711 A scatter plot of e�ectiveness versus block coverage for the 540 test sets for Sort. 2712 A scatter plot of e�ectiveness versus block coverage for the 540 test sets for Spline. 2813 A scatter plot of e�ectiveness versus block coverage for the 540 test sets for Tr. : 2814 A scatter plot of e�ectiveness versus block coverage for the 540 test sets for Uniq. 2915 E�ectiveness (%) of test sets of size 2, 6, and 10 for Checkeq. : : : : : : : : : : : 3016 E�ectiveness (%) of test sets of size 2, 6, and 10 for Col. : : : : : : : : : : : : : 3017 E�ectiveness (%) of test sets of size 2, 6, and 10 for Comm. : : : : : : : : : : : : : 3118 E�ectiveness (%) of test sets of size 2, 6, and 10 for Crypt. : : : : : : : : : : : : 3119 E�ectiveness (%) of test sets of size 2, 6, and 10 for Look. : : : : : : : : : : : : : 3220 E�ectiveness (%) of test sets of size 2, 6, and 10 for Sort. : : : : : : : : : : : : : 3221 E�ectiveness (%) of test sets of size 2, 6, and 10 for Spline. : : : : : : : : : : : 3322 E�ectiveness (%) of test sets of size 2, 6, and 10 for Tr. : : : : : : : : : : : : : : 3323 E�ectiveness (%) of test sets of size 2, 6, and 10 for Uniq. : : : : : : : : : : : : : 3424 A scatter plot of block coverage versus size for Cal. : : : : : : : : : : : : : : : : : 3525 A scatter plot of block coverage versus size for Checkeq. : : : : : : : : : : : : : : 3526 A scatter plot of block coverage versus size for Col. : : : : : : : : : : : : : : : : : 3627 A scatter plot of block coverage versus size for Comm. : : : : : : : : : : : : : : : : 3628 A scatter plot of block coverage versus size for Crypt. : : : : : : : : : : : : : : : 3729 A scatter plot of block coverage versus size for Look. : : : : : : : : : : : : : : : : 3730 A scatter plot of block coverage versus size for Spline. : : : : : : : : : : : : : : : 383



31 A scatter plot of block coverage versus size for Tr. : : : : : : : : : : : : : : : : : 3832 A scatter plot of block coverage versus size for Uniq. : : : : : : : : : : : : : : : : 3933 E�ectiveness (%) of test sets with (50-55), (60-55), (70-55), (80-85), and (90-95)block coverage (%) on Checkeq. : : : : : : : : : : : : : : : : : : : : : : : : : : : 4034 E�ectiveness (%) of test sets with (60-65), (70-75), and (80-85) block coverage(%) on Col. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4035 E�ectiveness (%) of test sets with (50-55), (60-65), (70-75), (80-85), and (90-95)block coverage (%) on Comm. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4136 E�ectiveness (%) of test sets with (50-55), (60-65), (70-75), (80-85), and (90-95)block coverage (%) on Look. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4237 E�ectiveness (%) of test sets with (50-55), (60-65), (70-75), and (80-85) blockcoverage (%) on Sort. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4238 E�ectiveness (%) of test sets with (50-55), (60-65), (70-75), (80-85), and (90-95)block coverage (%) on Spline. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4339 E�ectiveness (%) of test sets with (60-65), (70-75), (80-85), and (90-95) blockcoverage (%) on Tr. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4340 E�ectiveness (%) of test sets with (50-55), (60-55), (70-55), (80-85), and (90-95)block coverage (%) on Uniq. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 44

4



List of Tables1 Characteristics of subject programs : : : : : : : : : : : : : : : : : : : : : : : : : : 102 Characteristics of test case pool : : : : : : : : : : : : : : : : : : : : : : : : : : : : 113 Number of distinct test sets of various size : : : : : : : : : : : : : : : : : : : : : : 114 Description of fault types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 145 Program size metrics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 156 Number of faults examined in each program : : : : : : : : : : : : : : : : : : : : : 157 Correlation between size, e�ectiveness, and coverage : : : : : : : : : : : : : : : : 178 Average e�ectiveness (%) of test sets with �xed size : : : : : : : : : : : : : : : : 189 Average block coverage (%) of test sets with �xed size : : : : : : : : : : : : : : : 1910 Average e�ectiveness (%) of test sets with �xed block coverage : : : : : : : : : : 20

