
General Purpose Parallel ComputingW F McColl �Programming Research GroupOxford UniversityAbstractA major challenge for computer science in the 1990s is to determine the extent towhich general purpose parallel computing can be achieved. The goal is to deliver bothscalable parallel performance and architecture independent parallel software. (Workin the 1980s having shown that either of these alone can be achieved.) Success inthis endeavour would permit the long overdue separation of software considerations inparallel computing, from those of hardware. This separation would, in turn, encouragethe growth of a large and diverse parallel software industry, and provide a focus forfuture hardware developments.In recent years a number of new routing and memory management techniques havebeen developed which permit the e�cient implementation of a single shared addressspace on distributed memory architectures. We also now have a large set of e�cient,practical shared memory parallel algorithms for important problems. In this paper wediscuss some of the current issues involved in the development of systems which support�ne grain concurrency in a single shared address space. The paper covers algorithmic,architectural, technological, and programming issues.1. IntroductionThe general purpose sequential computer is ubiquitous in contemporary society. A majorchallenge for computer science in the 1990s is to produce a credible framework which wouldallow parallel computing to develop in a way which would result in it eventually replacingsequential computing, not only in speci�c scienti�c and engineering applications, but in allareas.Can parallel computing become the mainstream, rather than the interesting (andin some cases, important) sideshow that it is at present?At present, it is not commercially attractive to develop parallel software since the numberof machines in use is small and current parallel software has to be extremely architecturedependent to achieve e�ciency.How can we bootstrap the parallel software industry?In this paper we will attempt to address these issues and suggest some solutions. The �rstquestion which needs to be addressed is the following:�Author's address: Programming Research Group, Oxford University, 11 Keble Road, Oxford OX1 3QD,UK. This paper was written while the author was a Visiting Scientist at NEC Research Institute, Princeton,USA. 333



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGWhat should be the main driving force in future parallel computing developments?There are three obvious candidates - hardware, software, or some kind of intermediate compu-tational model. We will argue below that having an intermediate model as the main drivingforce o�ers the best hope for progress from our present position. First, let us consider thealternatives.For most of the 1980s, low level hardware considerations have been the main driving forcein parallel computing. Rapid progress in VLSI technology has permitted the developmentof a wide variety of distributed memory multicomputer architectures [29, 130, 232, 233, 234,235, 236, 274]. These systems consist of a set of general purpose microprocessors connectedby a sparse network, e.g. array, buttery or hypercube. The relatively low speed andcapacity of such networks forces the programmer to think in terms of a model in which onehas multiple private address spaces connected in some complex way, e.g. in a hypercubestructure, with explicit message passing by the programmer [124, 125, 135] for all non-localmemory requests. The key to algorithmic e�ciency in such systems is the careful exploitationof network locality. By minimising the number of nodes through which a message has totravel one can substantially improve e�ciency. Despite the programming di�culties inherentin this approach, a large amount of scienti�c and technical applications software has beendeveloped for such systems. In positive terms, this work has demonstrated conclusively thatfor many important applications, scalable parallel performance can be achieved in massivelyparallel systems [112, 113], despite the reservations expressed by Amdahl [20]. However, inthis message passing approach, most of the e�ort in software development tends to be devotedto the various low level process mapping activities which need to be performed to achievee�ciency. Besides being extremely tedious in many cases, this usually produces softwarewhich cannot easily be adapted to another architecture. In a world of rapidly changingparallel architectures, this architecture-dependence has proved to be a major weakness, andit has inhibited the growth of the �eld beyond the area of scienti�c research.An alternative approach, which has been extensively pursued by computer science re-searchers in the last decade, is to make software the driving force. A variety of approaches ofthis kind have been investigated. They di�er in terms of the type of programming languageconsidered, e.g. functional [39, 126, 127] , single assignment, logic, mostly functional, andin the computational model which they adopt, e.g. graph reduction, rewriting, dataow.However, they share a number of similarities, particularly in comparison to the frameworkproposed in this paper. One example of this approach is where one starts by noting thata high level functional language [39, 126, 127] (if properly used) can often expose a largeamount of implicit parallelism in a computational problem. The decision to work with afunctional language, for reasons of architecture-independence, naturally leads to a decisionto adopt, say, graph reduction as the model of parallel computation. The technological(hardware) goal is then to develop a scalable massively parallel architecture for graph re-duction [210, 211]. This \software �rst" approach has a great deal of merit given thathardware is changing rapidly and that the cost and time required to produce software makesarchitecture-independence in software a major goal. Unfortunately, however, the amountof progress which has been made on the development of e�cient parallel architectures forgraph reduction, dataow or rewriting has not been particularly impressive so far, despitemuch e�ort. The experiences of the last decade suggest that, in the pursuit of e�ciency, itis often necessary to compromise some of the elegance and simplicity of such approaches.334



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGTo a large extent, this has already happened in dataow implementations of functional lan-guages, e.g. the implementation of Id [199] on Monsoon [206]. Modern dataow architectures[128, 129, 200, 201, 206] are in many important respects quite close to those described inthis paper. For example, they must achieve latency tolerance through multithreading since,in the dataow model, memory accesses are split transactions [201]. (In the dataow model,a read may be requested before the value is computed.)The third alternative is to have some model of parallel computation as the driving force.Around 1944, von Neumann produced a proposal [49, 269] for a general purpose stored-program sequential computer which captured the fundamental principles of Turing's work[249] in a practical design. The design, which has come to be known as the \von Neumanncomputer", has served as the basic model for almost all sequential computers produced fromthe late 1940s to the present time. As noted in [120], \The paper by Burks, Goldstine and vonNeumann ([49]) was incredible for the period. Reading it today, one would never guess thislandmark paper was written more than 40 years ago, as most of the architectural conceptsseen in modern computers are described there." For an account of the principles of moderngeneral purpose sequential (i.e. von Neumann) computer design, see e.g. [119, 120, 208]. Forsequential computation, the stability of the von Neumann model has permitted the develop-ment, over the last three decades, of a variety of high level languages and compilers. Thesehave, in turn, encouraged the development of a large and diverse software industry producingportable applications software for the wide range of von Neumann machines available, frompersonal computers to large mainframes. The stability of the underlying model has alsoallowed the development of a robust complexity theory for sequential computation, and aset of algorithm design and software development techniques of wide applicability. Generalpurpose sequential computing based on the von Neumann model has developed vigorouslyover the last four decades. The widespread adoption of the model has not proved to be aharmfully constraining inuence, in fact, it has been quite the reverse. A variety of hardwareapproaches have ourished within the framework provided by the model. The stability ithas provided has been invaluable for the development of the software industry.No single model of parallel computation has yet come to dominate developments in parallelcomputing in the way the von Neumann model has dominated sequential computing [84, 258,259]. Can we identify a robust model of parallel computation which o�ers the prospectof achieving the twin goals of general purpose parallel computing - scalable parallelperformance and architecture-independent parallel software?Success in this endeavour would permit the long overdue separation of software and hardwareconsiderations in parallel computing. This separation would, in turn, encourage the growthof a large and diverse parallel software industry, and provide a focus for future hardwaredevelopments.The achievement of these goals would have profound consequences for the future develop-ment of both the computing industry and the academic subject of computer science. Giventhis fact, one might suspect that this issue would be central to much of the current researchin parallel computing. However, at present, relatively little work is being done with thesegoals directly in mind. Much of the practical work in massively parallel computing today isconcerned with the development of scienti�c applications software, without particular regardfor the development of a credible strategy which would permit portability of that software335



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGas new architectures appear.The current situation in parallel computing is remarkably chaotic when compared withthat of sequential computing. With no agreed model to provide a focus for technologicalinnovation, parallel hardware suppliers continue to develop, and attempt to market, systemswith widely di�ering characteristics. Those people with the unenviable task of choosing aparallel system for their organisation are faced with the prospect of investing substantialresources in the purchase of such a machine, and in the development of software for it, onlyto �nd that the software quite quickly becomes obsolete.At the present time, the MFLOP performance of the processors used in parallel systemsis increasing rapidly. Unfortunately, this is not being matched by corresponding increases incommunications performance. This rising imbalance is likely to further increase the di�cultyof achieving architecture-independence in software. An important general message of theresults in this paper is that architecture-independence is more likely to be achieved in thoseparallel systems which invest more substantially in communications performance than inprocessor performance. It is striking that few of the commercial parallel systems beingproduced today seem to reect this basic idea.The current chaos in parallel computing has led many to conclude that the answer to theabove question, on the prospects for agreement on a model, is no. Advocates of \heteroge-neous parallel computing" [163] take as their starting point the idea that no convergence ona model is likely to take place. They argue that a wide variety of designs which are to someextent \special purpose" will continue to be produced and marketed, and that the primaryfunction of parallel computing should be to develop languages and communications networksfor the coordination of these ensembles of devices. It is again striking that many in comput-ing have already accepted the inevitability of this rather pessimistic scenario, especially as noserious theoretical impediments to the achievement of the goals of general purpose parallelcomputing have yet been identi�ed, despite much e�ort to �nd them. One can contrast thiswith the situation in complexity theory where the ideas of NP-completeness have demon-strated in a precise way that many desirable goals in terms of algorithmic performance, forproblems in AI, scheduling, optimisation etc. are unlikely to be achievable and that we must,in some way, limit our expectations. There is no compelling evidence that general purposeparallel computing, as described above, cannot be achieved. We can be reasonably con�-dent that, as future hardware developments alone fail to signi�cantly increase the market forparallel systems, the manufacturers of those systems will see it as in their interests to seekconvergence on a model, rather than to seek to avoid it. A major goal for computer sciencetoday is to develop the ideas and techniques which will provide the required solutions whenthat change in thinking comes about.In this paper we will describe one possible way forward for parallel computing, basedon the bulk synchronous parallel (BSP) model of computation [258]. Although this ap-proach has many strengths, we would not want to argue that it is the only viable approach.Two alternatives, which merit serious consideration, are the actor model [9, 10] and thedataow model [128, 129, 199, 200, 206]. The most fundamental di�erence between thesetwo approaches and the BSP model is that they both have at their core the idea of local(usually pairwise) synchronisation events, whereas the BSP model, as well as various PRAM[80, 89, 149, 224, 259, 266] and data parallel models [43, 123], have the idea of global barriersynchronisation as the basic mechanism. Another signi�cant di�erence is that in the BSP,PRAM and data parallel approaches there is usually tight control of ordering and scheduling336



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGby the programmer. In contrast, a major attraction of the dataow approach is that theprogrammer is freed from consideration of such issues. Although we have stressed the di�er-ences between these various approaches, there is reason to believe that, at the architecturallevel, the BSP, PRAM, actor and dataow models will require a number of similar mecha-nisms for e�cient implementation, in particular, high performance global communications,uniform memory access, and multithreading to hide network latencies.It is perhaps not unreasonable to summarise the current situation with respect to thesevarious approaches as follows. Work on the actor and dataow models is much more highlydeveloped in the areas of programming languages and methodologies than it is in the areaof algorithm design, analysis and complexity. In contrast, for the BSP and PRAM modelswe have a highly developed set of techniques for the design and analysis of algorithms, butwe do not yet have an established framework for the programming of such systems.2. Idealised Parallel ComputingVarious idealised shared memorymodels of parallel computation have been used in the studyof parallel algorithms and their complexity. Three such models are the PRAM, the circuit,and the comparison network. In this section we describe these models, and give a number ofsimple examples of e�cient shared memory parallel algorithms which can be implemented onthem. Most of the circuits and comparison networks described can be translated into PRAMalgorithms in a straightforward manner. We also discuss various ways in which the e�ciencyof shared memory parallel algorithms can be measured. The class NC has, over the pastdecade, provided a very simple and robust framework for the classi�cation of problems in P,in terms of their parallel time complexity on a PRAM. A large number of important problemshave been shown to lie in NC, i.e. to be solvable on a PRAM in polylogarithmic time usinga polynomial number of processors. Other problems have been shown to be P-complete, i.e.to have no NC algorithm unless P = NC. The class NC and the notion of P-completenesshave allowed major advances to be made in our theoretical understanding of shared memoryparallel algorithms and their complexity. However, as we now move forward to the pointof developing parallel architectures based on the PRAM model, we require a rather morere�ned complexity theory which takes account of the amount of work done by a parallelalgorithm. We describe an approach due to Kruskal, Rudolph and Snir [161] which capturesthis idea in a convenient way. At the end of the section, we discuss the communicationcomplexity of PRAM algorithms. We describe various results showing tradeo�s between thetime required for a parallel computation and the total number of messages which must besent. Such results may provide a theoretical basis for the future development of softwaretools which e�ciently schedule shared memory parallel algorithms for implementation ondistributed memory architectures.2.1. The PRAMA parallel random access machine (PRAM) [80, 83, 149, 266, 276] consists of a collection ofprocessors which compute synchronously in parallel and which communicate with a commonglobal random access memory. In one time step, each processor can do (any subset of)the following - read two values from the common memory, perform a simple two-argumentoperation, write a value back to the common memory. There is no explicit communicationbetween processors. Processors can only communicate by writing to, and reading from, the337



