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Abstract 

Epoxyeicosatrienoic acids (EETs), which function primarily as autocrine and paracrine 

mediators in the cardiovascular and renal systems, are synthesized from arachidonic acid by 

cytochrome P450 epoxygenases. They activate smooth muscle large conductance Ca2+-activated 

K+ channels, producing hyperpolarization and vasorelaxation. EETs also have antiinflammatory 

effects in the vasculature and kidney, stimulate angiogenesis, and have mitogenic effects in the 

kidney. Many of the functional effects of EETs occur through activation of signal transduction 

pathways and modulation of gene expression, events probably initiated by binding to a putative 

cell surface EET receptor. However, EETs are rapidly taken up by cells and are incorporated into 

and released from phospholipids, suggesting that some functional effects might occur through a 

direct interaction between the EET and an intracellular effector system. In this regard, EETs and 

several of their metabolites activate peroxisome proliferator-activated receptor (PPAR) α- and 

PPARγ, suggesting that some functional effects might result from PPAR activation. EETs are 

metabolized primarily by conversion to dihydroxyeicosatrienoic acids (DHETs), a reaction 

catalyzed by soluble epoxide hydrolase (sEH). Many potentially beneficial actions of EETs are 

attenuated upon conversion to DHETs, which do not appear to be essential under routine 

conditions. Therefore, sEH is considered as a potential therapeutic target for enhancing the 

beneficial functions of EETs.  

 

Key words:  soluble epoxide hydrolase,   eicosanoids,   dihydroxyeicosatrienoic acids, 

cytochrome P450,   peroxisome proliferator-activated receptor  
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Arachidonic acid is converted to eicosanoid mediators by the cyclooxygenase, 

lipoxygenase and cytochrome P450 (CYP) monooxygenase pathways (5). The CYP pathway 

produces two types of eicosanoid products, the epoxyeicosatrienoic acids (EETs) formed by 

CYP epoxygenases and the hydroxyeicosatetraenoic acids (HETEs) formed by CYP ω-oxidases 

(123).  Early studies indicated that the EETs produce important biological effects, particularly in 

the vascular and renal systems (52, 68, 103), but there was only limited interest in these 

compounds until the middle 1990s when they were shown to be synthesized in the endothelium 

and function as an endothelium-dependent hyperpolarizing factor (EDHF) under certain 

conditions in the coronary circulation (7, 51). Subsequent studies indicated that deletion of 

soluble epoxide hydrolase (sEH), the enzyme that converts EETs to dihydroxyeicosatrienoic 

acids (DHETs), decreased blood pressure in male mice (143), and treatment with a selective sEH 

inhibitor decreased blood pressure in hypertensive rats (171). These results suggested that 

inhibition of EET conversion to DHET might be a new therapeutic approach for hypertension. 

Interest was further heightened by the observations that EETs have antiinflammatory effects in 

the endothelium (120), stimulate angiogenesis (105,115), and prevent arterial smooth muscle 

migration (151). These findings are described in detail in a number of recent reviews (77, 131, 

172).  

Signal transduction pathways and transcriptional mechanisms involved in EET function 

have been identified (11, 56, 89, 150), and attempts are being made to isolate an EET membrane 

receptor that mediates these effects (144, 164). However, cells also rapidly take up EETs and 

incorporate them into phospholipids (4, 10, 149), suggesting the possibility of an intracellular 

mechanism of action. In this regard, heart fatty acid binding protein (H-FABP) binds EETs with 

Kd values that are only slightly higher than the Kd for arachidonic acid (161), implying that EETs 
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might bind to other intracellular proteins including transcription factors like peroxisome 

proliferator-activated receptors (PPAR) that contain fatty acid binding sites. These recent 

advances will be summarized in this review, with emphasis on the cellular mechanism and EET 

action, effects of sEH inhibition on these processes, and the potential role of EETs and their 

metabolites on PPAR-mediated gene expression.  

 
EET PRODUCTION 
 

The epoxygenases that synthesize EETs are primarily members of the CYP 2C and 2J 

classes. These enzymes are located in the endoplasmic reticulum, and they utilize arachidonic 

acid hydrolyzed from phospholipids when the Ca2+-dependent type IV phospholipase A2 is 

activated and translocated from the cytosol to intracellular membranes (53, 60). The CYP 

epoxygenases add an epoxide group across one of the four double bonds of arachidonic acid, 

forming four EET regioisomers, 5,6-, 8,9-, 11,12- and 14,15-EET, as illustrated in Fig. 1. Studies 

with purified CYP epoxygenases indicate that while each enzyme converts arachidonic acid to 

all four EET regioisomers, the main products in many cases are 11,12-EET and 14,15-EET (10). 

Endothelial cells express CYP2C9 and CYP2J2 and are the main source of EETs in the vascular 

system (51, 120, 132). Bradykinin or methacholine increase endothelial EET production 2- to 5-

fold (7, 119), and shear stress also stimulates EET production by endothelial cells (76).  

EETs are usually considered as a single entity, but in reality, they are eight separate 

compounds, each with somewhat different properties and functions. As shown in Fig. 1, there are 

four regioisomers, each stemming from one of the four double bonds of arachidonic acid. 

Although not shown in Fig. 1, each regioisomer actually represents two EET isomers because the 

epoxide group can attach at each of the double bonds in two different configurations, producing 
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R/S and S/R enantiomers of each EET regioisomer. To complicate matters further, the 

enantiomeric distribution of the same regioisomer produced by two different CYP epoxygenases 

can differ markedly; for example, 11,12-EET produced by human CYP2C8 is 82 % R/S, whereas 

the distribution produced by CYP2C10 is 69% S/R (24). Furthermore, two regioisomers 

produced by the same enzyme can have different stereochemical distributions. For example, 

CYP2J2 produces 11,12- and 14,15-EET. The 11,12-EET is a racemic mixture, whereas 76 % of 

the 14,15-EET is the R/S enantiomer (167). 

The functional effectiveness of two enantiomers also can differ. As an illustration, 

11(R),12(S)-EET relaxes small renal arteries preconstricted with phenylephrine, but 11(S),12(R)-

EET is inactive. Likewise, 11(R),12(S)-EET but not the S/R enantiomer increases the activity of 

the large conductance Ca2+-activated K+ (BKCa) channels in cell-attached patches of renal 

vascular smooth muscle cells (183). 14(R),15(S)-EET also is a better ligand than 14(S),15(R)-

EET for binding to guinea pig mononuclear cells (164), but the other enantiomer, 14(S),15(R)-

EET, is more potent in activating smooth muscle BKCa channels and dilating bovine coronary 

arteries (9). In contrast, no stereoselectivity was observed for EET-mediated dilation of canine or 

porcine microvessels (177). Another consideration regarding stereoselectivity is that the two 

enantiomers might have different functions. CYP2J2 expressed in human kidney forms equal 

amounts of both 11,12-EET enantiomers (167), but only 11(R),12(S)-EET produces relaxation of 

small renal arteries (183). However, in addition to vasorelaxation, EETs have anti-inflammatory 

and naturetic effects in the kidney (77,180), and it is possible that the S/R enantiomer might 

contribute to these effects. Thus, stereoselectivity is a very complex issue that complicates the 

investigation of some but not all aspects of EET function. 
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EET in Phospholipids 

 
Small amounts of 8,9-, 11,12- and 14,15-EET are present in the plasma, liver and kidney, 

with 14,15-EET being the most abundant regioisomer (83-85). More than 90 % of the EET 

contained in rat plasma is present in phospholipids, mostly in the low-density lipoproteins. The 

EETs in human kidney cortex and rat liver are contained almost entirely in the sn-2 position of 

phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI). The 

main enantiomers are 8(S),9(R)-EET, 11(S),12(R)-EET and 14(R),15(S)-EET, which is similar 

to the distribution of R/S enantiomeric forms synthesized in the kidney and liver (83).  

