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This paper addresses an issue in energy harvesting that has plagued the potential use of
harvesting through the piezoelectric effect at the micro-electro-mechanical systems
(MEMS) scale. Effective energy harvesting devices typically consist of a cantilever beam
substrate coated with a thin layer of piezoceramic material and fixed with a tip mass
tuned to resonant at the dominant frequency of the ambient vibration. The fundamental
natural frequency of a beam increases as its length decreases, so that at the MEMS scale
the resonance condition occurs orders of magnitude higher than ambient vibration fre-
quencies, rendering the harvester ineffective. Here, we propose a new geometry for
MEMS scale cantilever harvesters with low fundamental frequencies. A “zigzag” geom-
etry is proposed, modeled, and solved to show that such a structure would be able to
vibrate near resonance at the MEMS scale. An analytical solution is presented and
verified against Rayleigh’s method and is validated against a macroscale experiment. The
analysis is used to provide design guidelines and parametric studies for constructing an
effective MEMS scale energy harvesting device in the frequency range common to low
frequency ambient vibrations, removing a current barrier. �DOI: 10.1115/1.4002783�
Introduction
Cantilever type energy harvesting devices use a substrate to

upport a piezoelectric transduction element. The power output of
uch devices is maximum when the fundamental frequency is near
he dominant frequency of ambient vibration, ensuring a reso-
ance response maximizing the strain in piezoelectric materials.
he high natural frequencies of the existing designs of MEMS
ibrational energy harvesters are due to their short length con-
traint and present a serious drawback in the development of

EMS scale energy harvesting devices.
The topic of energy harvesting has been of great interest in the

ecent literature as well as in applications for wireless sensing.
everal recent reviews of the literature are given in Refs. �1–6�.
ur focus here is on the mechanics of the substrate and on how to

ower the fundamental frequency to useful levels. The coupling of
he mechanical and electrical fields is well explained in Refs. �7,8�
nd will not be repeated here.

The first design of a MEMS harvester was proposed by Lu et al.
9�, where the thickness of the energy harvesting beam was one-
enth of its length. The dimension ratio seemed intuitive, dealing
ith large scale structures, but it was too large for a microcanti-

ever and caused the beam’s fundamental natural frequency to be
bout 3 kHz. The larger the deflection of the energy harvesting
eam is, the more power is extracted. Therefore, the beams should
e designed at or near their natural frequencies. The frequencies
f typical ambient vibrations are from 1 Hz to 100 Hz. Having a
atural frequency in orders of kilohertz simply means that the
mbient vibration would not shake the structure at all. The im-
roper choice of thickness to length ratio has resulted in similar
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frequencies in Refs. �10,11�. Zheng and Xu �12� used two beams,
one with a distance on top of the other to support the tip mass. The
configuration of the beams would make the structure very stiff and
light, which translates to an even higher natural frequency �10
kHz�.

Fang et al. �13� were the first to try a low thickness to length
ratio �1/100�. This resulted in a tremendous improvement in the
natural frequency �600 Hz�. The trend was followed by Refs.
�14–18�, and natural frequencies of about 460 Hz, 100 Hz, 971
Hz, 180 Hz, and 256 Hz were correspondingly achieved. This is
still not low enough in many situations. What seems to be needed
is an improvement in the general design of the harvester. The
cantilever beam fundamental frequency is dependent on its length
and cannot be designed to a lower frequency in a MEMS device
because of space limitations. Spiral beams have been suggested as
an alternative geometry �19�, but since their vibrations are domi-
nantly torsional �20�, use of spirals for energy harvesting requires
a complicated electrode configuration. Passive magnetic force can
be used to contract the elastic force and reduce the natural fre-
quency �21�.

In order to produce a low frequency MEMS harvesting device,
we propose using a zigzag structure depicted in Fig. 1. The supe-
riority of the proposed shape over that of a simple cantilever beam
can be explained based on a static deflection analysis �a rigorous
calculation follows in Sec. 6�. The deflection of the zigzag struc-
ture �Fig. 2�b�� due to the tip force at the end would be three times
the deflection of the single cantilevered beam under the same load
�Fig. 2�a��. The corresponding maximum bending moments in the
two structures are identical, and therefore the necessary thickness
of the zigzag structure is just the same as the necessary thickness
of a single beam. Additional compliance can be realized by in-
creasing the length of the single beam, but the longer the beam is,
the thicker it should be to sustain the same load resulting in some
reduction in compliance.