5



1 IntroductionRandom testing is a long standing testing technique and many researchers have studied itsfault detection e�ectiveness [6, 7, 12, 17, 18]. The results of these studies are diverse. Someresearchers [4, 6, 7, 13] conclude that random testing can be used to replace coverage basedtesting such as data 
ow and mutation testing. They make such conclusions based on theadvantages of random testing such as reduced cost, high coverage in branch testing, and highcoverage in mutation testing. Other researchers [14] tend to reject random testing for its poorfault detection capability with respect to certain types of faults such as the boundary value andloop termination conditions.In random testing, one generates test cases randomly in accordance with some input distri-bution. In coverage based testing, one generates test cases to increase some form of coverage.The stopping criteria for random testing are based on statistical principles [6, 7, 12, 13]. Forcoverage based testing, the coverage criterion provides a stopping rule. A test set generatedusing random testing is likely to contain test cases that do not improve the coverage of interest.Depending on the stopping rule used, the size of a randomly generated test set might also belarger than that generated using coverage based testing. In both cases, a tester is interested ingenerating a test set which reveals hidden faults in the program. An interesting question ariseswhen we consider the size and coverage of a test set as two of its attributes. How are these twoattributes related to the fault detection capability of a test set?An answer to this question is indicative of the relative importance of these two attributes.If test sets generated by random testing are assumed to be larger than those generated usingcoverage based testing for the same program, then an answer to the above question directs ourcon�dence to one of these testing methods. In this paper we report experiments designed toinvestigate the above question.Another motivation for the experiments reported here came from our results [19] that showedlittle or no reduction in the fault detection e�ectiveness of a test set when its size is reducedwhile keeping the all-uses coverage �xed. These data suggest, indirectly, that coverage is morecorrelated than the number of test cases with the fault detection e�ectiveness. To furtherinvestigate this suggestion, a study to compare the statistical correlation between (1) faultdetection e�ectiveness and coverage, and (2) fault detection e�ectiveness and the number oftest cases is necessary. Hereafter, we refer to the number of test cases in a test set as its size.The remainder of this paper is organized as follows. Section 2 provides a brief overviewof the block coverage, fault detection e�ectiveness, and various correlation coe�cients used6



in our experiments. Our experimental methodology is described in detail in Section 3. Datacollected from experiments and resulting analyses appear in Section 4. Section 5 explains howa practicing tester can bene�t from our study. Conclusions and on-going work are presented inSection 6.2 Basic concepts and terminologyIn this section we review the notions of block coverage, fault detection e�ectiveness, and theSpearman, Kendall, and Pearson correlation coe�cients required for an understanding of therest of the paper. Let P denote a program under test with D as its input domain. A test caset is a sequence of values input to P during one execution of P . A test set T � D consists ofone or more test cases on which P is executed during testing.2.1 Block coverageA block is a sequence of consecutive statements or expressions containing no branches except atthe end, so that if one element of it is executed all are. A block is feasible if there exists a testcase t 2 D such that t running on P executes this block. A block of dead code, for example,is an infeasible block. A test set T may be evaluated against the block coverage criterion bycomputing the ratio of the number of blocks covered to the total number of blocks. A ratio ofunity implies that T is fully adequate with respect to this criterion. Full adequacy is rare inpractice because of the presence of infeasible blocks. Determining whether a block is infeasibleis in general undecidable. More details of the block criterion may be found in [3, 15].2.2 Fault detection e�ectivenessIn the experiments reported below, we consider E = f ei j 1 � i � n g as a set of possiblefaults to be injected into P . For each ei 2 E, a P 0i is constructed by injecting ei into P . A testset T is said to be able to detect ei in P 0i if there exists a test case t 2 T such that P 0i behavesdi�erently from P when executed against t. We de�ne the fault detection e�ectiveness of T interms of P and E as:	P;E(T ) = number of faults in E detected by T when injected into Ptotal number of faults in E � 100% (1)Clearly, the fault detection e�ectiveness of T depends on how well it distinguishes the behaviorof P and P 0i for the faults in E. In general, it is impossible to determine the fault detectione�ectiveness for all programs with an arbitrary set of faults. Hereafter, we refer to fault detectione�ectiveness as e�ectiveness. 7