The presence of EETs in tissue phospholipids suggests that membrane lipid structural 

effects may be involved in some EET functions (10). Consistent with this possibility, PC 

containing 11,12-EET in the sn-2 position inhibits the open probability of the cardiac L-type 

Ca2+ channel reconstituted in a planar lipid bilayer (13). However, based on the values reported 

for rat liver phospholipids (84), EETs comprise only about 0.011% of the total fatty acyl chains 

in PC, 0.013% in PE, and 0.016 % in PI. While transient increases probably occur when cells are 

exposed to a bolus of EETs, it seems unlikely that the increase will be sufficient to have a 

generalized effect on membrane physical properties. On the other hand, perhaps the lipid 

microenvironment in localized domains might be perturbed sufficiently to produce a functional 

change, such as observed when the reconstituted L-type Ca2+ channel is exposed to PC 

containing 11,12-EET. 

 
EET METABOLISM  
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Fig. 2a presents an overview of the EET metabolic pathways. This is a composite of 

results obtained primarily from incubations of radiolabeled EETs with cultured cells, including 

murine mastocytoma cells (4), rat astrocytes (142), porcine and human endothelial cells (46,155, 

158), porcine arterial smooth muscle cells (44), human skin fibroblasts (40), and COS-7 cells 

(44). While Fig. 2a provides a general representation of EET metabolism, there are qualitative 

and quantitative differences among the four EET regioisomers and in the various cell types.  

All EET regioisomers are incorporated into cell phospholipids, mostly into the sn-2 

position, and are hydrolyzed from phospholipids by phospholipase A2 (4, 47, 149). The main 

EET catabolic pathway is conversion to the corresponding DHET by sEH. This enzyme 

effectively utilizes 8,9-, 11,12- and 14,15-EET, whereas 5,6-EET is a poor substrate. A 16-

carbon epoxy-fatty acid accumulates when either 11,12-EET or 14,15-EET undergoes partial β-

oxidation. A 22-carbon product is formed from 11,12-EET and 14,15-EET by chain-elongation. 

However, β-oxidation and chain-elongation are prominent metabolic pathways only in cells with 

low inherent sEH activity or when a sEH inhibitor is added (39, 46). A methyl-terminal hydroxyl 

group can be inserted to 8,9-, 11,12- and 14,15-EET by CYP ω-oxidases (22). Fig. 2b shows the 

structures of these four classes of EET metabolites, DHET, the 16- and 22-carbon epoxides, and 

the ω-hydroxy-derivative, using 14,15-EET and its products as the example.  

EETs can form glutathione conjugates (146). However, the functional significance of this 

reaction is questionable because the Km for 14,15-EET, the best substrate for glutathione-S-

transferase, is 10 µM.  

Only 5,6- and 8,9-EET are substrates for cyclooxygenase. 5,6-EET is converted to a 

prostaglandin analog, 5,6-epoxy-prostaglandin (PG) E1, which functions as a renal vasodilator 
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(12). 8(S),9(R)-EET can undergo only a partial cyclooxygenase reaction and is converted to 11-

hydroxy-8,9-EET, a renal vasoconstrictor and mitogen for glomerular mesangial cells (73,178).  

 
EET Incorporation into Cell Lipids 
 

Incorporation of EETs into phospholipids occurs through a coenzyme A-dependent 

process (84, 158). The largest amount of EET is incorporated into PC, but in most cases PI 

contains a higher percentage of the 14,15-EET uptake than any of the other regioisomers (142, 

155). Most of the radiolabeled EET is incorporated without chemical modification. However, 

small amounts of 11,12-DHET, 14,15-DHET, and a 22-carbon chain-elongation product of 

14,15-EET, 16,17-epoxy-∆6,9,12-docosatrienoic acid (16,17-EDT), have been detected in the 

phospholipids (39, 155, 158). A small amount 14,15-EET also is incorporated into endothelial 

and astrocyte triglycerides, and some unesterified 14,15-EET is present in astrocytes and 

endothelial cells (142, 155, 158). Likewise, a small amount of the 8,9-EET that is incorporated 

into arterial smooth muscle cells remains in unesterified form (44). The presence of intracellular 

unesterified EET suggests that EET binding to cytosolic FABP, which has been observed in vitro 

(161), might occur in the intact cell. Modeling of in vitro data suggests that binding to FABP 

may modulate the intracellular metabolism of EETs (162), as illustrated in Fig. 2a. The presence 

of unesterified EET also suggests the possibility that binding might occur to other intracellular 

proteins that contain fatty acid binding sites.  

Incubations of endothelial cells with 14,15-EET and smooth muscle cells with 11,12-EET 

indicate that after these EETs initially accumulate in the cell lipids, they are continuously and 

progressively hydrolyzed and released into the extracellular fluid as DHETs (42, 155). This 

occurs under basal conditions, suggesting that any perturbation of membrane structural domains 
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or signaling properties that might occur as a result of EET incorporation into phospholipids is 

only transient. A much larger and faster EET efflux occurs when calcium ionophore A23187 is 

added to endothelial cells containing 14,15-EET (158, 159). The material released into the 

extracellular fluid remains largely as 14,15-EET if a sEH inhibitor is present (39). These results 

suggest that EETs might be temporarily stored in endothelial phospholipids and rapidly released 

as a bolus when the endothelium is exposed to an agonist (149). Such a mechanism could explain 

the potentiation of bradykinin-stimulated vasorelaxation produced by EETs (158).    

 
β-Oxidation of EETs 
 

As opposed to porcine cells that convert EETs almost entirely to DHETs (44, 155), 

cultured human endothelial cells, human vascular smooth muscle cells and human skin 

fibroblasts convert EETs mostly to chain-shortened β-oxidation products (40, 45, 46). This is 

consistent with the finding that cultured human coronary endothelial cells contain only 1/30th the 

sEH activity of porcine coronary endothelium (46). Studies with mutant fibroblasts indicate that 

EET β-oxidation occurs in the peroxisomes (40). Although 18- and 14-carbon epoxy-fatty acids 

are formed, the most abundant β-oxidation product contains 16-carbons (46). As illustrated in 

Fig. 2b, 14,15-EET is converted primarily to 10,11-epoxy-∆4,7-hexadecadienoic acid (10,11-

EHD) by β-oxidation. Similarly, 11,12-EET is converted to 7,8-epoxy-∆4,10-hexadecadienoic 

acid (40). The chain-shortened EET metabolites were not detected in earlier studies done with 

[1-14C]EETs because the radiolabeled carboxyl carbon is removed in the first β-oxidation cycle. 

Detection of these metabolites required incubations with [3H]EETs synthesized from 

[5,6,8,9,11,12,14,15-3H]arachidonic acid, so that radioactivity remains in the products even 

though several carbons are removed from the carboxyl end of the EET. The 16-carbon 
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intermediates probably accumulate because they contain a ∆4-cis-double bond (see Fig.2b for 

10,11-EHD structure). Two additional enzymes, 2,4-dienoyl-CoA reductase and ∆3,∆2-enoyl-

CoA isomerase, are necessary for β-oxidation to proceed through an intermediate that contains a 

∆4-cis-double bond (91), and it appears that these enzymes are rate-limiting for continued β-

oxidation of 11,12-EET and 14,15-EET in the cells that so far have been studied (40, 46). 

As opposed to cultured human endothelial and vascular smooth muscle cells where EET 

β-oxidation is a prominent process, the physiological role of β-oxidation in human vascular 

tissue is highly questionable in view of recent findings with surgical specimens (45). Human 

coronary artery and aortic segments converted 14,15-EET entirely to 14,15-DHET. Likewise, 

human saphenous vein segments converted 14,15-EET entirely to 14,15-DHET, whereas 10,11-

EHD was the main product formed by endothelial and smooth muscle cells cultured from the 

saphenous vein. Western blots showed that freshly isolated human saphenous vein segments 

contain substantial amounts of sEH protein, whereas detectable amounts were not detected in 

cultured saphenous vein endothelial and smooth muscle cells. These data indicate that sEH 

expression decreases markedly when these human cells are grown in culture. Therefore, the high 

level of EET β-oxidation observed in human endothelial and vascular smooth muscle cells 

probably is an artifact of the cell culture conditions.  