In the following, details of the zigzag design are given followed

by an analysis of the coupled bending-torsion vibrations of the
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tructure. The governing partial differential equations are treated
sing separation of variables and are finally reduced to an eigen-
alue problem. Solving the eigenvalue problem gives the natural
requencies and mode shapes of the structure. The relationship
etween the natural frequencies and the number of elements re-
eals the benefits of the proposed zigzag design for MEMS appli-
ations. The validity of the proposed analytical model is con-
rmed by approximating the fundamental natural frequency with
ayleigh’s method and by experimental verification. The results
f both case studies are close to the predictions of the analytical
odel.

Device Configuration
The structure of interest here is a flat zigzag spring illustrated in

ig. 1. The thin spring is fixed at one end and forms a cantilever
tructure. The plane that the zigzag structure lies in is called the
ain plane of the zigzag structure. The structure can deflect out of

he main plane and can be modeled as a few straight beams, with
ectangular cross sections, placed next to each other on the main
lane. Each beam is connected to its neighbor beams at its ends.
ach of the beams can bend out of the main plane and can twist.
he portions of the structure that connect the elements are very
mall and are modeled here as rigid links. The torsion of each of
he beams causes the next beam to move out of the main plane.
he amount of relative motion is the torsion angle times the rigid
rm length.

Each of the beams is a uniform composite beam composed of a
iezoelectric layer bonded to the substructure layer �this forms a

Fig. 1 The zigzag energy harvesting structure

ig. 2 Bending moment diagrams for „a… cantilevered beam

nd „b… zigzag structure
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unimorph�. The substructure can be made of silicon oxynitride,
which results in a residual stress free microstructure.

When the beams are deflected, some strain is generated in the
piezoelectric layer, which generates electrical energy.

3 Governing Equations for Free Vibration Analysis
The structure can deflect in two ways: Each of the beams can

bend, resulting in the deflection of that member and change in the
start position of the next beams. The beams can also twist. The
twist of each of the members does not affect the elevation of the
points on that member but will lower or raise the next member.
The amount of elevation �or decrease� is equal to the twist angle
of the member times the distance between the two consequent
beams.

The deformation of the beams can be quantified with their twist
angle, �i�x , t�, and out of plane displacement, wi�x , t�. The index i
identifies each beam. Both �i and wi are time dependent and vary
along the beam and are therefore functions of x and t �refer to Fig.
1�.

To derive the equivalent bending stiffness of the composite
beam �7�, we define

hpa =

hp
2 +

2YshpHs

Yp
+

Yshs
2

Yp

2�hp + Ys
hs

Yp
� , hsa =

hp
2 + 2hphs +

yshs
2

Yp

2�hp + Ys
hs

Yp
�

ha = − hsa, hb = hpa − hp, hc = hpa

Then, the equivalent bending stiffness YI is calculated as �here,
we use YI rather than the traditional EI to be compatible with the
harvesting literature�

YI = b�Ys�hb
3 − ha

3� + Yp�hc
3 − hp

3�
3

� �1�

Since the thickness to length ratio of MEMS energy harvesters is
typically 1/100, the classical Euler–Bernoulli assumptions are
made. The validity of the assumptions can be checked by experi-
mental verification. The equation of motion for the free vibration
of an Euler–Bernoulli beam is �22�

YI
�4wi

�x4 + �A
�2wi

�t2 = 0

�A is mass per unit length of the beam and equals

�A = b��shs + �php�

A standard separation of variables solution is substituted next:

wi�x,t� = Wi�x���t�

This results in the general solution

Wi�x� = 	
j=1

4

Aije
sijx �2�

where the exponents are derived as

sij = �
�n

c
, � i
�n

c
, j = 1,2, . . . ,4, c =
 YI

�A
�3�

The torsional equation of motion for the same beam is

GJ
�2�i

�x2 − Ip

�2�i

�t2 = 0

where GJ is the equivalent torsional rigidity of the thin composite

beam �23,24� and is equal to
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GJ = 3