2.3 Correlation Coe�cientWe used di�erent correlation coe�cients to measure the correlation between two variables. Suchcorrelation coe�cients are useful because they are designed to indicate how closely two variablesmove together. Below we present an overview of di�erent coe�cients used in our analysis withonly the necessary details. More of these coe�cients can be found in [10, 16, 20].1. Spearman Rank Correlation Coe�cient: 
This coe�cient was the earliest to be developed and is perhaps the most well studiedamong statistics based on rank. It requires both variables to be measured on an ordinalscale so that every subject can be ranked in two ordered series. The coe�cient 
 iscomputed using � (xi � x) (yi � y)p� (xi � x)2 � (yi � y)2 (2)where xi and yi are the ranks of the i th x and y values, respectively, and x and y are themeans of the xi and yi values, respectively. In case of ties, averaged ranks are used. Theindex i varies from 1 to n, n being the number of subjects.2. Kendall Rank Correlation Coe�cient: �This coe�cient requires the same type of data as 
 does. One may regard � as a functionof the minimum number of interchanges required between neighbors to transform onerank into another. The coe�cient � is measured as:�i<j sgn(xi � xj) sgn(yi � yj)p(T0 � Tx) q(T0 � Ty) (3)where T0 = n(n�1)2 , n being the number of subjects; Tx = � ti(ti�1)2 and Ty = �ui(ui�1)2 , tiand ui being the number of tied x and y values in the i th group of tied x and y values,respectively. The function sgn(z) = 1 if z is greater than 0, 0 if z is equal to 0, and �1 ifz is less than 0.Although � and 
 have di�erent underlying scales and numerically are not directly com-parable to each other, both use the same amount of information for a given set of dataand reject the null hypothesis1 at the same level of signi�cance.1Null hypothesis: two variables under study are independent.8



3. Partial Rank Correlation Coe�cient: �xy:z and 
xy:zWhen correlation is measured between two variables, it is possible that this correlationis due to the correlation between each of these two variables and a third variable. Forexample, the correlation between the e�ectiveness and the block coverage of a given testset in our study may not re
ect the real correlation between these two variables. Instead, itmay be the result of two other pairs of correlation: (1) the e�ectiveness and the number oftest cases, and (2) the block coverage and the number of test cases. One way to overcomethis problem is to measure the partial rank correlation coe�cients. In such a measure,the e�ects of varying a third variable on the correlation between two given variables areeliminated by keeping the third variable constant while measuring the coe�cient betweenthe two given variables. For example, the partial rank correlation coe�cient between thee�ectiveness and the block coverage of a given test set is measured by keeping the numberof test cases constant. The partial correlation coe�cients �xy:z and 
xy:z are measured as:�xy � �xz �yzq(1� �2xz)(1� �2yz) (4)where �xy, �xz , and �yz are the appropriate Spearman or Kendall correlation coe�cients.4. Pearson Correlation Coe�cient: �Given two variables, the Pearson correlation measures the extent of a linear relationshipbetween them. If there exists a perfect positive linear relation between these two variables,� has the maximal value of +1. If the linear relation is perfect negative, then � has theminimal value of �1. Since � is a measure of linearity only, a zero value for � does notnecessarily mean these two variables are independent. It only means that there is nolinear relation between them. The following equation shows the formula to compute �.cov(x, y)pvar(x) var(y) (5)where var(x) and var(y) are the variance of x and y variables, respectively, and cov(x, y)is the covariance of x and y.One distinction between these coe�cients is that Pearson uses the values of the variableswhile others use the ranks of the variables. 9



SAS procedure CORRWe used the SAS procedure CORR [10] to compute the above correlation coe�cients between (1)fault detection e�ectiveness and coverage, and (2) fault detection e�ectiveness and the numberof test cases for each subject program.3 Experimental methodologyWe used the tool ATAC [8, 9] in our experiments. ATAC is a data 
ow coverage measurementtool for C programs. Given a program and a test set, ATAC can compute the block coverage.The sequence of steps used in our experiments is given below; details follow in subsequentsections. It is important to note that the injection of faults in subject programs was completelyindependent of the generation of test sets for the programs.Step 1: Prepare subject programs.Step 2: Construct test case pools.Step 3: Generate test sets of �xed size.Step 5: Inject faults in subject programs.Step 6: Compute block coverage and fault detection e�ectiveness of test sets .Step 7: Compute correlation coe�cients.Step 8: Analyze data.3.1 Program selection and preparationA suite of ten C programs described in Table 1 was selected. Together, these ten programsrepresent 2310 lines of C code. One virtue of these programs in experimentation is that sincethey have been so thoroughly used, they serve as reliable oracles in evaluating the behaviorof fault injected programs derived from them. Moreover, they are unlikely to have naturallyoccurring faults; thus the failure during execution of a derived fault injected program may beattributed to the injected fault with great con�dence.3.2 Test set generationFor each program, a test case pool of 1000 test cases was generated quasi-randomly in confor-mance with the speci�cations of the program. The technique was to construct a generator fromthe Unix speci�cations of the program. Where input data were required, as for the Sort pro-gram, they were both generated and gathered from existing �les. Then random strings meetingthe input signature of the program were generated from the data and the speci�cations.10