Porcine coronary artery endothelial cells, which contain high levels of sEH and ordinarily 

form DHETs, convert 11,12- and 14,15-EET to β-oxidation products when the cells are 

incubated with a selective sEH inhibitor (39). This provides additional evidence that β-oxidation 

becomes prominent only when the sEH activity is deficient. While β-oxidation appears to be an 

alternate pathway, there is some evidence that the 16-carbon products that accumulate have 

bioactivity. For example, 10,11-EHD is almost as potent as 14,15-EET in relaxing isolated 
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constricted porcine coronary arterioles and inhibiting cytokine-stimulated interleukin-8 

production in human coronary endothelial cultures (46). However, 10,11-EHD does not retain 

the biological activity of EETs in all systems. For example, it is much less potent than 14,15-

EET in dilating bovine coronary artery rings (35).  

11,12-DHET also is catabolized by β-oxidation when it accumulates in smooth muscle 

cells. As in the case of the EETs, the main β-oxidation product formed is 7,8-DHHD, the 

corresponding 16-carbon dihydroxy metabolite that contains a ∆4-cis double bond (42). Although 

7,8-DHHD can relax porcine coronary artery rings, it is less potent than 11,12-EET. Therefore, 

the main function of this β-oxidation pathway appears to be removal of any residual DHET that 

is retained in the smooth muscle cells. 

 
MECHANISM OF EET ACTION 

 
EETs are autocrine and paracrine mediators that function primarily in the cardiovascular 

and renal systems. The generally accepted paradigm is that EETs are synthesized from 

arachidonic acid when cells that express a CYP epoxygenase, such as endothelial cells, are 

activated. The stimulus activates a cellular phospholipase A2 that hydrolyzes arachidonic acid 

from the sn-2 position of phospholipids, and the released arachidonic acid is converted to EETs 

by the CYP epoxygenase. Support for this mechanism is provided by studies with blood vessel 

preparations showing that CYP epoxygenase inhibitors block EET-mediated vasodilation (131), 

implying that the EET is formed subsequent to activation of the cell. An alternative possibility 

that may operate in some circumstances is that the activated phospholipase releases preformed 

EETs stored in the phospholipids (149). This is consistent with the presence of EETs in hepatic 

and renal phospholipids (83,84), and the finding that radiolabeled EETs present in endothelial 
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phospholipids are rapidly released when the cells are exposed to calcium ionophore A23187 (39, 

158, 159).  

Regardless of the details of EET formation, the initial mechanistic steps that mediate the 

autocrine and paracrine effects of EETs remain uncertain. One possibility is that EETs bind to a 

membrane receptor linked to an intracellular signal transduction pathway that initiates the 

functional response. The other is an intracellular mechanism in which EETs or phospholipids 

containing newly incorporated EETs directly interact with and activate ion channels, signal 

transduction components or transcription factors that produce the functional response. It is likely 

that the actions of EETs are mediated by both mechanisms, thus accounting for their diverse 

effects.  

 
Membrane Receptor Mechanism 
 

Fig. 3 is a schematic illustration of the postulated membrane receptor mechanism. The 

key element is that the functional response is initiated by EET binding to a plasma membrane 

EET receptor. This activates signal transduction pathways that regulate ion channels or gene 

expression, producing a change in cell properties and function. Evidence supporting this 

mechanism was obtained from studies with human U937 cells, which contain a cell surface 

protein that functions as a high-affinity stereoselective binding site for 14(R),15(S)-EET (165). 

Guinea pig mononuclear cells have a similar high-affinity 14,15-EET binding protein which 

sediments with the particulate material of the cell homogenate (164, 166). 14,15-EET binding 

increases the intracellular cyclic adenosine monophosphate (cAMP) content and activates protein 

kinase A (PKA), resulting in down-regulation of the putative receptor (164, 165). Additional 

evidence for a mechanism involving a G-protein coupled receptor (i.e., a seven transmembrane 

Page 12 of 74



13

receptor) is provided by the observation that 11,12-EET induced activation of the BKCa channel 

and tissue-plasminogen activator (t-PA) expression is mediated by the Gαs component of a 

heterotrimeric GTP-binding protein (59, 95, 96, 121). Angiogenesis initiated by 11,12-EET also 

involves a cAMP-PKA signaling pathway that induces COX-2 expression (107).  

 Results obtained with a 14,15-EET-sulfonimide derivative covalently attached in amide 

linkage to a silica bead provide additional support for a membrane receptor mechanism. Previous 

work indicated that the 14,15-EET-sulfonimide derivative retains the biological activity of 

14,15-EET (17). Further studies with rat aortic smooth muscle cells revealed that although the 

EET-bead complex was stable and the EET remained in the extracellular fluid during incubation, 

cAMP-induced aromatase activity was inhibited by the bead complex to the same extent as by 

14,15-EET-sulfonamide in solution (144). The interpretation is that 14,15-EET inhibits cAMP-

induced aromatase activity by acting at the cell surface.  

 In addition to the Gαs-cAMP-PKA pathway, a number of other signal transduction 

mechanisms, shown in Fig. 3, have been found to be active in EET functional responses under 

various conditions. Activation of tyrosine kinase cascade, src kinase, mitogen-activated protein 

kinase (MAPK), and phosphatidylinositol 3-kinase (PI-3K) /Akt pathways mediate actions of 

EETs in endothelial cells, arterial smooth muscle cells, glomerular mesangial cells, renal tubular 

epithelial cells, and myocardium (14, 15, 54, 72, 127, 140, 157). In addition, the 

antiinflammatory effect produced by 11,12-EET in the endothelium is due to inhibition of 

cytokine-activated nuclear factor-κB (NF-κB)-mediated transcription. This occurs by inhibition 

of IKK phosphorylation of IκBα (120, 150). The fact that other agonists typically activate these 

pathways through membrane receptor mechanisms provides indirect support for an EET receptor 
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mechanism similar to the illustration in Fig. 3, but so far, the putative EET receptor has not been 

conclusively identified.  

 
Intracellular Mechanism 
 

An alternative possibility is that EET enters the cell and produces functional effects by 

directly interacting with intracellular effectors as shown in Fig. 4. According to this proposed 

mechanism, the EET is present intracellularly as a result of uptake, hydrolysis of phospholipids 

that contain EET, or synthesis from arachidonic acid by a CYP epoxygenase. The intracellular 

EET directly interacts with FABP, ion channels or transcription factors that produce functional 

responses, or it is present in phospholipids that interact with membrane proteins or phospholipid-

mediated signal transduction pathways.  

This hypothesis is supported by biochemical and cell culture data, but the evidence is 

largely circumstantial. Although EETs are recovered in the extracellular fluid when they are 

either synthesized from arachidonic acid or released from phospholipids (132, 158, 159), they 

probably remain in the cells long enough to initiate an autocrine response. This is suggested by 

the observation that radiolabeled EET initially present in endothelial phospholipids continued to 

accumulate in the extracellular fluid for up 20 min after calcium ionophore A23187 was added 

(39), indicating that some of the EET hydrolyzed from the phospholipids probably remained in 

the cytosol for several minutes before being released to the medium. Likewise, cellular EET 

uptake from the extracellular fluid appears to be fast enough to initiate paracrine effects. For 

example, the incorporation of extracellular 14,15-EET into vascular smooth muscle cell 

phospholipids was observed within 3 min (41), and the conversion of the newly incorporated 

14,15-EET to DHET, which takes place in the cytosol (174), also occurred after only 3 min (41). 
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Additional studies indicate the EETs can directly interact with cellular proteins. Patch clamp 

experiments show that EETs can directly interact with myocardial Na+ and KATP channels (94, 

100), and the latter finding is consistent with the fact that an EET binding site has been detected 

in the KATP ion channel (99). EETs also bind to intracellular proteins that contain fatty acid 

binding sites, including FABPs and PPARγ (97, 161). These findings support the possibility that 

EETs act through an intracellular mechanism as depicted in Fig. 4, but there is no conclusive 

evidence indicating that this actually occurs in vivo. 