4�Gphp
3 + Gshs

3�
3

−
�Gphp

2 − Gshs
2�2

Gphp + Gshs

�hp + hs�3 �
�hs + hp�3b3

3�b2 + �hs + hp�2�

p is the mass axial moment of inertia of the beam per unit length
bout the axis of torsion and is approximated with

Ip �
�p

12
bhp�b2 + hp

2 + 3hs
2� +

�s

12
bhs�b2 + 3hp

2 + hs
2�

separation of variables solution of the torsional equation is

�i�x,t� = Bi�x���t�
his results in the general solution for the torsion,

Bi�x� = 	
j=5

6

Aije
sijx �4�

here the exponents are

sij = � i
�n

g
, j = 5,6, g =
GJ

Ip
�5�

lthough in Eqs. �2� and �4� Wi�x� and Bi�x� are real functions, Aij

nd sij are complex numbers. One can pair the complex exponents
nd their complex conjugates and continue dealing with real co-
fficients. We prefer to keep the complex form to keep the unifor-
ity of the formulation. In the end, if all the calculations are

erformed correctly, we should get complex conjugate pairs for
ij, which result in real Wi�x� and Bi�x�.

Boundary, Equilibrium, and Continuity Conditions
There are six unknown coefficients, Aij, for each of the beams.

his therefore requires 6n relations to identify the free vibrations.
ix boundary conditions are known for the two ends of the struc-

ure. There are six following equilibrium and continuity equations
or each of the n−1 element interfaces. This gives additional
�n−1� equations, and there will be a total of 6�n equations for
valuating 6n unknown coefficients.

The following relations for the bending moment, shear force,
nd twist torque have been used in writing natural boundary con-
itions:

M�x,t� = − YI
�2w�x,t�

�x2 , Q�x,t� = − YI
�3w�x,t�

�x3 ,

T�x,t� = GJ
���x,t�

�x

4.1 Boundary Conditions for the Complete Structure. The

otal structure has a cantilever configuration, which means that

ritten as

ournal of Vibration and Acoustics
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one side of the structure is clamped and the other side is free. The
essential boundary conditions at the clamped end are on the beam
deflection, slope, and twist angle.

The beam deflection condition is

w1�0,t� = 0 ⇒ W1�0� = 0 ⇒ 	
j=1

4

A1je
s1j0 = 0

which can be written in matrix form for convenience as

�1 1 1 1 0 0 ��A11

]

A16

 = 0 �6�

The beam slope condition becomes

W1��0� = 0 �7�
Lastly, the twist angle condition is

B1�0� = 	
j=5

6

A1je
s1j0 = 0 �8�

Equations �6�–�8� can be written as a single matrix relation:

�BC0�3�6�A11

]

A16

 = 0:�BC0�3�6 = � 1 1 1 1 0 0

s11 s12 s13 s14 0 0

0 0 0 0 1 1



�9�

The x-coordinate of the free end of the structure can be either 0 or
l depending on the number of zigzag members. In the following,
xend refers to the x-coordinate of the free end. The natural bound-
ary conditions at the free end of the structure are as follows:

The moment balance condition for the free end is

Mn�xend� = 0 ⇒ Wn��xend� = 0 �10�

The shear force balance becomes Qn�xend�
= �mtip��2wn�xend, t� /�t2�: The plus sign corresponds to xend=0,
and the minus sign corresponds to xend= l. This can be written as

YIWn
�3��xend� = � mtip�

2Wn�xend� �11�

The torque balance condition is

Tn�xend� = 0 ⇒ Bn��xend� = 0 �12�

Equations �10�–�12� combine to yield a single matrix equation

�BCe�3�6�An1

]

An6

 = 0
where the �BCe�3�6 is defined as
BCe�3�6 = � sn1
2 esn1xend sn2

2 esn2xend sn3
2 esn3xend sn4

2 esn4xend 0 0

�YIsn1
3 � m�2�esn1xend �YIsn2

3 � m�2�esn2xend �YIsn3
3 � m�2�esn3xend �YIsn4

3 � m�2�esn4xend 0 0

0 0 0 0 sn5esn5xend sn6esn6xend

 �13�
4.2 Interface Equilibrium and Continuity Conditions.
ach of the beams can be connected to the next beam either at

heir beginning, x=0, or at their end, x= l. For ease of reference,
he location of the connection is named x�, which can be either 0
r l depending on the side of connection.