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGcommon memory. The processors have no local memory other than a small �xed number ofregisters which they use to temporarily store the argument and result values. In a ConcurrentRead Concurrent Write (CRCW) PRAM, any number of processors can read from, or writeto, a given memory cell in a single time step. In a Concurrent Read Exclusive Write (CREW)PRAM, at most one processor can write to a given memory cell at any one time. In the mostrestricted model, the Exclusive Read Exclusive Write (EREW) PRAM, no concurrency ispermitted either in reading or in writing. The CRCW PRAM model has a large number ofvariants which di�er in the convention they adopt for the e�ect of concurrent writing. Threesimple examples of such conventions are: two or more processors can write so long as theywrite the same value, one of the processors attempting to write will succeed but the choice ofwhich one will succeed will be made nondeterministically, the lowest numbered processor willsucceed (assuming some appropriate numbering.) In other CRCW models [221] one mighthave the possibility of concurrent writing in which the memory location is updated to thesum of the written values, or to the minimum of the written values.As a simple example of a CREW PRAM computation, consider the problem of computingab+ac+bd+cd from inputs a; b; c; d. Let pitj denote the computation performed by processori at time step j. Then we havep1t1 : b+ c) xp1t2 : a � x) yp2t2 : x � d) zp1t3 : y + z) resultThe complexity of a PRAM algorithm is given in terms of the number of time steps and themaximum number of processors required in any one of those time steps. The above examplerequires three time steps and two processors.From the perspective of this paper, the most important characteristic of the PRAM modelis that it is a 1-level memory (or shared memory) model, i.e. all of the memory locationsare uniformly far away from all of the processors, the processors have no local memory andthere is no kind of memory hierarchy based on ideas of network locality. These simplifyingproperties of the PRAM model have made it extremely attractive as a robust model for thedesign and analysis of algorithms.2.2. CircuitsA circuit [77, 270, 272] is a directed acyclic graph with n input nodes (in-degree 0) corre-sponding to the n inputs to the problem, and a number of gates (in-degree 2) correspondingto two-argument functions. In a Boolean circuit, the gates are labelled with one of the binaryBoolean functions NAND;^; NOR;_;!;� etc. In a typical arithmetic circuit, the inputnodes are labelled with some value from Q, the set of rational numbers, and the gates arelabelled with some operation from the set f+;�; �; =g. The size of a circuit is the numberof gatesLet gi denote the function computed by gate i. Then we have the following arithmeticcircuit for ab+ ac+ bd+ cd.g1 = b+ c 338



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGg2 = a � g1g3 = g1 � dg4 = g2 + g3An example of a Boolean circuit is the following, which computes the two binary digits<d1; d0> of x1 + x2 + x3.g1 = x1 ^ x2g2 = x1 � x2g3 = g2 ^ x3g4 = g2 � x3 (= d0)g5 = g1 _ g3 (= d1)The parallel complexity of a circuit is the depth of the circuit, i.e. the maximum numberof gates on any directed path. The parallel complexity of both of the above examples isthree.2.3. Comparison NetworksIt is well known that �(n log n) binary comparisons are necessary and su�cient to sortn elements drawn from an arbitrary totally ordered set. The lower bound follows from asimple information theoretic argument. The matching upper bound can be obtained, e.g.by a simple recursive mergesort algorithm. A convenient model for the investigation of theparallel complexity of comparison problems such as sorting, merging and selection is thecomparison network [32, 66, 155]. Comparison networks have the attractive property thatthey are oblivious (as are circuits). An oblivious algorithm is one in which the sequence ofoperations performed is independent of the input data.A comparison element is a two-input two-output device which computes the minimummin(x; y) and the maximum max(x; y) of its inputs x; y. In an n-line comparison network,the n inputs <x1; x2; : : : ; xn> are presented on the n lines and at each successive level ofthe network at most n=2 disjoint pairs of lines are put through comparison elements. Aftereach level, the n lines carry the inputs in some permuted order. The size of a comparisonnetwork is the number of elements.If we let li denote level i and (j; k) denote a comparison element connecting lines j; k, thenthe following is a comparison network of size �ve which sorts four elementsl1 : f(1; 2); (3; 4)gl2 : f(1; 3); (2; 4)gl3 : f(2; 3)gi.e. if we present the inputs <x1; x2; x3; x4> on the four lines then after these three levels ofcomparison elements the values will appear on the lines in sorted order.The parallel complexity of a comparison network is simply the depth of the network, i.e.the number of levels. 339



McCOLL : GENERAL PURPOSE PARALLEL COMPUTING2.4. AdditionLet ADDn(x1; : : : ; xn) = Pni=1 xi where xi 2 Q. A circuit of depth dlog2ne for ADDncan easily be obtained by constructing a balanced binary tree of +-gates, with n leavescorresponding to the arguments x1; : : : ; xn. This corresponds to an n=2 processor PRAMalgorithm with complexity dlog2ne The optimality of this construction, in terms of depth,follows from the functional dependency of ADDn on each of its n arguments. If we nowde�ne ORn(x1; : : : ; xn) = Wni=1 xi where xi 2 f0; 1g, then we have a very similar problem tothat of computing ADDn. We can easily obtain a PRAM algorithm of complexity dlog2neand a Boolean circuit of depth dlog2ne for ORn. That this circuit depth is optimal followsfrom functional dependency. However, as Cook and Dwork [64] observed, there is rathermore to the question of the PRAM complexity of ORn. If we allow concurrent write, thenORn can be computed in one parallel step in an obvious way; processor i reads xi frommemory location i and if xi = 1 it writes a 1 into location 0. Cook and Dwork [64] show thateven on an EREW PRAM, ORn can be computed in less than dlog2ne steps. They derive anupper bound of (0 � 72)log2n on the number of steps required. However, they also show thata lower bound of 
(log2n) holds, and thus only a constant factor improvement is possible.2.5. Polynomial EvaluationLet Pn(a0; a1; : : : ; an; x) = Pni=0 aixi where ai; x 2 Q. The standard sequential algorithmfor polynomial evaluation is Horner's Rule where to calculate Pn we successively computepn = anpi = (pi+1 � x) + ai for i = n � 1; n � 2; : : : ; 1; 0:Then Pn = p0. The sequential complexity of polynomial evaluation has been studied formany years. It is known that 2n arithmetic operations are required to evaluate a generalpolynomial of degree n, given by its coe�cients [46]. Thus, in terms of sequential complexity,Horner's Rule is optimal. However, it is very unsuitable for parallel computation since atevery step in the computation the immediately preceding subresult is required. If instead,we evaluate each term aixi of the polynomial independently, in parallel, using a balancedbinary tree of �-gates, and we then sum the values of the terms using a balanced binary treeof +-gates then we have a circuit of depth 2dlog2(n+1)e. This circuit is exponentially better,in terms of depth, than a circuit based on Horner's Rule, although the number of gates(sequential complexity) is now O(n2) rather than O(n). The 2dlog2(n+1)e upper bound canbe further improved to log2n+O(plog2n) by using a simple recursive parallel algorithm dueto Munro and Paterson [198] which splits the polynomial into consecutive blocks of termsand factors out the appropriate power of x. Kosaraju [157] has shown that the algorithm ofMunro and Paterson is optimal, in terms of circuit depth, for polynomial evaluation.2.6. Pre�x SumsLet x1; x2; : : : ; xn be a set of values and � be an associative operation on that set. The pre�xsums problem is to compute pi = x1�x2�� � ��xi for all 1 � i � n. The straightforward methodyields a circuit of size n� 1 but its depth is also n� 1. By computing each pi independentlywe can obtain a circuit of size O(n2) and depth dlog2ne. An important result of Ladner340



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGand Fischer [165] shows that the pre�x sums problem can be computed by a circuit of sizeO(n) and depth O(log n). This construction can be applied to produce small fast parallelcircuits for a variety of important problems, including n-bit addition, n-bit multiplication,and Boolean sorting. It can also be used for the e�cient parallel simulation of �nite stateautomata. We will describe the application of parallel pre�x computation to the problem ofn-bit addition.A binary number <an�1; an�2; : : : ; a0> 2 f0; 1gn represents the value Pn�1i=0 ai � 2i. Giventwo n-bit binary numbers X = <xn�1; xn�2; : : : ; x0> and Y = <yn�1; yn�2; : : : ; y0>, then-bit addition problem is to compute the (n + 1)-bit representation Z = <zn; zn�1; : : : ; z0>of X + Y .In the normal \school method" we �rst compute z0 = x0 � y0 and the initial carry bitc0 = x0 ^ y0. We then use n� 1 full adders to compute zi; ci from xi; yi and ci�1. Finally, welet zn = cn�1. This method yields a circuit of size O(n) and depth O(n). The pre�x methodconsists of three stages:Stage 1: Compute uj = xj ^ yj, vj = xj � yj for all 0 � j < n.Stage 2: Compute the carry bits cj for all 0 � j < n.Stage 3: Compute the outputs. z0 = v0, zj = vj � cj�1 for all 1 � j < n, zn = cn�1.Stages 1 and 3 can both be carried out in linear size and constant depth, therefore we needonly consider Stage 2. Let A(u;v)(c) = u _ (v ^ c) for c 2 f0; 1g. Then we haveci = A(ui;vi) �A(ui�1 ;vi�1) � � � � �A(u0;v0)(0)where � denotes function composition. Since (uj; vj) 2 f(0; 0); (0; 1); (1; 0)g andA(0;0) �A(u;v) = A(0;0)A(0;1) �A(u;v) = A(u;v)A(1;0) �A(u;v) = A(1;0)it follows that the operation � on sets of functions A(uj ;vj) is associative. Therefore, we canuse a pre�x circuit to compute all the carry bits ci. We need only design a circuit for theoperation �. Let A(u;v) = A(u2;v2)�A(u1;v1). Then (u; v) = (u2_(u1^v2); v1^v2) and thereforewe can construct a subcircuit of size three and depth two for the operation �. We have shownthat n-bit addition can be realised by a Boolean circuit of size O(n) and depth O(log n).In functional programming [39], the second-order function scan corresponds to the pre�xsums computation. The above mentioned results, and the work of Blelloch [41, 42, 43] andothers, have shown it to be a parallel primitive of extremely wide applicability.2.7. Matrix MultiplicationLet A;B be two n � n matrices of rational numbers. Then the product of A;B is ann � n matrix C, where ci;j = Pnk=1 ai;k � bk;j. The exact determination of the sequentialcomplexity of matrix multiplication is a major open problem in the �eld of computationalcomplexity [62, 202, 247]. At the present time, the best known algorithm (asymptotically, asn!1) requires only O(n2�376) arithmetic operations [65] as opposed to the standard O(n3)which follows from the de�nition. No lower bound larger than the trivial 
(n2) is known.341



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGIn contrast, determining the shared memory parallel complexity of matrix multiplicationis trivial. We can evaluate each ci;j term independently, in parallel, by a balanced binarytree of depth dlog2ne + 1. Functional dependency shows this bound for ci;j to be optimaland so we have an optimal time bound for parallel matrix multiplication on the idealisedPRAM and circuit models [number of processors = O(n3)]. The simplicity of this solution isentirely attributable to the fact that in the PRAM and circuit models, the complexity andcost of communication is completely ignored. Those who have developed and implementedalgorithms for distributed memory architectures over the last decade know, of course, thaton such architectures the issue of managing communication is the dominant one.2.8. Linear RecurrencesThe parallel evaluation of recurrences was discussed in the mid 1960s by Karp, Miller andWinograd [148]. Let us �rst consider the computation of the very simple recurrence whichde�nes Fibonacci numbers. The mth Fibonacci number fm is given by the second order linearrecurrencef0 = 0f1 = 1fm = fm�1 + fm�2 for m � 2This de�nition can be directly translated into an arithmetic circuit with m � 1 gates (anddepth m � 1) which successively computes f2; f3; : : : ; fm. As in the case of Horner's Rulewe have a circuit with no direct parallel speedup. If instead, we use the unconventionalde�nition(fm�1 fm) = (f0 f1) 0 11 1 !m�1then we see immediately that fm can be calculated by an arithmetic circuit of size and depthO(log2m) if we compute the matrix power e�ciently by repeated squaring.The above result for Fibonacci numbers is a special case of the following more general resultby Greenberg et al. [108] on the parallel evaluation of kth order linear recurrences. If wehave F = (f0 f1 : : : fk�1) and fm = Pkj=1 ak�j � fm�j for m � k, then (fm�k+1 : : : fm) =F �Mm�k+1 where M is the k � k matrix0BBBBB@ 0 � � � 0 a0a1I ...ak�1 1CCCCCAand therefore the parallel complexity of computing fm is at most O(log2k � log2(m� k)).For a practical application of this result we consider the problem of solving linear systems.Let B be an n � n non-singular, lower triangular matrix, and c be an n-element vector.In solving the linear system Bx = c by `back substitution' we use the recurrence xi =(ci � Pi�1j=1 bi;j � xj)=bi;i for 1 � i � n. If we let xi = 0 for i < 1 then we can rewrite this342