Table 1: Characteristics of subject programsProgram ObjectiveyCal Print a calendar for a speci�ed year or monthCheckeq Report missing or unbalanced delimiters and .EQ/.EN pairsCol Filter reverse paper motions from nro� output for display on a terminalComm Select or reject lines common to two sorted �lesCrypt Encrypt and decrypt a �le using a user supplied passwordLook Find words in the system dictionary or lines in a sorted listSort Sort and merge �lesSpline Interpolate smooth curve based on given dataTr Translate charactersUniq Report or remove adjacent duplicate linesyDetails can be found in the Unix manual.If test cases t1 and t2 executed the same path, only one of these was selected randomly forinclusion in the pool. Table 2 lists the size and maximal cumulative data 
ow coverage for eachtest case pool. However, full coverage was seldom achieved because the test cases were generallynot manually tuned to achieve high coverage. Furthermore, there was no e�ort (beyond theheuristics in ATAC) to eliminate infeasible blocks, decisions, or data 
ow objects.Based on these pools, multiple distinct test sets of size n, 2 � n � 10, were generated foreach program. Duplicate test cases were removed from each test set. Table 3 lists the number ofdistinct test sets generated for each program. Although 60 test sets of size n, 2 � n � 10, wereconstructed for each program, some of them are duplicates. An example of this occurs in Calfor which we found three duplicate test set pairs. Since only one test set from each duplicatepair was selected, there were 57, instead of 60, distinct test sets of size 2 for Cal. Figure 1shows the sequence of steps used for test set generation. A few characteristics pertinent to ourtest set generation are listed below.(1) All test cases were generated quasi-randomly.(2) All test cases were generated before any fault detection experiment was conducted. Thiswas done to avoid test cases aimed speci�cally at a certain type of fault.(3) Since a large number of test sets may satisfy a given size for a given program, selectingonly one of these may possibly lead to false conclusions. To assure the validity of ourexperiments we attempted to generate multiple test sets for each size.11



Table 2: Characteristics of test case poolProgram number of Maximal cumulative data 
ow coveragetest cases block % decision % c-use % p-use % all-uses %Cal 65 100.00 100.00 93.62 91.86 92.78Checkeq 61 100.00 86.96 81.48 75.28 78.24Col 100 87.66 87.50 80.53 80.98 80.75Comm 482 100.00 86.96 98.15 82.14 90.00Crypt 77 89.86 71.79 94.34 83.33 88.50Look 100 96.59 84.62 96.15 89.66 92.73Sort 862 94.09 83.25 79.95 74.74 77.53Spline 230 98.96 94.21 87.89 85.88 87.00Tr 247 95.05 84.15 80.43 64.74 70.56Uniq 325 98.81 94.83 95.31 98.33 96.77
Table 3: Number of distinct test sets of various sizeFunction Size 2 Size 3 Size 4 Size 5 Size 6 Size 7 Size 8 Size 9 Size 10 �Cal 57 60 60 60 60 60 60 60 60 537Checkeq 58 60 60 60 60 60 60 60 60 538Col 59 60 60 60 60 60 60 60 60 539Comm 60 60 60 60 60 60 60 60 60 540Crypt 59 60 60 60 60 60 60 60 60 539Look 59 60 60 60 60 60 60 60 60 539Sort 60 60 60 60 60 60 60 60 60 540Spline 60 60 60 60 60 60 60 60 60 540Tr 60 60 60 60 60 60 60 60 60 540Uniq 60 60 60 60 60 60 60 60 60 540� 592 600 600 600 600 600 600 600 600 539212



Prepare a test case pool Φ

T := { }
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Figure 1: Procedure for generating test sets of size n, 2 � n � 10.13



3.3 Fault injection and detectionCommon fault types described in [1, 2, 5, 11] served as the basis for our experiments. Foreach of the ten programs in our suite, a graduate student2 injected the fault so as to producesyntactically correct programs. Each student was instructed to use experience and judgmentto inject one or more faults of each type listed in Table 4. As discussed in Section 2.2, oneerroneous program was created for each fault. The number of erroneous programs created fora given program equals the number of faults selected for injection into that program. To makethe injection process more objective, students were required to work independently. Faults thatcould not be detected by any test case from its corresponding test case pool were excluded fromthe study. The number of faults examined in each program appears in Table 6. Listings ofthese faults can be found in [19].By excluding faults that were not detectable by the test case pools, we have probablyeliminated extremely di�cult faults from our investigation. These di�cult faults may representthe faults that persist in �eld deployed software. However, these were not the faults we wereconcerned with. The kinds of faults that we hoped to characterize by our fault injection methodwere those that the programmer might encounter during thorough unit or multi-unit testing.Such faults are likely to be more readily excited than the secretive faults only detectable in �elduse.Although the faults we have selected may be representative of faults found in unit testing,the single fault seeding method is arti�cial. One might expect a fault density of between fourand 40 faults in one thousand lines of code before a program is unit tested. Therefore, if wewere to model the natural unit testing process for the 842 line Sort program, all 25 faults (seeTable 6) should be seeded in a single erroneous program. The reasons we did not follow thispath are practical. Single fault programs are easier to run and control than are multiple faultprograms. What is more, if a test case fails on a multiply fault seeded program, it is extremelydi�cult to determine which of the faults produced the failure, and, therefore, it is di�cult todetermine which faults are detected. Finally, we feel that the testing-failure-debugging cycleis fairly represented by the single fault seeded programs. If test case ti can detect multiplefaults in a multiply fault seeded program, it can do so only as debugging eliminates and testingreveals faults one at a time. Thus the testing of singly seeded faults is a fair representation ofthe test-failure-debug cycle.Since all ten programs in our suite had been extensively used, we assumed that these2All participating students were from the Department of Computer Science, Purdue University and had atleast three years of programming experience in C. 14