As depicted in Fig. 3, the deflection continuity condition can be
Wi�x�� = d � Bi−1�x�� + Wi−1�x�� �14�

This expression effectively couples the bending and torsional vi-
brations. The equation shows that the bending deflection of the ith
element is affected by both the deflection and the twist angle of
the previous element.
The slope continuity condition is

FEBRUARY 2011, Vol. 133 / 011002-3
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Wi��x
�� = Wi−1� �x�� �15�

he twist angle continuity condition is

Bi−1�x�� = Bi�x�� �16�
he bending moment equilibrium condition is

Mi−1�x�� = − Mi�x�� ⇒ Wi��x
�� = − Wi−1� �x�� �17�

Fig. 3 Equilibrium and compatibility conditions
he shear force equilibrium condition is

f the structure. Substituting the natural frequencies in Eq. �24�,

11002-4 / Vol. 133, FEBRUARY 2011
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Qi−1�x�� = − Qi�x�� � mlẅi�x�,t� �18�

where the plus sign in the right hand side corresponds to x�=0 and
the minus sign is associated with x�= l. Equation �18� can be writ-
ten as

YIWi−1
�3� �x�� = − YIWi

�3��x�� � ml�
2Wi�x�� �19�

The torque equilibrium condition is

Ti−1 = − Ti + Qi � d or

GJBi−1� �x�� = − GJBi��x
�� − YIWi

�3��x�� � d �20�
This last expression reveals the second reason for coupled torsion-
bending vibrations. The torque acting on one element is related to
the twisting torque of the other element and the shear force at the
other element’s end.

Equations �14�–�20� can be written as a single matrix relation

�Li−1�6�6�A�i−1�1

]

A�i−1�6

 = �Ri�6�6�Ai1

]

Ai6

 �21�
where
Li−1 = �
es�i−1�1x�

es�i−1�2x�

es�i−1�3x�

es�i−1�4x�

des�i−1�5x�

des�i−1�6x�

s�i−1�1es�i−1�1x�

s�i−1�2es�i−1�2x�

s�i−1�3es�i−1�3x�

s�i−1�4es�i−1�4x�
0 0

0 0 0 0 es�i−1�5x�

es�i−1�6x�

− s�i−1�1
2 es�i−1�1x�

− s�i−1�2
2 es�i−1�2x�

− s�i−1�3
2 es�i−1�3x�

− s�i−1�4
2 es�i−1�4x�

0 0

− s�i−1�1
3 es�i−1�1x�

− s�i−1�2
3 es�i−1�2x�

− s�i−1�3
3 es�i−1�3x�

− s�i−1�4
3 es�i−1�4x�

0 0

0 0 0 0 GJs�i−1�5es�i−1�5x�

GJs�i−1�6es�i−1�6x�



Ri = �

esi1x�

esi2x�

esi3x�

esi4x�
0 0

si1esi1x�

si2esi2x�

si2esi2x�

si4esi4x�
0 0

0 0 0 0 esi5x�

esi6x�

si1
2 esi1x�

si2
2 esi2x�

si3
2 esi3x�

si4
2 esi4x�

0 0

��
ml�

2

YI
+ si1

3 �esi1x� ��
ml�

2

YI
+ si2

3 �esi2x� ��
ml�

2

YI
+ si3

3 �esi3x� ��
ml�

2

YI
+ si4

3 �esi4x�
0 0

dYIsi1
3 esi1x�

dYIsi2
3 esi2x�

dYIsi3
3 esi3x�

dYIsi4
3 esi4x�

GJsi5esi5x�

GJsi6esi6x�




Eigenvalue Problem

So far, we have elaborated the boundary, continuity, and equi-
ibrium conditions. These conditions will result in an eigenvalue
roblem as typically encountered in studying vibrations of con-
inuous systems �25�. There are two different formulations pos-
ible. The first approach is to write all the derived conditions as
ollows:

�M�6n�6n�A11, . . . ,A16,A21, . . . ,A26, . . . ,An1,An6�T = 06n�1

�22�

ince the trivial solution is unacceptable, we must have
et�M6n�6n�=0. Matrix M is a function of geometry �xend and x��
nd the roots of a characteristic equation �sij�. The sij are, in turn,
unctions of natural frequency through Eqs. �3� and �5�. Therefore,
or a given geometry, the det�M� is only a function of �n. The
alues of �n, which make det�M�=0, are the natural frequencies
we can evaluate A11–An5 for a given An6. These coefficients de-
fine the mode shapes corresponding to each natural frequency.

