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Abstract

A major challenge for computer science in the 1990s is to determine the extent to
which general purpose parallel computing can be achieved. The goal is to deliver both
scalable parallel performance and architecture independent parallel software. (Work
in the 1980s having shown that either of these alone can be achieved.) Success in
this endeavour would permit the long overdue separation of software considerations in
parallel computing, from those of hardware. This separation would, in turn, encourage
the growth of a large and diverse parallel software industry, and provide a focus for
future hardware developments.

In recent years a number of new routing and memory management techniques have
been developed which permit the efficient implementation of a single shared address
space on distributed memory architectures. We also now have a large set of efficient,
practical shared memory parallel algorithms for important problems. In this paper we
discuss some of the current issues involved in the development of systems which support
fine grain concurrency in a single shared address space. The paper covers algorithmic,
architectural, technological, and programming issues.

1. Introduction

The general purpose sequential computer is ubiquitous in contemporary society. A major
challenge for computer science in the 1990s is to produce a credible framework which would
allow parallel computing to develop in a way which would result in it eventually replacing
sequential computing, not only in specific scientific and engineering applications, but in all
areas.

Can parallel computing become the mainstream, rather than the interesting (and
in some cases, important) sideshow that it is at present?

At present, it is not commercially attractive to develop parallel software since the number
of machines in use is small and current parallel software has to be extremely architecture
dependent to achieve efficiency.

How can we bootstrap the parallel software industry?

In this paper we will attempt to address these issues and suggest some solutions. The first
question which needs to be addressed is the following:
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What should be the main driving force in future parallel computing developments?

There are three obvious candidates - hardware, software, or some kind of intermediate compu-
tational model. We will argue below that having an intermediate model as the main driving
force offers the best hope for progress from our present position. First, let us consider the
alternatives.

For most of the 1980s, low level hardware considerations have been the main driving force
in parallel computing. Rapid progress in VLSI technology has permitted the development
of a wide variety of distributed memory multicomputer architectures [29, 130, 232, 233, 234,
235, 236, 274]. These systems consist of a set of general purpose microprocessors connected
by a sparse network, e.g. array, butterfly or hypercube. The relatively low speed and
capacity of such networks forces the programmer to think in terms of a model in which one
has multiple private address spaces connected in some complex way, e.g. in a hypercube
structure, with explicit message passing by the programmer [124, 125, 135] for all non-local
memory requests. The key to algorithmic efficiency in such systems is the careful exploitation
of network locality. By minimising the number of nodes through which a message has to
travel one can substantially improve efficiency. Despite the programming difficulties inherent
in this approach, a large amount of scientific and technical applications software has been
developed for such systems. In positive terms, this work has demonstrated conclusively that
for many important applications, scalable parallel performance can be achieved in massively
parallel systems [112, 113], despite the reservations expressed by Amdahl [20]. However, in
this message passing approach, most of the effort in software development tends to be devoted
to the various low level process mapping activities which need to be performed to achieve
efficiency. Besides being extremely tedious in many cases, this usually produces software
which cannot easily be adapted to another architecture. In a world of rapidly changing
parallel architectures, this architecture-dependence has proved to be a major weakness, and
it has inhibited the growth of the field beyond the area of scientific research.

An alternative approach, which has been extensively pursued by computer science re-
searchers in the last decade, is to make software the driving force. A variety of approaches of
this kind have been investigated. They differ in terms of the type of programming language
considered, e.g. functional [39, 126, 127] , single assignment, logic, mostly functional, and
in the computational model which they adopt, e.g. graph reduction, rewriting, dataflow.
However, they share a number of similarities, particularly in comparison to the framework
proposed in this paper. One example of this approach is where one starts by noting that
a high level functional language [39, 126, 127] (if properly used) can often expose a large
amount of implicit parallelism in a computational problem. The decision to work with a
functional language, for reasons of architecture-independence, naturally leads to a decision
to adopt, say, graph reduction as the model of parallel computation. The technological
(hardware) goal is then to develop a scalable massively parallel architecture for graph re-
duction [210, 211]. This “software first” approach has a great deal of merit given that
hardware is changing rapidly and that the cost and time required to produce software makes
architecture-independence in software a major goal. Unfortunately, however, the amount
of progress which has been made on the development of efficient parallel architectures for
graph reduction, dataflow or rewriting has not been particularly impressive so far, despite
much effort. The experiences of the last decade suggest that, in the pursuit of efficiency, it
is often necessary to compromise some of the elegance and simplicity of such approaches.
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To a large extent, this has already happened in dataflow implementations of functional lan-
guages, e.g. the implementation of Id [199] on Monsoon [206]. Modern dataflow architectures
[128, 129, 200, 201, 206] are in many important respects quite close to those described in
this paper. For example, they must achieve latency tolerance through multithreading since,
in the dataflow model, memory accesses are split transactions [201]. (In the dataflow model,
a read may be requested before the value is computed.)

The third alternative is to have some model of parallel computation as the driving force.
Around 1944, von Neumann produced a proposal [49, 269] for a general purpose stored-
program sequential computer which captured the fundamental principles of Turing’s work
[249] in a practical design. The design, which has come to be known as the “von Neumann
computer”, has served as the basic model for almost all sequential computers produced from
the late 1940s to the present time. Asnoted in [120], “The paper by Burks, Goldstine and von
Neumann ([49]) was incredible for the period. Reading it today, one would never guess this
landmark paper was written more than 40 years ago, as most of the architectural concepts
seen in modern computers are described there.” For an account of the principles of modern
general purpose sequential (i.e. von Neumann) computer design, see e.g. [119, 120, 208]. For
sequential computation, the stability of the von Neumann model has permitted the develop-
ment, over the last three decades, of a variety of high level languages and compilers. These
have, in turn, encouraged the development of a large and diverse software industry producing
portable applications software for the wide range of von Neumann machines available, from
personal computers to large mainframes. The stability of the underlying model has also
allowed the development of a robust complexity theory for sequential computation, and a
set of algorithm design and software development techniques of wide applicability. General
purpose sequential computing based on the von Neumann model has developed vigorously
over the last four decades. The widespread adoption of the model has not proved to be a
harmfully constraining influence, in fact, it has been quite the reverse. A variety of hardware
approaches have flourished within the framework provided by the model. The stability it
has provided has been invaluable for the development of the software industry.

No single model of parallel computation has yet come to dominate developments in parallel
computing in the way the von Neumann model has dominated sequential computing [84, 258,

259)].

Can we identify a robust model of parallel computation which offers the prospect
of achieving the twin goals of general purpose parallel computing - scalable parallel
performance and architecture-independent parallel software?

Success in this endeavour would permit the long overdue separation of software and hardware
considerations in parallel computing. This separation would, in turn, encourage the growth
of a large and diverse parallel software industry, and provide a focus for future hardware
developments.

The achievement of these goals would have profound consequences for the future develop-
ment of both the computing industry and the academic subject of computer science. Given
this fact, one might suspect that this issue would be central to much of the current research
in parallel computing. However, at present, relatively little work is being done with these
goals directly in mind. Much of the practical work in massively parallel computing today is
concerned with the development of scientific applications software, without particular regard
for the development of a credible strategy which would permit portability of that software
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as new architectures appear.

The current situation in parallel computing is remarkably chaotic when compared with
that of sequential computing. With no agreed model to provide a focus for technological
innovation, parallel hardware suppliers continue to develop, and attempt to market, systems
with widely differing characteristics. Those people with the unenviable task of choosing a
parallel system for their organisation are faced with the prospect of investing substantial
resources in the purchase of such a machine, and in the development of software for it, only
to find that the software quite quickly becomes obsolete.

At the present time, the MFLOP performance of the processors used in parallel systems
is increasing rapidly. Unfortunately, this is not being matched by corresponding increases in
communications performance. This rising imbalance is likely to further increase the difficulty
of achieving architecture-independence in software. An important general message of the
results in this paper is that architecture-independence is more likely to be achieved in those
parallel systems which invest more substantially in communications performance than in
processor performance. It is striking that few of the commercial parallel systems being
produced today seem to reflect this basic idea.

The current chaos in parallel computing has led many to conclude that the answer to the
above question, on the prospects for agreement on a model, is no. Advocates of “heteroge-
neous parallel computing” [163] take as their starting point the idea that no convergence on
a model is likely to take place. They argue that a wide variety of designs which are to some
extent “special purpose” will continue to be produced and marketed, and that the primary
function of parallel computing should be to develop languages and communications networks
for the coordination of these ensembles of devices. It is again striking that many in comput-
ing have already accepted the inevitability of this rather pessimistic scenario, especially as no
serious theoretical impediments to the achievement of the goals of general purpose parallel
computing have yet been identified, despite much effort to find them. One can contrast this
with the situation in complexity theory where the ideas of NP-completeness have demon-
strated in a precise way that many desirable goals in terms of algorithmic performance, for
problems in Al scheduling, optimisation etc. are unlikely to be achievable and that we must,
in some way, limit our expectations. There is no compelling evidence that general purpose
parallel computing, as described above, cannot be achieved. We can be reasonably confi-
dent that, as future hardware developments alone fail to significantly increase the market for
parallel systems, the manufacturers of those systems will see it as in their interests to seek
convergence on a model, rather than to seek to avoid it. A major goal for computer science
today is to develop the ideas and techniques which will provide the required solutions when
that change in thinking comes about.

In this paper we will describe one possible way forward for parallel computing, based
on the bulk synchronous parallel (BSP) model of computation [258]. Although this ap-
proach has many strengths, we would not want to argue that it is the only viable approach.
Two alternatives, which merit serious consideration, are the actor model [9, 10] and the
dataflow model [128, 129, 199, 200, 206]. The most fundamental difference between these
two approaches and the BSP model is that they both have at their core the idea of local
(usually pairwise) synchronisation events, whereas the BSP model, as well as various PRAM
[80, 89, 149, 224, 259, 266] and data parallel models [43, 123], have the idea of global barrier
synchronisation as the basic mechanism. Another significant difference is that in the BSP,
PRAM and data parallel approaches there is usually tight control of ordering and scheduling
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by the programmer. In contrast, a major attraction of the dataflow approach is that the
programumer is freed from consideration of such issues. Although we have stressed the differ-
ences between these various approaches, there is reason to believe that, at the architectural
level, the BSP, PRAM, actor and dataflow models will require a number of similar mecha-
nisms for efficient implementation, in particular, high performance global communications,
uniform memory access, and multithreading to hide network latencies.

It is perhaps not unreasonable to summarise the current situation with respect to these
various approaches as follows. Work on the actor and dataflow models is much more highly
developed in the areas of programming languages and methodologies than it is in the area
of algorithm design, analysis and complexity. In contrast, for the BSP and PRAM models
we have a highly developed set of techniques for the design and analysis of algorithms, but
we do not yet have an established framework for the programming of such systems.

2. Idealised Parallel Computing

Various idealised shared memory models of parallel computation have been used in the study
of parallel algorithms and their complexity. Three such models are the PRAM, the circuit,
and the comparison network. In this section we describe these models, and give a number of
simple examples of efficient shared memory parallel algorithms which can be implemented on
them. Most of the circuits and comparison networks described can be translated into PRAM
algorithms in a straightforward manner. We also discuss various ways in which the efficiency
of shared memory parallel algorithms can be measured. The class N'C has, over the past
decade, provided a very simple and robust framework for the classification of problems in P,
in terms of their parallel time complexity on a PRAM. A large number of important problems
have been shown to lie in NC, i.e. to be solvable on a PRAM in polylogarithmic time using
a polynomial number of processors. Other problems have been shown to be P-complete, i.e.
to have no N'C algorithm unless P = A'C. The class N'C and the notion of P-completeness
have allowed major advances to be made in our theoretical understanding of shared memory
parallel algorithms and their complexity. However, as we now move forward to the point
of developing parallel architectures based on the PRAM model, we require a rather more
refined complexity theory which takes account of the amount of work done by a parallel
algorithm. We describe an approach due to Kruskal, Rudolph and Snir [161] which captures
this idea in a convenient way. At the end of the section, we discuss the communication
complexity of PRAM algorithms. We describe various results showing tradeoffs between the
time required for a parallel computation and the total number of messages which must be
sent. Such results may provide a theoretical basis for the future development of software
tools which efficiently schedule shared memory parallel algorithms for implementation on
distributed memory architectures.