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGrecurrence in the form (xi xi�1 : : : xi�n+1 1) = (xi�1 xi�2 : : : xi�n 1) �Mi whereMi = 0BBBBBBBBBBBBBBBBB@ � bi;i�1bi;i...� bi;1bi;i I 00...00 0 � � � � � � � � � 0 0cibi;i 0 � � � � � � � � � 0 1
1CCCCCCCCCCCCCCCCCATherefore we can design an arithmetic circuit of depth O(log2n) which solves Bx = c toobtain x. This circuit corresponds to a PRAM algorithm with parallel time O(log2n) andnumber of processors O(n4). In contrast, a direct PRAM implementation of back substitutionwould have parallel time O(n), but would require only O(n) processors.2.9. MergingLet <x1; x2; : : : ; xm> and <y1; y2; : : : ; yn> be two sorted sequences. The merging problem isto produce a single sorted sequence consisting of the m+n elements. This can, of course, beperformed by a simple sequential algorithm which uses at mostm+n�1 binary comparisons.We will describe two e�cient parallel comparison networks for merging, both due to Batcher[32, 155]. The two techniques are known as odd-even merging and bitonic sorting.In odd-even merging, we merge the \odd sequences" <x1; x3; x5; : : :> and <y1; y3; y5; : : :>,obtaining <v1; v2; v3; : : :>; and merge the \even sequences" <x2; x4; x6; : : : > and <y2; y4;y6; : : : >, obtaining <w1; w2; w3; : : :>. (These two merges are performed in parallel). Finally,we apply comparison elements to the pairs (w1; v2); (w2; v3); (w3; v4); : : : to complete themerging.This recursive method yields the following upper bounds:size(n) � 2 � size(n=2) +O(n)= O(n log n)depth(n) � depth(n=2) + 1� dlog2neA sequence <z1; z2; : : : ; zp> is bitonic if and only if z1 � � � � � zk � � � � � zp forsome 1 � k � p. An n-line bitonic sorter is a comparison network which will sort anybitonic sequence of length n. Merging can be performed by sorting the bitonic sequence<xm; xm�1; : : : ; x1; y1; y2; : : : ; yn>. Noting that any subsequence of a bitonic sequence isbitonic, it follows that we can construct an n-line bitonic sorter by �rst sorting the twobitonic subsequences <z1; z3; : : :> and <z2; z4; : : : > in parallel, and then applying compar-ison elements to the pairs (z1; z2); (z3; z4); : : : to complete the sort. This alternative methodyields essentially the same upper bounds on size and depth as odd-even merging. It does,however, have some advantages in terms of simplicity of description. A bitonic sorter with2n lines numbered 0; 1; 2; : : : ; 2n � 1 can be de�ned (nonrecursively) in the following way:343



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGLines i; j are compared on level k if and only if i; j di�er only in their kth most signi�cantbit.It is quite easy to prove that both the size and depth of these merging networks areoptimal to within a constant factor [155]. This shows that, for the problem of merging,comparison networks are much less powerful than general (adaptive) algorithms, at leastwhen one compares the total number of comparisons performed. As we shall see in the nextsection, this does not apply in the case of the related problem of sorting.2.10. SortingAn n-line sorting network can be constructed recursively using either of the e�cient mergingnetworks described above [32, 155]. To sort the set x1; x2; : : : ; xn we �rst (recursively) sortthe two subsets x1; x2; : : : ; xn=2 and x(n=2)+1; x(n=2)+2; : : : ; xn in parallel. The two sortedsequences can then be combined using one of the above merging networks of size O(n log n)and depth O(log n). This yields the following upper bounds for sorting n elements by acomparison network.size(n) � 2 � size(n=2) +O(n log n)= O(n log2n)depth(n) � depth(n=2) + log n= O(log2n)From 1968 until 1983 this was the best known oblivious sorting algorithm. In 1983, Ajtai,Koml�os and Szemer�edi [11] succeeded in producing a remarkable n-line sorting network ofsize O(n log n) and depth O(log n), both of which are of course asymptotically optimal. Amore e�cient version, which improves the constant factors involved, has since been producedby Paterson [207]. Although the constant factors are still too large to make the networkscompetitive with those obtained from, say, odd-even merging, this is a result of major theo-retical signi�cance as it shows that for the important problem of sorting, adaptive algorithmsare not (asymptotically) more powerful than oblivious ones.2.11. SelectionThe tth selection problem is to determine the t largest elements in a set of size n. In thissection we describe the design of some fast parallel comparison networks for this problem.When t � n=2, we cannot do signi�cantly better than using an O(n log n) size, O(log n)depth sorting network [11] since any comparison network which determines the median of nelements must have size 
(n log n) [155]. We shall be concerned with the case where t is�xed as n!1.The following construction is due to Yao [277]. To produce a tth selection network ofsmall depth we use a construction called a (t; n)-eliminator. Let f(t; n) be a function whichsatis�es f(t; n) � t. A (t; n)-eliminator is a comparison network with the following property:Of the n output lines there are f(t; n) designated lines among which the largest t elementsare found. We now show how to construct a family E(t; n) of (t; n)-eliminators.First, we consider the case where t = 1. E(1; 2) is simply a comparison element. An n-lineE(1; n) is recursively de�ned as follows: The �rst level consists of the elements (1; n); (2; n�344



McCOLL : GENERAL PURPOSE PARALLEL COMPUTING1); (3; n � 2); : : :. The rest of the network is simply an E(1; n=2) network on lines (n=2) +1; (n=2) + 2; : : : ; n. A simple analysis shows thatdepth(E(1; n)) = dlog2nef(1; n) = 1For t > 1, an n-line E(t; n) is recursively de�ned as follows: The �rst level again con-sists of the elements (1; n); (2; n � 1); (3; n � 2); : : :. The rest of the network consists of anE(bt=2c; bn=2c) network on lines 1; 2; : : : ; bn=2c and an E(t; dn=2e) network on the remaininglines. For t = 2, we obtaindepth(E(t; n)) � maxfdepth(E(t; n=2)); (log n)� 1g+ 1� dlog2nef(2; n) � f(2; n=2) + 1= O(log n)and, in general, for any �xed t � 2,depth(E(t; n)) � dlog2nef(t; n) = O((log n)blog2tc)To obtain a fast parallel comparison network for the tth selection problem we simply com-pose appropriately sized eliminator networks. ApplyingE(t; n) to the n input lines gives a setof n1 = f(t; n) � (log n)log t lines on which the t largest elements are now known to lie. Wecan then apply an E(t; n1) to reduce the number of lines to n2 = f(t; n1), and an E(t; n2) tofurther reduce it to n3 = f(t; n2). The depth of the network at this stage of the construction islog n + log n1 + log n2 = log n + log t loglog n + O(logloglog n) and the number of lines hasbeen reduced to O((logloglog n)log t). This is su�ciently small that we can now use, for ex-ample, a sorting network on those lines to complete the computation of the t largest elements.This gives a tth selection network of total depth log n + log t loglog n + O(logloglog n).2.12. Algebraic Path ProblemA closed semiring is an algebraic structure (S;�;
; I�; I
) with the following properties:� is a commutative monoid (� satis�es the closure, associative, commutativeproperties, and has identity element I�).
 is a monoid (
 satis�es the closure, associative properties, and has identityelement I
).� is idempotent.
 is right and left distributive over �.For all s 2 S, s
 I� = I�. 345



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGLet G = (V;A) be a directed graph on j V j= n vertices, in which each <i; j> 2 A has anassociated weight sij 2 S. De�ne an n � n matrix M of weights mij corresponding to thearcs of G: mij = sij if <i; j> 2 A, I� otherwise. The Algebraic Path Problem (APP) is tocompute M� = L1k=0Mk where matrix product is de�ned in terms of the two operations �and 
. (M0 is the identity matrix with diagonal elements I
). M�ij gives the \sum" of theweights of all directed paths from i to j where the weight of a path is the \product" of theweights of the arcs.The APP is a problem of major importance in a wide variety of areas and has beenextensively studied in recent years. Some examples of instances of the APP are the following:Problem S � 
 I� I
Connectivity (trans. closure) [271] ffalse; trueg or and false trueGeneration of regular language fwordsg [ � ; empty wordMax. capacity path R+ [1 max min 0 1Path with min. number of arcs N[1 min + 1 0Shortest paths [82] R[1 min + 1 0Max. reliability path fa j 0 � a � 1g max � 0 1Min. cost spanning tree [181] R+ [1 min max 1 0The APP also �nds application in areas such as parsing and logic programming, and canbe used as the basis of fast parallel algorithms for matrix inversion. Like the pre�x sumscomputation, it is a remarkably versatile second-order function.Noting that node i is connected to node j by a directed path if and only if it is connectedby a directed path of length � n� 1, we haveM� = n�1Mk=0Mk= (M0 �M)n�1= (M0 �M)2l for 2l � n� 1Therefore, to obtain an e�cient shared memory parallel algorithm for the computation ofthe APP on matrix M we need only set the main diagonal to I
 and repeatedly squarethe resulting matrix until we have a su�ciently large power. For an n � n matrix M , thismethod yields a circuit of depth O(log2n) or, equivalently, a PRAM algorithm of time com-plexityO(log2n) (Number of processors = O(n3) if we use the standard matrix multiplicationalgorithm).Consider the problem of topologically ordering the n vertices of a directed acyclic graph,i.e. assigning a number to each of the vertices such that there is no path from a vertex toa lower numbered one. There are several e�cient sequential algorithms for this problem inwhich one successively numbers vertices from 1 to n. It is perhaps not immediately clearhow one would shortcut this iterative process to achieve an algorithm which produces suchan ordering in o(n) parallel time. However, this problem can be solved in a straightforwardway using the fast parallel APP algorithm. We can simply compute the connectivity ortransitive closure of the dag using the parallel APP algorithm with (or; and), and then sortthe vertices by their in-degree in the closure. If there is a directed path from i to j in thedag, then j will have a higher in-degree than i in the closure.The minimum cost spanning tree problem is another one which has simple, e�cient se-quential algorithms, e.g. the algorithms of Kruskal and Prim [66], but for which it is not346



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGimmediately clear that it has a fast parallel algorithm. As noted above, Maggs and Plotkin[181] observed that if the weights of the edges in the graph are distinct, then the minimumcost spanning tree is precisely the set of edges <i; j> in the graph for which Mij = M�ijwhere we compute the APP with (min;max). [If the distinct weights property does notapply, then a simple modi�cation can be made to the weights to achieve it.]2.13. Expression EvaluationConsider the problem of evaluating a given (binary tree) expression for a particular setof values of the arguments. We have seen previously that particular expressions, such asHorner expressions corresponding to polynomials, can be evaluated by a PRAM or circuitin a number of steps logarithmic in the size (number of leaves) of the expression. Whatabout the evaluation of an arbitrary tree expression? A basic technique in the �eld of circuitcomplexity is tree restructuring [48, 77, 157, 196, 214, 272]. The technique was developed toshow that every function (Boolean or arithmetic) which can be represented by an expressionof size s can also be represented by a circuit of depth O(log s). One disadvantage of usingthis tree restructuring approach as a means of fast parallel expression evaluation on a PRAMis that it requires the calculation of appropriate points for tree splitting. When the cost ofperforming this tree splitting is taken into account the parallel complexity becomes O(log2s)rather than O(log s). If instead one uses parallel tree contraction [3, 30, 88, 190, 191, 192],then the O(log s) parallel time bound can be achieved. Fast parallel tree contraction on aPRAM is another technique of very wide applicability.2.14. The Class NCWe have described a number of parallel algorithms for the PRAM, circuit and comparisonnetwork models. The circuits and comparison networks given can be directly transformedinto corresponding PRAM algorithms. These idealised models have provided a robust frame-work for the investigation of parallel algorithms and their complexity [26, 54, 61, 62, 63, 80,87, 89, 149, 223, 224, 266, 270]. One outcome of this work has been the development ofan extensive set of results concerning NC, the class of computational problems which canbe solved on a PRAM by a deterministic algorithm in polylogarithmic time using only apolynomial number of processors. A major open problem in theoretical computer scienceis to determine whether P, the class of polynomial time computable problems, is containedin NC. If this were shown to be true then it would imply that every problem which had afast (polynomial time) sequential algorithm also had a fast (polylogarithmic time), e�cient(polynomial number of processors) parallel algorithm. Over the last decade, a large numberof important problems in P have been shown to also lie in NC. The following list of suchproblems is by no means complete.Evaluation of expressions and programs [87, 88, 89, 103, 106, 149, 158, 185,189, 193, 224, 261]: Tree restructuring, tree contraction, expression evaluation,evaluation of straight-line algebraic programs of polynomial degree over a commu-tative semiring, evaluation of straight-line programs corresponding to dynamicprogramming algorithms, context-free recognition, parallel simulation of �nitestate automata, circuit value problem for planar monotone circuits, evaluation ofset expressions. 347



