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Choice RT experiments are an invaluable tool in psychology and neuroscience. A common as-
sumption is that the total choice response time is the sum of a decision and a non-decision part
(time spent on perceptual and motor processes). While the decision part is typically modeled
very carefully (commonly with diffusion models), a simple and ad hoc distribution (mostly
uniform) is assumed for the non-decision component. Nevertheless, it has been shown that
the misspecification of the non-decision time can severely distort the decision model param-
eter estimates. In this paper, we propose an alternative approach to the estimation of choice
RT models that elegantly bypasses the specification of the non-decision time distribution by
means of an unconventional convolution of data and decision model distributions (hence called
the D*M approach). Once the decision model parameters have been estimated, it is possible
to compute a non-parametric estimate of the non-decision time distribution. The technique
is tested on simulated data, and is shown to systematically remove traditional estimation bias
related to misspecified non-decision time, even for a relatively small number of observations.
The shape of the actual underlying non-decision time distribution can also be recovered. Next,
the D*M approach is applied to a selection of existing diffusion model application papers. For
all of these studies, substantial quantitative differences with the original analyses are found. For
one study, these differences radically alter its final conclusions, underlining the importance of
our approach. Additionally, we find that strongly right skewed non-decision time distributions
are not at all uncommon.
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Introduction

In the last decade, the use of evidence accumulation
models for choice RT experiments has revealed fundamen-
tal insights into the process of elementary decision making
(Basten, Biele, Heekeren, & Fiebach, 2010; DasGupta, Fer-
reira, & Miesenböck, 2014; Forstmann et al., 2008; Krajbich
& Rangel, 2011; Polanía, Krajbich, Grueschow, & Ruff,
2014; Ratcliff & Dongen, 2011; Resulaj, Kiani, Wolpert, &
Shadlen, 2009). A common assumption in all these stud-
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ies, is that choice RT can be additively decomposed into a
decision time (taken up by the process responsible for the
actual choice) and a residual non-decision time. The latter is
considered to be the contribution of encoding and motor re-
sponse execution (Luce, 1986). In contrast to the intricate ev-
idence accumulation or diffusion models for the decision part
of choice RT (Brown & Heathcote, 2008; Ratcliff & Rouder,
1998; Usher & McClelland, 2001; Verdonck & Tuerlinckx,
2014; Wong & Wang, 2006), the models traditionally used
for the non-decision time are surprisingly basic: adding a
simple time constant, or, at best, adding a simple paramet-
ric distribution (mostly uniform, see Ratcliff & Tuerlinckx,
2002). However, choosing the wrong model for the non-
decision time is known to be a cause for bias for the deci-
sion model’s parameter estimates, especially when data orig-
inating from a skewed non-decision time distribution are fit-
ted under the assumption of a non-skewed non-decision time
distribution (Ratcliff, 2013). Seeing a (right) skewed non-
decision time distribution is at least as plausible as the cur-
rent non-skewed default. Therefore, today’s golden standard
for the non-decision time may be systematically delivering
biased results for the decision process parameters.

In this paper, we develop a novel estimation approach that
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bypasses the specification of the non-decision time distribu-
tion and allows us to estimate the decision model’s param-
eters without any non-decision time misspecification bias.
Moreover, if desired, a non-parametric estimate of the resid-
ual non-decision time can be estimated.

Attempts to disentangle non-decision from decision time
have been proposed before (Smith, 1990), but from a differ-
ent perspective: the non-decision time distribution was as-
sumed to coincide with the distribution of simple (i.e., one-
choice) response times, observed in a comparable experi-
mental setup. This distribution was then deconvolved from
the distribution of total choice response times (from the orig-
inal two-choice version of the experiment) in order to isolate
the decision part. The resulting distributions could then be
modeled with a decision model. The approach we propose
in this paper, does not use information of secondary experi-
ments nor does it presume any particular parametric distribu-
tion (shape) for the non-decision time distribution.

In what follows we will first explain the method, then il-
lustrate its performance based on simulated data, and finally
use it to re-analyze data from three different diffusion model
application papers.

The D*M method

Assume a two-choice RT experiment with I different con-
ditions (i = 1, ..., I). These conditions can be stimuli of
different difficulty (e.g., percentages coherently moving dots
in a random dots motion task) but also other manipulations
(e.g., prior expectations). During the course of the exper-
iment, there are several trials within a condition, and each
trial can results in either a correct (c = 1) or an error choice
response (c = 0). For the sake of simplicity, we assume
an equal number of N trials. Let us start with focusing on
the theoretical probability density function (pdf) of the total
response time for condition i and choice response c. For con-
venience, we introduce an index p = 2i − c, running over all
2I condition-response pairs ic: correct choice responses have
odd p, incorrect choice responses have even p. This total re-
sponse time pdf can be seen as a convolution of a decision
pdf (denoted as mp(t; θ0)) and a non-decision pdf (denoted as
r(t)):

fp(t) = (mp ∗ r)(t) =

ˆ ∞
0

mp(t − x; θ0)r(x)dx,

where ∗ stands for the convolution operator and θ0 is the true
parameter vector of the decision pdf. Obviously, also fp(t)
depends on θ0, but we suppress this dependence for simplic-
ity. In what follows, we will denote the convolution product
between densities m(t; θ0) and r(t) as m(θ0) ∗ r. Note also
that the integral over t for fp(t) is equal to the probability
of condition-response pair p, thus fp(t) is a defective pdf.
However, because a choice response for condition i is either

Table 1
List of symbols used.

Variable Description
I number of conditions (e.g., stimuli)
p index used to indicate condition-response pairs

(0 < p ≤ 2I)
mp (parametric) decision model distribution
r non-decision time distribution
fp total choice response time distribution
ĝp kernel density estimate of fp

correct or incorrect,
´ ∞

0 f2i−1(t)dt +
´ ∞

0 f2i(t)dt = 1. For con-
venience, an overview of the notation used in this paper is
provided in Table 1.

Because the convolution operator is commutative, for any
two non-identical condition-response pairs p and p′, it holds
exactly that

r ∗ mp(θ0) ∗ mp′ (θ0) = r ∗ mp′ (θ0) ∗ mp(θ0)
fp ∗ mp′ (θ0) = fp′ ∗ mp(θ0). (1)

This convolution identity is the fundament of our method:
The non-decision time distribution is factored out.

The idea is to use Equation 1 to find an estimate of θ0,
given observed choice RT samples from fp and fp′ on the one
hand, and well-specified decision model pdfs mp and mp′ on
the other. The data enter the equality by approximating fp

and fp′ through nonparametric estimates based on the ob-
servations, denoted as ĝp and ĝp′ . The estimated densities ĝp

and ĝp′ are kernel density estimators, with ĝp based on the Np

observed RTs t j
p ( j = 1 . . .Np) for condition-response pair p:

ĝp(t) =
1

Np

Np∑
j=1

K

 t − t j
p

h

 .
As a smoothing kernel function K(t), we use a uniform dis-
tribution from 0 to 1. The bandwidth is chosen to be h = 1.