2.1. The PRAM
A parallel random access machine (PRAM) [80, 83, 149, 266, 276] consists of a collection of

processors which compute synchronously in parallel and which communicate with a common
global random access memory. In one time step, each processor can do (any subset of)
the following - read two values from the common memory, perform a simple two-argument
operation, write a value back to the common memory. There is no explicit communication
between processors. Processors can only communicate by writing to, and reading from, the
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common memory. The processors have no local memory other than a small fixed number of
registers which they use to temporarily store the argument and result values. In a Concurrent
Read Concurrent Write (CRCW) PRAM, any number of processors can read from, or write
to, a given memory cell in a single time step. In a Concurrent Read Exclusive Write (CREW)
PRAM, at most one processor can write to a given memory cell at any one time. In the most
restricted model, the Fzclusive Read Erclusive Write (EREW) PRAM, no concurrency is
permitted either in reading or in writing. The CRCW PRAM model has a large number of
variants which differ in the convention they adopt for the effect of concurrent writing. Three
simple examples of such conventions are: two or more processors can write so long as they
write the same value, one of the processors attempting to write will succeed but the choice of
which one will succeed will be made nondeterministically, the lowest numbered processor will
succeed (assuming some appropriate numbering.) In other CRCW models [221] one might
have the possibility of concurrent writing in which the memory location is updated to the
sum of the written values, or to the minimum of the written values.

As a simple example of a CREW PRAM computation, consider the problem of computing
ab+ac+bd+cd from inputs a, b, ¢, d. Let p;t; denote the computation performed by processor
2 at time step j. Then we have

pty - bte=x
pita 1 oakxx =y
paty ¢ xxd= z
pits  y+ z = result

The complexity of a PRAM algorithm is given in terms of the number of time steps and the
maximum number of processors required in any one of those time steps. The above example
requires three time steps and two processors.

From the perspective of this paper, the most important characteristic of the PRAM model
is that it is a 1-level memory (or shared memory) model, i.e. all of the memory locations
are uniformly far away from all of the processors, the processors have no local memory and
there is no kind of memory hierarchy based on ideas of network locality. These simplifying
properties of the PRAM model have made it extremely attractive as a robust model for the
design and analysis of algorithms.

2.2. Circuits

A circuit [77, 270, 272] is a directed acyclic graph with n input nodes (in-degree 0) corre-
sponding to the n inputs to the problem, and a number of gates (in-degree 2) corresponding
to two-argument functions. In a Boolean circuit, the gates are labelled with one of the binary
Boolean functions NAND, A, NOR,V,—, @& etc. In a typical arithmetic circuit, the input
nodes are labelled with some value from Q, the set of rational numbers, and the gates are
labelled with some operation from the set {4, —,*, /}. The size of a circuit is the number
of gates

Let ¢; denote the function computed by gate :. Then we have the following arithmetic
circuit for ab + ac+ bd + cd.

g = b+e
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g2 = a*q
g3 = gi1xd
ga = g2+ g3

An example of a Boolean circuit is the following, which computes the two binary digits
<d1, d0> Of 1 —|— T2 —|— 3.

g1 = T1 N2
g2 = x1D
g3 = gaNuws

ga = g2 B as (= do)
g = ¢1Vgs(=d)

The parallel complexity of a circuit is the depth of the circuit, i.e. the maximum number
of gates on any directed path. The parallel complexity of both of the above examples is
three.

2.3. Comparison Networks

It is well known that O(n log n) binary comparisons are necessary and sufficient to sort
n elements drawn from an arbitrary totally ordered set. The lower bound follows from a
simple information theoretic argument. The matching upper bound can be obtained, e.g.
by a simple recursive mergesort algorithm. A convenient model for the investigation of the
parallel complexity of comparison problems such as sorting, merging and selection is the
comparison network [32, 66, 155]. Comparison networks have the attractive property that
they are oblivious (as are circuits). An oblivious algorithm is one in which the sequence of
operations performed is independent of the input data.

A comparison element is a two-input two-output device which computes the minimum
min(x,y) and the maximum max(x,y) of its inputs x,y. In an n-line comparison network,
the n inputs <z, z,...,x,> are presented on the n lines and at each successive level of
the network at most n/2 disjoint pairs of lines are put through comparison elements. After
each level, the n lines carry the inputs in some permuted order. The size of a comparison
network is the number of elements.

If we let [; denote level ¢ and (j, k) denote a comparison element connecting lines j, k, then
the following is a comparison network of size five which sorts four elements

Zl : {(172)7(374)}

12 : {(173)7(274)}

ls: {(2,3)}
i.e. if we present the inputs <y, xy, r3, x4> on the four lines then after these three levels of
comparison elements the values will appear on the lines in sorted order.

The parallel complexity of a comparison network is simply the depth of the network, i.e.
the number of levels.
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2.4. Addition
Let ADD,(xy,...,2,) = Y& ,x; where x; € Q. A circuit of depth [logan]| for ADD,

can easily be obtained by constructing a balanced binary tree of +-gates, with n leaves
corresponding to the arguments xq,...,2,. This corresponds to an n/2 processor PRAM
algorithm with complexity [logan]| The optimality of this construction, in terms of depth,
follows from the functional dependency of ADD, on each of its n arguments. If we now
define OR, (x1,...,2,) = Vi, where z; € {0, 1}, then we have a very similar problem to
that of computing ADD,,. We can easily obtain a PRAM algorithm of complexity [logan]
and a Boolean circuit of depth [logan| for OR,,. That this circuit depth is optimal follows
from functional dependency. However, as Cook and Dwork [64] observed, there is rather
more to the question of the PRAM complexity of OR,,. If we allow concurrent write, then
OR,, can be computed in one parallel step in an obvious way; processor ¢ reads x; from
memory location ¢ and if x; = 1 it writes a 1 into location 0. Cook and Dwork [64] show that
even on an EREW PRAM, OR,, can be computed in less than [logan| steps. They derive an
upper bound of (0-72)logan on the number of steps required. However, they also show that
a lower bound of Q(logzn) holds, and thus only a constant factor improvement is possible.

2.5. Polynomial Evaluation

Let P.(ag,a1,...,an, ) = " a;x" where a;,z € Q. The standard sequential algorithm
for polynomial evaluation is Horner’s Rule where to calculate P,, we successively compute

Pn = an

pi = (pigr*xx)+a; for i=n—-1n-2,...,10.

Then P, = pg. The sequential complexity of polynomial evaluation has been studied for
many years. It is known that 2n arithmetic operations are required to evaluate a general
polynomial of degree n, given by its coefficients [46]. Thus, in terms of sequential complexity,
Horner’s Rule is optimal. However, it is very unsuitable for parallel computation since at
every step in the computation the immediately preceding subresult is required. If instead,
we evaluate each term a;z' of the polynomial independently, in parallel, using a balanced
binary tree of *-gates, and we then sum the values of the terms using a balanced binary tree
of +-gates then we have a circuit of depth 2[logs(n +1)]. This circuit is ezponentially better,
in terms of depth, than a circuit based on Horner’s Rule, although the number of gates
(sequential complexity) is now O(n?) rather than O(n). The 2[loga(n+1)] upper bound can
be further improved to logan + O(+y/logan) by using a simple recursive parallel algorithm due
to Munro and Paterson [198] which splits the polynomial into consecutive blocks of terms
and factors out the appropriate power of x. Kosaraju [157] has shown that the algorithm of
Munro and Paterson is optimal, in terms of circuit depth, for polynomial evaluation.

2.6. Prefix Sums

Let @1, x3,..., 2, be a set of values and o be an associative operation on that set. The prefiz
sums problem is to compute p; = z10x90---ox; for all 1 < < n. The straightforward method
yields a circuit of size n — 1 but its depth is also n — 1. By computing each p; independently
we can obtain a circuit of size O(n?) and depth [logyn]. An important result of Ladner
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and Fischer [165] shows that the prefix sums problem can be computed by a circuit of size
O(n) and depth O(log n). This construction can be applied to produce small fast parallel
circuits for a variety of important problems, including n-bit addition, n-bit multiplication,
and Boolean sorting. It can also be used for the efficient parallel simulation of finite state
automata. We will describe the application of parallel prefix computation to the problem of
n-bit addition.

A binary number <dy_y, Gn_s,...,a0> € {0,1}" represents the value Y174 a; * 2'. Given
two n-bit binary numbers X = <x,_ 1,2, 2,..., 20> and Y = <y,_1,Yn_2,...,Yo>, the
n-bit addition problem is to compute the (n + 1)-bit representation Z = <z, Zn—1, ..., 20>
of X+Y.

In the normal “school method” we first compute zg = a9 @ yo and the initial carry bit
co = X9 N yo. We then use n — 1 full adders to compute z;, ¢; from x;,y; and ¢;_1. Finally, we
let z, = ¢,—1. This method yields a circuit of size O(n) and depth O(n). The prefix method
consists of three stages:

Stage 1: Compute u; = a; Ay;, v; =2; Dy, for all 0 < j < n.
Stage 2: Compute the carry bits ¢; for all 0 < j < n.
Stage 3: Compute the outputs. 2o =vg, 2z, =v; D ¢joy forall 1 < j < n, 2z, = ¢p_q.

Stages 1 and 3 can both be carried out in linear size and constant depth, therefore we need
only consider Stage 2. Let Ay v)(c) =u V (v Ac¢) for ¢ € {0,1}. Then we have

¢i = Afuivr) © Afwisi i) © 0 Afug ) (0)

where o denotes function composition. Since (u;,v;) € {(0,0),(0,1),(1,0)} and

A(0,0) © A(up) = A(00)
Afo,1) © Agupw) = Agu)
A1,0)© Ay = A0)

it follows that the operation o on sets of functions A(y; ;) is associative. Therefore, we can
use a prefix circuit to compute all the carry bits ¢;. We need only design a circuit for the
operation o. Let A(yv) = A(ug,0) 0 Ay vr)- Then (u,v) = (ugV (ug Avy), v1 Avy) and therefore
we can construct a subcircuit of size three and depth two for the operation o. We have shown
that n-bit addition can be realised by a Boolean circuit of size O(n) and depth O(log n).

In functional programming [39], the second-order function scan corresponds to the prefix
sums computation. The above mentioned results, and the work of Blelloch [41, 42, 43] and
others, have shown it to be a parallel primitive of extremely wide applicability.

2.7. Matrix Multiplication

Let A, B be two n X n matrices of rational numbers. Then the product of A, B is an
n x n matrix C, where ¢;; = Y}_; aix * by ;. The exact determination of the sequential
complexity of matrix multiplication is a major open problem in the field of computational
complexity [62, 202, 247]. At the present time, the best known algorithm (asymptotically, as

2~376)

n — oo) requires only O(n arithmetic operations [65] as opposed to the standard O(n?)

which follows from the definition. No lower bound larger than the trivial Q(n?) is known.
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In contrast, determining the shared memory parallel complexity of matrix multiplication
is trivial. We can evaluate each ¢; ; term independently, in parallel, by a balanced binary
tree of depth [logan] + 1. Functional dependency shows this bound for ¢;; to be optimal
and so we have an optimal time bound for parallel matrix multiplication on the idealised
PRAM and circuit models [number of processors = O(n?*)]. The simplicity of this solution is
entirely attributable to the fact that in the PRAM and circuit models, the complexity and
cost of communication is completely ignored. Those who have developed and implemented
algorithms for distributed memory architectures over the last decade know, of course, that
on such architectures the issue of managing communication is the dominant one.

2.8. Linear Recurrences

The parallel evaluation of recurrences was discussed in the mid 1960s by Karp, Miller and
Winograd [148]. Let us first consider the computation of the very simple recurrence which
defines Fibonacci numbers. The m!"* Fibonacci number f,, is given by the second order linear
recurrence

fo =0
i =1
fm Fmet + fneo for m > 2

This definition can be directly translated into an arithmetic circuit with m — 1 gates (and
depth m — 1) which successively computes fa, fs,..., f. As in the case of Horner’s Rule
we have a circuit with no direct parallel speedup. If instead, we use the unconventional
definition

(Fut F) = (f ﬁ)((f })m

then we see immediately that f,,, can be calculated by an arithmetic circuit of size and depth
O(logam) if we compute the matrix power efliciently by repeated squaring.