 
EET ACTIONS  
 

EETs produce a number of diverse actions in a variety of tissues and cells. In vascular smooth 

muscle, they produce vasorelaxation and anti-migratory effects. The EETs are also quite active 

in endothelial cells where they have anti-inflammatory, angiogenic, fibrinolytic and Ca2+-

signaling effects. In addition, EETs have mitogenic effects in renal tubular and mesangial cells, 

produce bronchodilation, have anti-adhesive effects in platelets, and effect myocardial 

preconditioning and polypeptide hormone secretion. There is significant heterogeneity in the 

intracellular mechanisms that have been associated with these EET actions. Because the initial 

receptive events in EET signaling remain unknown, it has been often difficult to distinguish 

primary from secondary events in the cellular actions initiated by EETs. Table 1 summarizes the 

functions of EETs and the mechanisms reported to mediate these effects.  

 

Vasodilation 

Vasodilation is the most extensively studied EET function. The most potent effects of 

EETs occur in small resistance vessels; for example, 14,15-EET has been observed to produce 
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relaxation of isolated coronary microvessels at concentrations as low as 10 pM (39). This occurs 

through hyperpolarization and suggests that the EETs function as an EDHF in a number of 

vascular beds including the coronary circulation (7, 8, 51). A proposed mechanism is the EET is 

released by the endothelium and produces hyperpolarization by acting on the vascular smooth 

muscle (149). Two recent observations in coronary preparations support this mechanism. One is 

the finding that the EDHF response in bovine coronary arteries is inhibited by the EET 

antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (61). The other is that EET is the transferable 

mediator of vasorelaxation in a perfused system consisting of donor and detector coronary 

arteries (62). An alternative possibility is that the EETs hyperpolarize the endothelium and this is 

transmitted to the smooth muscle by electrical coupling through myo-endothelial junctions or by 

release of K+ into the intercellular space (50, 55). EDHF mechanisms that do not involve EETs 

also have been proposed, including the release of lipoxygenases products or hydrogen peroxide 

from the endothelium (50, 182). In addition to the uncertainty regarding mechanism, there also is 

a question as to whether the EDHF effect is functionally important under normal physiological 

conditions or only when endothelial nitric oxide and prostacyclin production are compromised. 

 

Ion Channel Activation by EETs 
 

EETs increase the open probability of the BKCa channel (75). This causes 

hyperpolarization of the vascular smooth muscle, producing vasorelaxation. An alternative 

mechanism proposed to underlie vasorelaxation is that EETs activate the TRPV4 Ca2+ channel 

leading to hyperpolarization and vasorelaxation by forming a Ca2+ signaling complex (33,55). 
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Endothelial TRPV4 Ca2+ channel also are activated by 5,6-EET and 8,9-EET (156), which may 

explain the finding that 5,6-EET is a second messenger for Ca2+ entry into endothelial cells (65). 

Studies in the bovine coronary artery with 11,12-EET indicate that activation of the BKCa 

channel is mediated by Gαs-protein in a process that involves ADP-ribosylation (95, 96).  

Likewise, 14,15-EET stimulates ADP-ribosylation in the liver (137), but the functional 

significance of this process is not known. Additional studies indicate that the Gαs-protein also 

mediates BKca activation by 11,12-EET in human kidney cells (59). Based on these observations, 

the receptor-mediated BKCa activation mechanism illustrated in Fig. 3 includes GαS ,but the 

possibility that EETs directly interact with the BKCa channel as shown in Fig. 4 cannot be 

excluded. 

EETs activate BKCa channels in other tissues. This process occurs in platelets, decreasing 

platelet adhesion to the endothelium (90), and in airway smooth muscle, producing 

bronchodilation through hyperpolarization. Inhibition of smooth muscle Cl− channels also is 

involved in the mechanism through which EETs produce relaxation of the airway smooth muscle 

(3, 31, 133, 134).  

EETs are reported to affect other ion channels, including the KATP, Na+, L-type Ca2+ 

channels. EETs bind to the myocardial KATP channel and thereby reduce its sensitivity to ATP by 

an allosteric alteration of the ATP binding site (99, 100). Activation of the mitochondrial KATP 

channels protects the myocardium against ischemia-reperfusion injury (140), suggests that 

myocardial preconditioning may occur through a direct interaction between EETs and the 

channel. However, activation of the p42/p44 MAPK pathway also appears to be involved in 

myocardial preconditioning (140), and studies in mice with targeted deletion of the sEH support 

a mechanism involving EET-mediated activation of the PI3K signaling pathways and K+
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channels (139). In addition to activating the myocardial KATP channel, EETs inhibit the 

myocardial Na+ channel by decreasing the probability of channel opening (94). Likewise, the 

cardiac L-type Ca2+ channel reconstituted in a planar phospholipid bilayer is inhibited when PC 

containing 11,12-EET in the sn-2 position is present in the bilayer (13).  

 

Antiinflammatory Effects of EETs 

 

EETs produce an antiinflammatory effect on the endothelium by inhibiting cytokine-

induced NF-κB transcription (120). 11,12-EET produces the most potent effect in bovine aortic 

endothelial cells. It inhibits IKK-mediated phosphorylation of IκBα, maintaining NF-κB in an 

inactive state (150). 11,12-EET also enhances fibrinolysis by activating t-PA gene expression 

through a cAMP-driven promoter. This involves a Gαs-protein mediated signal transduction 

mechanism (121). Likewise, a cAMP-PKA signaling pathway mediates the inhibitory effect of 

11,12-EET on rat aortic smooth muscle cell migration (151). 

 

Angiogenesis 

There is increasing evidence that EETs stimulate angiogenesis (55, 100, 107, 109). 

However, the signaling pathway that mediates this process appears to differ depending on the 

species, type of endothelium, and the EET regioisomer that initiates the process. A pathway 

involving activation of MAPK phosphatase-1 that inactivates c-Jun N-terminal kinase (JNK), 

leading to up-regulation of cyclin D1 and proliferation, occurs in human umbilical vein 

endothelial cells that overexpress CYP2C9 or are incubated with 11,12-EET (55, 117). However, 

other studies with 11,12-EET indicated that the angiogenic process is initiated by PI3K/Akt-
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dependent phosphorylation and inactivation of the forkhead transcription factors FOXO1 and 

FOXO3a, which decreases the cyclin-dependent kinase inhibitor p27Kip1 (125).  This pathway is 

activated by phosphorylation of the epidermal growth factor (EGF) receptor (108). Still another 

angiogenic signal transduction pathway has been reported for human umbilical vein endothelial 

cells, this one involving cAMP-PKA activation, COX-2 induction and PGI2 synthesis (101, 106).  

A pathway involving ERK1/2 phosphorylation also has been observed in porcine 

coronary endothelial cells incubated with 11,12-EET (54). This is consistent with the previous 

finding that 11,12-EET activates tyrosine kinase activity in porcine aortic endothelial cells (72).  

A pathway involving MAPK, PI3K and Akt also mediates the angiogenic response in 

bovine aortic endothelial cells either engineered to overexpress CYP epoxygenases or treated 

with EETs (157). Likewise, these signaling pathways are involved in the angiogenic response in 

murine pulmonary endothelial cells, but the results are more complicated. 8,9-EET and 11,12-

EET stimulate proliferation of the pulmonary endothelial cells through the p38 MAPK pathway, 

whereas the response to 5,6-EET and 11,12-EET occurs through PI3K activation (127). To 

complicate things further, only 5,6-EET and 8,9-EET promote endothelial cell migration, tube 

formation and in vivo neo-vascularization in mice (127), and though 11,12-EET is effective in 

stimulating the angiogenic response in most of the endothelial culture systems that have been 

studied, there is no evidence that it is active in vivo.  