The alternative approach is to use Eq. �21� to write all the
constants Aij in terms of constants of the first element, A1j. Equa-
tion �21� gives

�Ai1

]

Ai6

 = Ri

−1Li−1�A�i−1�1

]

A�i−1�6



Similarly, we have

�An1

]

An6

 = Rn

−1Ln−1�A�n−1�1

]

A�n−1�6

 = Rn

−1Ln−1Rn−1
−1 Ln−2�A�n−2�1

]

A�n−2�6



This enables us to go ahead and relate the coefficients of the last

beam to those of the first member as
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�An1

]

An6

 = Rn

−1Ln−1Rn−1
−1 Ln−2 . . . R2

−1L1�A11

]

A16

 �23�

quations �9�, �13�, and �23� imply that

� BC03�6

BCe3�6�Rn
−1Ln−1Rn−1

−1 Ln−2, . . . ,R2
−1L1�6�6

�
6�6�

A11

]

A16

 = 06�1

�24�

The matrix N is accordingly defined as

N = � BC0

BCeRn
−1Ln−1Rn−1

−1 Ln−2, . . . ,R2
−1L1

�
6�6

quation �24� gives a nontrivial solution if and only if det�N�=0,
roviding the values of �n, which make det�N�=0. In finding the
ode shapes, we substitute derived natural frequencies in Eq. �24�

nd evaluate A11–A15 for a given A16. After �A11, . . . ,A16�T is
valuated, other coefficients can be calculated from the following
ormula. The mode shapes can subsequently be constructed know-
ng all the constants from

�Ai1

]

Ai6

 = Ri

−1Li−1Ri−1
−1 Li−2, . . . ,R2

−1L1�A11

]

A16



he great advantage of the eigenvalue formulation �Eq. �23�� is
he significantly reduced size of the coefficient matrix. The size of

is 6n�6n, while the size of N is only 6�6. Therefore, calcu-
ating det�M� is numerically intensive compared with the calcula-
ion of det�N�. Also, the value of det�M� can sometimes be in
rder of 10200, while the equivalent det�N� is about 1020. The
xtremely large value of det�M� can introduce numerical errors in
nding natural frequencies. Therefore, we utilize the second ap-
roach to find natural frequencies and mode shapes.

Free Vibration Results
In this section, we use the proposed analytical method to cal-

ulate the natural frequencies and the mode shapes of a zigzag
tructure. The dimensions and material properties of the structure,
epicted in Fig. 1, are given in Table 1.

Based on the above analysis, Fig. 4 is constructed for various
umbers of elements in the zigzag pattern. Figure 4 illustrates that
y increasing the number of elements, we can decrease the first
ve natural frequencies of the structure by an order of magnitude.
n the study, the dimensions of the beams composing the structure
re fixed and are given in Table 1. The number of members in the
tructure varies from 1 to 20, and the tip mass is equal to the mass

Table 1 The specifications of the beams

ength of the beams, l �mm� 10
idth of each of the beams, b �mm� 1
enter to center lateral distance of two adjacent beams,
�mm�

1.5

hickness of the piezoelectric layer, hp �	m� 20
hickness of the substructure, hs �	m� 25
ip mass �mgr� 26.7
oung’s modulus of the piezoelectric layer, Yp �GPa� 66
oung’s modulus of the Si2N2O substructure,
s �GPa� �28�

140

odulus of rigidity of the piezoelectric layer, Gp �GPa� 25
odulus of rigidity of the substructure, Gs �GPa� 38
ensity of the piezoelectric layer, �p �kg m−3� 7800
ensity of the substructure, �s �kg m−3� 4400
f one member. The natural frequencies of the structures with
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different numbers of beams have been calculated. The decrease in
the fundamental natural frequency is approximately exponential
with the slope of �20 dB/decade, which means that the funda-
mental natural frequency drops by one order if the number of
beams increases by an order of magnitude.