Table 4: Description of fault typesmissing path faultsincorrect predicate faults relational operator replacementlogical operator replacementincorrect initializationincorrect constantincorrect precedenceincorrect computation statement incorrect array element referenceincorrect pointer operationsame type variable replacementarithmetic operator replacementmiscellaneousmissing computation statement delete a complete statementdelete a part of a statementincorrect number of loop iterationsmissing clause in predicatesprograms were fault-free and could serve as oracles for fault detection. The set of faults detectedby a test set is the union of the sets of faults detected by its member test cases. Thus, to computethe set of faults detected by a test set we only needed to determine faults detected by each testcase. For example: given a test set T with three test cases, t1, t2, and t3 which detect faultsfe1, e2g, fe2, e3g, and fe3, e4g, respectively, T is said to be able to detect faults fe1, e2, e3,e4g. After the faults detected by a test set were determined, its fault detection e�ectivenesswas computed using Equation (1).4 Experimental Results and AnalysisTables 5 and 6 list the number of lines, blocks, decisions, and faults examined in each of theten programs studied. These metrics serve as indicators of the relative complexity of programsconsidered in our experiments. Among these programs, Sort and Crypt are, respectively, thelargest and smallest programs, with 500 and 69 blocks of code.4.1 Comparing correlation coe�cientsVarious correlation coe�cients computed for each program listed in Table 1 are presented inTable 7. From our experimental data and the summary in this table, we make the followingobservations: 15



Table 5: Program size metricsyProgram LOC # of blocks # of decisionsCal 163 96 50Checkeq 90 74 69Col 274 154 104Comm 144 100 69Crypt 121 69 39Look 135 88 52Sort 842 508 394Spline 289 193 121Tr 127 101 82Uniq 125 84 58Average 231 146.7 103.8yLOC (lines of code) excluding comment and declarationlines. All other metrics were computed by ATAC.
Table 6: Number of faults examined in each programProgram # of faultsCal 20Checkeq 20Col 29Comm 15Crypt 17Look 13Sort 25Spline 14Tr 12Uniq 18� 18316



� For all ten programs, the Spearman and Pearson coe�cients between e�ectiveness andblock coverage are higher than that between e�ectiveness and size.� In nine out of ten programs, the Kendall, Spearman partial, and Kendall partial coe�-cients between e�ectiveness and block coverage are higher than that between e�ectivenessand size.� Program Comm is the only program whose Kendall, Spearman partial, and Kendall partialcoe�cients between e�ectiveness and block coverage are lower than that between e�ec-tiveness and size. However, in all these cases, e�ectiveness and block coverage is onlyslightly3 less correlated than e�ectiveness and size.� In six out of ten programs, Cal, Col, Crypt, Sort, Spline, and Uniq, the Pearson coef-�cient between e�ectiveness and block coverage is greater than 0:83 which suggests somekind of linear relationship between these two variables. An example of this appears inFigure 2. (See Appendix A for other �gures.) From this �gure, we observe that e�ective-ness is linear in block coverage from 70% to 90%. On the other hand, the same correlationcoe�cient between e�ectiveness and size is less than 0:68 for all ten programs.The above observations indicate that e�ectiveness and block coverage are more correlatedthan e�ectiveness and size.4.2 Why Are Some Partial Correlation Coe�cients Negative ?From Table 7, we �nd that the Spearman partial rank correlation coe�cients between thesize and the e�ectiveness are negative for programs Sort and Spline. Since the e�ectivenessincreases with size, negative coe�cients appear to be logically invalid. A careful examinationof Equation (4) indicates that such negative values arise because the product of �xz and �yz isgreater than �xy with x, y, and z being size, e�ectiveness, and coverage, respectively. Hence,rather than violate our intuition, such negative values strongly support our claim that coverageis more correlated to e�ectiveness than size.5 Practical ImplicationsIn this section we answer how the results reported here can be used in practice. Since ourresults are from a single case study, we caution that more experiments are necessary to furtherstrengthen the following conclusions.3The di�erence between these two coe�cients is � 0:02.17