When replacing fp and fp′ by ĝp and ĝp′ , the equality of
Equation 1 is no longer exact. However, the discrepancy (or
objective function)

Dpp′ (θ) = d
(
ĝp ∗ mp′ (θ), ĝp′ ∗ mp(θ)

)
, (2)

where d(·, ·) is a distance defined on the space of defective
pdfs, should be small for θ = θ0. Note that in Equation 2,
a convolution appears between the data from condition-
response pair p′, represented by the smoothed estimated den-
sity ĝp′ , and the model’s density for condition-response pair
p, that is mp(θ). Therefore we refer to our technique as
the D*M method. To evaluate this crucial convolution both
model and data densities are discretized using an equally
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spaced grid and the convolution integral is then approximated
by a finite sum over this grid.

In this paper we opt for a chi-square type of distance be-
tween the compared distributions

d(a, b) =

ˆ ∞
0

[a(t) − b(t)]2

a(t) + b(t)
dt. (3)

For a conventional chi-square distance, where typically an
observed distribution is compared to a model pdf, the in-
tegrand’s denominator is the pdf of the model. Because in
Equation 2, both compared distributions are a convolution of
a data and a model pdf, we take the sum of the two compared
distributions for the integrand’s denominator in Equation 3.
This distance is called the triangular discrimination (Topsoe,
2000) and can be considered as a symmetrized version of the
chi-square distance (a “chi-square like distance”; Le Cam,
1986).

It is obvious that for ĝp → K∗ fp and ĝp′ → K∗ fp′ , Dpp′ (θ)
reaches its minimal value of zero, when θ = θ0 (because of
Equation 1). In Appendix A it is shown that if the decision
model does not contain a non-decision component of its own
and the total response time pdfs fp underlying the data are
not all equal across condition-response pairs, this minimum
is unique, at least for the parameters pertaining to mp or mp′ .
In this sense, Dpp′ (θ) can be used to estimate the parameters
pertaining to mp and mp′ without explicitly solving the un-
derlying inverse convolution problem leading to an estimate
of r(t). Because we are interested in the parameters pertain-
ing to all condition-response pairs, we use the total objective
function

T (θ) =

2I∑
p=2

 p−1∑
p′=1

Dpp′ (θ)

 , (4)

where the sum runs over all possible unique combinations
of two different condition-response pairs. The estimated pa-
rameter vector θ̂ is then found as: θ̂ = argminT (θ).

If the true parameter vector θ0 is the absolute and unique
minimum of all separate terms Dpp′ (at least for all param-
eters pertaining to mp and mp′ ), the same will hold for the
sum T (θ) (for all parameters). For θ0, the non-decision pdf
r(t) clearly exists and can be retrieved as the deconvolution
of each condition-response pair p’s total response time and
decision pdfs:

r = fp ∗ mp(θ0)−1, (5)

where −1 in the exponent refers to the deconvolution opera-
tion.

However, for an arbitrary parameter vector θ, it is not sure
that these deconvolutions exist. Conditions for the existence
of a deconvolution are described in Appendix B and it is
shown that, up to a practical degree of accuracy when dealing

with noisy data, they boil down to the following condition on
the variances σ2:

σ2
fp
≥ σ2

mp(θ), (6)

basically avoiding a negative variance for r(t). Because we
use a smoothing kernel K to estimate fp, the kernel needs to
be taken into account and effectively we will use the equiva-
lent constraint:

σ2
K∗ fp
≥ σ2

K∗mp(θ) = σ2
mp(θ) + σ2

K ,

where the last step follows from the additive property of vari-
ances of independent random variables. In terms of the data,
the constraint is:

σ2
ĝp
≥ σ2

K∗mp(θ̂)
= σ2

mp(θ̂)
+ σ2

K . (7)

This condition has to be met for all condition-response
pairs p. Although these conditions have to be met for all
condition-response pairs p, the validity of each of these con-
straints is only as good as the estimate σ2

ĝp
. For this reason,

densities ĝp(t) based on only a few data points should not be
included. If these constraints are imposed while minimizing
T (θ), the existence of a common r(t) for all pairs p is en-
sured. For the final estimation of r(t), we use the following
expression:

r = r ∗

1
I

2I∑
p=1

mp(θ0)

 ∗
1

I

2I∑
p=1

mp(θ0)


−1

=

1
I

2I∑
p=1

r ∗ mp(θ0)

 ∗
1

I

2I∑
p=1

mp(θ0)


−1

=

1
I

2I∑
p=1

fp

 ∗
1

I

2I∑
p=1

mp(θ0)


−1

, (8)

where both sums runs over all 2I pairs p. Having obtained
an estimate θ̂ of the true parameter values θ0, this results in
an estimator

r̂ =

1
I

2I∑
p=1

ĝp

 ∗
1

I

2I∑
p=1

K ∗ mp(θ̂)


−1

, (9)

where the same smoothing kernel K is used for both factors
of the deconvolution. The constraints in Equation 7 ensure
the existence of this deconvolution. If the deconvolution ex-
ists, then clearly for ĝp → K ∗ fp, and therefore θ̂ → θ0,
r̂(t) → r(t). Note that the smoothing kernel K used in this
final step can differ from the kernel used in the minimiza-
tion procedure, but has to be applied in a recalculation of
ĝp(t) as well (for the deconvolution, we will use a uniform
distribution from 0 to 0.01 for K). In practice, we solve the
deconvolution problem in Equation 9 by defining a grid (we
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take a grid spacing of 0.01s) and minimizing the triangular
discrimination distance (see Equation 3) between the data-
based distribution

(
1
I
∑2I

p=1 ĝp

)
and the model-based distribu-

tion r ∗
(

1
I
∑2I

p=1 K ∗ mp(θ̂)
)

with respect to the probability
weights assigned to the grid points. We use the same global
optimizer as before to tackle this high dimensional minimiza-
tion problem: for a grid spacing of 0.01s and r̂ clipped at
1.5s, r̂ consists of 150 grid points whose weights have to be
estimated. We again use the triangular discrimination dis-
tance for consistency, but for this estimation other distances
or could be used as well.

In the theory developed above, we have assumed that all
2I condition-response pairs share the same non-decision time
distribution r. Note however that the total objective func-
tion T (θ) in Equation 4 can be easily changed to allow for
multiple non-decision time distributions, each shared within
a subset (with 2 elements or more) of condition-response
pairs. This setup is the analogue of a traditional diffusion
model analysis in which the non-decision time parameter Ter

is allowed to vary across (some of the) conditions, while the
other parameters are constrained to be equal. In order to im-
plement such a situation, it suffices to limit the double sum
in Equation 4 to terms produced within subsets of condition-
response pairs with the same non-decision time distribution.
Each non-decision time distribution can then be estimated
separately by limiting the sums in Equation 9 to the subset of
condition-response pairs corresponding to that non-decision
time distribution.