In summary, three signaling pathways appear to play a role in EET-mediated 

angiogenesis. This is summarized in Table 1 and illustrated schematically in Fig. 3. One is a 

cAMP-dependent pathway that activates the cyclicAMP response-element binding protein 

(CREBP) and COX-2 expression. This pathway is activated by EETs produced by CYP2C9, 

especially 11,12-EET (106). The second pathway that also is activated by EETs produced by 
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CYP2C9 involves PI3K and Akt, leading to an increase in cyclin D1 expression (55). Tyrosine 

phosphorylation of the EGF receptor is associated with this mechanism (108), as well as 

decreased expression of the cyclin D1 inhibitor p27kip1 due to Akt-mediated phosphorylation of 

the forkhead transcription factors FOXO1 and FOXO3a (55). Another contributing factor to the 

increase in cyclin D1 expression is activation of MAPK phosphatase-1 that decreases JNK 

activity (55, 126). The third is a p38 MAPK pathway that is activated by 8,9-EET and 11,12-

EET (127). Which of these pathways is operative probably depends on the species, type of 

endothelium, and EET regioisomers produced by the CYP epoxygenase. Furthermore, it is not 

known whether each of these pathways is activated by EET binding to the putative EET receptor, 

as depicted in Fig. 3, by direct interaction with EETs or membrane phospholipids as shown in 

Fig. 4, or as a secondary response to another effect of EET on the endothelium.  

 

Mitogenesis 

EETs stimulate mitogenesis of renal epithelial cells through a complex signal 

transduction mechanism. The most potent regioisomer is 14,15-EET. It activates cleavage of 

heparin-binding EGF-like growth factor (HB-EGF), which is a ligand for the EGF receptor (13, 

16). This activates a tyrosine kinase signaling cascade initiated by Src kinase (14, 17), and 

metalloproteinases also are activated (16). In addition to stimulating the proliferation of renal 

cells, 14,15-EET appears to reinforce this response through an inhibitory effect on apoptosis in 

the renal epithelium. This is indicated by studies with LLCKPc14 cells transfected with a mutant 

bacterial CYP epoxygenase that produces only 14,15-EET. This prevented apoptosis of the 

LLCKPc14 cells through a mechanism involving activation of the PI3K/Akt signaling pathway 
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(15). 14,15-EET and 8,9-EET also stimulate mitogenesis in cultured rat glomerular mesangial 

cells. However, in these cells, the mechanism involves activation of Na+/H+ exchange (69). 

 

Other Functions 

EETs stimulate the secretion of several polypeptide hormones. 5,6-EET and 14,15-EET 

stimulates growth hormone release from somatotrophs (145), and 8,9-EET increases dopamine-

stimulated somatostatin release from hypothalamic neurons (81). CYP2J2 and endogenous EETs 

are present in the endocrine pancreas, suggesting that EETs also might be involved in pancreatic 

hormone secretion (173). However, the pathways that are involved in producing these effects 

have not been determined.  

 

FUNCTION OF OMEGA-3 EET ANALOGS 
 

Eicosapentaenoic acid (EPA), the 20-carbon ω-3 analog of arachidonic acid (147), is 

converted to an epoxide derivative by human recombinant CYP2C epoxygenases with a catalytic 

efficiency similar to that of arachidonic acid (2). The main EPA epoxide derivative that is 

formed, 17(R),18(S)-epoxyeicosaquatraenoic acid (17,18-EEQ), is a potent activator of BKCa 

channels in arterial smooth muscle cells (93). Likewise, chemically synthesized EEQ 

regioisomers dilate canine and porcine coronary microvessels with EC50 values in the same range 

as those for the corresponding EET regioisomers (177). Furthermore, 11,12-EEQ was more 

potent than 11,12-EET in activating the cardiac KATP channel (102). These findings suggest that 

some functional effects of ω-3 fatty acids might be due to EEQ synthesis, or alternatively, to a 

reduction in EET synthesis because of competition between EPA and arachidonic acid for CYP 

epoxygenases. At present, however, there is no evidence that EEQs are produced in vivo or that 
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ω-3 fatty acid supplementation has any effect on EET formation either in an intact cell or 

experimental animal. 

Epoxides have been chemically synthesized from docosahexaenoic acid (DHA), a 22-

carbon ω-3 fatty acid (168). DHA is the most abundant ω-3 fatty acid in many tissues and 

accumulates to high levels in the brain (128, 147, 148, 163). The epoxydocosapentaenoic acids 

(EDPs) synthesized from DHA activate BKCa channels and dilate preconstricted porcine 

coronary arterioles (168). The EC50 range for vasodilation by the EDP regioisomers was 0.5 – 24 

pM, and 13,14-EDP was 100-times more potent than 11,12-EET in activating the BKCa channels 

in coronary smooth muscle cells. Another epoxide derivative of DHA, 16,17-epoxy-

docosatriene, is an intermediate in the pathway that produces neuroprotectin D1 in human 

ARPE-19 cells (113). However, 16,17- epoxy-docosatriene is formed as a result of a 

lipoxygenase reaction, not a CYP reaction, and there is no information as to whether it has 

vasoactive properties similar to an EDP.  

 
SOLUBLE EPOXIDE HYDROLASE  
 

The enzyme encoded by the EPXH2 gene, sEH, hydrates the EET epoxide group to form 

the corresponding diol (117; 175). Fig. 2b illustrates this reaction, showing the conversion of 

14,15-EET to 14,15-DHET. 14,15-EET is a better substrate for sEH than either 11,12-EET or 

8,9-EET, and 5,6-EET is a poor substrate (174). sEH also exhibits selectivity for the most 

abundant 14,15-, 11,12- and 8,9-EET enantiomeric forms normally present in tissues, 

14(R),15(S)-EET, 11(S), 12(R)-EET and 8(S),9(R)-EET (176). The enzyme functions as a 

homodimer (1, 63), and each subunit consists of two domains that have different enzymatic 

activities. The carboxyl-terminal domain contains the epoxide hydrolase activity, while the 
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amino-terminal domain is a Mg2+-dependent lipid phosphatase (23, 118). Although dihydroxy 

lipid phosphates and polyisoprenyl phosphates involved in sterol synthesis are good substrates 

(118, 152), the physiological function of the lipid phosphatase activity is not known. Potent 

inhibitors of the epoxide hydrolase activity are now available (110), and lipid sulfates and 

sulfonates are being developed as inhibitors of the lipid phosphatase activity (152). The two 

domains function independently of one another, and inhibition of one activity does not affect the 

function of the other. 

 Linear rates of DHET formation were obtained with recombinant mouse sEH during 

incubations with racemic 14,15-EET and 11,12-EET for 1 and 4 min , respectively (162). The 

kinetic data were well fit by a Michaelis-Menten model with Km = 2.5 µM and Vmax = 38 µmol 

min-1 for 14,15-EET, and Km = 0.45 µM and Vmax = 9.2 µmol min-1 for 11,12-EET. Km values in 

the range of 3 – 5 µM also have been reported for 14,15- 11,12- and 8,9-EETs (176), and the 

calculated catalytic efficiencies for 11,12-EET in these studies varied from 0.3 to 21 µM-1s-1 

(162, 176). The higher values were obtained in media containing 100 µg/ml phospholipid 

vesicles to solubilize the EETs (176), as compared with media containing 30 nM bovine serum 

albumin (162). Porcine coronary endothelial cells converted 60 % of the available EET to DHET 

during a 1 h incubation with 2 µM 14,15-EET (39). During incubation of porcine aortic 

endothelial cells with 0.5 µM 14,15-EET, 50% of the DHET formed was produced in the first 10 

min (155). Although all of the available EET was not converted to DHET, the amount of 14,15-

DHET produced was linear in a 2 h incubation with 0.25 to 5 µM 14,15-EET (155). Endogenous 

EET concentrations have not been accurately determined, but the intracellular concentration of 

EET after exposure of platelets to thrombin has been estimated to reach levels as high as 1 µM

(181). Based on this estimate, a simulated analysis using DynaFit with the production of 1 µM
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EET at a rate of 0.01 s-1 indicated complete conversion to DHET in 6 min (162). This simulation 

suggests that the sEH activity is sufficient to rapidly hydrate the amounts of EET likely to be 

generated under physiological conditions. 