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGLogic [79, 143, 185, 224, 251]: Term matching, term equivalence, evaluation ofDATALOG logic programs with the polynomial-fringe property.Sets [27, 60, 149, 166, 224, 264]: Sorting, selection, set operations, constructingHu�man trees.Sequences and strings [57, 80, 87, 149, 216, 224, 229]: Pre�x sums, merging,sequence comparison (string edit problem), string matching, recognising shu�eof two strings , longest common substring, �nding squares in a string, patternmatching for d-dimensional patterns.Lists [22, 23, 55, 56, 57, 80, 89, 149, 224]: List ranking.Arithmetic [17, 18, 33, 77, 149, 213, 270, 272] : n-bit integer arithmetic (addi-tion, multiplication, division), linear recurrences, polynomial arithmetic (evalua-tion, multiplication, division, GCD), evaluation of elementary functions (exp, ln,sin, etc.).Matrices [47, 67, 80, 149, 224, 270]: Matrix multiplication, determinant, rank,inverse, solution of linear system, Cholesky factorisation.Graphs [28, 58, 68, 80, 89, 92, 99, 101, 133, 149, 151, 162, 178, 224, 230, 240, 248]:Algebraic path problem (transitive closure, shortest paths, minimum cost span-ning tree, topological ordering of dag), transitive reduction, connected compo-nents, biconnectivity, triconnectivity, Euler tours, ear decomposition, maximalindependent set, symmetry breaking, lowest common ancestors, planarity, treeisomorphism, bipartite perfect matching, minimal elimination ordering.Combinatorial optimisation [15]: Fixed dimension linear programming.Geometry [8, 224, 278]: Convex hull in two and three dimensions, Voronoidiagrams and proximity problems, detecting segment intersections, triangulatinga polygon, point location.A number of interesting and important randomised NC algorithms have also been produced[5, 91, 150, 176, 197, 217, 225, 226] for graph problems such as depth-�rst search, constructinga perfect matching, maximum cardinality matching, maximum s � t ow, planar graphisomorphism, and subtree isomorphism, and for various problems in computational geometry.An exciting development over the last few years has been the development of a large num-ber of new deterministic [35, 36, 37] and randomised [96, 117, 266] parallel algorithms forimportant problems, which achieve nearly-constant time on a CRCW PRAM. The problemsinclude hashing [31, 94, 96, 97, 183, 184], dictionary (insert, delete, query operations) [96], in-teger sorting [38, 115, 183, 184, 218, 219], integer chain sorting [96, 115, 116], space allocation[96, 116], linear approximate compaction [96, 105, 183], estimation [96, 116], load balancing[93, 96, 116], leaders election [95, 96, 116, 184], generation of random permutations [183],2-ruling set [55, 96, 105, 183], all nearest-smaller-values [35], approximate sum [96], e�cientsimulation of Maximum PRAM model on Tolerant PRAM model [95, 96, 117, 184]. Thesenew algorithmic techniques provide a theoretical framework for the future development oftools which would automate a number of tedious aspects of practical parallel computation,such as processor allocation [94, 96, 105, 183] and memory allocation [147].348



McCOLL : GENERAL PURPOSE PARALLEL COMPUTING2.15. P-CompletenessUsing techniques analogous to those used in sequential computation to establish NP-com-pleteness, a number of problems in P have been shown to be P-complete. A computationalproblem � is P-complete if and only if � 2 P and (� 2 NC ) P � NC). The P-complete problems are, in a sense, those in P for which it is hardest to obtain a fast,e�cient PRAM algorithm. Showing that any one of them was in NC would imply that allproblems in P had fast, e�cient PRAM algorithms. The �rst P-complete problems wereestablished in the early 1970s [136, 137, 164]. Two recently published lists of such problems[110, 194] together contain around 250 problems. Those interested in P-completeness resultsare strongly encouraged to consult [110]. Two very simple P-complete problems are thefollowing.Subset ClosureGiven: A �nite set X, a binary operation � on X, a subset S � X, and anelement x 2 X.To determine: Whether x is contained in the smallest subset of X which con-tains S and is closed under �.Monotone Circuit Value Problem [102]Given: A single-output Boolean circuit with f^;_g gates, and a set of valuesfor the inputs.To determine: The output.Some other examples of P-complete problems are:Evaluation of expressions and programs [102, 182, 245]: Planar circuit valueproblem, arithmetic circuit value problem, type inference, deadlock detection.Logic [78, 143, 279]: Uni�cation, propositional Horn clause satis�ability, pathsystems, context-free grammar membership.Algebra: Finite algebra, generalised word problem, subgroup equality, subgroupisomorphism, group rank.Arithmetic [146]: Iterated mod.Matrices [262]: Gaussian elimination with partial pivoting.Graphs [104]: Maximum ow, lexicographically �rst maximal independent set,lexicographically �rst maximal path, lexicographically �rst depth-�rst search or-dering, high degree subgraph, minimum degree elimination order.Combinatorial optimisation [75, 154]: Linear programming, linear inequali-ties, �rst �t decreasing bin packing, nearest neighbour travelling salesman heuris-tic, two-player game.Geometry [25]: Plane sweep triangulation, visibility layers.Some simple examples of problems in P which are not currently known to be in NC or tobe P-complete are the following: 349



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGInteger GCDGiven: Two n-bit positive integers a; b.To determine: GCD(a; b)Relative PrimenessGiven: Two n-bit positive integers a; b.To determine: Whether a; b are relatively prime.Stable MarriageGiven: n men and n women plus a list of marital preferences for each person.To determine: n marriages that will stand the test of time.Ray TracingGiven: A set of n mirrors of lengths l1; l2; : : : ; ln and their placements, a sourceS and the trajectory of a single beam emitted from S, a designated mirror M .To determine: If M is hit by the beam. At the mirrors the angle of incidenceof the beam equals the angle of reection.Serna and Spirakis [237, 238, 239] have investigated the extent to which solutions to im-portant P-complete problems such as linear programming, maximum ow and high degreesubgraph can be approximated by fast, e�cient PRAM algorithms if P 6= NC.2.16. Parallel E�ciencyMatrix multiplication and the algebraic path problem are two fundamental computationalproblems which have fast NC algorithms. A large number of important problems in P canbe shown to be in NC by a reduction to one of these two problems. (In the case of reductionsto the APP, these are usually reductions to the transitive closure instance of that problem.)Unfortunately, many of the parallel algorithms so produced are extremely ine�cient in termsof the number of processors required. For example, many problems on graphs with v verticesand e edges can be solved sequentially in time O(v + e) or O((v log v) + e). For a numberof these problems, one can obtain a parallel algorithm with time complexity O(log2v), butthe algorithm requires M(v) processors, where M(v) is the sequential complexity of v � vmatrix multiplication. As noted earlier, the best known upper bound on M(v) is O(v2�376)[65] and we know that it cannot be less than proportional to v2. Thus we have a number offast PRAM algorithms for which the processor-time product is much greater than the timerequired to solve the problem by a sequential algorithm. To produce fast practical parallelalgorithms for such problems we must avoid the brute force use of matrix multiplication andtransitive closure on dense matrices. This di�culty has come to be known as the matrixmultiplication / transitive closure bottleneck. It is particularly serious in applications whereone is dealing with highly sparse matrices or graphs. In such cases, by embedding theproblem in one involving dense matrices one may produce a theoretically fast algorithm, butit is unlikely to be of much practical value. In the last few years, substantial progress hasbeen made on overcoming this bottleneck. A number of important new PRAM algorithmsfor sparse matrix and graph problems have been developed which are very e�cient in theiruse of processors [68, 98, 99, 100, 114, 132, 144, 160, 162, 203, 244, 252].As we have seen, the robustness of the PRAM model and the class NC has permittedthe development of a rich theory of parallel algorithms and their complexity. However, the350



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGabove considerations show that a naive preoccupation with NC may not result in e�cientparallel algorithms for practical implementation. Probing NC further, it is not even clearthat the class captures the informal notion of \problems which are amenable to parallelsolution". Vitter and Simons [268] have shown that some P-complete problems may besolved by parallel algorithms which are in a very reasonable sense, e�cient. On the otherhand, a problem such as searching an ordered list, which runs in logarithmic sequential time,is in NC, irrespective of the existence of e�cient parallel algorithms for that problem. Infact, searching does not admit e�cient parallel algorithms.As noted in [263], e�ciency is a prime consideration in the design of parallel algorithms:one would like to solve a problem roughly p times faster when using p processors. This con-sideration is missing from the de�nition of NC, instead the emphasis of NC theory is simplyon the development of parallel algorithms which have polylogarithmic time complexity. In[161], Kruskal, Rudolph and Snir develop an alternative set of complexity classes for PRAMcomputations, and demonstrate that they provide an equally robust framework for studyingparallel algorithms and complexity, but one which is more relevant in the context of practicalparallel computing. Their emphasis is much more on the performance of a parallel algorithmrelative to the best known sequential algorithm for the same problem. In describing the ap-proach of [161] we will use the following notation. For a given problem, S(n) will denote thesequential running time, T (n) the parallel running time, and P (n) the number of processors.One very weak requirement, in terms of parallel performance, would be that the parallelalgorithm demonstrate some unbounded speedup, i.e. limn!1T (n)=S(n) = 0. A parallelalgorithm for which T (n) = O(n=loglog n) when S(n) = O(n) would satisfy this condition.That kind of small improvement is unlikely to be su�cient in many cases. We are morelikely to want to claim that a signi�cant reduction in running time can be achieved throughthe use of parallelism, i.e. that T (n) is a fast decreasing function of S(n). The two obviouschoices for such a function are captured in the following de�nition.De�nition 2.1 A parallel algorithm is polynomially fast if T (n) = O(S(n)�) for some � < 1,and it is polylogarithmically fast if T (n) = O(logkS(n)) for some �xed k.Reduction in running time has a cost. The number of processors must increase as fast asthe speedup; generally it increases faster. The ine�ciency of a parallel algorithm is theratio T (n) � P (n)=S(n), i.e. the ratio between the time-processor product for the parallelalgorithm and the number of operations performed by the sequential algorithm.De�nition 2.2 A parallel algorithm has constant ine�ciency if T (n)�P (n) = O(S(n)), ithas polylogarithmically bounded ine�ciency if T (n) � P (n) = O(S(n) logkS(n)) for some�xed k, and it has polynomially bounded ine�ciency if T (n) � P (n) = O(S(n)k) for some�xed k.Six interesting classes can be obtained by combining the two requirements on speedup withthese three constraints on ine�ciency.Polylog Fast Poly FastConstant Ine�. ENC (E�cient, NC fast) EP (E�cient, Parallel)Polylog Ine�. ANC (Almost e�cient, NC fast) AP (Almost e�cient, Parallel)Poly Ine�. SNC (Semi e�cient, NC fast) SP (Semi e�cient, Parallel)351