Performance on simulated data

In this section we show how well the D*M technique
recovers a standard parameter set of the Ratcliff diffusion
model (Ratcliff & Tuerlinckx, 2002), in conjunction with
different non-decision time distributions. The quality of the
estimates is systematically compared to the results obtained
with a standard approach in which it is assumed that the non-
decision time is uniformly distributed.

Data simulation

We simulated data from a typical Ratcliff diffusion model
parameter set (Table 2) in conjunction with three different
non-decision pdfs (see the righthandside figures of the three
panels in Figure 1): one right skewed, one uniform and one
bimodal distribution. For all three parameter configurations,
we look at data sets of 300, 1,000 and 1,000,000 RTs per
stimulus. For each combination of sample size and non-
decision time distribution, we simulated 100 data sets.

Standard and D*M estimation procedures

For the standard estimation procedure we used both the
standard maximum likelihood method and the quantile likeli-
hood method (Heathcote & Brown, 2004; Heathcote, Brown,

Table 2
Ratcliff diffusion model parameters used for the decision part
of the simulated data.

Parameter Description Value
a boundary separation 0.08
η inter-trial variability 0.08

of drift rate
zr relative bias 0.5
sz uniform inter-trial 0.02

variability of bias z = a · zr
vi (i = 1, . . . , 4) drift rates [0.4, 0.25, 0.1, 0]

& Mewhort, 2002). As the results are very comparable, we
only show results of the latter. As is customary, a uniform
distribution for the non-decision time distribution was used
and the location and spread of this uniform distribution was
estimated alongside the pure decision model parameters.

In the D*M procedure no non-decision pdf has to (nor
should) be included. To evaluate the convolution integral, we
choose a grid ranging from 0 to 5s (well beyond any observed
RT) with equally spaced nodes at every 0.01s.

For both methods (standard and D*M), the model density
m(θ) needs to be calculated. To do this, we use code from
the fast-dm project (Voss & Voss, 2007). Also in both meth-
ods, an objective function has to be minimized (the negative
quantile likelihood for the standard method and Equation 4
for D*M). To find this minimum, we use a global optimizer
(i.e., differential evolution; Storn & Price, 1997) .

Results

Figure 1 shows the estimates for the boundary separation
a (results for the other parameters are offered as supplemen-
tal material), in conjunction with three different shapes of
non-decision time densities. The traditional approach results
in a systematic estimation bias, except for the uniform non-
decision pdf, in which case the non-decision model is per-
fectly specified for the data. This systematic bias is resolved
with the D*M method, which gives better estimates (or com-
parable in the unlikely case that the actual non-decision time
density is a uniform distribution), even for a number of data
points as low as 300 per condition. In addition, the aver-
age recovered non-decision time densities match remarkably
well with the true non-decision time densities.

As an additional test, we have repeated this analysis for
different values of boundary separation a. Increasing values
of a correspond to a larger proportion of the total response
time (and its variance) being accounted for by the decision
model (keeping everything else constant). The results are
presented in Figure 2. For the right skewed non-decision
time distribution, the D*M method always outperforms (or
matches) the traditional method, regardless of the value of
a or the number of observations. For the uniform and bi-
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Figure 1. In the left panels, the recovery of the Ratcliff diffu-
sion model’s boundary separation parameter a is shown, for
data simulated with either a right skewed non-decision pdf
(a), a uniform non-decision pdf (b) or a bimodal combina-
tion of both (c). Estimates are shown for data sets with sub-
sequently N = 106, N = 103 and N = 300 observations per
condition. The orange box plots show the distributions of the
estimates obtained with the traditional method, the blue box
plots those obtained with the D*M method. (The recovery
results for the other diffusion model’s parameters yield very
similar conclusions and are offered as supplemental mate-
rial.) In the right panels, we show for each non-decision time
density, the average of the non-parametric estimates based
on the D*M decision model parameter estimates as given by
Equation 9. The average is represented by solid lines varying
from light to dark with the increasing number of observations
and compared to the original shape (dashed black line).
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Figure 2. Estimation biases of boundary separation a, for
varying a. The same non-decision time distributions were
used as in Figure 1: a right skewed non-decision pdf (a), a
uniform non-decision pdf (b) or a bimodal combination of
both (c). Orange lines correspond to traditional estimates,
blue lines to D*M estimates. The estimates are based on
data sets with subsequently N = 106 (solid lines), N = 103

(dashed lines) and N = 300 (dotted-dashed lines) observa-
tions per condition. If the number of trials is high (solid
lines), the D*M method always outperforms (or matches) the
traditional method, no matter what the value is of a. For less
data (dashed lines, dotted-dashed lines), D*M still performs
better for normal and high values of a. For a small amount of
data and small values of a, however, and if the non-decision
time distribution is more in line with the traditional uniform
assumption like it is in (b) and (c), the D*M method shows a
higher bias than the traditional method. Similar patterns are
found for the other parameters.
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modal non-decision time distributions, D*M still performs
better or equal for normal and high values of a, but can have
higher biases for small values of a, if there is a limited num-
ber of observations. This is what one would expect: As the
proportion of total response time variance generated by the
non-decision time process gets larger (the non-decision time
distribution proportions of total variance at a = 0.04 are
0.91,0.47 and 0.87, for right-skewed, uniform and bimodal,
respectively), the decision part becomes increasingly obfus-
cated by the non-decision part. As the D*M method only
uses a parametric model for the decision part, more obser-
vations are needed to correctly disentangle the two compo-
nents. Thus, if (1) the uniform distribution is a good enough
proxy for the actual non-decision time distribution, (2) the
actual non-decision time distribution contributes enough to
the total response time and (3) there is not a lot of data, the
traditional method can outperform the D*M method. It has
to be noted however that, unless we have some prior infor-
mation about the real shape of the non-decision time dis-
tribution, the first condition can never be checked in a real
world problem. If one wants to avoid results that depend on
any particular presupposed shape of the non-decision time
distribution, the D*M approach is by definition the better
choice. Figure 3 shows the non-parametric estimates of the
non-decision time distributions following the D*M estimates
shown in Figure 2. Only for the smallest boundary sepa-
ration a = 0.04 and a limited number of observations, the
non-parametric estimates of the non-decision time distribu-
tion is somewhat biased, but even then the main features of
the distributions are recovered.