The addition of H-FABP or liver (L)-FABP to incubations containing recombinant sEH 

reduces the amount of 11,12- or 14,15-EET converted to DHETs, implying that binding to FABP 

may protect these EET from catabolism and thereby prolong their intracellular action (162). In 

this regard the simulation described above indicated that about 35% of the released EET would 

remain as EET after 10 min if the intracellular H-FABP concentration was 1 µM (162). This 

suggests that FABP binding also might regulate the availability of EETs to the other intracellular 

metabolic pathways as illustrated in Fig. 2a, but no information presently is available to indicate 

that EETs binding to FABPs actually occurs in an intact cell. 

 
Effect of Selective Soluble Epoxide Hydrolase Inhibitors on EET Metabolism and Function 
 

Many potentially beneficial actions of EETs are attenuated when EETs are converted to 

DHETs. Therefore, as illustrated in Fig. 5, inhibiting sEH causes EETs to accumulate and be 

retained for longer periods after they are formed (39), presumably enhancing their beneficial 

autocrine and paracrine effects. Because DHETs have little or no activity as compared with the 

corresponding EETs in producing a number of functional effects (6, 17, 43, 48, 94, 100, 120, 

137, 144, 161), it is generally assumed that inhibiting DHET formation should not impair any 

vital physiological processes. Consistent with this view, no toxicity was observed in sEH gene-

deleted mice (143), and none was reported in hypertensive rats treated with several different sEH 

inhibitors (78, 171, 180). Pharmacologic inhibitors targeted to reduce DHET formation must be 

selective for sEH because mammals contain four other epoxide hydrolases that have important 
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metabolic and protective actions (117). However, this presents no difficulty because potent 

selective inhibitors are available (110), and they have been structurally refined to increase water 

solubility so they can be easily utilized for biochemical and animal experiments (86, 111).  

Fig. 6 illustrates the structures of four urea derivatives that are selective sEH inhibitors 

and have been shown to be effective in biological systems. Administration of N,N′-

dicyclohexylurea (DCU) decreased blood pressure in hypertensive rats (171). In endothelial 

cultures, DCU increased 14,15-EET retention in phospholipids and prevented 14,15-EET 

conversion to DHET after it was rapidly released from the phospholipids by exposure to Ca2+ 

ionophore A23187 (39). As the incubation with DCU continued, however, the 14,15-EET was 

progressively catabolized by conversion to chain-shortened β-oxidation products. A DCU 

derivative, 1-cyclohexyl-3-dodecylurea (CDU), potentiated vasodilation produced by 14,15-EET 

in human coronary arterioles (92). CDU also protected the kidney vasculature and glomerulus 

from hypertensive injury in angiotensin-induced hypertension (180), which is consistent with the 

finding that renal sEH is located primarily in the vasculature (170). Another derivative, 1-

cyclohexyl-3-dodecanoylurea (CUDA), inhibited the conversion of 11,12- and 14,15-EET to 

DHETs in surgical specimens of human saphenous vein, coronary artery and aorta (45). A 

CUDA derivative in which the cyclohexyl group is replaced by an adamantanyl group, 1-

adamantanyl-3-dodecanoylurea (AUDA), lowered blood pressure, increased the urinary 

EET/DHET ratio, and decreased macrophage infiltration in the kidneys of rats with salt-sensitive 

hypertension (78). AUDA also lowered blood pressure and increased urinary salt and water 

excretion in angiotensin-induced hypertension (80), and it decreased cerebral infarct size in 

spontaneously hypertensive rats following occlusion of the middle cerebral artery (29). 

Furthermore, AUDA augmented the antiinflammatory effect of EETs in endothelial cells, 

Page 25 of 74



26

probably by increasing EET-induced PPARγ transcriptional activity (97), and AUDA-butyl ester 

reduced the inflammatory response produced by lipopolysaccharide in mice (135). An AUDA 

analog, 1-admantanyl-3-cyclohexylurea (AUC), increased the response of the TRPV4 channel to 

5,6- and 11,12-EET in mouse aortic endothelial cells (156). Thus, a number of compounds that 

are effective sEH inhibitors in intact cells, tissue specimens, and experimental animals are now 

available for investigational studies.   

These results provide further evidence that sEH inhibition might be an effective approach 

for the treatment of hypertension and diseases associated with vascular inflammation (77, 135, 

171). There was a concern based on cell culture data that sEH may not be an important pathway 

for EET metabolism in human tissues (40, 46), but this is much less of a concern because of the 

recent finding that DHET is the main EET metabolite produced by human blood vessel segments 

(45). Only one finding in an animal model suggests that sEH inhibition might not produce a 

beneficial response. When AUDA was injected into the cerebral ventricles of spontaneously 

hypertensive rats that have high sEH activity in the hypothalamus and brain stem, there was an 

unexpected substantial increase in blood pressure, and heart rate also increased (138). However, 

there is no indication that a similar effect would occur if a selective sEH inhibitor was 

administered systemically. 

Recent data indicates that these substituted urea derivatives also produce effects through 

mechanisms other than sEH inhibition. AUDA has been observed to relax rat mesenteric 

resistance arteries through a direct action on the vascular smooth muscle that is dependent on the 

admantanyl group (122). CDU inhibits human aortic smooth muscle cell proliferation through a 

direct action that is independent of its inhibitory effect on sEH (25,26). In addition, AUDA and 
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CUDA activate mouse PPARα in a COS-7 cell expression system by a mechanism that is 

unrelated to sEH inhibition (37). 

Functions of DHETs  
 

The perception that DHETs have no vital biological function is supported by the findings 

that DHETs either are inactive or only minimally active as compared with the corresponding 

EETs in mediating the following functions: ADP-ribosylation (137), inhibition PGE2 production 

in aortic smooth muscle cells (43), mitogenesis in kidney tubular cells (17), VCAM-1 expression 

in endothelial cells (120), inhibition of myocardial Na+ channels (94), Ca2+ entry into aortic 

smooth muscle cells (48), activation of myocardial KATP channels (100), binding to H-FABP 

(161), and inhibition of cAMP-induced aromatase activity in aortic smooth muscle cells (144).  

As opposed to these negative results, DHETs activity has been observed in a number of 

other biological systems. Bovine endothelial cells took up small amounts of DHETs available in 

the extracellular fluid and incorporated them into phospholipids, especially PC and PI (154). 

Furthermore, DHETs at a concentration of 1 µM inhibited the hydroosmotic effect of 

vasopressin (71), and at concentrations between 1 and 5 µM, they produced relaxation of porcine 

coronary artery rings constricted with a thromboxane mimetic (42, 158). Although 14,15-DHET 

also produced relaxation of bovine coronary artery rings, it was only 20 % as potent as 14,15-

EET in this preparation (6). In contrast, DHETs produced relaxation of a canine coronary 

arteriole preparation with EC50 values in the range of 0.1 pM (124), and DHETs activated 

coronary smooth muscle BKCa channels at concentrations of 1 to 100 nM (101). DHETs, 

especially 11,12-DHET, produced relaxation in human coronary arterioles through a 

hyperpolarization mechanism (92). 14,15-DHET at concentrations between 3 and 10 µM

Page 27 of 74



28

activated PPARα-mediated gene expression in transfected COS-7 cells (38), and all of the 

DHET isomers at a concentration of 5 µM inhibited the activation of PPARγ by rosiglitazone in 

transfected endothelial cells (97). Based on these findings, the general perception that DHET are 

inactive metabolites is incorrect, and it is possible that they might have important effects on 

vascular tone under conditions where EETs are rapidly converted to DHETs (41, 42, 101, 124, 

158). However, there is no evidence that any of these DHET effects are essential for normal 

physiological function in vivo.  