The above result for Fibonacci numbers is a special case of the following more general result
by Greenberg et al. [108] on the parallel evaluation of k" order linear recurrences. If we
have F' = (fo f1 ... fr—1) and f,, = 25:1 ag—j * fr—j for m >k, then (fr—ks1 - fm) =
F % M™ %! where M is the k x k matrix

()...()‘ o

a1

Gp—1

and therefore the parallel complexity of computing f,, is at most O(logsk - log2(m — k)).
For a practical application of this result we consider the problem of solving linear systems.
Let B be an n X n non-singular, lower triangular matrix, and ¢ be an n-element vector.
In solving the linear system Bz = ¢ by ‘back substitution’ we use the recurrence z; =
(¢i — 23;11 bij*axj)/bi; for 1 < i< n. If welet z; =0 for ¢ < 1 then we can rewrite this
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recurrence in the form (#; @21 ... ¥j_pp1 1) = (-1 @icg ... xi_p 1) % M; where

bii_1

T b,
bi

— bi,t I 0

M, = 0

0
0 0 .. 0
bjfi 0 e 0l1

Therefore we can design an arithmetic circuit of depth O(log?n) which solves Bz = ¢ to
obtain z. This circuit corresponds to a PRAM algorithm with parallel time O(log*n) and
number of processors O(n*). In contrast, a direct PRAM implementation of back substitution
would have parallel time O(n), but would require only O(n) processors.

2.9. Merging

Let <zq,x9,...,2,> and <y1,Y2,...,Yy,> be two sorted sequences. The merging problem is
to produce a single sorted sequence consisting of the m +n elements. This can, of course, be
performed by a simple sequential algorithm which uses at most m+n—1 binary comparisons.
We will describe two efficient parallel comparison networks for merging, both due to Batcher
[32, 155]. The two techniques are known as odd-even merging and bitonic sorting.

In odd-even merging, we merge the “odd sequences” <y, x3, xs,...> and <yi,ys, ¥s, ... >,
obtaining <wvi, vy, vs,...>; and merge the “even sequences” <y, x4, Tg,...> and <yz, Y4,
Y6, - - - >, obtaining <ws, wy, ws,...>. (These two merges are performed in parallel). Finally,
we apply comparison elements to the pairs (wy,vs), (w2, v3), (ws,v4),... to complete the
merging.

This recursive method yields the following upper bounds:

size(n) < 2xsize(n/2)+ O(n)

= O(n log n)
depth(n) < depth(n/2)+1
< [logan]
A sequence <zy,z3,...,2,> 1is bitonic if and only if x4 > -+ > z < -0 < oz, for

some 1 < k < p. An n-line bitonic sorter is a comparison network which will sort any
bitonic sequence of length n. Merging can be performed by sorting the bitonic sequence
Ty Tty - o oy L1, Y15 Y25 - - - Yp>. Noting that any subsequence of a bitonic sequence is
bitonic, it follows that we can construct an n-line bitonic sorter by first sorting the two
bitonic subsequences <z, z3,...> and <zy, 24, ...> in parallel, and then applying compar-
ison elements to the pairs (z1, z2), (23, 24), . . . to complete the sort. This alternative method
yields essentially the same upper bounds on size and depth as odd-even merging. It does,
however, have some advantages in terms of simplicity of description. A bitonic sorter with
2" lines numbered 0,1,2,...,2" — 1 can be defined (nonrecursively) in the following way:
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Lines 7, j are compared on level k if and only if 7, j differ only in their &' most significant
bit.

It is quite easy to prove that both the size and depth of these merging networks are
optimal to within a constant factor [155]. This shows that, for the problem of merging,
comparison networks are much less powerful than general (adaptive) algorithms, at least
when one compares the total number of comparisons performed. As we shall see in the next
section, this does not apply in the case of the related problem of sorting.

2.10. Sorting

An n-line sorting network can be constructed recursively using either of the efficient merging
networks described above [32, 155]. To sort the set xq, x3,..., 2, we first (recursively) sort
the two subsets x1,22,..., 2,2 and T(nj2)41, T(nj2)42: - - - » Tn in parallel. The two sorted
sequences can then be combined using one of the above merging networks of size O(n log n)
and depth O(log n). This yields the following upper bounds for sorting n elements by a
comparison network.

size(n) < 2xsize(n/2)+ O(n log n)
= O(n log*n)

depth(n) < depth(n/2) + log n
O(log*n)

From 1968 until 1983 this was the best known oblivious sorting algorithm. In 1983, Ajtai,
Komlés and Szemerédi [11] succeeded in producing a remarkable n-line sorting network of
size O(n log n) and depth O(log n), both of which are of course asymptotically optimal. A
more efficient version, which improves the constant factors involved, has since been produced
by Paterson [207]. Although the constant factors are still too large to make the networks
competitive with those obtained from, say, odd-even merging, this is a result of major theo-
retical significance as it shows that for the important problem of sorting, adaptive algorithms
are not (asymptotically) more powerful than oblivious ones.

2.11. Selection

The " selection problem is to determine the # largest elements in a set of size n. In this
section we describe the design of some fast parallel comparison networks for this problem.
When t &~ n/2, we cannot do significantly better than using an O(n log n) size, O(log n)
depth sorting network [11] since any comparison network which determines the median of n
elements must have size Q(n log n) [155]. We shall be concerned with the case where ¢ is
fixed as n — oo.

The following construction is due to Yao [277]. To produce a #* selection network of
small depth we use a construction called a (¢, n)-eliminator. Let f(¢,n) be a function which
satisfies f(t,n) > t. A (t,n)-eliminator is a comparison network with the following property:
Of the n output lines there are f(#,n) designated lines among which the largest ¢ elements
are found. We now show how to construct a family E(¢,n) of (¢, n)-eliminators.

First, we consider the case where ¢t = 1. E(1,2) is simply a comparison element. An n-line
E(1,n) is recursively defined as follows: The first level consists of the elements (1,n), (2,n —
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1),(3,n —2),.... The rest of the network is simply an E(1,n/2) network on lines (n/2) +
1,(n/2) 4+ 2,...,n. A simple analysis shows that

depth(E(1,n)) = [logan]

fam) =1

For ¢t > 1, an n-line E(t,n) is recursively defined as follows: The first level again con-
sists of the elements (1,n),(2,n —1),(3,n — 2),.... The rest of the network consists of an

E([t/2],|n/2]) network on lines 1,2, ..., |n/2] and an E(t, [n/2]) network on the remaining
lines. For t = 2, we obtain

depth(E(t,n)) < max{depth(E(t,n/2)),(log n) —1} +1
< [logan]
f2n) < f(2,n/2)+1
O(log n)

and, in general, for any fixed ¢ > 2,
depth(E(t,n)) < [logan]
f(t,n) = O((log n)les=tl)

To obtain a fast parallel comparison network for the t* selection problem we simply com-
pose appropriately sized eliminator networks. Applying E(¢,n) to the n input lines gives a set
of ny = f(t,n) =~ (log n)!*9 ! lines on which the ¢ largest elements are now known to lie. We
can then apply an E(t,n1) to reduce the number of lines to ny = f(¢,ny), and an E(t,n2) to
further reduce it to ns = f(¢,n2). The depth of the network at this stage of the construction is
log n 4 log n1 + log ny = log n + log t loglog n + O(logloglog n) and the number of lines has
been reduced to O((logloglog n)'*9 t). This is sufficiently small that we can now use, for ex-
ample, a sorting network on those lines to complete the computation of the ¢ largest elements.
This gives a " selection network of total depth log n + log t loglog n + O(logloglog n).

2.12. Algebraic Path Problem

A closed semiring is an algebraic structure (S, @, ®, Is, Iy) with the following properties:
& is a commutative monoid (& satisfies the closure, associative, commutative
properties, and has identity element Ig).

® is a monoid (@ satisfies the closure, associative properties, and has identity
element [g).

@ is idempotent.
@ 1s right and left distributive over .
Forall s € S5, s @ Iy = Ig.
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Let G = (V, A) be a directed graph on | V' |= n vertices, in which each <z,7> € A has an
associated weight s;; € S. Define an n X n matrix M of weights m,; corresponding to the
arcs of G: m;; = s;; if <i,7> € A, Iz otherwise. The Algebraic Path Problem (APP)is to
compute M* = @72, M* where matrix product is defined in terms of the two operations
and ©. (M° is the identity matrix with diagonal elements Ig). M gives the “sum” of the
weights of all directed paths from ¢ to j where the weight of a path is the “product” of the
weights of the arcs.

The APP is a problem of major importance in a wide variety of areas and has been

extensively studied in recent years. Some examples of instances of the APP are the following:

Problem S e | ® | Iy I
Connectivity (trans. closure) [271] | {false,true} or | and | false true
Generation of regular language {words} U 0 empty word
Max. capacity path Rt U oo mazx | min 0 00
Path with min. number of arcs NU oo min + %) 0
Shortest paths [82] RU oo min |+ 00 0
Max. reliability path {a]0<a<1} | max | =« 0 1

Min. cost spanning tree [181] BT Uoo min | maxr | 00 0

The APP also finds application in areas such as parsing and logic programming, and can
be used as the basis of fast parallel algorithms for matrix inversion. Like the prefix sums
computation, it is a remarkably versatile second-order function.

Noting that node ¢ is connected to node j by a directed path if and only if it is connected
by a directed path of length < n — 1, we have

n—1
k=0

(MO@M)TL—I
= (MO@M)ZZ for 20 >n—1

Therefore, to obtain an efficient shared memory parallel algorithm for the computation of
the APP on matrix M we need only set the main diagonal to Iy and repeatedly square
the resulting matrix until we have a sufficiently large power. For an n X n matrix M, this
method yields a circuit of depth O(log?n) or, equivalently, a PRAM algorithm of time com-
plexity O(log?n) (Number of processors = O(n?) if we use the standard matrix multiplication
algorithm).

Consider the problem of topologically ordering the n vertices of a directed acyclic graph,
l.e. assigning a number to each of the vertices such that there is no path from a vertex to
a lower numbered one. There are several efficient sequential algorithms for this problem in
which one successively numbers vertices from 1 to n. It is perhaps not immediately clear
how one would shortcut this iterative process to achieve an algorithm which produces such
an ordering in o(n) parallel time. However, this problem can be solved in a straightforward
way using the fast parallel APP algorithm. We can simply compute the connectivity or
transitive closure of the dag using the parallel APP algorithm with (or, and), and then sort
the vertices by their in-degree in the closure. If there is a directed path from ¢ to j in the
dag, then j will have a higher in-degree than ¢ in the closure.

The minimum cost spanning tree problem is another one which has simple, efficient se-
quential algorithms, e.g. the algorithms of Kruskal and Prim [66], but for which it is not
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immediately clear that it has a fast parallel algorithm. As noted above, Maggs and Plotkin
[181] observed that if the weights of the edges in the graph are distinct, then the minimum
cost spanning tree is precisely the set of edges <i,j> in the graph for which M;; = M

where we compute the APP with (min, max). [If the distinct weights property does not
apply, then a simple modification can be made to the weights to achieve it.]

2.13. Expression Evaluation

Consider the problem of evaluating a given (binary tree) expression for a particular set
of values of the arguments. We have seen previously that particular expressions, such as
Horner expressions corresponding to polynomials, can be evaluated by a PRAM or circuit
in a number of steps logarithmic in the size (number of leaves) of the expression. What
about the evaluation of an arbitrary tree expression? A basic technique in the field of circuit
complexity is tree restructuring [48, 77, 157, 196, 214, 272]. The technique was developed to
show that every function (Boolean or arithmetic) which can be represented by an expression
of size s can also be represented by a circuit of depth O(log s). One disadvantage of using
this tree restructuring approach as a means of fast parallel expression evaluation on a PRAM
is that it requires the calculation of appropriate points for tree splitting. When the cost of
performing this tree splitting is taken into account the parallel complexity becomes O(log?s)
rather than O(log s). If instead one uses parallel tree contraction [3, 30, 88, 190, 191, 192],
then the O(log s) parallel time bound can be achieved. Fast parallel tree contraction on a
PRAM is another technique of very wide applicability.

2.14. The Class NC

We have described a number of parallel algorithms for the PRAM, circuit and comparison
network models. The circuits and comparison networks given can be directly transformed
into corresponding PRAM algorithms. These idealised models have provided a robust frame-
work for the investigation of parallel algorithms and their complexity [26, 54, 61, 62, 63, 80,
87, 89, 149, 223, 224, 266, 270]. One outcome of this work has been the development of
an extensive set of results concerning N'C, the class of computational problems which can
be solved on a PRAM by a deterministic algorithm in polylogarithmic time using only a
polynomial number of processors. A major open problem in theoretical computer science
is to determine whether P, the class of polynomial time computable problems, is contained
in AN'C. If this were shown to be true then it would imply that every problem which had a
fast (polynomial time) sequential algorithm also had a fast (polylogarithmic time), efficient
(polynomial number of processors) parallel algorithm. Over the last decade, a large number
of important problems in P have been shown to also lie in A'C. The following list of such
problems is by no means complete.