For the estimation of the decision model parameters, the
repeated calculation of the complete decision model pdfs on
a reasonably detailed grid is by far the most computationally
expensive part for both the traditional and the D*M method.
In our implementation, a single evaluation of the D*M or
traditional objective function takes up a comparable amount
of time. We opted for a global minimization routine to re-
duce potential problems concerning local minima, but this
resulted in optimization times that are probably a lot slower
than strictly necessary. Running single-threaded on an i7
core clocked at 3.60GHz, both a single D*M estimate and
traditional estimate take around 5 minutes to complete. The
estimation of the non-decision time (once D*M parameter
estimates have been obtained) takes about 30 minutes for a
grid with 0.01s spacing but only about 15 seconds for a grid
with 0.05s spacing. To be confident we reached convergence,
we repeated every estimation multiple times (with a different
population of starting values). The D*M estimates seemed
somewhat more robust than the traditional estimates: for the
D*M objective function almost every repetition resulted in
the same global minimum; for the traditional objective func-
tion, ending up in a local minimum was a bit more frequent.
By repeating the minimization procedure multiple times (5
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Figure 3. Recovery of the respective non-decision time dis-
tributions based on data sets generated with varying bound-
ary separation a, with N = 300 (left) and N = 1000 (right)
observations per condition. Red lines indicate the non-
decision time distributions obtained with the lowest value of
boundary separation a = 0.04; the rest of the non-decision
time distributions (with a somewhere between 0.06 and 0.12)
are in black.

times for D*M and 10 times for the traditional method), we
repeatedly found a lowest minimum and were convinced of
convergence. An alternative for the global optimizer may be
a local optimizer in combination with a rational starting point
(e.g., using EZ diffusion, Wagenmakers, Maas, & Grasman,
2007). Such a routine may yield equally good results and
will be much faster. However, because of the novelty of the
D*M method, we were more concerned with accuracy (i.e.,
avoiding local optima) than with speed.
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Existing diffusion model analyses revisited

To illustrate how the D*M parameter estimation method
can lead to fundamentally different findings than the tradi-
tional method, we re-analyze the data of three choice RT
studies in which a diffusion model is used. These papers
can be seen as typical examples of today’s common practice
of using diffusion models parameters to explain differences
between (groups of) participants and/or experimental condi-
tions. We only present the main results; more detailed results
are offered as supplemental material.

Application 1: A diffusion model analysis of choice bias
(Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann,
2012)

Mulder et al. (2012) investigate, using a moving-dot per-
ceptual decision making experiment, how different types of
pre-trial information biases people towards one of two choice
alternatives. One type of pre-trial information concerns the
elevated prior likelihood of the occurrence of one of two
choices, the other type involves a larger potential pay-off for
one of the two choices. The diffusion model is used to study
which decision process aspects are affected by each form of
pre-trial information (elevated prior likelihood or larger pay-
off, each requiring a separate diffusion model analysis): One
possibility is that the bias is caused by a shift ∆ν in the dif-
fusion model’s drift rate parameter, the other possibility is
that the bias is caused by a shift ∆zr in the starting position
parameter. The results are shown in Figure 4.

The authors concluded that it is mainly the starting po-
sition parameter that is responsible for the bias introduced
by both elevated prior likelihood and larger potential pay-off

conditions. Upon re-analysis we come to the same quali-
tative conclusion, for both the traditional and D*M proce-
dure. Quantitatively, however, there are clear differences be-
tween the D*M and the traditional estimates. From Figure 4,
it can be seen that the boundary separation parameter a is
systematically lower for the D*M estimates and the result-
ing between-person variance (as indicated by the box plots)
is considerably smaller than that of the traditional estimates.
Clearly, the assumption of a uniform non-decision time den-
sity is not valid; instead, the non-decision time density esti-
mates indicate a strong right skew. However, in this case, this
misspecification does not yield a different qualitative conclu-
sion.

Application 2: A diffusion model analysis of post-error
slowing (Dutilh et al., 2011)

A well documented observation in choice RT experiments
is that the response time increases on a trial immediately
following an incorrect choice. This phenomenon is called
post-error slowing (PES). Dutilh et al. (2011) have attempted
to isolate the diffusion model parameters that can account
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Figure 4. Application 1: A selection of parameter estimates
(boundary separation a and effects of bias on starting point
∆zr and drift rate ∆v ) of a diffusion model analysis of choice
bias for 20 participants (for a complete parameter overview
please see supplemental material). The first two panels show
the estimates of a selection of decision model parameters,
obtained with either the traditional (a, in orange) or D*M
method (b, in blue). For each of the two panels, the darker
box plots show the estimates for the elevated prior likelihood
condition, the lighter plots for the larger potential pay-off

condition. If for the group of participants ∆zr or ∆v is signif-
icantly different from 0 (two-sided sign test), this is indicated
with a green (p < 0.001) or light green (p < 0.01) marking
of the label. Panel (c) shows the non-decision time densities
inferred from the D*M estimates in panel (b). The densities
for the elevated likelihood condition are shown in the up-
per half of the plot and those for the larger potential pay-off

condition are shown, mirrored, in the lower half. The solid
lines show the mean non-decision pdfs across participants,
the lighter areas display the double standard error interval.
Panel (d) is a quantile-quantile plot of the data in panel (c),
and is better suited to look at the differences between the
non-decision pdfs from the two conditions. The grey area
represents a 95% confidence interval of the mean quantile-
quantile values (black crosses).
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for the differences between post-correct and post-error tri-
als of a lexical decision task. Participants have to classify
a string of letters as a word or non-word. Besides the ob-
vious word vs. non-word manipulation, there are six dif-
ferent word frequency types. In their diffusion model anal-
yses, the authors estimate a separate non-decision parame-
ter Ter for every stimulus condition. Analogously, the D*M
method is set-up to allow for a separate non-decision time
distribution for each stimulus condition (grouping choice RT
distributions that share a non-decision time distribution) as
explained in the last paragraph of the theory section. The
results are shown in Figure 5. Based on their analysis, which
involves the estimation of two separate diffusion models (one
for the post-error and one for the post-correct condition),
the authors concluded that post-error slowing is very much
associated with an increase in response caution. A similar
analysis with the D*M method, however, shows no associ-
ation between PES and response caution, but reveals other
associations, namely with ηW and most word drift rates vi

(i = 2, . . . , 6). More specifically, after an error, the drift
rates for words become smaller (i.e., closer to zero) and the
trial-to-trial variability of word drift rates also decreases. The
reason for the difference between the original and the D*M
analysis lies with the specification of the non-decision pdf.
The authors allow a different mean non-decision time for all
stimuli, but assume an equal, uniform width. As can be seen
in Figure 5, panel (d), the D*M method suggests both mean
and variance of the non-decision time increase after an error
trial when judging a word stimulus (shown in black in panel
(d) in Figure 5), but the non-decision time does not change
after an error trial when judging a non-word stimulus (shown
in red in panel (d) in Figure 5). These effects could not be
accommodated by the author’s particular specification of the
non-decision time distribution, so other parameters had to
compensate, with different results and conclusions as a con-
sequence. Based on our analysis, we have to conclude that in
the context of this particular diffusion model, there is a fun-
damental difference in the processing of word and non-word
stimuli following an error trial.