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGKruskal, Rudolph and Snir [161] classify a large number of important problems within thisframework.ENC: Sorting, merging, selection, pre�x sums, polynomial evaluation, expressionevaluation, fast Fourier transform, connected and biconnected components ofdense graphs.EP: Various dense graph computations (strongly connected components, singlesource shortest paths, minimum cost spanning tree, directed graph reachability),monotone circuit value problem.ANC: Connectivity and biconnectivity of sparse graphs with e = O(v) edges.SP: Depth-�rst search of undirected graphs, weighted bipartite matching, owsin 0� 1 networks.2.17. Communication ComplexityIn discussing the complexity of PRAM algorithms we have used the two standard complexitymeasures, namely parallel time complexity and number of processors. For the circuit model,parallel time complexity corresponds to the depth of the directed acyclic graph (dag), andfor the comparison network model it corresponds to the number of levels in the network. Inthis section we consider the communication complexity of PRAM algorithms in a simpli�edsetting �rst proposed by Papadimitriou and Ullman [204].We model the computational problem to be solved as a dag, with nodes corresponding tothe functions computed and arcs corresponding to functional dependencies. In most practicalsituations, the development of an appropriate dag is a major part of the algorithm designprocess but, for simplicity, we will assume it is �xed and given. Our problem is to e�cientlyschedule the dag on a p processor parallel system which may have a large local memory ateach processor, i.e. to assign each node of the dag to one or more processors in the systemwhich will compute that node. (As we shall see, allowing more than one processor to computethe same node can sometimes save communication at no expense in terms of parallel time.)A schedule must satisfy the constraint that a node can only be computed at a given timestep if its predecessors have been computed in previous time steps. We will use t to denotethe total number of time steps required for a schedule.Communication complexity is captured in the following way. If node v depends on nodeu, i.e. there is an arc from u to v in the dag, and u; v are computed in distinct processorsthen that arc is said to be a communication arc. The communication complexity c of a givenschedule is simply the number of communication arcs in the dag. This measure captures animportant practical cost in the implementation of parallel algorithms on a multiprocessorsystem, i.e. the total message tra�c generated.Example. Consider the (2� 2 diamond) dag on vertices fv0;0; v0;1; v1;0; v1;1g which has thefour arcs f<v0;0; v0;1>;<v0;1; v1;1>;<v0;0; v1;0>;<v1;0; v1;1>g. This can be scheduled in thefollowing way on two processors P0; P1.t P0 P11 v0;02 v0;1 v1;03 v1;1 352



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGgiving a schedule with c = 2; t = 3. The alternative schedulet P0 P11 v0;0 v0;02 v0;1 v1;03 v1;1yields c = 1; t = 3 and gives an example showing that allowing more than one processor tocompute a node can reduce communicationOur main interest is in the tradeo� between parallel time and communication. First wenote that for some simple dags there is no real issue concerning the best way to tradecommunication for time. For example, consider a complete binary tree on n nodes. If weschedule the tree on p processors, p > 1, then we must have t � n=p. As each processor,other than the one which computes the root, must compute a node value required by someother processor, we have also c � p� 1. Thus, we have ct = 
(n). This lower bound for thecommunication-time product can be easily achieved by a schedule.A more interesting dag is the diamond. The diamond dag is an n� n square mesh rotated45 degrees, where the children of each node are the nodes immediately to the southeast andsouthwest, if they exist. More formally, it is the dag on n2 nodes fvi;j j 0 � i; j � n � 1gwhere there is an arc from vi;j to vi;j+1 and from vi;j to vi+1;j, where those nodes exist. Thediamond dag arises in a number of important dynamic programming algorithms. It turnsout that the diamond does not share with the binary tree the nice property that the bestlower bounds on time and communication can be simultaneously achieved. Rather, thereis a lower bound on the product ct that is stronger than what is implied by the best lowerbounds on c and t individually.If we schedule an n�n diamond on p processors, p � n, then we must have t � n2=p. Thislower bound on parallel time is easily matched by a fast \stripes" schedule in which processork, 0 � k � p�1, computes nodes vi;j, for all kn=p � i � ((k+1)n=p)�1 and 0 � j � n�1.For this schedule we have c = O(np). Now, let us consider a lower bound on communication.If we divide the nodes of the dag evenly among the p > 1 processors, then each will computen2=p nodes, and it is not hard to show that there must be among the arcs on the nodescomputed by any one of these p processors at least (n2=p)1=2 = n=p1=2 communicationarcs. Thus, we have c = 
(np1=2). This lower bound on communication is easily matched bya schedule in which each processor computes a contiguous (n=p1=2) � (n=p1=2) subdiamondof the dag, but for this method we have a rather higher parallel time of O(n2=p1=2). Wehave described two distinct parallel schedules for the n � n diamond, and have shown thatone of them optimises time, while the other optimises communication. For both of theseschedules we have ct = O(n3). Papadimitriou and Ullman [204] have shown that this boundon the communication-time product is, in fact, optimal to within a constant factor. Thisresult demonstrates that there is an important tradeo� between communication and paralleltime for the scheduling of the diamond dag on a multiprocessor. Papadimitriou and Ullmanalso studied a tradeo� between parallel time and communication delay for the diamond dag.The communication delay d of a scheduled dag is de�ned to be the maximum number ofcommunication arcs on any directed path in the dag. In [204] it is shown that for the n� ndiamond, (d+ 1)t = 
(n2).A number of other interesting communication-time tradeo� results have been obtained.Klawe and Paterson (see [204]) have shown a ct = 
(n4) lower bound for the dag where the353



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGchildren of node vi;j are all the nodes vk;j where i < k, and all the nodes vi;l where j < l.This dag arises in many important dynamic programming problems, and can be computedin O(n3) sequential time. Andivahis [24] has improved this tradeo� result to c2t = 
(n7).Jayasimha and Loui [131] show a ct = 
(n3) tradeo� for a dag that corresponds to thesolution of a triangular system of linear equations. Afrati et al. [4] show that the problem of�nding, for a given dag, a schedule which minimises time, and also minimises communicationas a secondary criterion, is NP-complete, even if the dag is a tree, and the number ofprocessors to be used is either given or open (the problem can be solved in polynomial timeif the amount of communication is �xed.) Papadimitriou and Yannakakis [205] develop apolynomial algorithm which, for any dag, calculates within a factor of two the optimumweighted sum t+ �d, for any � , when no bound on the number of processors is speci�ed. In[140], it is shown that if � is a �xed integer, then a dynamic programming approach can beused to obtain a polynomial time algorithm for solving the scheduling problem exactly.Aggarwal, Chandra and Snir [7] have studied a model called the local memory PRAM,or LPRAM, which also captures both the communication and computation requirementsof PRAM algorithms in a convenient way. An LPRAM is a CREW PRAM in which eachprocessor is provided with an unlimited amount of local memory. Processors can simultane-ously read from the same location in the global memory, but two or more are not allowedto simultaneously write into the same location. The input variables are initially available inthe global memory, and the outputs must also be eventually there. The multiprocessor is asynchronous MIMD machine. In order to model the communication delay and computationtime, it is convenient to restrict the machine such that, at every time step, the processorsdo one of the following:In one communication step, a processor can write, and then read a word fromglobal memory.In a computation step, a processor can perform a simple operation on at mosttwo values that are present in its local memory.A computation is represented as a dag, and a schedule for a dag consists of a sequence ofcomputation steps and communication steps. At a computation step each processor mayevaluate a node of the dag; this evaluation can only take place at a processor when its localmemory contains the values corresponding to all of the incoming arcs. After the computa-tion step is completed the values for the outgoing arcs are held in the local memory. Ata communication step, any processor may write into the global memory any value that ispresently in its local memory, and then it may read into its local memory a value from theglobal memory.Example. Consider the nine-node dag with arcs f<a; c>;<a; d>;<a; e>;<a; f>;<b; c>;<b; d>;<b; e>;<b; f>;<c; g>;<d; g>;<e; h>;<f; h><g; r>;<h; r>g. This can be sched-uled to run on a four processor LPRAM in �ve communication steps and three computationsteps as follows.Comm. step 1 : P1; P2; P3; P4 read a.Comm. step 2 : P1; P2; P3; P4 read b.Comp. step 1 : P1; P2; P3; P4 compute c; d; e; f respectively.Comm. step 3 : P2; P4 write d; f respectively. P1; P3 read d; f respectively.354



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGComp. step 2 : P1 computes g, P3 computes h.Comm. step 4 : P3 writes h, P1 reads it.Comp. step 3 : P1 computes r.Comm. step 5 : P1 writes r.The dag can also, for example, be computed on a two processor LPRAM in four com-munication steps and four computation steps, or on a single processor LPRAM in threecommunication steps and seven computation steps. Note that the minimum communicationdelay (number of communication steps) and the minimum computation time (number ofcomputation steps) may not be achievable by the same schedule.Aggarwal, Chandra and Snir [7] show that two n � n matrices can be multiplied inO(n3=p) computation time and O(n2=p2=3) communication delay using p processors, forp � n3=log3=2n, and that these bounds are optimal. They also show that any algorithmwhich uses only binary comparisons and sorts n elements requires a communication delay of
((n log n)=(p log (n=p))) for 1 � p � n, and also that this lower bound can be achievedby an algorithm with O((n log n)=p) computation time. Other problems considered includecomputing an n-point FFT graph, computing binary trees, and computing the diamond dag.3. Special Purpose Parallel ComputingWe noted in the introduction to this paper that no single model of parallel computationhad yet come to dominate developments in parallel computing in the way the von Neumannmodel has dominated sequential computing [84, 258, 259]. Instead we have a variety ofmodels such as VLSI systems, systolic arrays and distributed memory multicomputers, inwhich the careful exploitation of network locality is crucial for algorithmic e�ciency. Inthe di�erent types of system it manifests itself in di�erent ways. In a VLSI system, adesign with good network locality will have short wires, and hence will require less area.An e�cient systolic algorithm will have a simple, regular structure and use only nearestneighbour communication. An e�cientmulticomputer algorithmwill be one which minimisesthe distance that messages have to travel in the network by careful mapping of the virtualprocess structure onto the physical processor architecture. Of course, an e�cient algorithmfor, say, a hypercube multicomputer will not necessarily perform well when run on, forexample, a 2D array multicomputer with the same number of processors. We will use thegeneric term \special purpose" to refer to this type of parallel computing.In a related paper [187], we describe a number of aspects of the work which has been donein recent years on the design, analysis, implementation and veri�cation of special purposeparallel computing systems. The volume of published material on these topics is huge. Along, but by no means complete, bibliography is given at the end of [187]. Special purposeparallel systems are particularly appropriate in application areas where the goal of achievingthe best possible performance is muchmore important than that of achieving an architecture-independent design. Some examples of such areas are: digital signal processing (�ltering,transforms), image processing, computer vision, mobile robot control, particle simulation,cellular automata / lattice gas computations, dense matrix computations, communicationsand cryptography, speech recognition, computer graphics, game playing. For more examples,see [187].The range of possible technologies for the development of such systems is extensive, varied,and growing. The following is a representative sample of those in use today.355



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGVLSI systems (custom VLSI chips, �eld-programmable gate arrays)Systolic architectures (application speci�c arrays, programmable systolic archi-tectures)Cellular automata machinesMulticomputers (2D and 3D arrays, pyramids, fat trees, hypercubes, butteriesetc.)Neural systems (VLSI neural networks, analog VLSI systems)On the technological horizon we have the prospects of various exotic, massively parallelsystems such as lattice gas machines, quantum dot arrays, and various types of optical andholographic systems.We will not pursue the fascinating world of special purpose parallel computing furtherin this paper. We simply note that, in the next few years, we will probably start to seea much sharper distinction between the two �elds of special purpose parallel computingand general purpose parallel computing than at present. Those primarily concerned withachieving the maximum possible performance for a speci�c application (at any cost?) arelikely to move more and more towards highly specialised architectures and technologies inthe pursuit of performance gains. In contrast, those for whom it is important to achievearchitecture-independence and portability in their designs, will increasingly seek a robustand lasting framework within which to develop their designs. In the remainder of this paperwe will describe some ideas which have as their goal, the development of such a robustframework. As we shall see, the use of advanced technologies such as optics may also havean important role to play in achieving the communications performance required for e�cientgeneral purpose parallel computing systems. In this setting, the model is the central drivingforce and the optical hardware is simply one possible means of implementing the model. Thiscan be contrasted with work on the development of special purpose optical parallel systems,where one directly exploits the capabilities of optical technology at the algorithmic level toproduce, for example, very high performance image processing systems, signal processors, orneural networks.4. General Purpose Parallel ComputingWe have seen that an idealised model of parallel computation such as the PRAM can pro-vide a robust framework within which to develop techniques for the design, analysis andcomparison of parallel algorithms. A major issue in theoretical computer science since thelate 1970s has been to determine the extent to which the PRAM and related models can bee�ciently implemented on physically realistic distributed memory architectures. A numberof new routing and memory management techniques have been developed which show thate�cient implementation is indeed possible in many cases. In this section we describe some ofthe results which have been obtained, and discuss their signi�cance for the future of generalpurpose parallel computing. Before doing so, we will give an informal description of whatwe mean by a general purpose parallel computer (GPPC).A GPPC consists of a set of general purpose microprocessors connected by a communica-tions network. The memory is fully distributed, with each processor having its own physicallylocal memorymodule. The GPPC supports a single address space across all processors by al-locating a part of each module to a common global memory system. Each processor thus has356