Table 7: Correlation between size, e�ectiveness, and coveragexProgram Correlation coe�cient Partial correlation coe�cientSpearman Kendall Pearson Spearman KendallCal (0.59 : 0.73 ) (0.49 : 0.63) (0.57 : 0.90) (0.21 : 0.56) (0.24 : 0.51)Checkeq (0.60 : 0.63 ) (0.49 : 0.52) (0.55 : 0.77) (0.34 : 0.42) (0.32 : 0.38)Col (0.63 : 0.84 ) (0.51 : 0.73) (0.63 : 0.85) (0.41 : 0.77) (0.34 : 0.67)Comm (0.65 : 0.65 ) (0.53 : 0.52) (0.64 : 0.71) (0.31 : 0.29) (0.30 : 0.29)Crypt (0.54 : 0.99 ) (0.46 : 0.93) (0.52 : 0.83) (0.09 : 0.98) (0.13 : 0.91)Look (0.33 : 0.46 ) (0.26 : 0.36) (0.32 : 0.47) (0.00 : 0.35) (0.07 : 0.28)Sort (0.59 : 0.87 ) (0.45 : 0.71) (0.59 : 0.85) (-0.20 : 0.81) y (0.07 : 0.62)Spline (0.44 : 0.77 ) (0.33 : 0.62) (0.44 : 0.92) (-0.17 : 0.72) y (0.02 : 0.56)Tr (0.57 : 0.68 ) (0.44 : 0.56) (0.58 : 0.67) (0.24 : 0.50) (0.21 : 0.43)Uniq (0.67 : 0.84 ) (0.53 : 0.69) (0.68 : 0.83) (0.22 : 0.69) (0.25 : 0.57)xIn entry (a : b), a is the coe�cient between size and e�ectiveness and b is the coe�cientbetween coverage and e�ectiveness.ySee Section 4.2 for explanations.
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Figure 2: A scatter plot of e�ectiveness versus block coverage for the 539 test sets of Col.18



Table 8: Average e�ectiveness (%) of test sets with �xed sizeProgram Size-2 Size-3 Size-4 Size-5 Size-6 Size-7 Size-8 Size-9 Size-10Cal 72.11 80.00 83.92 86.25 89.08 90.08 90.08 91.50 90.75Checkeq 82.93 87.83 91.25 92.08 93.00 95.92 95.75 95.83 96.33Col 79.37 89.31 90.29 92.41 94.83 95.57 96.21 96.78 96.84Comm 45.11 53.33 60.22 64.89 66.67 70.00 68.67 69.33 71.56Crypt 86.64 90.69 93.73 97.65 99.12 99.12 99.61 100.00 100.00Look 42.37 43.72 49.10 51.67 72.44 67.18 68.21 71.16 70.00Sort 23.60 33.33 36.13 39.47 42.27 46.93 50.60 53.47 56.33Spline 29.88 44.05 48.09 52.97 70.59 69.88 68.81 72.26 74.28Tr 32.08 42.22 49.44 55.83 59.31 63.75 68.19 68.33 71.81Uniq 52.59 66.94 72.78 78.33 80.92 87.22 89.35 90.74 91.39E�ectiveness and sizeIntuitively, the e�ectiveness of a test set increases as its size increases. Our experimental data inTable 8 support such an intuition. However, as shown in Figure 3, we observe a wide variationin the e�ectiveness for test sets with a small size. (See Appendix B for other �gures.) Suchvariation becomes less signi�cant for test sets with larger sizes. For example, the e�ectivenessvariation among test sets of size 2 for Cal is more than that among tests sets of size 10. Inaddition, we �nd that although the e�ectiveness tends to increase as the size increases, thisdoes not necessarily mean that a test set with a smaller size must be less e�ective in detectingfaults than a test set with a larger size. For example, for Cal, some test sets of size 6 are moree�ective than some test sets of size 10.Block coverage and sizeIntuitively, the block coverage of a test set increases with size. Our experimental data in Table 9support such an intuition. We also observe a wide variation in the block coverage for test setswith the same size. As shown in Figure 4, although block coverage tends to increase withsize, this does not necessarily mean that a test set with a smaller size must have a lower blockcoverage than a test set with a larger size. (See Appendix C for other �gures.) For example,some test sets of size 2 have higher block coverage than some test sets of size 5.E�ectiveness and block coverageIntuitively, the e�ectiveness of a test set increases as its block coverage increases. Our experi-mental data in Table 10 support such an intuition. However, as shown in Figure 5, there exists19
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Figure 3: E�ectiveness (%) of test sets of size 2, 6, and 10 for Cal.
Table 9: Average block coverage (%) of test sets with �xed sizeProgram Size-2 Size-3 Size-4 Size-5 Size-6 Size-7 Size-8 Size-9 Size-10Cal 66.87 76.95 80.09 82.02 85.44 86.96 86.53 88.91 88.49Checkeq 86.56 90.27 92.30 92.52 94.21 95.47 95.23 96.76 96.17Col 78.63 82.01 83.31 84.11 84.76 85.09 85.35 85.50 85.71Comm 74.52 81.13 83.85 86.05 87.35 88.32 89.12 89.18 89.98Crypt 84.87 86.67 87.78 88.87 89.40 89.45 89.72 89.86 89.86Look 78.56 79.96 82.42 85.25 86.29 86.40 86.93 87.48 87.59Sort 46.81 54.87 59.86 62.49 64.10 68.63 70.54 72.02 73.11Spline 66.28 75.45 78.90 81.06 88.07 89.23 88.33 90.99 91.41Tr 81.97 86.47 89.52 90.30 92.11 93.83 93.45 94.13 94.01Uniq 73.71 79.54 81.53 85.04 86.85 88.24 90.32 90.44 92.2620
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Figure 4: A scatter plot of block coverage versus size for the 540 test sets of Sort.
Table 10: Average e�ectiveness (%) of test sets with �xed block coverageProgram (50� 55) (60� 65) (70� 75) (80� 85) (90� 95)Cal 57.86 64.50 73.79 87.41 91.67Checkeq 35.00 46.00 63.33 76.75 91.38Col NA 44.83 66.96 87.40 NAComm 23.53 37.78 37.93 54.44 71.78Crypt NA NA 50.80 81.57 NALook 7.69 14.20 20.74 38.98 82.57Sort 24.00 36.40 54.14 71.31 NASpline 7.14 7.14 11.26 60.24 75.00Tr NA 8.33 16.11 33.06 50.83Uniq 22.22 40.12 55.37 67.22 92.04NA: not available. 21