Evaluation of expressions and programs [87, 88, 89, 103, 106, 149, 158, 185,
189, 193, 224, 261]: Tree restructuring, tree contraction, expression evaluation,
evaluation of straight-line algebraic programs of polynomial degree over a commu-
tative semiring, evaluation of straight-line programs corresponding to dynamic
programming algorithms, context-free recognition, parallel simulation of finite
state automata, circuit value problem for planar monotone circuits, evaluation of
set expressions.
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Logic [79, 143, 185, 224, 251]: Term matching, term equivalence, evaluation of
DATALOG logic programs with the polynomial-fringe property.

Sets [27, 60, 149, 166, 224, 264]: Sorting, selection, set operations, constructing
Huffman trees.

Sequences and strings [57, 80, 87, 149, 216, 224, 229]: Prefix sums, merging,
sequence comparison (string edit problem), string matching, recognising shuffle
of two strings , longest common substring, finding squares in a string, pattern
matching for d-dimensional patterns.

Lists [22, 23, 55, 56, 57, 80, 89, 149, 224]: List ranking.
Arithmetic [17, 18, 33, 77, 149, 213, 270, 272] : n-bit integer arithmetic (addi-

tion, multiplication, division), linear recurrences, polynomial arithmetic (evalua-
tion, multiplication, division, GCD), evaluation of elementary functions (exp, In,
sin, etc. ).

Matrices [47, 67, 80, 149, 224, 270]: Matrix multiplication, determinant, rank,
inverse, solution of linear system, Cholesky factorisation.

Graphs [28, 58, 68, 80, 89, 92,99, 101, 133, 149, 151, 162, 178, 224, 230, 240, 248]:
Algebraic path problem (transitive closure, shortest paths, minimum cost span-
ning tree, topological ordering of dag), transitive reduction, connected compo-
nents, biconnectivity, triconnectivity, Euler tours, ear decomposition, maximal
independent set, symmetry breaking, lowest common ancestors, planarity, tree
isomorphism, bipartite perfect matching, minimal elimination ordering.

Combinatorial optimisation [15]: Fixed dimension linear programming.

Geometry [8, 224, 278]: Convex hull in two and three dimensions, Voronoi
diagrams and proximity problems, detecting segment intersections, triangulating
a polygon, point location.

A number of interesting and important randomised N'C algorithms have also been produced
[5,91, 150, 176, 197, 217, 225, 226] for graph problems such as depth-first search, constructing
a perfect matching, maximum cardinality matching, maximum s — ¢ flow, planar graph
isomorphism, and subtree isomorphism, and for various problems in computational geometry.

An exciting development over the last few years has been the development of a large num-
ber of new deterministic [35, 36, 37] and randomised [96, 117, 266] parallel algorithms for
important problems, which achieve nearly-constant time on a CRCW PRAM. The problems
include hashing [31, 94, 96, 97, 183, 184], dictionary (insert, delete, query operations) [96], in-
teger sorting [38, 115, 183, 184, 218, 219], integer chain sorting [96, 115, 116], space allocation
[96, 116], linear approximate compaction [96, 105, 183], estimation [96, 116], load balancing
[93, 96, 116], leaders election [95, 96, 116, 184], generation of random permutations [183],
2-ruling set [55, 96, 105, 183], all nearest-smaller-values [35], approximate sum [96], efficient
simulation of Maximum PRAM model on Tolerant PRAM model [95, 96, 117, 184]. These
new algorithmic techniques provide a theoretical framework for the future development of
tools which would automate a number of tedious aspects of practical parallel computation,
such as processor allocation [94, 96, 105, 183] and memory allocation [147].
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2.15. P-Completeness

Using techniques analogous to those used in sequential computation to establish NP-com-
pleteness, a number of problems in P have been shown to be P-complete. A computational
problem II is P-complete if and only if I € P and (Il € NC = P C N(C). The P-
complete problems are, in a sense, those in P for which it is hardest to obtain a fast,
efficient PRAM algorithm. Showing that any one of them was in N'C would imply that all
problems in P had fast, efficient PRAM algorithms. The first P-complete problems were
established in the early 1970s [136, 137, 164]. Two recently published lists of such problems
[110, 194] together contain around 250 problems. Those interested in P-completeness results
are strongly encouraged to consult [110]. Two very simple P-complete problems are the
following.

Subset Closure

Given: A finite set X, a binary operation o on X, a subset § C X, and an
element z € X.

To determine: Whether z is contained in the smallest subset of X which con-
tains S and 1s closed under o.

Monotone Circuit Value Problem [102]

Given: A single-output Boolean circuit with {A,V} gates, and a set of values
for the inputs.

To determine: The output.

Some other examples of P-complete problems are:
Evaluation of expressions and programs [102, 182, 245]: Planar circuit value

problem, arithmetic circuit value problem, type inference, deadlock detection.

Logic [78, 143, 279]: Unification, propositional Horn clause satisfiability, path
systems, context-free grammar membership.

Algebra: Finite algebra, generalised word problem, subgroup equality, subgroup
isomorphism, group rank.

Arithmetic [146]: Iterated mod.
Matrices [262]: Gaussian elimination with partial pivoting.

Graphs [104]: Maximum flow, lexicographically first maximal independent set,
lexicographically first maximal path, lexicographically first depth-first search or-
dering, high degree subgraph, minimum degree elimination order.

Combinatorial optimisation [75, 154]: Linear programming, linear inequali-
ties, first fit decreasing bin packing, nearest neighbour travelling salesman heuris-
tic, two-player game.

Geometry [25]: Plane sweep triangulation, visibility layers.

Some simple examples of problems in P which are not currently known to be in N'C or to
be P-complete are the following:
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Integer GCD
Given: Two n-bit positive integers a, b.
To determine: GCD(a,b)

Relative Primeness
Given: Two n-bit positive integers a, b.
To determine: Whether a, b are relatively prime.

Stable Marriage
Given: n men and n women plus a list of marital preferences for each person.
To determine: n marriages that will stand the test of time.

Ray Tracing

Given: A set of n mirrors of lengths l1,1,,...,1, and their placements, a source
S and the trajectory of a single beam emitted from S, a designated mirror M.
To determine: If M is hit by the beam. At the mirrors the angle of incidence
of the beam equals the angle of reflection.

Serna and Spirakis [237, 238, 239] have investigated the extent to which solutions to im-
portant P-complete problems such as linear programming, maximum flow and high degree

subgraph can be approximated by fast, efficient PRAM algorithms if P # NC.

2.16. Parallel Efficiency

Matrix multiplication and the algebraic path problem are two fundamental computational
problems which have fast N'C algorithms. A large number of important problems in P can
be shown to be in N'C by a reduction to one of these two problems. (In the case of reductions
to the APP, these are usually reductions to the transitive closure instance of that problem.)
Unfortunately, many of the parallel algorithms so produced are extremely inefficient in terms
of the number of processors required. For example, many problems on graphs with v vertices
and e edges can be solved sequentially in time O(v 4 ¢) or O((v log v) + e€). For a number
of these problems, one can obtain a parallel algorithm with time complexity O(log?v), but
the algorithm requires M (v) processors, where M(v) is the sequential complexity of v x v
matrix multiplication. As noted earlier, the best known upper bound on M (v) is O(v*37)
[65] and we know that it cannot be less than proportional to v?. Thus we have a number of
fast PRAM algorithms for which the processor-time product is much greater than the time
required to solve the problem by a sequential algorithm. To produce fast practical parallel
algorithms for such problems we must avoid the brute force use of matrix multiplication and
transitive closure on dense matrices. This difficulty has come to be known as the matriz
multiplication / transitive closure bottleneck. It is particularly serious in applications where
one is dealing with highly sparse matrices or graphs. In such cases, by embedding the
problem in one involving dense matrices one may produce a theoretically fast algorithm, but
it is unlikely to be of much practical value. In the last few years, substantial progress has
been made on overcoming this bottleneck. A number of important new PRAM algorithms
for sparse matrix and graph problems have been developed which are very efficient in their
use of processors [68, 98, 99, 100, 114, 132, 144, 160, 162, 203, 244, 252].

As we have seen, the robustness of the PRAM model and the class N'C has permitted
the development of a rich theory of parallel algorithms and their complexity. However, the
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above considerations show that a naive preoccupation with N'C may not result in efficient
parallel algorithms for practical implementation. Probing N'C further, it is not even clear
that the class captures the informal notion of “problems which are amenable to parallel
solution”. Vitter and Simons [268] have shown that some P-complete problems may be
solved by parallel algorithms which are in a very reasonable sense, efficient. On the other
hand, a problem such as searching an ordered list, which runs in logarithmic sequential time,
is in NC, irrespective of the existence of efficient parallel algorithms for that problem. In
fact, searching does not admit efficient parallel algorithms.

As noted in [263], efficiency is a prime consideration in the design of parallel algorithms:
one would like to solve a problem roughly p times faster when using p processors. This con-
sideration is missing from the definition of A'C, instead the emphasis of N'C theory is simply
on the development of parallel algorithms which have polylogarithmic time complexity. In
[161], Kruskal, Rudolph and Snir develop an alternative set of complexity classes for PRAM
computations, and demonstrate that they provide an equally robust framework for studying
parallel algorithms and complexity, but one which is more relevant in the context of practical
parallel computing. Their emphasis is much more on the performance of a parallel algorithm
relative to the best known sequential algorithm for the same problem. In describing the ap-
proach of [161] we will use the following notation. For a given problem, S(n) will denote the
sequential running time, T'(n) the parallel running time, and P(n) the number of processors.

One very weak requirement, in terms of parallel performance, would be that the parallel
algorithm demonstrate some unbounded speedup, i.e. lim,—T(n)/S(n) = 0. A parallel
algorithm for which T'(n) = O(n/loglog n) when S(n) = O(n) would satisty this condition.
That kind of small improvement is unlikely to be sufficient in many cases. We are more
likely to want to claim that a significant reduction in running time can be achieved through
the use of parallelism, i.e. that T(n) is a fast decreasing function of S(n). The two obvious
choices for such a function are captured in the following definition.

Definition 2.1 A parallel algorithm is polynomially fast if T'(n) = O(S(n)°) for somee < 1,
and it is polylogarithmically fast if T(n) = O(log*S(n)) for some fized k.

Reduction in running time has a cost. The number of processors must increase as fast as
the speedup; generally it increases faster. The inefficiency of a parallel algorithm is the
ratio T'(n) * P(n)/S(n), i.e. the ratio between the time-processor product for the parallel
algorithm and the number of operations performed by the sequential algorithm.

Definition 2.2 A parallel algorithm has constant inefficiency if T'(n)* P(n) = O(S(n)), it

has polylogarithmically bounded inefficiency if T'(n) * P(n) = O(S(n) log"S(n)) for some
fized k, and it has polynomially bounded inefficiency if T'(n) * P(n) = O(S(n)*) for some
fized k.

Six interesting classes can be obtained by combining the two requirements on speedup with
these three constraints on inefficiency.

Polylog Fast Poly Fast
Constant Ineff. | ENC (Efficient, NC fast) EP (Efficient, Parallel)
Polylog Ineff. | ANC (Almost efficient, NC fast) | AP (Almost efficient, Parallel)
Poly Ineff. SNC (Semi efficient, NC fast) SP (Semi efficient, Parallel)

351



PAZ R OA WA W S DY D N EhnAal FPUNRDPYVYUODL PANAab L WUUNVLD U LLIN T

Kruskal, Rudolph and Snir [161] classify a large number of important problems within this
framework.

ENC: Sorting, merging, selection, prefix sums, polynomial evaluation, expression
evaluation, fast Fourier transform, connected and biconnected components of
dense graphs.

EP: Various dense graph computations (strongly connected components, single
source shortest paths, minimum cost spanning tree, directed graph reachability),
monotone circuit value problem.

ANC: Connectivity and biconnectivity of sparse graphs with e = O(v) edges.

SP: Depth-first search of undirected graphs, weighted bipartite matching, flows
in 0 — 1 networks.

2.17. Communication Complexity

In discussing the complexity of PRAM algorithms we have used the two standard complexity
measures, namely parallel time complexity and number of processors. For the circuit model,
parallel time complexity corresponds to the depth of the directed acyclic graph (dag), and
for the comparison network model it corresponds to the number of levels in the network. In
this section we consider the communication complexity of PRAM algorithms in a simplified
setting first proposed by Papadimitriou and Ullman [204].