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGaccess to its own private address space of local variables, and to the global memory system.The purpose of the communications network is simply to support non-local memory accessesin a uniformly e�cient way through message routing. By uniformly e�cient, we mean thatthe time taken for a processor to read from, or write to, a non-local memory element in an-other processor-memory pair should be independent of which physical memory module thevalue is held in. The algorithm designer / programmer should not be aware of any hierarchi-cal memory organisation based on the particular physical interconnect structure currentlyused in the communications network. Instead, performance of the communications networkshould be described only in terms of its global properties, e.g. the maximumtime required toperform a non-local memory operation, and the maximum number of such operations whichcan simultaneously be in the network at any time.A GPPC, as described, di�ers from a PRAM in that it has a two-level memory organisation.Each processor has its own physically local memory; all other memory is non-local andaccessible at a uniform rate. In contrast, the PRAM has a one-level memory organisation;all memory in a PRAM is non-local. The GPPC and PRAMmodels are similar to the extentthat they both have no notion of network locality. The GPPC di�ers from most currentdistributed memory multicomputers, e.g. hypercubes, in having no exploitable networklocality, but is similar in that it is constructed as a network of processor-memory pairs.One formal model which would correspond reasonably closely to the (informally de�ned)GPPC would be a distributed memory multicomputer with full connectivity, i.e. with aninterconnection structure corresponding to the complete graph [147]. Another is the bulk-synchronous parallel computer [258] which we will describe later in the paper.Our purpose in giving this informal description of what we mean by a general purposeparallel computer is simply to describe, in very general terms, the main characteristics thatwe would expect any such computer to have. We have placed emphasis on the communication/ memory organisation of such a machine. However, to support a coherent global memoryit would also be necessary to provide support for features such as processor synchronisation.The e�cient implementation of a single address space on a distributed memory architecturerequires an e�cient method for the distributed routing of read and write requests, and ofthe replies to read requests, through the network of processors. In the following section weshow how the idea of randomising can be used to produce an e�cient distributed routingscheme for this problem.4.1. Randomised RoutingA distributed memory multicomputer can be thought of as having p processor-memory pairslocated at distinct nodes of a p-node graph. Each processor can send packets to, and receivepackets from, processors at adjacent nodes in the graph. Each edge of the graph can transmitone packet of information in unit time, and has a queue for storing packets that have to betransmitted along it.A large number of graphs have been proposed as interconnection networks for such multi-computers. Two important parameters of any such graph are its degree, i.e. the maximumnumber of edges incident at any node, and its diameter, i.e. the maximum distance betweenany pair of nodes, where the distance between two nodes is the length of a shortest pathbetween them. If implemented using conventional VLSI technology, a graph with low degreeis likely to have advantages in terms of physical packaging. The advantage of using a graph357



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGwith small diameter is, of course, that it will permit a packet to be sent quickly betweenany two nodes in the network. (The constraints of VLSI technology and, more generally, ofthree dimensional space, imply that some low diameter networks cannot be realised withouthaving long wires. We will return to this wiring problem later in the paper and show howoptics may provide a solution.) Some of the graphs which have been proposed as intercon-nection networks on p nodes are listed in the following table, together with their degree anddiameter. Name Degree Diameter1D array (ring) 2 p=2Shu�e-exchange 3 2 log pCube-connected-cycles 3 (5=2) log p2D mesh of trees 3 2 log p3D mesh of trees 3 2 log p2D array (toroidal) 4 �(p1=2)Buttery (wrapped) 4 2 log pde Bruijn graph 4 log p3D array (toroidal) 6 �(p1=3)Pyramid 9 log pHypercube log p log pA large amount of work has been done in recent years on the development of e�cient routingmethods for such networks [167, 168, 169, 171, 259], on the e�cient embedding of one networkin another [122, 134, 167, 168, 169, 227], and on the demonstration of work-preservingemulations of one network by another [156, 167, 168, 231]. We will focus our attentionhere on the routing problem.We consider the problem of packet routing on a p-processor network. Let h-relation denotethe routing problem where each processor has at most h packets to send to various points inthe network, and where each processor is also due to receive at most h packets from otherprocessors. We are interested in the development of distributed routing methods in whichthe routing decisions made at a node at some point in time are based only on informationconcerning the packets that have already passed through the node at that time. In thenondistributed case where global information is available everywhere, the problem of routingis easier and well understood.Let us �rst consider deterministic methods for distributed routing. We de�ne a routingmethod to be oblivious if the path taken by each packet is entirely determined by its sourceand destination. (Note that the use of the term oblivious here is slightly di�erent fromits use in the context of comparison networks or circuits.) It is known [45, 142] that, fora 1-relation no deterministic oblivious routing method can do better than 
(p1=2=d) timesteps, in the worst case, for any degree d graph. The most obvious examples of deterministicoblivious approaches are greedy methods in which one sends all packets to their destinationby a shortest path through the network. For 1-relations, the performance of greedy routingon a buttery can be summarised as follows. All 1-relations can be realised in O(p1=2)steps, which, as we have observed, is an optimal worst case bound for any such �xed degreenetwork. A large number of 1-relations which arise in practical parallel computation, e.g.the bit-reversal permutation and the transpose permutation, provably require �(p1=2) steps.What about the \average case"? De�ne a random 1-mapping to be the routing problem358



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGwhere each processor has a single packet which is to be sent to a random destination. Greedyrouting of a random 1-mapping on a buttery will terminate in O(log p) steps. Moreover,the fraction of all random 1-mappings which do not �nish in O(log p) steps is incrediblysmall, despite the fact that most of the 1-relations which seem to arise in practice do not�nish in this time. We can probably conclude from these results that \typical" routingproblems, in a practical sense, is a rather di�erent concept from \typical" routing problemsin a mathematical sense. The performance of greedy routing on a hypercube is very similarto the case of the buttery. All 1-relations can be realised in O(p1=2=log p) steps, whichis an optimal worst case bound for any log p degree network. For the average case, whereeach packet has a random destination, greedy routing will terminate in O(log p) steps. Inthe case of the hypercube, there are exponentially many shortest paths for a greedy methodto choose from, but even randomising among these choices still gives no better than O(p�),� > 0, steps for many 1-relations.Another possible approach to deterministic routing is to use a sorting network of lowdepth. For example, from Batcher's odd-even merge sorting network [32, 155] we can obtainan interconnection network by associating each line in the sorting network with a node in theinterconnection network, and each comparison element in the sorting network with an edgein the interconnection network. In this way, we can obtain a p-node graph of degree O(log2p)and diameter O(log2p). Any 1-relation routing problem can be realised in O(log2p) stepsby using the associated sorting network as a means of \sorting" the packet addresses. Notethat this method is deterministic and requires no queueing. By using the sorting networkof Ajtai, Komlos and Szemeredi [11], or its re�nement by Paterson [207], we can improvethis result to obtain degree, diameter, and number of time steps O(log p). However, thecomplex structure of the networks involved, and the very large constant factors hidden inthe O(log p) bounds, rule out this approach as a practical option, at least for the presenttime.We have seen that for the buttery and hypercube, the performance of greedy routingon random 1-mappings is much better than on \worst case 1-relations", such as the bit-reversal permutation in the case of the buttery. Around 1980, Valiant made the simple andstriking observation that one could achieve e�cient distributed routing, in terms of worstcase performance, if one could reduce a 1-relation to something like the composition of tworandom 1-mappings. The resulting technique which emerged from this observation has cometo be known as two-phase randomised routing [12, 167, 212, 253, 256, 257, 259, 260]. Usingthis approach, a 1-relation is realised by initially sending each packet to a random node inthe network, using a greedy method. From there it is forwarded to the desired destination,again by a greedy method. Both phases of the routing correspond closely to the realisationof a random 1-mapping. Extensive investigation of this method, in terms of the numberof steps required, size of bu�ers required etc., has shown that it performs extremely well,both in theory and in practice. The main theoretical results which follow from the use ofrandomised routing are summarised in the following two theorems.Theorem 4.1 With high probability, every 1-relation can be realised on a p processor cube-connected-cycles, buttery, 2D array and hypercube in a number of steps proportional to thediameter of the network.For the �xed degree networks in Theorem 4.1, this result is essentially optimal. For the(log p)-degree hypercube, the following stronger result can be obtained.359



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGTheorem 4.2 With high probability, every (log p)-relation can be realised on a p processorhypercube in O(log p) steps.Proofs of Theorems 4.1 and 4.2 can be found in [259]. Randomised routing can also be usedto achieve good worst case performance on networks such as the shu�e-exchange graph [12]and fat trees [109, 172].An interesting alternative to using randomised routing on a standard, well de�ned networksuch as a buttery, is to use deterministic routing on a randomly wired network. In [170, 254]it is shown that a simple deterministic routing algorithm can be used to realise a 1-relationin O(log p) steps on a randomly wired, bounded degree network known as a multibuttery.An important feature of multibutteries is that they have powerful expansion properties. Inaddition to permitting fast deterministic routing, such expander graphs [13, 14, 16, 141, 177,255] also have very strong fault tolerance properties.The techniques and results that we have described for various types of randomised routingshow convincingly that for the problem of routing h-relations at least, there are a variety oftheoretically and practically e�cient methods which can be used. In order to show that wecan e�ciently simulate a shared address space on a distributed memory architecture we alsoneed to show that we can deal with the problem of \hot spots", i.e. where a large numberof processors simultaneously try to access the same memory module.4.2. HashingIn theoretical terms, one very e�ective method of uniformly distributing memory referencesis to hash the single address space. The hash function has, of course, to be e�cientlycomputable. Hash functions for this purpose have been proposed and analysed by Mehlhornand Vishkin [188]. They suggest using an elegant class of functions with some provablydesirable properties: the class of polynomials of degree O(log p) in arithmetic modulo m,where p is the number of processors and m is the total number of words in the sharedaddress space. As in the case of randomised routing, the idea of hashing the address spacein this way has been subjected to extensive scrutiny in terms of both its theoretical and itspractical performance. All of the available evidence suggests that it works extremely wellin both respects. In fact, even constant degree polynomial hash functions, e.g. degree two,seem to work well in practice. (Recent results [73, 74] show that linear hash functions havecertain limitations, at least in a theoretical sense, but that cubic hash functions work well.The results also suggest that quadratic hash functions may have some shortcomings.) Oneadditional advantage of using a hashed address space is that we do not need then to resortto randomising to avoid bottlenecks in packet routing, simple deterministic methods willsu�ce.Detailed technical accounts of the role of hashing in achieving e�cient general purposeparallel computing can be found in [145, 147, 220, 221, 242, 258, 259]. We will mentiononly the following two results which demonstrate that distributed memory architecturescan e�ciently simulate PRAMs. Let EPRAM(p; t) [ CPRAM(p; t), HY PERCUBE(p; t),COMPLETE(p; t) ] denote the class of problems which can be solved on a p processorEREW PRAM [ CRCW PRAM, hypercube, completely connected network, respectively ] int time steps. 360



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGTheorem 4.3 (Valiant [259])With high probability, EPRAM(p log p; t=log p) � HY PERCUBE(p; t).Theorem 4.4 (Karp, Luby and Meyer auf der Heide [147])With high probability, CPRAM(p log log p log�p; t) � COMPLETE(p; t log log p log�p).Theorems 4.3 and 4.4 show that PRAM algorithms with a degree of parallel slackness canbe implemented on distributed memory architectures in a way which is optimal in terms ofthe processor-time product.De�nition 4.5 An m processor algorithm, when implemented on an n processor machine,where n � m, is said to have a parallel slackness factor of m=n for that machine.Parallel slackness is an idea of fundamental importance in the area of general purpose parallelcomputing. If parallel algorithms and programs are designed so that they have more paral-lelism than is available in the machine, then the available parallel slackness can be e�ectivelyexploited to hide the kind of network latencies one �nds in distributed memory architectures.The only requirement is that the processors provide e�cient support for multithreading andfast context switching [44, 228]. Latency tolerance via multithreading is likely to be moree�ective on large scale general purpose parallel computing systems than the use of complexcaching schemes for latency reduction [111, 175].The idea of exploiting parallel slackness can even be carried over into the area of sequentialcomputing. Much e�ort in recent years has been devoted to the development of complexheuristic techniques for the e�cient prefetching of values from memory in sequential com-putations [50, 139, 195]. A radical alternative to this approach is, instead, to design parallelalgorithms for implementation on sequential machines. The parallel slackness of the algo-rithm can then be exploited to achieve e�cient prefetching. For more on this topic, see[265].We have seen then that by achieving a degree of parallel slackness in program designsone can provide signi�cant opportunities for the e�ective scheduling of those programs, bythe programmer or by a compiler, to hide the various kinds of latencies which arise in bothsequential and parallel computing. This idea of exploiting parallel slackness, or overdecompo-sition, is not new. It was, for example, a central idea in the early HEP parallel architecture[243], and has been used in its successors, Horizon and Tera [19]. In recent years it hascome to be recognised as crucial, not only for e�cient implementation of PRAM like models[147, 258, 259], but also for dataow models [201]. The prospects for \autoparallelising"sequential code, which may be regarded as the extreme opposite of this approach, appearvery bleak indeed.The above analysis strongly supports the general principle that one should aim, at all times,to produce algorithms and programs which have more parallelism in them than is availablein the machine (subject, of course, to the kinds of constraints on parallel e�ciency whichwere discussed earlier in the paper.) In the future we can expect to see the developmentof a variety of programming languages for general purpose parallel computing. A clearmessage from our discussion is that such languages must permit, and indeed encourage, thedevelopment of programs which demonstrate a high degree of �ne grain concurrency.361