variation in the e�ectiveness for test sets with the same block coverage. (See Appendix D forother �gures.) Although e�ectiveness tends to increase as block coverage increases, this doesnot necessarily mean that a test set with a lower block coverage is less e�ective in detectingfaults than a test set with a higher block coverage. For example, for Cal some test sets of(80-85)% block coverage are more e�ective than some test sets of (90-95)% block coverage.Relative signi�cance of block coverage and size on e�ectivenessFrom Table 7 and the observations discussed in Section 4, it is clear that the block coverage ofa test set is more signi�cant than its size in the fault detection of this test set.
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Figure 5: E�ectiveness (%) of test sets with (50-55), (60-65), (70-75), (80-85), and (90-95) blockcoverage (%) on Cal.6 Conclusions and future workData collected during experimentation have shown that the correlation between e�ectivenessand block coverage is higher than that between e�ectiveness and size. In another study [19],we showed that when the size of a test set is reduced while the coverage is kept �xed, there islittle or no reduction in test fault detection e�ectiveness. These two results lead us to believethat test cases, unless with some special characteristics, that do not add coverage to a test set22



are likely to be ine�ective in detecting faults. Thus, a randomly generated test set which is\boiled down" to preserve its coverage is likely to be as e�ective as originally at less cost.We believe the results of this study support the thesis that coverage based testing has acost/bene�t advantage over random testing, although our conclusions may need to be temperedby the relatively narrow scope of our experiment. A similar study on naturally occurring faultsin large and varied programs is on-going which will provide more con�dent conclusions.AcknowledgmentsWe express our thanks to Hiralal Agrawal, Rich DeMillo, Stuart Feldman, Elaine Keramidas,Edward Krauser, Tom Kuczek, Vernon Rego, and Teresa Ruesgen for discussions on dataanalysis, and Frank Oreovicz for reviewing an earlier draft of this paper.References[1] T. A. Budd, \Mutation Analysis of Program Test Data," PhD thesis, Yale University,New Haven, CT, 1980.[2] T. A. Budd, \Mutation analysis: Ideas, examples, problems and prospect," in ComputerProgram Testing, B. Chandrasekaran and S. Radicchi, Eds. Amsterdam, North Holland,July 1981.[3] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil, \A formal evaluation of data
ow path selection criteria," IEEE Trans. on Software Engineering, 15(11):1318{1332,November 1989.[4] P. Currit, M. Dyer, and H. Mills, \Certifying the reliability of software," IEEE Trans. onSoftware Engineering, SE-12(1):3{11, January 1986.[5] R. A. DeMillo and A.P. Mathur, \On the use of software artifacts to evaluate the e�ec-tiveness of mutation analysis for detecting errors in production software," in ThirteenthMinnowbrook Workshop on Software Engineering, July 1990.[6] J. W. Duran and S. C. Ntafos, \An evaluation of random testing," IEEE Trans. onSoftware Engineering, SE-10(7):438{444, July 1984.[7] R. G. Hamlet and R. Taylor, \Partition testing does not inspire con�dence," IEEE Trans.on Software Engineering, 16(12):1402{1411, December 1990.23
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Appendix A: Scatter plots of e�ectiveness versus size
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Figure 6: A scatter plot of e�ectiveness versus block coverage for the 537 test sets of Cal.
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Figure 7: A scatter plot of e�ectiveness versus block coverage for the 538 test sets of Checkeq.25
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Figure 8: A scatter plot of e�ectiveness versus block coverage for the 540 test sets of Comm.
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Figure 9: A scatter plot of e�ectiveness versus block coverage for the 539 test sets of Crypt.26
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Figure 10: A scatter plot of e�ectiveness versus block coverage for the 539 test sets of Look.
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Figure 11: A scatter plot of e�ectiveness versus block coverage for the 540 test sets of Sort.27
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Figure 12: A scatter plot of e�ectiveness versus block coverage for the 540 test sets of Spline.