We model the computational problem to be solved as a dag, with nodes corresponding to
the functions computed and arcs corresponding to functional dependencies. In most practical
situations, the development of an appropriate dag is a major part of the algorithm design
process but, for simplicity, we will assume it is fixed and given. Our problem is to efficiently
schedule the dag on a p processor parallel system which may have a large local memory at
each processor, i.e. to assign each node of the dag to one or more processors in the system
which will compute that node. (As we shall see, allowing more than one processor to compute
the same node can sometimes save communication at no expense in terms of parallel time.)
A schedule must satisfy the constraint that a node can only be computed at a given time
step if its predecessors have been computed in previous time steps. We will use ¢ to denote
the total number of time steps required for a schedule.

Communication complexity is captured in the following way. If node v depends on node
u, i.e. there is an arc from u to v in the dag, and u,v are computed in distinct processors
then that arc is said to be a communication arc. The communication complexity ¢ of a given
schedule is simply the number of communication arcs in the dag. This measure captures an
important practical cost in the implementation of parallel algorithms on a multiprocessor
system, i.e. the total message traffic generated.

Example. Consider the (2 x 2 diamond) dag on vertices {vg o, Vo1, 01,0, 01,1} which has the
four arcs {<wgg,vo1>, <vo1,v11>,<Ugg, V10>, <v10,v11>}. This can be scheduled in the
following way on two processors Py, P;.

t| P | P
1 1)070
2 Vo1 | V1,0
3 1)171
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giving a schedule with ¢ = 2,¢ = 3. The alternative schedule
PP

Vo,0 | V0,0

t
1
2 Vo1 | V1,0
3

V11

yields ¢ = 1,¢ = 3 and gives an example showing that allowing more than one processor to
compute a node can reduce communication

Our main interest is in the tradeoff between parallel time and communication. First we
note that for some simple dags there is no real issue concerning the best way to trade
communication for time. For example, consider a complete binary tree on n nodes. If we
schedule the tree on p processors, p > 1, then we must have ¢ > n/p. As each processor,
other than the one which computes the root, must compute a node value required by some
other processor, we have also ¢ > p — 1. Thus, we have ¢t = Q(n). This lower bound for the
communication-time product can be easily achieved by a schedule.

A more interesting dag is the diamond. The diamond dag is an n X n square mesh rotated
45 degrees, where the children of each node are the nodes immediately to the southeast and
southwest, if they exist. More formally, it is the dag on n® nodes {v;; | 0 < 7,7 < n — 1}
where there is an arc from v; j to v; j41 and from v; ; to v;41 ;, where those nodes exist. The
diamond dag arises in a number of important dynamic programming algorithms. It turns
out that the diamond does not share with the binary tree the nice property that the best
lower bounds on time and communication can be simultaneously achieved. Rather, there
is a lower bound on the product ¢t that is stronger than what is implied by the best lower
bounds on ¢ and t individually.

If we schedule an n x n diamond on p processors, p < n, then we must have ¢ > n?/p. This
lower bound on parallel time is easily matched by a fast “stripes” schedule in which processor
k, 0 <k <p-—1, computes nodes v, ;, for all kn/p <i: < ((k+1)n/p)—1and 0 < j <n-—1.
For this schedule we have ¢ = O(np). Now, let us consider a lower bound on communication.
It we divide the nodes of the dag evenly among the p > 1 processors, then each will compute
n?/p nodes, and it is not hard to show that there must be among the arcs on the nodes
V2= i/
arcs. Thus, we have ¢ = Q(np'/?). This lower bound on communication is easily matched by

computed by any one of these p processors at least (n?/p) communication
a schedule in which each processor computes a contiguous (n/p'/?) x (n/p'/?) subdiamond
of the dag, but for this method we have a rather higher parallel time of O(n?/p'/?). We
have described two distinct parallel schedules for the n x n diamond, and have shown that
one of them optimises time, while the other optimises communication. For both of these
schedules we have ¢t = O(n?). Papadimitrion and Ullman [204] have shown that this bound
on the communication-time product is, in fact, optimal to within a constant factor. This
result demonstrates that there is an important tradeoff between communication and parallel
time for the scheduling of the diamond dag on a multiprocessor. Papadimitriou and Ullman
also studied a tradeoff between parallel time and communication delay for the diamond dag.
The communication delay d of a scheduled dag i1s defined to be the maximum number of
communication arcs on any directed path in the dag. In [204] it is shown that for the n x n
diamond, (d + 1)t = Q(n?).

A number of other interesting communication-time tradeoff results have been obtained.
Klawe and Paterson (see [204]) have shown a ¢t = Q(n*) lower bound for the dag where the
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children of node v; ; are all the nodes vy ; where ¢ < k, and all the nodes v;; where j < [.
This dag arises in many important dynamic programming problems, and can be computed
in O(n?) sequential time. Andivahis [24] has improved this tradeoff result to c¢*t = Q(n").
Jayasimha and Loui [131] show a ¢t = (n®) tradeoff for a dag that corresponds to the
solution of a triangular system of linear equations. Afrati et al. [4] show that the problem of
finding, for a given dag, a schedule which minimises time, and also minimises communication

as a secondary criterion, is A P-complete, even if the dag is a tree, and the number of
processors to be used is either given or open (the problem can be solved in polynomial time
if the amount of communication is fixed.) Papadimitriou and Yannakakis [205] develop a
polynomial algorithm which, for any dag, calculates within a factor of two the optimum
weighted sum t 4+ 7d, for any 7, when no bound on the number of processors is specified. In
[140], it is shown that if 7 is a fixed integer, then a dynamic programming approach can be
used to obtain a polynomial time algorithm for solving the scheduling problem exactly.

Aggarwal, Chandra and Snir [7] have studied a model called the local memory PRAM,
or LPRAM, which also captures both the communication and computation requirements
of PRAM algorithms in a convenient way. An LPRAM i1s a CREW PRAM in which each
processor is provided with an unlimited amount of local memory. Processors can simultane-
ously read from the same location in the global memory, but two or more are not allowed
to simultaneously write into the same location. The input variables are initially available in
the global memory, and the outputs must also be eventually there. The multiprocessor is a
synchronous MIMD machine. In order to model the communication delay and computation
time, it is convenient to restrict the machine such that, at every time step, the processors
do one of the following:

In one communication ste a processor can write, and then read a word from
’ ’
global IMeIory.

In a computation step, a processor can perform a simple operation on at most
two values that are present in its local memory.

A computation is represented as a dag, and a schedule for a dag consists of a sequence of
computation steps and communication steps. At a computation step each processor may
evaluate a node of the dag; this evaluation can only take place at a processor when its local
memory contains the values corresponding to all of the incoming arcs. After the computa-
tion step is completed the values for the outgoing arcs are held in the local memory. At
a communication step, any processor may write into the global memory any value that is
presently in its local memory, and then it may read into its local memory a value from the
global memory.

Example. Consider the nine-node dag with arcs {<a, >, <a,d>,<a,e>, <a, f>,<b,¢>,
<b,d>,<b,e>, <b, >, <c,g>,<d,g>,<e,h>, <f,h><g,r>,<h,r>}. This can be sched-
uled to run on a four processor LPRAM in five communication steps and three computation
steps as follows.

Comm. step 1 : Py, Py, P5, Py read a.

Comm. step 2 : Py, Py, P35, Py read b.

Comp. step 1: Py, Py, P3, Py compute ¢, d, e, f respectively.

Comm. step 3 : Py, Py write d, f respectively. Py, P; read d, f respectively.
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Comp. step 2 : Py computes g, P3 computes h.
Comm. step 4 : P5 writes h, P; reads it.
Comp. step 3 : P, computes r.

Comm. step 5 : P, writes r.

The dag can also, for example, be computed on a two processor LPRAM in four com-
munication steps and four computation steps, or on a single processor LPRAM in three
communication steps and seven computation steps. Note that the minimum communication
delay (number of communication steps) and the minimum computation time (number of
computation steps) may not be achievable by the same schedule.

Aggarwal, Chandra and Snir [7] show that two n X n matrices can be multiplied in
O(n?/p) computation time and O(n?/p??) communication delay using p processors, for
p < n®/log®?n, and that these bounds are optimal. They also show that any algorithm
which uses only binary comparisons and sorts n elements requires a communication delay of
Q((n log n)/(p log (n/p))) for 1 < p < n, and also that this lower bound can be achieved
by an algorithm with O((n log n)/p) computation time. Other problems considered include
computing an n-point FFT graph, computing binary trees, and computing the diamond dag.

3. Special Purpose Parallel Computing

We noted in the introduction to this paper that no single model of parallel computation
had yet come to dominate developments in parallel computing in the way the von Neumann
model has dominated sequential computing [84, 258, 259]. Instead we have a variety of
models such as VLSI systems, systolic arrays and distributed memory multicomputers, in
which the careful exploitation of network locality is crucial for algorithmic efficiency. In
the different types of system it manifests itself in different ways. In a VLSI system, a
design with good network locality will have short wires, and hence will require less area.
An efficient systolic algorithm will have a simple, regular structure and use only nearest
neighbour communication. An efficient multicomputer algorithm will be one which minimises
the distance that messages have to travel in the network by careful mapping of the virtual
process structure onto the physical processor architecture. Of course, an efficient algorithm
for, say, a hypercube multicomputer will not necessarily perform well when run on, for
example, a 2D array multicomputer with the same number of processors. We will use the
generic term “special purpose” to refer to this type of parallel computing.

In a related paper [187], we describe a number of aspects of the work which has been done
in recent years on the design, analysis, implementation and verification of special purpose
parallel computing systems. The volume of published material on these topics is huge. A
long, but by no means complete, bibliography is given at the end of [187]. Special purpose
parallel systems are particularly appropriate in application areas where the goal of achieving
the best possible performance is much more important than that of achieving an architecture-
independent design. Some examples of such areas are: digital signal processing (filtering,
transforms), image processing, computer vision, mobile robot control, particle simulation,
cellular automata / lattice gas computations, dense matrix computations, communications
and cryptography, speech recognition, computer graphics, game playing. For more examples,
see [187].

The range of possible technologies for the development of such systems is extensive, varied,
and growing. The following is a representative sample of those in use today.
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VLSI systems (custom VLSI chips, field-programmable gate arrays)

Systolic architectures (application specific arrays, programmable systolic archi-
tectures)

Cellular automata machines

Multicomputers (2D and 3D arrays, pyramids, fat trees, hypercubes, butterflies
etc.)

Neural systems (VLSI neural networks, analog VLSI systems)

On the technological horizon we have the prospects of various exotic, massively parallel
systems such as lattice gas machines, quantum dot arrays, and various types of optical and
holographic systems.

We will not pursue the fascinating world of special purpose parallel computing further
in this paper. We simply note that, in the next few years, we will probably start to see
a much sharper distinction between the two fields of special purpose parallel computing
and general purpose parallel computing than at present. Those primarily concerned with
achieving the maximum possible performance for a specific application (at any cost?) are
likely to move more and more towards highly specialised architectures and technologies in
the pursuit of performance gains. In contrast, those for whom it is important to achieve
architecture-independence and portability in their designs, will increasingly seek a robust
and lasting framework within which to develop their designs. In the remainder of this paper
we will describe some ideas which have as their goal, the development of such a robust
framework. As we shall see, the use of advanced technologies such as optics may also have
an important role to play in achieving the communications performance required for efficient
general purpose parallel computing systems. In this setting, the model is the central driving
force and the optical hardware is simply one possible means of implementing the model. This
can be contrasted with work on the development of special purpose optical parallel systems,
where one directly exploits the capabilities of optical technology at the algorithmic level to
produce, for example, very high performance image processing systems, signal processors, or
neural networks.

4. General Purpose Parallel Computing

We have seen that an idealised model of parallel computation such as the PRAM can pro-
vide a robust framework within which to develop techniques for the design, analysis and
comparison of parallel algorithms. A major issue in theoretical computer science since the
late 1970s has been to determine the extent to which the PRAM and related models can be
efficiently implemented on physically realistic distributed memory architectures. A number
of new routing and memory management techniques have been developed which show that
efficient implementation is indeed possible in many cases. In this section we describe some of
the results which have been obtained, and discuss their significance for the future of general
purpose parallel computing. Before doing so, we will give an informal description of what
we mean by a general purpose parallel computer (GPPC).