McCOLL : GENERAL PURPOSE PARALLEL COMPUTING4.3. CombiningIn the previous sections we have been concerned with the problems of implementing theweakest PRAM model, the EREW PRAM, on a distributed memory architecture. In prac-tical parallel programming it is often convenient to permit concurrent access to a memorylocation, as in the CRCWPRAMmodel. An important practical case is that of broadcasting,where all processors simultaneously require the value of a single memory location.One approach to the implementation of concurrent memory access is to use combiningnetworks [107], i.e. networks that can combine and replicate messages in addition to deliver-ing them in a point-to-point manner. The Fluent machine of Ranade [220, 221] provides anexcellent example of how a CRCW PRAM can be e�ciently implemented on a distributedmemory architecture equipped with a combining network. The interconnection network ofthe Fluent machine is a buttery. Let CBUTTERFLY (p; t) denote the class of problemswhich can be solved on a p processor buttery with a combining network in t time steps.Theorem 4.6 (Ranade [221])With high probability, CPRAM(p; t) � CBUTTERFLY (p; t log p).The theorem is established by showing that a p-processor Fluent machine can emulate ap-processor CRCW PRAM with only a slowdown of O(log p), i.e. each parallel step of thePRAM requires at most O(log p) steps on the Fluent machine, with high probability. Thesize of bu�ers required at each node of the network is constant. The following is a verybrief account of the main ideas used in the emulation. The address space of the PRAM ishashed onto the memory modules of the Fluent machine using a hashing function chosen atrandom from a (log n)-universal class of hash functions [53, 273]. Suppose several processorswish to read the same memory location at the same time. Each one sends a message tothe appropriate memory module along some path in the network. These paths will intersectto form a tree and there is, therefore, no need to send more than one request along anybranch of the tree. A request simply waits at each node until (i) another request to the samedestination arrives on the other input to the node, in which case the node combines the twoand forwards the result along the tree, or (ii) the node determines that no future requestsarriving on the other input will have the same destination. By always transmitting messagesin sorted order of their destinations, and using \ghost messages" where necessary, one canachieve the above emulation result.Concurrent access to shared variables in the Fluent machine is based on the multipre�xprimitive. It has the formMP (A; v;�) where A is a shared variable, v is a value, and � is abinary associative operator. At any time step a processor can execute a multipre�x operation,with the constraint that if processors Pi and Pj execute MP (A; vi;�i) and MP (A; vj;�j),then �i = �j. The semantics of the multipre�x operation is de�ned as follows.De�nition 4.7 At time step T , let PA = fp1; p2; : : : ; pkg be the set of processors referringto variable A, such that p1 < p2 < � � � < pk. Suppose that pi 2 PA executes instructionMP (A; vi;�). Let a0 be the value of A at the start of time step T . Then, at the end of timestep T , processor pi will receive the value a0� v1� � � �� vi�1 and the value of variable A willbe a0 � v1 � � � � � vk.Thus, when a set of processors perform a multipre�x operation on a common variable, theresult is the same as if a single pre�x operation were performed with the processors orderedby their index. 362



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGA parallel architecture which is very close in design to the Fluent machine is currentlyunder construction at the University of Saarbr�ucken [1, 2].Valiant [258] has investigated the extent to which concurrent access to shared variables canbe provided without the use of combining networks. Working with the BSP model, he hasshown that if one has enough parallel slackness, then one can support concurrent accessesin software on networks which have only point-to-point communication, with only constantslowdown, by using fast integer sorting methods. In the next section we describe the BSPmodel of parallel computation proposed by Valiant.4.4. The BSP ModelFor a detailed account of the model, and of the various routing and hashing results whichcan be obtained for it, the reader is referred to [258]. We concentrate here on presenting aview of (i) how a bulk-synchronous parallel architecture would be described, and (ii) how itwould be used.A bulk-synchronous parallel (BSP) computer consists of the following:a set of processor-memory pairsa communications network that delivers messages in a point-to-point mannera mechanism for the e�cient barrier synchronisation of all, or a subset, of theprocessorsThere are no specialised combining, replication or broadcasting facilities. If we de�ne a timestep to be the time required for a single local operation, i.e. a basic operation on locallyheld data values, then the performance of any BSP computer can be characterised by thefollowing four parameters:p = number of processorss = processor speed, i.e. number of time steps per secondl = synchronisation periodicity, i.e. minimal number of time steps between suc-cessive synchronisation operationsg = (total number of local operations performed by all processors in one second) /(total number of words delivered by the communications network in one second)The parameter l is related to the network latency, i.e. to the time required for a non-localmemory access in a situation of continuous message tra�c. The parameter g correspondsto the frequency with which non-local memory accesses can be made; in a machine with ahigher value of g one must make non-local memory accesses less frequently. More formally,g is related to the time required to realise h-relations in a situation of continuous messagetra�c; g is the value such that an h-relation can be performed in gh steps.A BSP computer operates in the following way. A computation consists of a sequenceof parallel supersteps, where each superstep is a sequence of steps, followed by a barriersynchronisation at which point any memory accesses take e�ect. During a superstep, eachprocessor has a set of programs or threads which it has to carry out, and it can do thefollowing: 363



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGperform a number of computation steps, from its set of threads, on values heldlocally at the start of the superstepsend and receive a number of messages corresponding to non-local read and writerequestsThe complexity of a superstep S in a BSP algorithm is determined as follows. Let L be themaximumnumber of local computation steps executed by any process or during S, h1 be themaximumnumber of messages sent by any processor during S, and h2 be the maximumnum-ber of messages received by any processor during S. The cost of S is then maxfl; L; gh1; gh2gtime steps. (An alternative is to charge maxfl; L+ gh1; L + gh2g time steps for superstepS. The di�erence between these two costs will not, in general, be signi�cant.)The use of the parameters l and g to characterise the communications performance ofthe BSP computer contrasts sharply with the way in which communications performance isdescribed for most distributed memory architectures on the market today. We are normallytold many details about local network properties, e.g. the number of communications chan-nels per node, the speed of those channels, the graph structure of the network etc. The wayin which such descriptions emphasise local properties of the network, rather than its globalproperties, reects the fact that most of those machines are designed to be used in a waywhere network locality is to be exploited. Those customers who have highly irregular prob-lems, for which such exploitation is much more di�cult, are often much less impressed bysuch machines when they are told about the global performance of the network in situationswhere network locality is not exploited.A major feature of the BSP model is that it lifts considerations of network performancefrom the local level to the global level. We are thus no longer particularly interested inwhether the network is a 2D array, a buttery or a hypercube, or whether it is implementedin VLSI or in some optical technology. Our interest is in global parameters of the network,such as l and g, which describe its ability to support non-local memory accesses in a uniformlye�cient manner. As an aside, we note that it might be an interesting and instructive exerciseto benchmark the various parallel architectures available today, in terms of such globalparameters.In the design and implementation of a BSP computer, the values of l and g which can beachieved will depend on (i) the capabilities of the available technology, and (ii) the amountof money that one is willing to spend on the communications network. As the computationalperformance of machines, i.e. the performance captured by p and s, continues to grow, wewill �nd that to keep l and g low it will be necessary to continually increase our investmentin the communications hardware as a percentage of the total cost of the machine. A centralthesis of the BSP and PRAM approaches to general purpose parallel computing is thatif these costs are paid, then parallel machines of a new level of e�ciency, exibility, andprogrammability can be obtained.On the basis of Theorems 4.1 and 4.2 we might expect to be able to achieve the followingvalues of l and g for a p processor BSP computer, by using the network shown.Network l g2D Array O(p1=2) O(p1=2)Buttery O(log p) O(log p)Hypercube O(log p) O(1)364



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGThese estimates are based entirely on the asymptotic degree and diameter properties of thegraph. In a practical setting, the use of techniques such as wormhole routing [69, 167, 234,235], rather than store and forward routing, would also have a signi�cant impact on thevalues of l and g which could be achieved.When g is small, e.g. g = 1, the BSP computer corresponds closely to a PRAM, withl determining the degree of parallel slackness required to achieve optimal e�ciency. For aBSP computer of this kind, i.e. with a low g value, we can use hashing to achieve e�cientmemory management [258]. The case l = g = 1 corresponds to the idealised PRAM, whereno parallel slackness is required.In designing algorithms for a BSP computer with a high g value, we need to achieve ameasure of communication slackness by exploiting thread locality in the two-level memory,i.e. we must ensure that for every non-local memory access we request, we are able to performapproximately g operations on local data. To achieve architecture independence in the BSPmodel, it is therefore appropriate to design parallel algorithms which are parameterisednot only by n, the size of the problem, and p, the number of processors, but also by land g. The following example of such an algorithm appears in [258]. The problem is themultiplication of two n � n matrices A;B on p � n2 processors. The standard O(n3)sequential algorithm is adapted to run on p processors as follows. Each processor computesan (n=p1=2) � (n=p1=2) submatrix of C = A:B. To do so it will require n2=p1=2 elementsfrom A and the same number from B. For each processor we thus have a computationrequirement of O(n3=p) operations, since each inner product requires O(n) operations, anda communications requirement of O(n3=p) for the number of non-local reads, since p � n2.If we assume that both A and B are distributed uniformly amongst the p processors, witheach processor receiving O(n2=p) of the elements from each matrix, then the processors cansimply replicate and send the approprate elements from A and B to the 2p1=2 processorsrequiring them. Therefore, we also have a communications requirement of approximatelyn2=p1=2 = O(n3=p) for messages sent. We thus have a total parallel time complexity ofO(n3=p), provided l = O(n3=p) and g = O(n=p1=2). An alternative algorithm, given in[7], that requires fewer messages altogether, can be implemented to give the same optimalruntime, with g as large as O(n=p1=3) but with l slightly smaller at O(n3=p log n).The BSP model can be regarded as a generalisation of the PRAM model which permits thefrequency of barrier synchronisation to be controlled. By capturing the network performanceof a BSP computer in global terms using the values l and g, the model enables us to designalgorithms and programs which are parameterised by those values, and which can thereforebe e�ciently implemented on a range of BSP architectures with widely di�ering l and gvalues. It therefore provides a solution to the problems posed at the start of the paper.We have a simple and robust model which permits both scalable parallel performance and ahigh degree of architecture independence in software. Its simplicity also o�ers the prospectof our being able to develop a coherent framework for the design and analysis of parallelalgorithms.5. Optical CommunicationSimple arguments can be used to show that various low diameter networks, such as thebuttery and the hypercube, cannot be implemented using VLSI technology without havinglong wires for some of the edges in the network. This has led some to conclude that suchnetworks should be replaced by networks such as fat trees [172, 173] which are more e�cient,365