 
EFFECTS OF EETs AND RELATED CYP PRODUCTS ON PPAR-MEDIATED GENE 

EXPRESSION  

 
The PPAR transcription factors are members of the nuclear receptor superfamily that are 

activated by fatty acids and fatty acid derivatives (49). PPARα (NR1C1), which is expressed 

primarily in liver, heart, skeletal muscle and kidney, regulates lipid utilization. PPARδ (NR1C2, 

also called PPARβ) is expressed in many tissues and functions in the control of fatty acid 

oxidation and energy uncoupling. PPARγ (NR1C3), which is expressed mainly in adipose tissue, 

intestine and macrophages, regulates adipocyte differentiation, lipid storage and insulin 

sensitivity. In addition, each of the PPARs has specific antiinflammatory properties when they 

are activated (49). Both PPARα and PPARγ are expressed in endothelial cells and blood vessels 

(27,28), indicating that they have a role in vascular function. 

Polyunsaturated fatty acids, including the most abundant members of the ω-6 and ω-3 

classes of essential fatty acids, activate each of the three types of PPARs (30, 32, 58, 64, 88, 116, 

169). Saturated fatty acyl coenzyme A derivatives activate PPARα (32, 74). Conjugated linoleic 

acid also activates PPARα (112), but it can act both as an agonist and antagonist for PPARγ

Page 28 of 74



29

depending upon the experimental context (66, 129).  The synthetic sulfur-containing fatty acid 

analog, tetradecylthioacetic acid, activates human PPARs in the order of PPARδ > PPARα >

PPARγ (160). Expression of either adipocyte-FABP or acylCoA binding protein in CV-1 cells 

decreased tetradecylthioacetic acid-induced PPAR transactivation, indicating that these binding 

proteins modulate the access of fatty acids to PPARs (70).  

Polyunsaturated fatty acid metabolites produced by the cyclooxygenase and lipoxygenase 

pathways also function as PPAR ligands and activators. For example, 15-deoxy-∆12,14-PGJ2, a

derivative of PGD2, activates PPARγ (57, 87), and 8(S)-HETE is a potent activator of PPARα

(32, 58, 169). Likewise, the arachidonic acid lipoxygenase products 12-HETE and 15-HETE, 

and the linoleic acid lipoxygenase products 9-hydroxyoctadecadienoic acid (HODE) and 13-

HODE, activate PPARγ (32). In addition, nitrolinoleic acid, which is formed by reaction of 

linoleic acid with nitric acid, activates all three PPARs, with the most potent effect being on 

PPARγ (136). The importance of these polyunsaturated fatty acid products in the activation of 

the PPARs under physiologic or pathologic conditions is debated.  

Because the PPARs bind an assortment of natural lipid products, it has been suggested 

that they serve as “generic” sensors for fatty acids and related products. However, there is 

evidence for the existence of high-affinity, as yet unidentified endogenous activators that are 

essential to some biological processes involving PPARs, such as for PPARγ-mediated adipocyte 

differentiation (153). Thus, additional naturally occurring lipid metabolites likely function as 

endogenous PPAR activators. Although EETs are a logical possibility considering their structural 

similarity to HETEs and HODEs, they have been largely ignored because of the finding that 8,9-

EET is only 13% as effective in activating PPARα as pirinixic acid (Wy-14643), the widely used 

fibrate agonist (58). However, the possibility that EETs might function as endogenous PPAR 
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activators should be reconsidered in view of recent results demonstrating that EETs and several 

EET metabolites bind to the isolated ligand-binding domain of PPARs and activate PPAR-

mediated gene expression in cultured cell systems (22, 38, 97). 

 
PPARγ Activation by EETs  
 

PPARγ is activated when bovine aortic endothelial cells are exposed to laminar flow 

through in a process that is dependent on phospholipase A2 and CYP epoxygenases (98). This 

results in suppression of cytokine-induced NF-κB activation and intercellular adhesion molecule 

(ICAM)-1 expression. A lipid extract of the flow medium also activated PPARγ and suppressed 

NF-κB activation and ICAM-1 expression. Subsequent results indicated that laminar flow caused 

a substantial increase in 8,9-, 11,12- and 14,15-EET in the endothelial cells within 15 min (97), 

suggesting that EETs might be the active component of the lipid extract. Furthermore, addition 

of the selective sEH inhibitor AUDA to the perfusion medium enhanced PPARγ activity 

stimulated by laminar flow, while over-expression of sEH reduced PPARγ activity. AUDA also 

enhanced the inhibitory effect of EETs on TNF-α mediated IκBα degradation (97), which 

explains the decrease in NF-κB-stimulated expression of ICAM-1. Furthermore, a PPARγ

antagonist blocked the antiinflammatory effect of laminar flow to inhibit TNFα mediated IκBα

degradation. Additional studies demonstrated that the ligand-binding domain of PPARγ binds 

8,9-, 11,12- and 14,15-EET with Kd values between 1.1 and 1.8 µM (97). Taken together, these 

findings have been interpreted to indicate that EETs mediate the antiinflammatory effect of 

laminar flow on endothelial cells and that the mechanism may involve EET binding and 

activation of PPARγ. They also suggest that selective sEH inhibitors will potentiate the anti-
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inflammatory effect in the endothelial cells, presumably by increasing the retention of 11,12- and 

14,15-EET so that PPARγ activation is prolonged. 

 
PPARα Activation by EETs, EET Derivatives and other CYP Products 
 

Although EETs are weak activators of PPARα, the ω-hydroxylated derivatives of 11,12- 

and 14,15-EET are potent activators (22). These EETs derivatives are produced by CYP ω-

oxidases, another class of CYP monooxygenases that utilize fatty acids as substrates. These 

enzymes insert a hydroxyl group at or near the methyl-terminal end of the fatty acid chain in a 

NADPH-dependent reaction (10).  

8,9-, 11,12- and 14,15-EET are good substrates for CYP4A1 and CYP4A2 and are 

converted to 20-OH-EETs by these enzymes (22). The conversion of 14,15-EET to 20-OH-

14,15-EET by a CYP ω-oxidase is illustrated in Fig. 2b. In a parinaric acid displacement assay 

used to measure the relative affinities of various compounds for the ligand-binding domain of 

PPARα, the Ki values for the EETs were between 22 and 46 nM. In contrast, the Ki for 20-OH-

14,15-EET was only 3 nM (22). Furthermore, in RK13 cells that overexpress either the human or 

mouse PPARα gene, 20-OH-14,15-EET increased PPARα-mediated gene expression to the 

same extent as Wy-14643, and 20-OH-11,12-EET also increased PPARα-mediated gene 

expression in these cells (22). 

 The DHET derivatives of EETs, also activate PPARα. Studies in transiently transfected 

COS-7 cells containing a luciferase expression system demonstrated that 14,15-DHET at 

concentrations between 3 and 10 µM was as potent as Wy-14643 in activating mouse PPARα

(38). The kinetics of activation produced by 14,15-DHET and Wy-14643 were similar. A 4-fold 

increase in luciferase activity occurred after 3 h, and this increased to 9-fold after 6 h. 14,15-
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DHET was 3- to 4-times more potent than any of the other DHET isomers, and like 20-OH-

14,15-EET (22), 14,15-DHET produced a small increase in PPARα-mediated gene expression 

when the extracellular concentration was as low as 1 µM (38). Small amounts of 14,15-DHET 

were incorporated into the COS-7 cells, and 14,15-DHET was bound by the ligand binding 

domain of PPARα with a Kd of 1.4 µM. In addition, incubation of 14,15-DHET with HepG2 

cells containing the transfected mouse PPARα gene increased the production of carnitine 

palmitoyl transferase 1A (CPT1A) mRNA, but the increase was only half as much as that 

produced by Wy-14643.     

 These findings suggest that the ω-hydroxy-EET derivatives and 14,15-DHET might be 

endogenous activators of PPARα (22, 38). The production of these metabolites in the vascular 

system could contribute to the antiinflammatory effect of EETs because PPARα is expressed in 

the endothelial and vascular smooth muscle cells (27,28). While this is an attractive hypothesis, 

it is uncertain whether the intracellular concentrations of either ω-hydroxy-EETs or 14,15-DHET 

will reach high enough levels to activate PPARα if they are generated endogenously from EETs. 