A GPPC consists of a set of general purpose microprocessors connected by a communica-
tions network. The memory is fully distributed, with each processor having its own physically
local memory module. The GPPC supports a single address space across all processors by al-
locating a part of each module to a common global memory system. Each processor thus has
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access to its own private address space of local variables, and to the global memory system.
The purpose of the communications network is simply to support non-local memory accesses
in a uniformly efficient way through message routing. By uniformly efficient, we mean that
the time taken for a processor to read from, or write to, a non-local memory element in an-
other processor-memory pair should be independent of which physical memory module the
value is held in. The algorithm designer / programmer should not be aware of any hierarchi-
cal memory organisation based on the particular physical interconnect structure currently
used in the communications network. Instead, performance of the communications network
should be described only in terms of its global properties, e.g. the maximum time required to
perform a non-local memory operation, and the maximum number of such operations which
can simultaneously be in the network at any time.

A GPPC, as described, differs from a PRAM in that it has a two-level memory organisation.
Each processor has its own physically local memory; all other memory is non-local and
accessible at a uniform rate. In contrast, the PRAM has a one-level memory organisation;
all memory in a PRAM is non-local. The GPPC and PRAM models are similar to the extent
that they both have no notion of network locality. The GPPC differs from most current
distributed memory multicomputers, e.g. hypercubes, in having no exploitable network
locality, but is similar in that it is constructed as a network of processor-memory pairs.
One formal model which would correspond reasonably closely to the (informally defined)
GPPC would be a distributed memory multicomputer with full connectivity, i.e. with an
interconnection structure corresponding to the complete graph [147]. Another is the bulk-
synchronous parallel computer [258] which we will describe later in the paper.

Our purpose in giving this informal description of what we mean by a general purpose
parallel computer is simply to describe, in very general terms, the main characteristics that
we would expect any such computer to have. We have placed emphasis on the communication
/ memory organisation of such a machine. However, to support a coherent global memory
it would also be necessary to provide support for features such as processor synchronisation.

The efficient implementation of a single address space on a distributed memory architecture
requires an efficient method for the distributed routing of read and write requests, and of
the replies to read requests, through the network of processors. In the following section we
show how the idea of randomising can be used to produce an efficient distributed routing
scheme for this problem.

4.1. Randomised Routing

A distributed memory multicomputer can be thought of as having p processor-memory pairs
located at distinct nodes of a p-node graph. Each processor can send packets to, and receive
packets from, processors at adjacent nodes in the graph. Each edge of the graph can transmit
one packet of information in unit time, and has a queue for storing packets that have to be
transmitted along it.

A large number of graphs have been proposed as interconnection networks for such multi-
computers. Two important parameters of any such graph are its degree, i.e. the maximum
number of edges incident at any node, and its diameter, i.e. the maximum distance between
any pair of nodes, where the distance between two nodes is the length of a shortest path
between them. If implemented using conventional VLSI technology, a graph with low degree
is likely to have advantages in terms of physical packaging. The advantage of using a graph
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with small diameter is, of course, that it will permit a packet to be sent quickly between
any two nodes in the network. (The constraints of VLSI technology and, more generally, of
three dimensional space, imply that some low diameter networks cannot be realised without
having long wires. We will return to this wiring problem later in the paper and show how
optics may provide a solution.) Some of the graphs which have been proposed as intercon-
nection networks on p nodes are listed in the following table, together with their degree and

diameter.

Name Degree | Diameter
1D array (ring) 2 p/2
Shuffle-exchange 3 2 log p
Cube-connected-cycles 3 (5/2) log p
2D mesh of trees 3 2 log p
3D mesh of trees 3 2 log p
2D array (toroidal) 4 O(p'/?)
Butterfly (wrapped) 4 2 log p
de Bruijn graph 4 log p
3D array (toroidal) 6 O(p'/?)
Pyramid 9 log p
Hypercube log p log p

A large amount of work has been done in recent years on the development of efficient routing
methods for such networks [167, 168, 169, 171, 259], on the efficient embedding of one network
in another [122, 134, 167, 168, 169, 227], and on the demonstration of work-preserving
emulations of one network by another [156, 167, 168, 231]. We will focus our attention
here on the routing problem.

We consider the problem of packet routing on a p-processor network. Let h-relation denote
the routing problem where each processor has at most h packets to send to various points in
the network, and where each processor is also due to receive at most h packets from other
processors. We are interested in the development of distributed routing methods in which
the routing decisions made at a node at some point in time are based only on information
concerning the packets that have already passed through the node at that time. In the
nondistributed case where global information is available everywhere, the problem of routing
is easier and well understood.

Let us first consider deterministic methods for distributed routing. We define a routing
method to be oblivious if the path taken by each packet is entirely determined by its source
and destination. (Note that the use of the term oblivious here is slightly different from
its use in the context of comparison networks or circuits.) It is known [45, 142] that, for
a l-relation no deterministic oblivious routing method can do better than Q(p'/?/d) time
steps, in the worst case, for any degree d graph. The most obvious examples of deterministic
oblivious approaches are greedy methods in which one sends all packets to their destination
by a shortest path through the network. For 1-relations, the performance of greedy routing
on a butterfly can be summarised as follows. All 1-relations can be realised in O(p'/?)
steps, which, as we have observed, is an optimal worst case bound for any such fixed degree
network. A large number of 1-relations which arise in practical parallel computation, e.g.
the bit-reversal permutation and the transpose permutation, provably require ©(p'/?) steps.
What about the “average case”? Define a random 1-mapping to be the routing problem
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where each processor has a single packet which is to be sent to a random destination. Greedy
routing of a random l-mapping on a butterfly will terminate in O(log p) steps. Moreover,
the fraction of all random 1-mappings which do not finish in O(log p) steps is incredibly
small, despite the fact that most of the 1-relations which seem to arise in practice do not
finish in this time. We can probably conclude from these results that “typical” routing
problems, in a practical sense, is a rather different concept from “typical” routing problems
in a mathematical sense. The performance of greedy routing on a hypercube is very similar
to the case of the butterfly. All I-relations can be realised in O(p'/?/log p) steps, which
i1s an optimal worst case bound for any log p degree network. For the average case, where
each packet has a random destination, greedy routing will terminate in O(log p) steps. In
the case of the hypercube, there are exponentially many shortest paths for a greedy method
to choose from, but even randomising among these choices still gives no better than O(p®),
a > 0, steps for many 1-relations.

Another possible approach to deterministic routing is to use a sorting network of low
depth. For example, from Batcher’s odd-even merge sorting network [32, 155] we can obtain
an interconnection network by associating each line in the sorting network with a node in the
interconnection network, and each comparison element in the sorting network with an edge
in the interconnection network. In this way, we can obtain a p-node graph of degree O(log*p)
and diameter O(log?p). Any 1-relation routing problem can be realised in O(log®p) steps
by using the associated sorting network as a means of “sorting” the packet addresses. Note
that this method is deterministic and requires no queueing. By using the sorting network
of Ajtai, Komlos and Szemeredi [11], or its refinement by Paterson [207], we can improve
this result to obtain degree, diameter, and number of time steps O(log p). However, the
complex structure of the networks involved, and the very large constant factors hidden in
the O(log p) bounds, rule out this approach as a practical option, at least for the present
time.

We have seen that for the butterfly and hypercube, the performance of greedy routing
on random l-mappings is much better than on “worst case 1-relations”, such as the bit-
reversal permutation in the case of the butterfly. Around 1980, Valiant made the simple and
striking observation that one could achieve efficient distributed routing, in terms of worst
case performance, if one could reduce a 1-relation to something like the composition of two
random 1-mappings. The resulting technique which emerged from this observation has come
to be known as two-phase randomised routing [12, 167, 212, 253, 256, 257, 259, 260]. Using
this approach, a l-relation is realised by initially sending each packet to a random node in
the network, using a greedy method. From there it is forwarded to the desired destination,
again by a greedy method. Both phases of the routing correspond closely to the realisation
of a random l-mapping. Extensive investigation of this method, in terms of the number
of steps required, size of buffers required etc., has shown that it performs extremely well,
both in theory and in practice. The main theoretical results which follow from the use of
randomised routing are summarised in the following two theorems.

Theorem 4.1 With high probability, every 1-relation can be realised on a p processor cube-
connected-cycles, butterfly, 2D array and hypercube in a number of steps proportional to the
diameter of the network.

For the fixed degree networks in Theorem 4.1, this result is essentially optimal. For the
(log p)-degree hypercube, the following stronger result can be obtained.
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Theorem 4.2 With high probability, every (log p)-relation can be realised on a p processor
hypercube in O(log p) steps.

Proofs of Theorems 4.1 and 4.2 can be found in [259]. Randomised routing can also be used
to achieve good worst case performance on networks such as the shuffle-exchange graph [12]
and fat trees [109, 172].

An interesting alternative to using randomised routing on a standard, well defined network
such as a butterfly, is to use deterministic routing on a randomly wired network. In [170, 254]
it 1s shown that a simple deterministic routing algorithm can be used to realise a 1-relation
in O(log p) steps on a randomly wired, bounded degree network known as a multibutterfly.
An important feature of multibutterflies is that they have powerful expansion properties. In
addition to permitting fast deterministic routing, such expander graphs [13, 14, 16, 141, 177,
255] also have very strong fault tolerance properties.

The techniques and results that we have described for various types of randomised routing
show convincingly that for the problem of routing h-relations at least, there are a variety of
theoretically and practically efficient methods which can be used. In order to show that we
can efficiently simulate a shared address space on a distributed memory architecture we also
need to show that we can deal with the problem of “hot spots”, i.e. where a large number
of processors simultaneously try to access the same memory module.

4.2. Hashing

In theoretical terms, one very effective method of uniformly distributing memory references
is to hash the single address space. The hash function has, of course, to be efficiently
computable. Hash functions for this purpose have been proposed and analysed by Mehlhorn
and Vishkin [188]. They suggest using an elegant class of functions with some provably
desirable properties: the class of polynomials of degree O(log p) in arithmetic modulo m,
where p is the number of processors and m is the total number of words in the shared
address space. As in the case of randomised routing, the idea of hashing the address space
in this way has been subjected to extensive scrutiny in terms of both its theoretical and its
practical performance. All of the available evidence suggests that it works extremely well
in both respects. In fact, even constant degree polynomial hash functions, e.g. degree two,
seem to work well in practice. (Recent results [73, 74] show that linear hash functions have
certain limitations, at least in a theoretical sense, but that cubic hash functions work well.
The results also suggest that quadratic hash functions may have some shortcomings.) One
additional advantage of using a hashed address space is that we do not need then to resort
to randomising to avoid bottlenecks in packet routing, simple deterministic methods will
suffice.

Detailed technical accounts of the role of hashing in achieving efficient general purpose
parallel computing can be found in [145, 147, 220, 221, 242, 258, 259]. We will mention
only the following two results which demonstrate that distributed memory architectures
can efficiently simulate PRAMs. Let EPRAM (p,t) [ CPRAM (p,t), HY PERCUBE(p,t),
COMPLETE(p,t) | denote the class of problems which can be solved on a p processor
EREW PRAM [ CRCW PRAM, hypercube, completely connected network, respectively | in

t time steps.
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Theorem 4.3 (Valiant [259])
With high probability, EPRAM (p log p,t/log p) C HY PERCUBE(p,t).

Theorem 4.4 (Karp, Luby and Meyer auf der Heide [147])
With high probability, CPRAM (p log log p log*p,t) C COMPLETE(p,t log log p log™p).

Theorems 4.3 and 4.4 show that PRAM algorithms with a degree of parallel slackness can
be implemented on distributed memory architectures in a way which is optimal in terms of
the processor-time product.

Definition 4.5 An m processor algorithm, when implemented on an n processor machine,
where n < m, is said to have a parallel slackness factor of m/n for that machine.

Parallel slackness is an idea of fundamental importance in the area of general purpose parallel
computing. If parallel algorithms and programs are designed so that they have more paral-
lelism than is available in the machine, then the available parallel slackness can be effectively
exploited to hide the kind of network latencies one finds in distributed memory architectures.
The only requirement is that the processors provide efficient support for multithreading and
fast context switching [44, 228]. Latency tolerance via multithreading is likely to be more
effective on large scale general purpose parallel computing systems than the use of complex
caching schemes for latency reduction [111, 175].

The idea of exploiting parallel slackness can even be carried over into the area of sequential
computing. Much effort in recent years has been devoted to the development of complex
heuristic techniques for the efficient prefetching of values from memory in sequential com-
putations [50, 139, 195]. A radical alternative to this approach is, instead, to design parallel
algorithms for implementation on sequential machines. The parallel slackness of the algo-
rithm can then be exploited to achieve efficient prefetching. For more on this topic, see
[265].