As for all our re-analyses, we rigorously implemented
the model assumptions of the original paper. However, it is
tempting to wonder if just allowing the width of the uniform
non-decision time distribution to vary across stimuli in the
traditional approach, would be sufficient to get traditional re-
sults comparable to the D*M analysis. To answer this ques-
tion, we performed the extra analysis and a similar picture as
Figure 5, panel (a) was obtained (see supplemental material),
showing that the absence of skew in the non-decision time
distribution specification is an essential component of the
misspecification. As a possibly viable traditional alternative
to our method, one could now suggest to have mean, skew
and width as parameters of some new non-decision specifi-
cation, but this would mean estimating 35 parameters, (21
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Figure 5. Application 2: A selection of estimation results of a dif-
fusion model analysis of post-error slowing for 39 participants (for
a complete parameter overview please see supplemental material).
Panel (a) shows the within-person differences in traditional param-
eter estimates between post-error and post-correct conditions for
boundary separation a, inter-trial variability in drift rate for words
and non-words (ηW and ηNW ), and the drift rates for six different
word types and non-words (v1, ..., v6 and vNW ). Statistically signif-
icant effects for the differences (two-sided sign test) are indicated
with a green/red (p < 0.001) or light green/light red (p < 0.01)
marking of the label (green means a positive effect or a larger
value post-error compared to post-correct, red a negative effect or
a smaller value post-error compared to post-correct). Panel (b) is
the D*M version of panel (a). Panel (c) shows the participant aver-
aged non-decision time densities inferred from the D*M estimates,
separately for all six different word types (black) and non-words
(red). The non-decision time densities of the post-correct condition
are shown in the upper half, those of the post-error condition are
shown, mirrored, in the lower half. Panel (d) is a quantile-quantile
plot of the data in panel (c), and is better suited to look at the differ-
ences between the non-decision time densities from the two condi-
tions. (Because of the many non-decision time pdfs, no confidence
intervals are shown in panels (c) and (d).)
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non-decision parameters on top of the 14 decision model pa-
rameters), while D*M can handle the problem with only the
14 decision model parameters. Also, there is no guarantee
that this alternative parametric non-decision time distribution
will (always) suffice.

Application 3: A diffusion model analysis of task switch-
ing costs (Schmitz & Voss, 2012)

Schmitz and Voss (2012) investigate which diffusion
model parameters can best explain task-switching costs. We
limit our analyses to the first experiment in the paper, which
compares task-switching and task-repeating trials from a
classical alternating runs paradigm to each other and to pure
task trials (no task-switching within an experimental block).
In these analyses, three separate diffusion models are esti-
mated (with both methods): one for the pure task trials, one
for the task-repeating trails and one for the task-switching
trials. Partial results are shown in Figure 6. The main qual-
itative findings of the original paper pertaining to this ex-
periment, namely a positive change in boundary separation
a (or caution) and a negative change in drift rate between
task-switching and pure task trials, were confirmed by our
re-analysis, for both the traditional and the D*M method.
Participants are more cautious in the task switch condition
and at the same time, they process the information less well.
Quantitatively, the parameter estimates again differ consider-
ably from the original study. It can also be seen that the non-
decision time distribution in the task switching condition has
a much more outspoken skew to the right (compared to the
pure task non-decision time pdf).

Discussion

Traditional parameter estimates of decision models to
choice RT data, have been shown to be vulnerable to the
misspecification of the extra non-decision component (Rat-
cliff, 2013). In this paper, we have proposed a solution to this
problem. By means of a handy convolution between data and
decision model distributions, hence called the D*M method,
we were able to factor out the non-decision time distribution
from the estimation procedure. Through theory and a sim-
ulation study, the method was shown to remediate the tradi-
tional bias related to the misspecification of the non-decision
time distribution, even for a limited number of data points.
Additionally, the actually simulated non-decision time distri-
butions could systematically be recovered. To illustrate the
method’s relevance, we applied it to three existing diffusion
model application papers. For all studies, we found substan-
tial differences with the traditional parameter estimates; in
one case, using the D*M method radically altered the con-
clusions of the original paper, clearly demonstrating the ne-
cessity of the method.

In two of the three applications we re-analyzed, non-
parametric estimates of the non-decision time distributions
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Figure 6. Application 3: A selection of estimation results
of a diffusion model analysis of task switching costs for 24
participants (for a complete parameter overview please see
supplemental material). Panel (a) shows the within-person
differences in traditional parameter estimates between task-
switching trials and pure task blocks for boundary separation
a and drift rate v. Statistically significant effects for the dif-
ferences (two-sided sign test) are indicated with a green/red
(p < 0.001) or light green/ light red (p < 0.01) indicator
(green means a larger parameter value in the task switch con-
dition compared a pure task condition, red means smaller
values). Panel (b) is the D*M version of panel (a). Panel
(c) shows the participant averaged non-decision time densi-
ties inferred from the D*M estimates in panel (b). The non-
decision time densities of the pure task condition are shown
in the upper half of the plot, those of the task-switching trials
are shown, mirrored, in the lower half. The solid lines show
the mean non-decision pdfs across participants, the lighter
areas display the double standard error interval. Panel (d) is
a quantile-quantile plot of the data in panel (c), and is bet-
ter suited to look at the differences between the non-decision
pdfs from the two conditions. The grey area represents a
95% confidence interval of the mean quantile-quantile values
(black crosses).
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revealed a clear right skew (application 1 and 2). In our
simulation study we have shown that ignoring such a right
skew may cause severe biases in the diffusion model param-
eter estimates. Therefore, in the absence of a good model for
non-decision time, we strongly advise the use of the D*M
method for estimating choice RT models. Additionally, the
non-parametric estimates of the resulting non-decision time
distributions give a detailed picture of what non-decision
time can look like (assuming the decision model itself is
well-specified that is), which could in turn be used as a guide
or template for constructing more intricate models for non-
decision time.
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Appendix A
Unique global optimum

In this appendix, we show under which conditions the ob-
jective function Dpp′ (θ) of Equation 2, for ĝp → K ∗ fp and
ĝp′ → K∗ fp′ , has a unique global optimum at the true param-
eter vector θ0. We will start from the reasonable assumption
that the decision model does not contain a non-decision com-
ponent of its own at the true parameter vector θ0, or, more
specifically, that for the true parameter vector θ0, there exists
no distribution u(t) and parameter vector θu , θ0 such that
for every p:

mp(θ0) = mp(θu) ∗ u. (10)