The fundamental mode shape of a single cantilevered beam
corresponds to the bending of the beam. As the number of ele-
ments increases, the natural frequency of the modes, which in-
volve torsion of the beams, decreases faster than the natural fre-
quency of the modes related to the bending of the members. In an
energy harvesting application, the electrodes are placed on top and
bottom surfaces of the piezoelectric layers. This means that the
electrical energy is produced only from the bending of the piezo-
electric layer and not from torsion. As we are mainly concerned
about the vibrations that result in voltage generation, we should be
concerned with the change in the natural frequency of the first
bending mode and not with that in the fundamental natural fre-
quency. If the structure has more than ten members, the funda-
mental mode shape becomes dominantly torsional. This means
that we would get more power from the second mode than from
the fundamental mode. The first bending mode would therefore be
the second. This suggests using a zigzag structure composed of
less than ten members unless we are forced by the frequency
requirement to use more members.

The other advantage of using the zigzag geometry for energy
harvesting is that as we increase the number of members, the
natural frequencies get closer together; the ratio of the fifth natural
frequency over the first one is about 70 for a single beam, while it
reduces to 10 for a ten-member structure. This advantage can be
used for broadband energy harvesting. This conclusion on the
number of elements is specific to the illustrated case. In general,
adding the tip mass allows having more beams before making the
fundamental mode dominantly tensional. In contrast, the larger the
distance between the beams, the less number or members we can
have.

For illustration, the first four mass normalized mode shapes of a
ten-member structure are plotted in Fig. 5. We can distinguish the
torsional modes from the bending modes from their corresponding
mode shapes. In torsional modes, the beams are flat and the el-
evation of each beam is different from the previous one due to the
torsion of the previous beam. The slope of connecting arms and
the lack of curvature of beams are the main two characteristic
features.

In bending modes, the beams are no longer flat. They are
slightly curved, which indicates that the beams are bending.
Moreover, the connecting arms are almost flat, indicating that the
torsion in the members is insignificant. In the illustrated mode
shapes, the first mode depicted in Figs. 5�a� and 5�b� is torsional.
The next modes plotted in Figs. 5�c� and 5�d�, Figs. 5�e� and 5�f�,

Fig. 4 Natural frequency relation with the number of members
and Figs. 5�g� and 5�h� are dominantly bending. In the higher
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odes of the same structure �an example is plotted in Fig. 6�, the
oupling between torsion and bending is more significant, and
oth contribute to the deflection of the structure.

Fig. 5 „a…–„h… Mass normalized m
The mode shapes are an excellent means to examine if the
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boundary conditions and the continuity and equilibrium condi-
tions have been truly satisfied. It can be confirmed that for all the
mode shapes, the out of plane deflection W, its derivative, and the

e shapes of the first four modes
od
twist angle � are zero at the fixed end of the structure. W, dW /dx,

Transactions of the ASME

6 Terms of Use: http://www.asme.org/about-asme/terms-of-use



a
o
d
c
b

7

d
q
s
f
t
t
d
fl
t

T
t

H
w
=

J

Downloaded Fr
nd � at the ends of any two connected beams match at their point
f junction. Although it is difficult to see in the plots, it was also
etermined that the curvature of the beam and the slope of the �
urve at the free end are zero, which confirms that the natural
oundary conditions are satisfied.

Vibration Analysis Using Rayleigh’s Method
Rayleigh’s method is commonly used to approximate the fun-

amental natural frequency of structures. Here, we use Rayleigh’s
uotient to calculate the fundamental natural frequency of several
tructures for comparison with our exact model as a check. The
requency that resulted from Rayleigh’s method is always greater
han the exact fundamental frequency �26� but should be close to
hat frequency provided that the trial function is close to the fun-
amental mode shape. Considering the bending and torsional de-
ection of beams, we can calculate the strain energy in the struc-