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGin the VLSI model [174, 250, 267], in terms of their use of area or volume.In this section we show that optical communication systems [34, 81] o�er the prospect of adramatic improvement in the e�ciency with which non-local communication can be achieved.We show that a simple (and possibly cheap) optical interconnection architecture based onwavelength division multiplexing can be used (a) to solve the above mentioned VLSI wiringproblem, and (b) to implement an extremely simple and e�cient form of randomised opticalrouting. The results presented in this section are due, in this form, to Rao [222], althoughmost of them are reinterpretations, in terms of optical communication, of known resultsin the theory of parallel computation. The power of optical communication has also beeninvestigated in [21, 86, 118, 209, 258, 259].Rao [222] considers various routing problems on a p1=2 � p1=2 2D array of processors,where the processors on each row of the array are connected by an optical bus, and theprocessors on each column of the array are also connected by such a bus. We thus have 2p1=2buses, each of length p1=2. Each bus uses wavelength division multiplexing (WDM) [76] tosupport simultaneous communication between many disjoint pairs of processors on the samebus. This communications architecture will be referred to as the p processor mesh of buses(MOB). The idea of using a mesh of buses for interconnection was proposed by Wittie [275],and as a basis for optical interconnection networks by Dowd [76].5.1. Solving The VLSI Wiring ProblemTo solve the VLSI wiring problem we need only consider the simplest MOB in which theoptical buses have �xed transmitters and receivers at each processor, i.e. where the trans-mitters and receivers are initially set (o�-line) to achieve a certain communication pattern,e.g. a hypercube, and then remain �xed as that pattern is used. The �rst result shows thatall networks can be emulated on the MOB with an e�ciency related to the degree of thenetwork.Theorem 5.1 Any p processor network N of degree d can be emulated on a p processorMOB so that (i) there are O(d) transmitters/receivers per processor, and (ii) each edge inN is realised by a path of length at most three in the MOB.By an edge in the MOB we mean a channel on one of the buses, and by a path we mean asequence of such edges. Theorem 5.1 is a consequence of the following well known results: (a)any such degree d network has O(d) perfect matchings, (b) each perfect matching correspondsto a 1-relation, and (c) by Hall's Theorem, all 1-relations can be routed (o�-line) in a 2Darray by permuting the packets of the rows, then permuting the packets of the columns, andthen �nally permuting the packets of the rows again. For details of the proof of part (c), see[167]. For networks such as the cube-connected-cycles and the hypercube we can do evenbetter.Theorem 5.2 A p processor cube-connected-cycles network can be emulated on a p processorMOB so that (i) there are O(1) transmitters/receivers per processor, and (ii) each edge inthe cube-connected-cycles is realised by a single edge in the MOB.Theorem 5.3 A p processor hypercube network can be emulated on a p processor MOB sothat (i) there are O(log p) transmitters/receivers per processor, and (ii) each edge in thehypercube is realised by a single edge in the MOB.366



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGTheorems 5.2 and 5.3 follow directly from standard VLSI layouts of those networks.5.2. Randomised Optical RoutingWe now consider a model of optical communication corresponding to the case where the busesin the MOB have tunable transmitters at each processor. Unlike the previous model, we arenow able to dynamically change (on-line) the destination on the bus to which a processorcan send a message. The model of computation is as follows. At any step, a processor cansend a message directly to any other processor on the same bus. A message is successfullyreceived if it was the only message sent to that destination in the step. A processor whichsuccessfully receives a message sends back an acknowledgement. (A single bus version ofthis optical model was investigated in [21].) We now describe a very simple randomisedmethod for routing 1-relations on a MOB with tunable transmitters, which Rao [222] creditsto Leighton and Maggs. The method proceeds in rounds, where each round consists of thefollowing sequence of steps.1. Each processor with a message sends it to a randomly selected position in its row bus.2. Each processor that successfully received a message in step 1 forwards it using itscolumn bus to the correct destination row for that message.3. Each processor that successfully receives a message from step 2 forwards it using itsrow bus to the correct destination for that message.4. For each message that was successfully received in step 3, an acknowledgement is sentto its source along the path it took. (It is easy to show that an acknowledgement getsback to any processor whose message was successfully sent to its destination.)5. When a processor receives an acknowledgement, it does not send the message in laterrounds.Theorem 5.4 With high probability, the above method will route any 1-relation in O(loglog p) steps on a MOB.The O(log log p) upper bound is easily established as follows. Each round takes six commu-nication steps. The probability of a given message colliding with another in the �rst roundis less than 1=e. If we have p=l messages left at the start of some round, then no more thanabout p=l2 of them will be unsuccessful in that round. Therefore, after k rounds we will haveno more than about p=e2k of them left, and thus O(log log p) rounds will be su�cient. Ona completely connected optical network with the same collision rules, the problem of rout-ing a 1-relation can be trivially completed in one step, whereas the above method requiresO(log log p) steps on the MOB. For the problem of routing h-relations, where h is at leastlogarithmic in p, Rao [222] has established the following powerful result.Theorem 5.5 With high probability, any h-relation, with h � log p, can be routed in O(h)steps on a MOB.Therefore, for such larger h-relations, the MOB is as powerful as a completely connectednetwork! For the case where 1 < h < log p, much less is known. In particular, no constanttime method is known for routing a 2-relation on a completely connected optical network.367



McCOLL : GENERAL PURPOSE PARALLEL COMPUTING6. ChallengesIn the previous sections we have seen that there are a variety of theoretically and practi-cally e�cient solutions to the problem of supporting a single address space on a distributedmemory architecture. We have also seen that there are a large number of e�cient, practi-cal shared memory algorithms for important problems. In this section we briey describesome of the main issues which need to be addressed in the future in order to continue thedevelopment of this framework for general purpose parallel computing based on �ne grainconcurrency in a shared address space.6.1. ArchitectureMost distributed memory architectures are based on conventional microprocessors [119, 120,208]. We need alternative processor designs which can support a very large number oflightweight threads simultaneously, and can provide fast context switching, message handling,address translation, hashing etc. [44, 69, 71, 130, 274]. If such designs are not produced thenwe may �nd that the processors, and not the communications network, will be the bottleneckin the system.We need to continue to develop improved networks for communication [69, 76, 170, 209, 222]and synchronisation [40, 138, 159]. There is currently great emphasis in parallel computingon various \Grand Challenge" applications in science and engineering. While not doubtingthe importance of these applications, we would suggest that perhaps the most importantchallenge for parallel architectures at the present time is to develop systems for which global\ine�ciency parameters", such as l and g in the BSP model, are as low as possible. We haveobserved that the use of optical technologies may prove to be extremely important in thisrespect. In focusing our attention on the reduction of global parameters such as l and g, weshould note that it may not necessarily be cost-e�ective to try to obtain the extreme caseof the PRAM, where l and g are both 1. At any given point in time, the capabilities andeconomics of the technologies available will determine the most cost-e�ective values of suchparameters. An important advantage of the BSP model [258] over the PRAM [1, 2, 221] isthat it provides an architecture-independent framework which allows us to take full advantageof whichever values of l and g are the most cost-e�ective at a given point in time.Large general purpose parallel computer systems will inevitably su�er hardware faults ofvarious kinds during their operation. We need to develop e�cient techniques which canprovide a degree of fault tolerance for processors, memories, and communications links. Aninteresting approach to this problem is to use the idea of information dispersal [179, 180, 215],where a space e�cient redundant encoding of data is used to provide secure and reliablestorage of information, and e�cient fault tolerant routing of messages. Other approaches tothe problems of fault tolerance are described in [152, 153, 241].6.2. AlgorithmsAlthough the potential for automating memory management via hashing is a major advan-tage of the BSP model, the BSP algorithm designer may wish to retain control of memorymanagement in the two-level memory to achieve higher e�ciency, e.g. on a BSP computerwith a high value of g. A systematic study of bulk-synchronous algorithms remains to bedone. Some �rst steps in this direction are described in [85, 258].368



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGWe need to continue to investigate the e�ects of hashing on the algorithmic performanceachievable for important computational problems. There is already some theoretical evidenceto con�rm what one might intuitively expect, namely that any negative e�ects of hashing onalgorithmic performance are much less dramatic on problems involving complex sparse irreg-ular data structures, than they are on problems involving simple regular data structures. Itis likely that future developments in most scienti�c and engineering applications will involveproblems on large sparse irregular matrices and graphs, much more than on dense matricesand graphs. It is, therefore, likely that the advantages, in terms of programming simplicity, ofusing hashing will increasingly outweigh any disadvantages. We need to continue to developfast, processor e�cient parallel algorithms for sparse matrix and graph computations.6.3. Languages and SoftwareThe PRAM model was developed to facilitate the study of parallel algorithms and theircomplexity. In that context it has proved to be extremely useful. However, as we havepursued the design and implementation of parallel architectures based on the PRAM model,it has become clear that we have no well developed framework for the programming of sucharchitectures. This can be contrasted with other approaches to general purpose parallelcomputing such as the actor and dataow models, where there has been an intensive e�ortto develop a programming framework, although rather less on the investigation of parallelalgorithms and their complexity. It is vital for the success of the approach described in thispaper that we develop programming languages and methodologies for the kinds of parallelarchitectures proposed. Of the various challenges mentioned, this is perhaps the most im-portant, and in many respects the most di�cult one. The apparent unwillingness of manyprogrammers of parallel machines to use anything other than minor variants of the sequentiallanguages FORTRAN and C is widely perceived to be a major impediment to the continuingdevelopment of parallel computing. Another impediment is, of course, the \dusty decks" ofold FORTRAN codes which many organisations are unwilling, or unable, to abandon. Manynew parallel programming languages have been proposed and rejected over the last decadeor so. Nevertheless, we must continue to seek a programming model which will provide ameans of achieving the architecture-independence sought, while permitting scalable parallelperformance on the kinds of architectures described. Some preliminary work in this directioncan be found in [186]. It is to be hoped that as such a programming framework is developedwe will also be able to provide a strategy for the migration of the dusty decks to the newarchitectures.7. Other ApproachesA large number of approaches are currently being proposed as the basis of a framework forgeneral purpose parallel computing. In this paper, the case for the BSP/PRAM approachhas been presented. In this section we will briey mention some of the other approaches.Perhaps the most conservative of the alternatives is SIMD or data parallelism. Althougha number of interesting algorithms have been developed for such architectures [41, 42, 43,123, 246] , the model does not appear to be su�ciently general, even when extended to itsSPMD form.Another conservative approach is simply to continue with architectures based on messagepassing across a �xed set of channels [124, 125, 135]. Although such a model is adequate369



McCOLL : GENERAL PURPOSE PARALLEL COMPUTINGfor the development of many special purpose parallel systems, and for low level systemsprogramming, it does not appear to o�er enough in terms of architecture-independence.An approach related to message passing which appears to be more attractive is the actormodel [9], which we might think of as message passing using names rather than a �xedset of channels. The names are �rst class objects and can be passed in messages. Thegraph of possible interactions between actors can thus change dynamically. The actor modelprovides a convenient framework for concurrent object-oriented programming [10]. Dallyhas developed an interesting parallel architecture, called the J-Machine [69, 70, 72], whichsupports the actor model.The dataow model has evolved considerably over the last decade. Modern designs fordataow architectures [128, 129, 200, 201, 206] emphasise the importance of ideas such ase�cient multithreading and the exploitation of parallel slackness, in the same way as thePRAM architectures do. There are, of course, major di�erences between the two approachesin terms of synchronisation control, scheduling control etc. It is not yet clear whether thefreedom which the dataow model o�ers the programmer has a cost to be paid in terms ofscalable parallel performance.Other approaches to general purpose parallel computing which have been suggested inrecent years include asynchronous PRAMs [59, 90], block PRAMs [6], hierarchical PRAMs[121], tuple space [51, 52], graph reduction [210, 211], rewriting, and shared virtual memory.8. ConclusionThe goals of general purpose parallel computing are to achieve both scalable parallel per-formance and architecture-independent parallel software. Despite much e�ort to �nd them,no serious theoretical impediments to the achievement of these goals have yet been found.We have argued that the bulk-synchronous parallel computer is a robust model of parallelcomputation which o�ers the prospect of achieving both requirements. The main challengeat the present time is to develop an appropriate programming framework for the BSP model.Two other models which appear to o�er the required architecture-independence are theactor and dataow models. Unlike the BSP and PRAM models, which have global barriersynchronisation as the basic mechanism, these two models have at their core the idea of local,usually pairwise, synchronisation events. It is not yet clear whether these two models cano�er the same scalability in parallel performance as we have demonstrated can be obtained forthe BSP model. It is also unclear at present whether they can o�er a convenient frameworkfor the investigation of parallel algorithms and their complexity. Nevertheless, by virtue oftheir attractiveness in programming terms, they merit serious consideration.Although we have stressed the di�erences between these various approaches, there is reasonto believe that, at the architectural level, the BSP, PRAM, actor and dataow models willrequire a number of similar mechanisms for e�cient implementation; in particular, highperformance global communications, uniform memory access, and multithreading to hidenetwork latencies.AcknowledgementsI would like to thank Les Valiant for the numerous discussions we have had, over the lastfew years, on the development of a framework for general purpose parallel computing. Theidea of exploiting bulk synchrony in parallel computation is due to him. I would also like tothank Les Valiant and Bill Gear for providing the opportunity for me to spend my sabbatical370
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