Imagine for a moment that such a u(t) and θu , θ0 do exist.
The fundamental Equation 1 may then be transformed as (for

every p, p′):

fp ∗ mp′ (θ0) = fp′ ∗ mp(θ0)
fp ∗ mp′ (θu) ∗ u = fp′ ∗ mp(θu) ∗ u

fp ∗ mp′ (θu) = fp′ ∗ mp(θu)
mp(θ0) ∗ r ∗ mp′ (θu) = mp′ (θ0) ∗ r ∗ mp(θu)

mp(θ0) ∗ mp′ (θu) = mp′ (θ0) ∗ mp(θu),

where we make use of the fact convolution is a commutative
operator and that all factors have a Laplace transform (see
below in section A.2 for more information) such that they
can be safely deconvolved from both sides. Thus, the final
identity is a direct consequence of the presence of a non-
decision component inside the decision model at θ0. Note
that another way this final identity can be reached, is when
for all p, p′: mp(θ0) = mp′ (θ0) and, as a consequence of
Equation 10, mp(θu) = mp′ (θu). This would mean that all
total response time pdfs fp would be equal across condition-
response pairs. Now we can move to the actual proposition.

Proposition

If the decision model itself does not contain a com-
mon non-decision component that can be factored out, or
more specifically, if there does not exist a parameter θu , θ0
such that for every p, p′:

mp(θ0) ∗ mp′ (θu) = mp′ (θ0) ∗ mp(θu), (11)

the minimum of

Dpp′ (θ) = d
(
ĝp ∗ mp′ (θ), ĝp′ ∗ mp(θ)

)
,

for ĝp → K ∗ fp and ĝp′ → K ∗ fp′ at θ = θ0 is unique.

Proof

Assume there does exist another global minimum at
θu , θ0 for which

Dpp′ (θu) = d
(
ĝp ∗ mp′ (θu), ĝp′ ∗ mp(θu)

)
= 0

for ĝp → K ∗ fp and ĝp′ → K ∗ fp′ .
Then, for every p, p′

K ∗ fp ∗ mp′ (θu) = K ∗ fp′ ∗ mp(θu)
K ∗ r ∗ mp(θ0) ∗ mp′ (θu) = K ∗ r ∗ mp′ (θ0) ∗ mp(θu)

Because every factor of this equation has a Laplace trans-
form (see below in Appendix B for more information), we
can safely deconvolve K and r from both sides:

mp(θ0) ∗ mp′ (θu) = mp′ (θ0) ∗ mp(θu) (12)

This is in contradiction with the initial assumption of
Equation 11, which states that there is no such parameter
θu , θ0. This proves the proposition.
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Appendix B
Conditions for the existence of a deconvolution

In order to formulate conditions for the existence of the
deconvolution in Equation 5, we make use of cumulant-
generating functions. The cumulant-generating function
[G(d)](s) of a probability density function d(t) is defined as

[G(d)](s) = log


∞̂

0

estd(t)dt

 .
Thus, the cumulant-generating function is the logarithm of
the moment generating function. Because the range of in-
tegration is the positive half of the real line, we can write
the cumulant-generating function also as the logarithm of the
Laplace transform Feller (1971) evaluated at −s. Because of
this link with the Laplace transform, we can use the existence
conditions for the Laplace transform (Kreyszig, 2010). It fol-
lows that for a probability density function d(t) that is piece-
wise continuous and of exponential order, i.e. d(t) ≤ Me−kt

with M and k real positive numbers, the cumulant generating
function [G(d)](s) exists, at least for s < k.1 When we do
not need the argument s, we will also write the cumulant-
generating function in short as G(d).

The cumulant-generating functionG(d) is determined
by the coefficients κd

n (n > 0) of its MacLaurin expansion, and
these are called the cumulants:

[G(d)](s) =

∞∑
n=1

κd
n

sn

n!
.

Note that κd
2 is the variance of d(t), denoted as σ2

d in the main
text.

The cumulant-generating function is a convenient
tool when dealing with convolutions because it treats them
additively. Consider another pdf e(t), with cumulant generat-
ing function G(e), then

G(d ∗ e) = G(d) + G(e).

Obviously, the additivity of the cumulant-generating func-
tion is transferred to the cumulant coefficients:

κd∗e
n = κd

n + κe
n,

which holds for all n (n > 0).
In our approach, we assume that for both the model

mp(t; θ0) and the non-decision time distribution r(t), the
corresponding cumulant-generating function exists. Most
choice RT models are diffusion models and have an exponen-
tial decay (Nobile, Ricciardi, & Sacerdote, 1985), thereby
satisfying the exponential order condition. In these cases,
mp(t; θ0) always has a corresponding cumulant-generating
function [G(m)](s; θ0) or G(m; θ0) in short. For the unknown
non-decision time distribution r(t) we will simply assume
the existence of a cumulant generating function G(r) imply-
ing the existence of a cumulant-generating function G( fp) as
well.

Because the cumulants, and therefore also the
cumulant-generating function, can be expressed in terms
of moments, sufficient conditions for a valid cumulant-
generating function can be seen as sufficient conditions for
a set of moments to lead to a valid pdf. The latter condi-
tions, for a non-negative random variable, are a well known
set of inequalities (Cressie & Holland, 1983; Karlin & Stud-
den, 1966). More specifically, given a set of J + 1 numbers
µ = (µ0, µ1, . . . , µJ), if

∆2k = det


µ0 µ1 · · · µk

µ1 µ2 · · · µk+1
...

...
...

µk µk+1 · · · µ2k

 ≥ 0

(for 2k ≤ J) and

∆2k+1 = det


µ1 µ2 · · · µk+1
µ2 µ3 · · · µk+2
...

...
...

µk+1 µk+2 · · · µ2k+1

 ≥ 0

(for 2k + 1 ≤ J), there exists a density function d(t), so that´ ∞
0 t jd(t)dt = µ j for j = 0, .., J.

For the first three inequalities (i.e., J = 2) this means:

∆0 = µ0 ≥ 0

∆1 = µ1 ≥ 0

∆2 = µ0µ2 − µ1µ1 = µ2 − µ
2
1 = κ2 ≥ 0.

The first two inequalities are trivial and always fulfilled in
this context. The third inequality reduces to a constraint on
the second order cumulants that are being subtracted:

κr
2 = κ

fp

2 − κ
mp

2 ≥ 0,

or

κ
fp

2 ≥ κ
mp

2 .

In terms of variances σ2 (the terminology and notation used
in the main text), this inequality becomes:

σ2
fp
≥ σ2

mp
.