We have seen then that by achieving a degree of parallel slackness in program designs
one can provide significant opportunities for the effective scheduling of those programs, by
the programmer or by a compiler, to hide the various kinds of latencies which arise in both
sequential and parallel computing. This idea of exploiting parallel slackness, or overdecompo-
sition, is not new. It was, for example, a central idea in the early HEP parallel architecture
[243], and has been used in its successors, Horizon and Tera [19]. In recent years it has
come to be recognised as crucial, not only for efficient implementation of PRAM like models
[147, 258, 259], but also for dataflow models [201]. The prospects for “autoparallelising”
sequential code, which may be regarded as the extreme opposite of this approach, appear
very bleak indeed.

The above analysis strongly supports the general principle that one should aim, at all times,
to produce algorithms and programs which have more parallelism in them than is available
in the machine (subject, of course, to the kinds of constraints on parallel efficiency which
were discussed earlier in the paper.) In the future we can expect to see the development
of a variety of programming languages for general purpose parallel computing. A clear
message from our discussion is that such languages must permit, and indeed encourage, the
development of programs which demonstrate a high degree of fine grain concurrency.
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4.3. Combining

In the previous sections we have been concerned with the problems of implementing the
weakest PRAM model, the EREW PRAM, on a distributed memory architecture. In prac-
tical parallel programming it is often convenient to permit concurrent access to a memory
location, as in the CRCW PRAM model. Animportant practical case is that of broadcasting,
where all processors simultaneously require the value of a single memory location.

One approach to the implementation of concurrent memory access is to use combining
networks [107], i.e. networks that can combine and replicate messages in addition to deliver-
ing them in a point-to-point manner. The Fluent machine of Ranade [220, 221] provides an
excellent example of how a CRCW PRAM can be efficiently implemented on a distributed
memory architecture equipped with a combining network. The interconnection network of
the Fluent machine is a butterfly. Let CBUTTERF LY (p,t) denote the class of problems

which can be solved on a p processor butterfly with a combining network in ¢ time steps.

Theorem 4.6 (Ranade [221])
With high probability, CPRAM (p,t) C CBUTTERFLY (p,t log p).

The theorem is established by showing that a p-processor Fluent machine can emulate a
p-processor CRCW PRAM with only a slowdown of O(log p), i.e. each parallel step of the
PRAM requires at most O(log p) steps on the Fluent machine, with high probability. The
size of buffers required at each node of the network is constant. The following is a very
brief account of the main ideas used in the emulation. The address space of the PRAM is
hashed onto the memory modules of the Fluent machine using a hashing function chosen at
random from a (log n)-universal class of hash functions [53, 273]. Suppose several processors
wish to read the same memory location at the same time. Each one sends a message to
the appropriate memory module along some path in the network. These paths will intersect
to form a tree and there is, therefore, no need to send more than one request along any
branch of the tree. A request simply waits at each node until (i) another request to the same
destination arrives on the other input to the node, in which case the node combines the two
and forwards the result along the tree, or (ii) the node determines that no future requests
arriving on the other input will have the same destination. By always transmitting messages
in sorted order of their destinations, and using “ghost messages” where necessary, one can
achieve the above emulation result.

Concurrent access to shared variables in the Fluent machine is based on the multiprefix
primitive. It has the form M P(A,v,$) where A is a shared variable, v is a value, and & is a
binary associative operator. At any time step a processor can execute a multiprefix operation,
with the constraint that if processors P; and P; execute M P(A,v;, ®;) and MP(A,v;,E;),

then @; = @;. The semantics of the multiprefix operation is defined as follows.

Definition 4.7 At time step T, let Py = {p1,p2,...,pr} be the set of processors referring
to variable A, such that py < py < -+ < pp. Suppose that p; € Py executes instruction
MP(A,v;,®). Let ag be the value of A at the start of time step T. Then, at the end of time
step T', processor p; will receive the value ag @ vy @ - - - D v;_q and the value of variable A will

be ag B vy B -+ D vg.

Thus, when a set of processors perform a multiprefix operation on a common variable, the
result is the same as if a single prefix operation were performed with the processors ordered
by their index.
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A parallel architecture which is very close in design to the Fluent machine is currently
under construction at the University of Saarbriicken [1, 2].

Valiant [258] has investigated the extent to which concurrent access to shared variables can
be provided without the use of combining networks. Working with the BSP model, he has
shown that if one has enough parallel slackness, then one can support concurrent accesses
in software on networks which have only point-to-point communication, with only constant
slowdown, by using fast integer sorting methods. In the next section we describe the BSP
model of parallel computation proposed by Valiant.

4.4. The BSP Model

For a detailed account of the model, and of the various routing and hashing results which
can be obtained for it, the reader is referred to [258]. We concentrate here on presenting a
view of (i) how a bulk-synchronous parallel architecture would be described, and (ii) how it
would be used.

A bulk-synchronous parallel (BSP) computer consists of the following:

a set of processor-memory pairs
a communications network that delivers messages in a point-to-point manner

a mechanism for the efficient barrier synchronisation of all, or a subset, of the
Processors

There are no specialised combining, replication or broadcasting facilities. It we define a time
step to be the time required for a single local operation, i.e. a basic operation on locally
held data values, then the performance of any BSP computer can be characterised by the
following four parameters:

p = number of processors
s = processor speed, i.e. number of time steps per second

[ = synchronisation periodicity, i.e. minimal number of time steps between suc-
cessive synchronisation operations

¢ = (total number of local operations performed by all processors in one second) /
(total number of words delivered by the communications network in one second)

The parameter [ is related to the network latency, i.e. to the time required for a non-local
memory access in a situation of continuous message traffic. The parameter ¢ corresponds
to the frequency with which non-local memory accesses can be made; in a machine with a
higher value of ¢ one must make non-local memory accesses less frequently. More formally,
g 1s related to the time required to realise h-relations in a situation of continuous message
traffic; ¢ is the value such that an h-relation can be performed in gh steps.

A BSP computer operates in the following way. A computation consists of a sequence
of parallel supersteps, where each superstep is a sequence of steps, followed by a barrier
synchronisation at which point any memory accesses take effect. During a superstep, each
processor has a set of programs or threads which it has to carry out, and it can do the
following:

363



PAZ R OA WA W S DY D N EhnAal FPUNRDPYVYUODL PANAab L WUUNVLD U LLIN T

perform a number of computation steps, from its set of threads, on values held
locally at the start of the superstep

send and receive a number of messages corresponding to non-local read and write
requests

The complexity of a superstep S in a BSP algorithm is determined as follows. Let L be the
maximum number of local computation steps executed by any process or during S, hy be the
maximum number of messages sent by any processor during .S, and hy be the maximum num-
ber of messages received by any processor during S. The cost of S is then maxz{l, L, ghq, ghs}
time steps. (An alternative is to charge maa{l,L + ghy, L + ghs} time steps for superstep
S. The difference between these two costs will not, in general, be significant.)

The use of the parameters | and ¢ to characterise the communications performance of
the BSP computer contrasts sharply with the way in which communications performance is
described for most distributed memory architectures on the market today. We are normally
told many details about local network properties, e.g. the number of communications chan-
nels per node, the speed of those channels, the graph structure of the network etc. The way
in which such descriptions emphasise local properties of the network, rather than its global
properties, reflects the fact that most of those machines are designed to be used in a way
where network locality i1s to be exploited. Those customers who have highly irregular prob-
lems, for which such exploitation is much more difficult, are often much less impressed by
such machines when they are told about the global performance of the network in situations
where network locality is not exploited.

A major feature of the BSP model is that it lifts considerations of network performance
from the local level to the global level. We are thus no longer particularly interested in
whether the network is a 2D array, a butterfly or a hypercube, or whether it is implemented
in VLSI or in some optical technology. Our interest is in global parameters of the network,
such as [ and ¢, which describe its ability to support non-local memory accesses in a uniformly
efficient manner. As an aside, we note that it might be an interesting and instructive exercise
to benchmark the various parallel architectures available today, in terms of such global
parameters.

In the design and implementation of a BSP computer, the values of [ and ¢ which can be
achieved will depend on (i) the capabilities of the available technology, and (ii) the amount
of money that one is willing to spend on the communications network. As the computational
performance of machines, i.e. the performance captured by p and s, continues to grow, we
will find that to keep [ and ¢ low it will be necessary to continually increase our investment
in the communications hardware as a percentage of the total cost of the machine. A central
thesis of the BSP and PRAM approaches to general purpose parallel computing is that
if these costs are paid, then parallel machines of a new level of efficiency, flexibility, and
programmability can be obtained.

On the basis of Theorems 4.1 and 4.2 we might expect to be able to achieve the following
values of [ and ¢ for a p processor BSP computer, by using the network shown.

Network ) g
2D Array | O(p'/?) | O(p'/?)
Butterfly | O(log p) | O(log p)
Hypercube | O(log p) O(1)
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These estimates are based entirely on the asymptotic degree and diameter properties of the
graph. In a practical setting, the use of techniques such as wormbhole routing [69, 167, 234,
235], rather than store and forward routing, would also have a significant impact on the
values of [ and ¢ which could be achieved.

When ¢ is small, e.g. ¢ = 1, the BSP computer corresponds closely to a PRAM, with
[ determining the degree of parallel slackness required to achieve optimal efficiency. For a
BSP computer of this kind, i.e. with a low ¢ value, we can use hashing to achieve efficient
memory management [258]. The case [ = g = 1 corresponds to the idealised PRAM, where
no parallel slackness is required.

In designing algorithms for a BSP computer with a high ¢ value, we need to achieve a
measure of communication slackness by exploiting thread locality in the two-level memory,
i.e. we must ensure that for every non-local memory access we request, we are able to perform
approximately ¢ operations on local data. To achieve architecture independence in the BSP
model, it is therefore appropriate to design parallel algorithms which are parameterised
not only by n, the size of the problem, and p, the number of processors, but also by [
and ¢g. The following example of such an algorithm appears in [258]. The problem is the
multiplication of two n x n matrices A, B on p < n? processors. The standard O(n?)
sequential algorithm is adapted to run on p processors as follows. Each processor computes
an (n/p'/?) x (n/p'/?) submatrix of C = A.B. To do so it will require n?/p'/? elements
from A and the same number from B. For each processor we thus have a computation
requirement of O(n®/p) operations, since each inner product requires O(n) operations, and
a communications requirement of O(n?®/p) for the number of non-local reads, since p < n?.
It we assume that both A and B are distributed uniformly amongst the p processors, with
each processor receiving O(n?/p) of the elements from each matrix, then the processors can

simply replicate and send the approprate elements from A and B to the 2p'/?

Processors
requiring them. Therefore, we also have a communications requirement of approximately
n?/pt/? = O(n?/p) for messages sent. We thus have a total parallel time complexity of
O(n?/p), provided I = O(n?/p) and ¢ = O(n/p'/?). An alternative algorithm, given in
[7], that requires fewer messages altogether, can be implemented to give the same optimal
runtime, with ¢ as large as O(n/p'/?) but with [ slightly smaller at O(n®/p log n).

The BSP model can be regarded as a generalisation of the PRAM model which permits the
frequency of barrier synchronisation to be controlled. By capturing the network performance
of a BSP computer in global terms using the values [ and ¢, the model enables us to design
algorithms and programs which are parameterised by those values, and which can therefore
be efficiently implemented on a range of BSP architectures with widely differing [ and g¢
values. It therefore provides a solution to the problems posed at the start of the paper.
We have a simple and robust model which permits both scalable parallel performance and a
high degree of architecture independence in software. Its simplicity also offers the prospect
of our being able to develop a coherent framework for the design and analysis of parallel
algorithms.

5. Optical Communication

Simple arguments can be used to show that various low diameter networks, such as the
butterfly and the hypercube, cannot be implemented using VLSI technology without having
long wires for some of the edges in the network. This has led some to conclude that such
networks should be replaced by networks such as fat trees [172, 173] which are more efficient,
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in the VLSI model [174, 250, 267], in terms of their use of area or volume.