ure as �27�


 = 	
i=1

n
EI

2 �
0

L � �2wi

�x2 �2

dx + 	
i=1

n
GJ

2 �
0

L � ��i

�x
�2

dx �25�

he kinetic energy associated with the out of plane deflection of
he beam is

Te =
1

2	
i=1

n �
x=0

L

�A� �wi

�t
�2

dx +
1

2	
i=1

n−1

ml� �wi�x��
�t

�2

+
mtip

2
� �wi�xend�

�t
�2

�26�

aving chosen a trial function �i�x�, by separating the variables as

i�x , t�=�i�x���t� and assuming harmonic vibrations such that �̇

Fig. 6 „a… and „b… Mode shape of the tenth mode
i��, we finally derive the natural frequency as
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�2 =
	i=1

n �0
L�EI��i��

2 + GJ��i��
2�dx

	i=1
n �A�0

L�i
2dx + Mtip�n

2�xend� + 	i=1
n−1ml�i

2�x��
�27�

The static deflection curve of the structure under its own weight is
used as the trial function. This choice is well known to result in
good approximates of the fundamental frequency of elastic struc-
tures �22�. To find the static deflection shape under gravity, we
start from the tip of the structure where we know that the shear
force, the twist torque, and the bending moment are zero. We add
up the effects of the point force due to the tip mass and the
distributed force resulting from the distributed mass of the beam
to find the values of the shear force, bending moment, and twist
torque along the last beam and its junction to the neighboring
beam. Next, Eqs. �17�, �18�, and �20� can be used to calculate the
force and moments at the tip of the next neighboring member. The
procedure described is repeated until forces and moments are cal-
culated along the members and at the junctions. Then, we use the
known force and moments to calculate the deflected shape under
gravity. This deflection curve is used as the trial function, �i�x�, in
Eq. �27� to find the approximate fundamental natural frequency.

The fundamental natural frequency of the structure discussed in
Sec. 6 has been calculated using the exact method and Rayleigh’s
method. The results are illustrated in Fig. 7. The estimation from
Rayleigh’s method is close to the exact fundamental frequency,
and as expected the approximate frequency is always higher than
the exact value. The maximum discrepancy is about 8%, which
corresponds to the four-member structure.

8 Experimental Verification
Experimental measurements have been performed as a second

Fig. 7 The exact versus the approximate fundamental
frequencies
validation of the analytical model. To avoid the expense of MEMS
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abrication, a macrosize model of the zigzag structure has been
ested. The structure is described in Table 2 and illustrated in Fig.
.

To characterize the vibrations, the accelerations of the base and
he tip of the structure are measured using two accelerometers.
onsidering the presented analytical solution, the transfer function
etween the base and the tip motion can be derived after perform-
ng a modal expansion,

wi�x,t� = �i�m��x���m��t� �28�

here �i�m��x� is the mass normalized mode shape, i.e.,

	
i=1

n �
0

L

�A�i�m�
2 �x�dx + 	

i=1

n−1

ml�i�m�
2 �x�� + mtip�n�m�

2 �xend� = 1

�29�

he base vibrations, exciting the structure, are in and out of the
ain plane. Therefore, the governing differential equations for the

eflection of the structure relative to its base are

Table 2 The specifications of the experimental structures

Length of the beams, l �mm� 171.4
Width of each of the beams, b �mm� 19
Center to center lateral distance of two adjacent beams,
d �mm�

22.2

Thickness of the substructure, hs �mm� 4.76
Tip mass �including accelerometer� �gr� 7.8
Young’s modulus of aluminum 5083, Ys �GPa� 73.1
Density of the aluminum substructure, �s �kg m−3� 2770
Fig. 8 Experimental
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YI
�4wi�rel�

�x4 + �A
�2wi�rel�

�t2 = − ��A + mtip
�x − xend�
�i − n�

+ 	
i=1

n−1

ml
�x − x���ab�t�

GJ
�2�i

�x2 − Ip

�2�i

�t2 = 0 �30�

Substituting Eq. �28� in Eq. �30�, taking the Fourier transform,
premultiplying by �i�r��x�, and integrating over all the structure
results to