1The importance of the exponential order condition can
be shown as follows: [G(d)](s) = log

(´ ∞
0 estd(t)dt

)
≤

log
(´ ∞

0 est Me−ktdt
)

= log
(
M
´ ∞

0 e−(k−s)tdt
)

= log M − log(k − s),
which shows that the integral exists for all s < k.
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More intricate constraints apply to higher moments and cu-
mulants. For our purposes, however, the higher order cri-
teria are ignored during the minimization process, as their
estimates become increasingly volatile for a finite number of
data points.
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Simulation study

For the details on the simulation study, we refer to the main text. In Figures 1,2,3 below we present the
recovery results of all diffusion model parameters as listed in Table 1. In each figure we show the results for a single
non-decision pdf scenario’s, and three different sample sizes.
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(a) recovery diffusion model parameters for 106 observations per condition
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(b) recovery diffusion model parameters for 1000 observations per condition
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(c) recovery diffusion model parameters for 300 observations per condition
Figure 1 . Recovery results for a right skewed non-decision pdf scenario. The three panels (a), (b), and (c) refer to
three different sample sizes: 106, 1000 and 300 per condition. Each panel shows the estimates of the diffusion model
parameters common to both the classical analysis (orange) and the D*M analysis (blue): boundary separation a,
relative bias zr, drift rate variability η, starting point variability sz and the four drift rates v1, v2, v3, v4. In addition,
the estimated Ter and st (mean and width of the uniform non-decision time distribution) for the classical analysis
are shown. The rightmost figure contains the true (dashed line) and estimated (solid line) non-decision time pdf
based on the D*M analysis.
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(a) recovery diffusion model parameters for 106 observations per condition
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(b) recovery diffusion model parameters for 1000 observations per condition

0.07

0.08

0.09

0.1

a
0.4

0.45

0.5

0.55

0.6

zr
0

0.05

0.1

0.15

0.2 10

η sz

7

0

0.2

0.4

0.6

0.8

v
1

v
2

v
3

v
4

0

0.1

0.2

0.3

0.4

T
er st

RT (s)
0.2 0.4 0.6

de
ns

ity

0

5

10

15

(c) recovery diffusion model parameters for 300 observations per condition
Figure 2 . Recovery results for a uniform non-decision pdf scenario. The three panels (a), (b), and (c) refer to three
different sample sizes: 106, 1000 and 300 per condition. Each panel shows the estimates of the diffusion model
parameters common to both the classical analysis (orange) and the D*M analysis (blue): boundary separation a,
relative bias zr, drift rate variability η, starting point variability sz and the four drift rates v1, v2, v3, v4. In addition,
the estimated Ter and st (mean and width of the uniform non-decision time distribution) for the classical analysis
are shown. The rightmost figure contains the true (dashed line) and estimated (solid line) non-decision time pdf
based on the D*M analysis.
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(a) recovery diffusion model parameters for 106 observations per condition

0.07

0.08

0.09

0.1

a
0.4

0.45

0.5

0.55

0.6

zr
0

0.05

0.1

0.15

0.2

η sz

4

0

0.2

0.4

0.6

0.8

v
1

v
2

v
3

v
4

0

0.1

0.2

0.3

0.4

T
er st

RT (s)
0 0.5

de
ns

ity

0

2

4

6

8

(b) recovery diffusion model parameters for 1000 observations per condition

0.07

0.08

0.09

0.1

a
0.4

0.45

0.5

0.55

0.6

zr
0

0.05

0.1

0.15

0.2 3

η sz

7

0

0.2

0.4

0.6

0.8

v
1

v
2

v
3

v
4

0

0.1

0.2

0.3

0.4

T
er st

RT (s)
0 0.5

de
ns

ity

0

2

4

6

8

(c) recovery diffusion model parameters for 300 observations per condition
Figure 3 . Recovery results for a bimodal non-decision pdf scenario. The three panels (a), (b), and (c) refer to three
different sample sizes: 106, 1000 and 300 per condition. Each panel shows the estimates of the diffusion model
parameters common to both the classical analysis (orange) and the D*M analysis (blue): boundary separation a,
relative bias zr, drift rate variability η, starting point variability sz and the four drift rates v1, v2, v3, v4. In addition,
the estimated Ter and st (mean and width of the uniform non-decision time distribution) for the classical analysis
are shown. The rightmost figure contains the true (dashed line) and estimated (solid line) non-decision time pdf
based on the D*M analysis.
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Application 1: A diffusion application of choice bias

In Figure 4 we present the full set of results (for all parameters) of the traditional and D*M diffusion model
fits to the data from Mulder, Wagenmakers, Ratcliff, Boekel, and Forstmann (2012).
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(a) traditional estimates
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(b) D*M estimates
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(d) Q-Q plot non-decision pdfs
Figure 4 . Application 1: Parameter estimates of a diffusion model analysis of choice bias for 20 participants. The
first two panels show the estimates of all decision model parameters (boundary separation a, inter-trial variability
of bias sz, inter-trial variability of drift rate η and effects of bias on starting point ∆zr and drift rate ∆v ), obtained
with either the traditional (a, in orange, with the additional non-decision time parameters mean non-decision time
Ter and inter-trial variability of non-decision time st) or D*M method (b, in blue). For each of the two panels,
the darker box plots show the estimates for the elevated prior likelihood condition, the lighter plots for the larger
potential pay-off condition. If for the group of participants ∆zr or ∆v is significantly different from 0 (two-sided
sign test), this is indicated with a green (p < 0.001) or light green (p < 0.01) marking of the label. Panel (c)
shows the non-decision time densities inferred from the D*M estimates in panel (b). The densities for the elevated
likelihood condition are shown in the upper half of the plot and those for the larger potential pay-off condition are
shown, mirrored, in the lower half. The solid lines show the mean non-decision pdfs across participants, the lighter
areas display the double standard error interval. Panel (d) is a quantile-quantile plot of the data in panel (c), and
is better suited to look at the differences between the non-decision pdfs from the two conditions. The grey area
represents a 95% confidence interval of the mean quantile-quantile values (black crosses).
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Application 2: A diffusion application of post-error slowing