In this section we show that optical communication systems [34, 81] offer the prospect of a
dramatic improvement in the efficiency with which non-local communication can be achieved.
We show that a simple (and possibly cheap) optical interconnection architecture based on
wavelength division multiplexing can be used (a) to solve the above mentioned VLSI wiring
problem, and (b) to implement an extremely simple and efficient form of randomised optical
routing. The results presented in this section are due, in this form, to Rao [222], although
most of them are reinterpretations, in terms of optical communication, of known results
in the theory of parallel computation. The power of optical communication has also been
investigated in [21, 86, 118, 209, 258, 259].

Rao [222] considers various routing problems on a p'/? x p'/? 2D array of processors,
where the processors on each row of the array are connected by an optical bus, and the
processors on each column of the array are also connected by such a bus. We thus have 2p'/?
buses, each of length p'/2. Each bus uses wavelength division multiplexing (WDM) [76] to
support simultaneous communication between many disjoint pairs of processors on the same
bus. This communications architecture will be referred to as the p processor mesh of buses
(MOB). The idea of using a mesh of buses for interconnection was proposed by Wittie [275],
and as a basis for optical interconnection networks by Dowd [76].

5.1. Solving The VLSI Wiring Problem

To solve the VLSI wiring problem we need only consider the simplest MOB in which the
optical buses have fixed transmitters and receivers at each processor, i.e. where the trans-
mitters and receivers are initially set (off-line) to achieve a certain communication pattern,
e.g. a hypercube, and then remain fixed as that pattern is used. The first result shows that
all networks can be emulated on the MOB with an efficiency related to the degree of the
network.

Theorem 5.1 Any p processor network N of degree d can be emulated on a p processor
MOB so that (i) there are O(d) transmitters/receivers per processor, and (ii) each edge in
N s realised by a path of length at most three in the MOB.

By an edge in the MOB we mean a channel on one of the buses, and by a path we mean a
sequence of such edges. Theorem 5.1 is a consequence of the following well known results: (a)
any such degree d network has O(d) perfect matchings, (b) each perfect matching corresponds
to a l-relation, and (c) by Hall’s Theorem, all 1-relations can be routed (off-line) in a 2D
array by permuting the packets of the rows, then permuting the packets of the columns, and
then finally permuting the packets of the rows again. For details of the proof of part (¢), see
[167]. For networks such as the cube-connected-cycles and the hypercube we can do even
better.

Theorem 5.2 A p processor cube-connected-cycles network can be emulated on a p processor
MOB so that (i) there are O(1) transmitters/receivers per processor, and (ii) each edge in
the cube-connected-cycles is realised by a single edge in the MOB.

Theorem 5.3 A p processor hypercube network can be emulated on a p processor MOB so
that (i) there are O(log p) transmitters/receivers per processor, and (ii) each edge in the
hypercube is realised by a single edge in the MOB.
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Theorems 5.2 and 5.3 follow directly from standard VLSI layouts of those networks.

5.2. Randomised Optical Routing

We now consider a model of optical communication corresponding to the case where the buses
in the MOB have tunable transmitters at each processor. Unlike the previous model, we are
now able to dynamically change (on-line) the destination on the bus to which a processor
can send a message. The model of computation is as follows. At any step, a processor can
send a message directly to any other processor on the same bus. A message is successfully
received if it was the only message sent to that destination in the step. A processor which
successfully receives a message sends back an acknowledgement. (A single bus version of
this optical model was investigated in [21].) We now describe a very simple randomised
method for routing 1-relations on a MOB with tunable transmitters, which Rao [222] credits
to Leighton and Maggs. The method proceeds in rounds, where each round consists of the
following sequence of steps.

1. Each processor with a message sends it to a randomly selected position in its row bus.

2. Each processor that successfully received a message in step 1 forwards it using its
column bus to the correct destination row for that message.

3. Each processor that successfully receives a message from step 2 forwards it using its
row bus to the correct destination for that message.

4. For each message that was successfully received in step 3, an acknowledgement is sent
to its source along the path it took. (It is easy to show that an acknowledgement gets
back to any processor whose message was successfully sent to its destination.)

5. When a processor receives an acknowledgement, it does not send the message in later
rounds.

Theorem 5.4 With high probability, the above method will route any l-relation in O(log
log p) steps on a MOB.

The O(log log p) upper bound is easily established as follows. Each round takes six commu-
nication steps. The probability of a given message colliding with another in the first round
is less than 1/e. If we have p/l messages left at the start of some round, then no more than
about p/I? of them will be unsuccessful in that round. Therefore, after k rounds we will have
no more than about p/ezk of them left, and thus O(log log p) rounds will be sufficient. On
a completely connected optical network with the same collision rules, the problem of rout-
ing a l-relation can be trivially completed in one step, whereas the above method requires
O(log log p) steps on the MOB. For the problem of routing h-relations, where h is at least
logarithmic in p, Rao [222] has established the following powerful result.

Theorem 5.5 With high probability, any h-relation, with h > log p, can be routed in O(h)
steps on o MOB.

Therefore, for such larger h-relations, the MOB is as powertul as a completely connected
network! For the case where 1 < h < log p, much less is known. In particular, no constant
time method is known for routing a 2-relation on a completely connected optical network.
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6. Challenges

In the previous sections we have seen that there are a variety of theoretically and practi-
cally efficient solutions to the problem of supporting a single address space on a distributed
memory architecture. We have also seen that there are a large number of efficient, practi-
cal shared memory algorithms for important problems. In this section we briefly describe
some of the main issues which need to be addressed in the future in order to continue the
development of this framework for general purpose parallel computing based on fine grain
concurrency in a shared address space.

6.1. Architecture

Most distributed memory architectures are based on conventional microprocessors [119, 120,
208]. We need alternative processor designs which can support a very large number of
lightweight threads simultaneously, and can provide fast context switching, message handling,
address translation, hashing etc. [44, 69, 71, 130, 274]. If such designs are not produced then
we may find that the processors, and not the communications network, will be the bottleneck
in the system.

We need to continue to develop improved networks for communication [69, 76, 170, 209, 222]
and synchronisation [40, 138, 159]. There is currently great emphasis in parallel computing
on various “Grand Challenge” applications in science and engineering. While not doubting
the importance of these applications, we would suggest that perhaps the most important
challenge for parallel architectures at the present time is to develop systems for which global
“inefficiency parameters”, such as [ and ¢g in the BSP model, are as low as possible. We have
observed that the use of optical technologies may prove to be extremely important in this
respect. In focusing our attention on the reduction of global parameters such as [ and ¢, we
should note that it may not necessarily be cost-effective to try to obtain the extreme case
of the PRAM, where [ and ¢ are both 1. At any given point in time, the capabilities and
economics of the technologies available will determine the most cost-effective values of such
parameters. An important advantage of the BSP model [258] over the PRAM [1, 2, 221] is
that it provides an architecture-independent framework which allows us to take full advantage
of whichever values of [ and ¢ are the most cost-effective at a given point in time.

Large general purpose parallel computer systems will inevitably suffer hardware faults of
various kinds during their operation. We need to develop efficient techniques which can
provide a degree of fault tolerance for processors, memories, and communications links. An
interesting approach to this problem is to use the idea of information dispersal [179, 180, 215],
where a space efficient redundant encoding of data is used to provide secure and reliable
storage of information, and efficient fault tolerant routing of messages. Other approaches to
the problems of fault tolerance are described in [152, 153, 241].

6.2. Algorithms

Although the potential for automating memory management via hashing is a major advan-
tage of the BSP model, the BSP algorithm designer may wish to retain control of memory
management in the two-level memory to achieve higher efficiency, e.g. on a BSP computer
with a high value of g. A systematic study of bulk-synchronous algorithms remains to be
done. Some first steps in this direction are described in [85, 258].
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We need to continue to investigate the effects of hashing on the algorithmic performance
achievable for important computational problems. There is already some theoretical evidence
to confirm what one might intuitively expect, namely that any negative effects of hashing on
algorithmic performance are much less dramatic on problems involving complex sparse irreg-
ular data structures, than they are on problems involving simple regular data structures. It
is likely that future developments in most scientific and engineering applications will involve
problems on large sparse irregular matrices and graphs, much more than on dense matrices
and graphs. It is, therefore, likely that the advantages, in terms of programming simplicity, of
using hashing will increasingly outweigh any disadvantages. We need to continue to develop
fast, processor efficient parallel algorithms for sparse matrix and graph computations.

6.3. Languages and Software

The PRAM model was developed to facilitate the study of parallel algorithms and their
complexity. In that context it has proved to be extremely useful. However, as we have
pursued the design and implementation of parallel architectures based on the PRAM model,
it has become clear that we have no well developed framework for the programming of such
architectures. This can be contrasted with other approaches to general purpose parallel
computing such as the actor and dataflow models, where there has been an intensive effort
to develop a programming framework, although rather less on the investigation of parallel
algorithms and their complexity. It is vital for the success of the approach described in this
paper that we develop programming languages and methodologies for the kinds of parallel
architectures proposed. Of the various challenges mentioned, this is perhaps the most im-
portant, and in many respects the most difficult one. The apparent unwillingness of many
programmers of parallel machines to use anything other than minor variants of the sequential
languages FORTRAN and C is widely perceived to be a major impediment to the continuing
development of parallel computing. Another impediment is, of course, the “dusty decks” of
old FORTRAN codes which many organisations are unwilling, or unable, to abandon. Many
new parallel programming languages have been proposed and rejected over the last decade
or so. Nevertheless, we must continue to seek a programming model which will provide a
means of achieving the architecture-independence sought, while permitting scalable parallel
performance on the kinds of architectures described. Some preliminary work in this direction
can be found in [186]. It is to be hoped that as such a programming framework is developed
we will also be able to provide a strategy for the migration of the dusty decks to the new
architectures.

7. Other Approaches

A large number of approaches are currently being proposed as the basis of a framework for
general purpose parallel computing. In this paper, the case for the BSP/PRAM approach
has been presented. In this section we will briefly mention some of the other approaches.

Perhaps the most conservative of the alternatives is SIMD or data parallelism. Although
a number of interesting algorithms have been developed for such architectures [41, 42, 43,
123, 246] , the model does not appear to be sufficiently general, even when extended to its
SPMD form.

Another conservative approach is simply to continue with architectures based on message
passing across a fixed set of channels [124, 125, 135]. Although such a model is adequate
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for the development of many special purpose parallel systems, and for low level systems
programming, it does not appear to offer enough in terms of architecture-independence.

An approach related to message passing which appears to be more attractive is the actor
model [9], which we might think of as message passing using names rather than a fixed
set of channels. The names are first class objects and can be passed in messages. The
graph of possible interactions between actors can thus change dynamically. The actor model
provides a convenient framework for concurrent object-oriented programming [10]. Dally
has developed an interesting parallel architecture, called the J-Machine [69, 70, 72], which
supports the actor model.

The dataflow model has evolved considerably over the last decade. Modern designs for
dataflow architectures [128, 129, 200, 201, 206] emphasise the importance of ideas such as
efficient multithreading and the exploitation of parallel slackness, in the same way as the
PRAM architectures do. There are, of course, major differences between the two approaches
in terms of synchronisation control, scheduling control etc. It is not yet clear whether the
freedom which the dataflow model offers the programmer has a cost to be paid in terms of
scalable parallel performance.

Other approaches to general purpose parallel computing which have been suggested in
recent years include asynchronous PRAMs [59, 90], block PRAMs [6], hierarchical PRAMs
[121], tuple space [51, 52], graph reduction [210, 211], rewriting, and shared virtual memory.

8. Conclusion

The goals of general purpose parallel computing are to achieve both scalable parallel per-
formance and architecture-independent parallel software. Despite much effort to find them,
no serious theoretical impediments to the achievement of these goals have yet been found.
We have argued that the bulk-synchronous parallel computer is a robust model of parallel
computation which offers the prospect of achieving both requirements. The main challenge
at the present time is to develop an appropriate programming framework for the BSP model.

Two other models which appear to offer the required architecture-independence are the
actor and dataflow models. Unlike the BSP and PRAM models, which have global barrier
synchronisation as the basic mechanism, these two models have at their core the idea of local,
usually pairwise, synchronisation events. It is not yet clear whether these two models can
offer the same scalability in parallel performance as we have demonstrated can be obtained for
the BSP model. It is also unclear at present whether they can offer a convenient framework
for the investigation of parallel algorithms and their complexity. Nevertheless, by virtue of
their attractiveness in programming terms, they merit serious consideration.

Although we have stressed the differences between these various approaches, there is reason
to believe that, at the architectural level, the BSP, PRAM, actor and dataflow models will
require a number of similar mechanisms for efficient implementation; in particular, high
performance global communications, uniform memory access, and multithreading to hide
network latencies.
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