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Figure 13: A scatter plot of e�ectiveness versus block coverage for the 540 test sets of Tr.28
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Figure 14: A scatter plot of e�ectiveness versus block coverage for the 540 test sets of Uniq.
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Appendix B: E�ectiveness of test sets of �xed size
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Figure 15: E�ectiveness (%) of test sets of size 2, 6, and 10 for Checkeq.
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 Figure 16: E�ectiveness (%) of test sets of size 2, 6, and 10 for Col.30
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Figure 17: E�ectiveness (%) of test sets of size 2, 6, and 10 for Comm.
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 Figure 18: E�ectiveness (%) of test sets of size 2, 6, and 10 for Crypt.31
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Figure 19: E�ectiveness (%) of test sets of size 2, 6, and 10 for Look.
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 Figure 20: E�ectiveness (%) of test sets of size 2, 6, and 10 for Sort.32
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Figure 21: E�ectiveness (%) of test sets of size 2, 6, and 10 for Spline.
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 Figure 22: E�ectiveness (%) of test sets of size 2, 6, and 10 for Tr.33
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Figure 23: E�ectiveness (%) of test sets of size 2, 6, and 10 for Uniq.
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Appendix C: Scatter plots of block coverage versus size
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Figure 24: A scatter plot of block coverage versus size for the 537 test sets of Cal.
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Figure 25: A scatter plot of block coverage versus size for the 538 test sets of Checkeq.
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Figure 26: A scatter plot of block coverage versus size for the 539 test sets of Col.
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Figure 27: A scatter plot of block coverage versus size for the 540 test sets of Comm.36
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Figure 28: A scatter plot of block coverage versus size for the 539 test sets of Crypt.
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Figure 29: A scatter plot of block coverage versus size for the 539 test sets of Look.37
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Figure 30: A scatter plot of block coverage versus size for the 540 test sets of Spline.
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Figure 31: A scatter plot of block coverage versus size for the 540 test sets of Tr.38
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Figure 32: A scatter plot of block coverage versus size for the 540 test sets of Uniq.
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Appendix D: E�ectiveness of test sets of �xed block coverage
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Figure 33: E�ectiveness (%) of test sets with (50-55), (60-55), (70-55), (80-85), and (90-95)block coverage (%) on Checkeq.
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5Figure 34: E�ectiveness (%) of test sets with (60-65), (70-75), and (80-85) block coverage (%)on Col. 40
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Figure 35: E�ectiveness (%) of test sets with (50-55), (60-65), (70-75), (80-85), and (90-95)block coverage (%) on Comm.
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Figure 36: E�ectiveness (%) of test sets with (70-75), and (80-85) block coverage (%) on Crypt.41
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Figure 37: E�ectiveness (%) of test sets with (50-55), (60-65), (70-75), (80-85), and (90-95)block coverage (%) on Look.
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5Figure 38: E�ectiveness (%) of test sets with (50-55), (60-65), (70-75), and (80-85) blockcoverage (%) on Sort. 42
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Figure 39: E�ectiveness (%) of test sets with (50-55), (60-65), (70-75), (80-85), and (90-95)block coverage (%) on Spline.
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5Figure 40: E�ectiveness (%) of test sets with (60-65), (70-75), (80-85), and (90-95) blockcoverage (%) on Tr. 43
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Figure 41: E�ectiveness (%) of test sets with (50-55), (60-55), (70-55), (80-85), and (90-95)block coverage (%) on Uniq.
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