In the figures below, we present the full set of results (for all parameters) of the traditional (Figures 5,7) and
D*M (Figure 6) diffusion model fits to the data from Dutilh et al. (2011).
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(a) decision model estimates
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(b) decision model differences
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(c) non-decision estimates
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(d) non-decision differences
Figure 5 . Application 2: Estimation results of a traditional diffusion model analysis of post-error slowing for 39
participants. Panel (a) shows the traditional estimates for boundary separation a, relative bias after a word or
non-word error trial (zrpW and zrpNW ), inter-trial variability of bias after a word or non-word error trial (szpW

and szpNW ), inter-trial variability of drift rate for words and non-words (ηW and ηNW ), and the drift rates for six
different word types and non-words (v1, ..., v6 and vNW ), for both the post-correct condition (darker box plots) and
the post-error condition (lighter box plots). Panel (b) shows the within-person differences between post-error and
post-correct conditions of the parameters in panel (a). Statistically significant effects for the differences (two-sided
sign test) are indicated with a green/red (p < 0.001) or light green/light red (p < 0.01) marking of the label (green
means a positive effect or a larger value post-error compared to post-correct, red a negative effect or a smaller value
post-error compared to post-correct). Panel (c) shows the estimates of the uniform non-decision time distributions:
the mean per stimulus type (Ter1, Ter2, Ter3, Ter4, Ter5, Ter6 and TerNW ) and the common width st. Panel (d) shows
the within-person differences between post-error and post-correct conditions of the parameters in panel (c).
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(a) decision model estimates
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(b) decision model differences
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Figure 6 . Application 2: Estimation results of a D*M diffusion model analysis of post-error slowing for 39 par-
ticipants. Panel (a) shows the D*M estimates for boundary separation a, relative bias after a word or non-word
error trial (zrpW and zrpNW ), inter-trial variability of bias after a word or non-word error trial (szpW and szpNW ),
inter-trial variability of drift rate for words and non-words (ηW and ηNW ), and the drift rates for six different word
types and non-words (v1, ..., v6 and vNW ), for both the post-correct condition (darker box plots) and the post-error
condition (lighter box plots). Panel (b) shows the within-person differences between post-error and post-correct
conditions of the parameters in panel (a). Statistically significant effects for the differences (two-sided sign test)
are indicated with a green/red (p < 0.001) or light green/light red (p < 0.01) marking of the label (green means
a positive effect or a larger value post-error compared to post-correct, red a negative effect or a smaller value
post-error compared to post-correct). Panel (c) shows the participant averaged non-decision time densities inferred
from the D*M estimates, separately for all six different word types (black) and non-words (red). The non-decision
time densities of the post-correct condition are shown in the upper half, those of the post-error condition are shown,
mirorred, in the lower half. Panel (d) is a quantile-quantile plot of the data in panel (c), and is better suited to
look at the differences between the non-decision time densities from the two conditions. (Because of the many
non-decision time pdfs, no confidence intervals are shown in panels (c) and (d).)
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(a) decision model estimates
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(b) decision model differences
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(c) non-decision model estimates

-0.05

0

0.05

T
er1

T
er2

T
er3

T
er4

T
er5

T
er6

T
erNW

 

 

 

-0.1

0

0.1

st
1

st
2

st
3

st
4

st
5

st
6

st
NW

 

 

 

(d) non-decision model differences
Figure 7 . Application 2: Estimation results of a traditional diffusion model analysis of post-error slowing for 39
participants, with separate inter-trial variabilities of non-decision time for different stimulus types. Panel (a) shows
the traditional estimates for boundary separation a, relative bias after a word or non-word error trial (zrpW and
zrpNW ), inter-trial variability of bias after a word or non-word error trial (szpW and szpNW ), inter-trial variability
of drift rate for words and non-words (ηW and ηNW ), and the drift rates for six different word types and non-words
(v1, ..., v6 and vNW ), for both the post-correct condition (darker box plots) and the post-error condition (lighter
box plots). Panel (b) shows the within-person differences between post-error and post-correct conditions of the
parameters in panel (a). Statistically significant effects for the differences (two-sided signtest) are indicated with
a green/red (p < 0.001) or light green/light red (p < 0.01) marking of the label (green means a positive effect or
a larger value post-error compared to post-correct, red a negative effect or a smaller value post-error compared
to post-correct). Panel (c) shows the estimates of the uniform non-decision time distributions: the mean per
stimulus type (Ter1, Ter2, Ter3, Ter4, Ter5, Ter6 and TerNW ) and the width per stimulus type (st1, st2, st3, st4, st5, st6
and stNW ). Panel (d) shows the within-person differences between post-error and post-correct conditions of the
parameters in panel (c).
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Application 3: A diffusion application of task switching costs

In the figures below, we present the full set of results (for all parameters) of the traditional and D*M diffusion
model fits to the data from Schmitz and Voss (2012). In Figure 8, task-switching trials are compared to pure task
trials; in Figure 8, task-repeating trials are compared to pure task trials.
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(a) traditional estimates
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(b) traditional differences
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(c) D*M estimates
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(d) D*M differences
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Figure 8 . Application 3: Estimation results of a diffusion model analysis of task switching costs for 24 participants. Panel
(a) shows the traditional estimates of all diffusion model parameters (boundary separation a, inter-trial variability of drift
rate η, inter-trial variability of bias sz, drift rate v, uniform non-decision time distribution mean Ter and width st), for both
the task-switching trials (lighter box plots) and the pure task trials (darker box plots). Panel (b) shows the within-person
differences between task-switching and pure task conditions of the parameters in panel (a). Statistically significant effects for
the differences (two-sided sign test) are indicated with a green/red (p < 0.001) or light green/ light red (p < 0.01) indicator
(green means a larger parameter value in the task switch condition compared a pure task condition, red means smaller
values). Panels (c) and (d) are the respective D*M versions of panels (a) and (b). Panel (e) shows the participant averaged
non-decision time densities inferred from the D*M estimates. The non-decision time densities of the pure task condition are
shown in the upper half of the plot, those of the task-switching trials are shown, mirrored, in the lower half. The solid lines
show the mean non-decision pdfs across participants, the lighter areas display the double standard error interval. Panel (f)
is a quantile-quantile plot of the data in panel (e), and is better suited to look at the differences between the non-decision
pdfs from the two conditions. The grey area represents a 95% confidence interval of the mean quantile-quantile values (black
crosses).
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Figure 9 . Application 3: Estimation results of a diffusion model analysis of task switching costs for 24 participants.
Panel (a) shows the traditional estimates of all diffusion model parameters (boundary separation a, inter-trial
variability of drift rate η, inter-trial variability of bias sz, drift rate v, uniform non-decision time distribution mean
Ter and width st), for both the task-repeating trials (lighter box plots) and the pure task trials (darker box plots).
Panel (b) shows the within-person differences between task-switching and pure task conditions of the parameters
in panel (a). Statistically significant effects for the differences (two-sided sign test) are indicated with a green/red
(p < 0.001) or light green/ light red (p < 0.01) indicator (green means a larger parameter value in the task switch
condition compared a pure task condition, red means smaller values). Panels (c) and (d) are the respective D*M
versions of panels (a) and (b). Panel (e) shows the participant averaged non-decision time densities inferred from the
D*M estimates. The non-decision time densities of the pure task condition are shown in the upper half of the plot,
those of the task-switching trials are shown, mirrored, in the lower half. The solid lines show the mean non-decision
pdfs across participants, the lighter areas display the double standard error interval. Panel (f) is a quantile-quantile
plot of the data in panel (e), and is better suited to look at the differences between the non-decision pdfs from
the two conditions. The grey area represents a 95% confidence interval of the mean quantile-quantile values (black
crosses).
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