�rel���
ab���

= − 	
r=1

�
�r

�r
2 + 2j�r�r� − �2 �31�

where �r is defined as

�r = 	
i=1

n �
0

L

�i�m��x� + 	
i=1

n−1

ml�i�m��x�� + mtip�n�m��xend� �32�

The relative tip acceleration is related to the base acceleration as

arel���
ab���

= 	
r=1

�
�r�r�xend��2

�r
2 + 2j�r�r� − �2 �33�

Figure 9 illustrates the values derived from Eq. �33� and the val-
ues from the experiments for 1-, 3-, 5-, 8-, and 11-member struc-
tures. The experiments show that the fundamental natural frequen-
cies of the structures are correspondingly 142.2 Hz, 58.28 Hz,
29.75 Hz, 14.19 Hz, and 8.18 Hz. Therefore, the fundamental
natural frequency of an 11-member structure is less than 1/17 of
that of a cantilever beam with the same thickness and beam
length.
zigzag structures
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In calculating the analytical results in Fig. 9, the values of
oung’s modulus and the density of the substrate were found in

he material data sheet, and the link masses were calculated by
ultiplying the density by the volume of the links. The damping

atios were selected according to the thickness of the experimental
requency response function �FRF� peaks. The analytical predic-
ions are close to the experimental measurements. The experiment
hows that the actual natural frequencies are slightly lower than
he model predictions. This small discrepancy is likely due to the
act that the links are not perfectly rigid. This flexibility translates
o lower natural frequencies. Another possible reason for the dif-
erence is the fact that the last beam is about 10% longer than
ther beams. This extra length was considered as a tip mass in the
nalytical model, which in reality results in slight overestimations
f the natural frequencies. That the experimental results match our

Fig. 9 Analytical predictions ve
redictions for the tip acceleration transfer function verifies that

ournal of Vibration and Acoustics
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the natural frequencies and the mode shapes have both been pre-
dicted correctly. It also justifies the modeling assumptions, and the
zigzag approach will, in fact, allow the production of MEMS har-
vesting devices with low natural frequencies compatible with am-
bient excitation.

9 Conclusion
Here, we proposed a new geometry to lower the frequency of a

MEMS scale harvesting device without increasing its length, mak-
ing the substrate device compatible with the frequency range of
ambient vibrations. We developed an analytical method to calcu-
late the natural frequencies and mode shapes of the proposed zig-
zag bilayered structure. The predictions of the analytical model
were validated by Rayleigh’s method results and experimental

s experimental measurements
rsu
tests. The results from the analytical method confirm the possibil-
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ty of designing a compact microscale energy harvesting device
ith a low fundamental natural frequency. Implementation of the
roposed zigzag structure can reduce the first bending natural fre-
uency by an order of magnitude and can bring it within the range
f typical ambient vibrations.

The analysis developed here is based on assuming that each
ink behaves as an Euler–Bernoulli beam in bending and torsion,
oupled by short links. Here, we assumed that the links between
he beams are rigid, but we considered their mass in the model.
nlike the models used for frames, coupling torsion of beams,

llowing for out of plane deformations, is considered.
The analytical study performed is of lower order and numeri-

ally more robust than using a finite element approach. Since the
roposed method is relatively fast and accurate, it can be utilized
or a future parametric analysis of the vibrations. The parametric
tudies can result in the characteristic curves, which are easier to
se for vibration engineers. The design and the subsequent analy-
is presented here provide a low frequency substrate that can be
sed in energy harvesting studies for MEMS devices because the
atural frequencies are of the order exhibited in most ambient
nergy signals.
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omenclature
b � width of the beams

GJ � torsional stiffness
hp � thickness of the piezoelectric layer
hs � thickness of the substructure

k=GJ /EIx � stiffness parameter
l � length of each of the beams

L � left transformation matrix
mtip � mass of the tip

ml � mass of the links
M�x , t� � bending moment
Q�x , t� � shear force

R � right transformation matrix
T�x , t� � twist torque
wi�x� � out of plane deformation of the ith beam

xend � x-coordinate of the free end
x� � x-coordinate of the connection of two beams
Ys � Young’s modulus of the substructure
Yp � Young’s modulus of the piezoelectric layer
YI � bending stiffness

�i�x� � twist angle of the ith beam
�p � density of the piezoelectric material
�s � density of the substructure material
�A � mass per unit length
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