Arachidonic acid also is a substrate for CYP ω-oxidases of the 4A and 4F classes and is 

converted primarily to 20-HETE (10, 19).  Like EETs, 20-HETE functions as a lipid mediator in 

the vascular and renal systems (10, 34, 82, 89, 104, 131). 20-HETE activates mouse PPARα and 

mouse PPARγ in a transfected COS-7 cell gene expression system (36, 67).  CYP ω-oxidases 

and alcohol dehydrogenases further oxidize 20-HETE to 20-carboxy-arachidonic acid (20-

COOH-AA), and this reaction occurs in endothelial cells, vascular smooth muscle cells and renal 

tubular epithelial cells (20, 34, 36, 82). 20-COOH-AA also activates PPARα and PPARγ in the 

COS-7 cell gene expression system (36). EPA, the ω-3 fatty acid analog of arachidonic acid, also 

is converted to 20-OH-EPA by CYP4F3B, and 20-OH-EPA is 10-times more potent than EPA in 
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activating PPARα-mediated gene expression in the COS-7 cells (67). However, at concentrations 

between 1 and 20 µM, 20-OH-EPA was only 20 to 75 % as potent as Wy-14643 in activating 

PPARα in this system (67). It is not known whether 20-OH-EETs, like 20-HETE, can be 

converted to 20-carboxy-EET derivatives.  

 
PPARα Activation by Soluble Epoxide Hydrolase Inhibitors 
 

Two of the compounds currently being tested as selective sEH inhibitors recently were 

found to activate PPARα (37). CUDA stimulated mouse PPARα-mediated gene expression in 

transiently transfected COS-7 cells, and binding studies indicated that CUDA displaces Wy-

14643 from the ligand binding domain of PPARα. CDU, which is structurally similar to CUDA 

except that it contains a N′-dodecyl rather than dodecanoic acid chain (Fig. 6), did not activate 

PPARα. This implies that a hydrocarbon chain containing a terminal carboxyl group is required 

for activation, and this conclusion is supported by the finding that AUDA, which also contains a 

N′-dodecanoic acid chain (Fig. 6), stimulated PPARα activity in the COS-7 cell system. 

However, AUDA was less potent than CUDA, indicating that the N-cyclohexyl group is more 

favorable for interaction with PPARα than the N-adamantanyl group. The N′-dodecanoic acid 

chains of CUDA and AUDA are progressively shortened by β-oxidation during incubation with 

the COS-7 cells, and the potency of CUDA as a PPARα activator decreased substantially when 

the chain was shortened to 8-carbons, and the intermediate containing a 6-carbon chain was 

inactive (37). These data indicate that effects mediated by PPARα activation should be excluded 

before concluding that functional responses produced by either CUDA or AUDA are due to sEH 

inhibition. 
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Effects of PPARα Activation on EET Production and Metabolism 

Interestingly, activation of PPARα modulates the expression of CYP enzymes that 

produce and metabolize EETs.  However, the effects on the expression of CYP arachidonic acid-

epoxygenases appear to vary in different tissues.  In rats, treatment with fibrates reduced the 

level of CYP2C11 expression in the liver (21, 130, 141).  This effect could be recapitulated in 

cultured hepatocytes, but only when the cells were transfected with PPARα. Using reporter 

plasmids, the segment of the promoter responsible for the effect was identified to the region 

immediately upstream of CYP2C11 (130). In contrast, the deficient levels of CYP2C11 and 

CYP2C23 in the kidney microvasculature of obese Zucker rats were restored by administration 

of the PPARα activator fenofibrate (179).  Epoxygenase activity and acetylcholine-induced 

vasorelaxation in the renal vessels were simultaneously restored, and a CYP epoxygenase 

inhibitor blocked this effect (179).  It is not known whether this effect is mediated by PPARα or

by another action of fenofibrate. Fenofibrate also induced expression of CYP2C23 and the ω-

hydroxylase CYP4A in the kidney of a transgenic rat model of hypertension (114). CYP4A is a 

classic target of PPARα, and it is increased by fibrates in the liver as well as in the kidney (22, 

80, 114). Accordingly, production of 20-OH-EET was induced in the kidneys of the fenofibrate 

treated animals (114).  

 
CONCLUSIONS AND FUTURE DIRECTIONS 
 

EETs are one of the substances that function as an EDHF in a number of vascular beds, 

including the coronary and renal circulations. The EETs produce vasorelaxation by a mechanism 

that involves hyperpolarization of the smooth muscle through activation of the BKCa channels. 

Potent selective sEH inhibitors are available that prolong the action of EETs and decrease blood 
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pressure in animal models. sEH inhibitors decrease DHET formation, and some functional 

effects of DHETs have been observed in experimental systems. However, adverse effects with 

sEH inhibitors have not been observed in vivo, and this approach is progressing to the point 

where translational studies are being contemplated. 

 Other potentially beneficial actions of EETs have been noted in cell culture systems. 

These include antiinflammatory, angiogenic, fibrinolytic and Ca2+ signaling effects in 

endothelium, an anti-migratory effect in vascular smooth muscle, and activation of PPARα and 

PPARγ in gene expression systems. The evidence supporting many of these actions is less 

compelling and requires additional confirmation and further exploration of mechanism. Part of 

the confusion is due to the fact that EETs are comprised of four distinct regioisomers, each with 

two R/S enantiomeric forms, and that the arachidonic acid CYP epoxygenases produce a mixture 

of these compounds, many of which likely have different quantitative and qualitative actions. 

These differences will have to be sorted out by comprehensive investigation. Furthermore, the 

recent findings regarding the production of ω-3 analogs of EETs and the potency of these 

compounds open up a new area of investigation that may explain some of the biological actions 

of dietary ω-3 fatty acid supplements.     

It is likely that many of the most potent EET actions occur through a seven 

transmembrane receptor coupled via Gαs protein to cellular signal transduction systems. 

Therefore, a pressing need is to identify, clone and express the putative EET receptor and 

determine its coupling to the intracellular signaling pathways. Because there are four 

regioisomers, it is possible that more than one EET membrane receptor exists and that each 

might be coupled to a different signal transduction pathway. Identification of bona fide EET 

receptors will greatly facilitate precise dissection of the proximal events in EET-induced 
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signaling, help untangle the myriad of signaling events, and potentiate the discovery of EET 

mimetics with favorable pharmacologic properties.   

Other actions are likely to occur through direct interaction of EETs with intracellular 

effector systems or transcription factors. EETs are rapidly taken up by many different types of 

cells and incorporated into phospholipids. Further studies are needed to determine which 

subcellular membranes contain these phospholipids, if they are clustered in domains, and 

whether they perturb membrane proteins or phospholipid signaling pathways. EETs bind to 

FABPs, suggesting that possible modulatory effects depending on intracellular free fatty acid 

availability should be explored. Likewise, the recent findings that EETs and their metabolites are 

endogenous PPAR ligands are very preliminary and require further studies in more relevant 

physiological systems.  

While the current translational emphasis is on the antihypertensive action of the EETs, 

the many other functions that have been observed at the cellular and biochemical levels suggest 

that these biomediators are likely to have beneficial effects on other physiological processes. In 

particular, the simultaneous vasodilating and antiinflammatory effects of the EETs on the 

vasculature may hold promise in the prevention or treatment of atherosclerosis, either through 

sEH inhibition or administration of EET mimetics.   
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Figure Legends 

Fig. 1. EET regioisomers synthesized from arachidonic acid by CYP epoxygenases. The 

structure of arachidonic acid shows the conventional numbering of the carbon atoms that form its 

four double bonds. The main mammalian CYP epoxygenases, which are members of the 2C and 

2J classes, can add an oxygen atom across each of the double bonds, producing four separate 

EET regioisomers. Although these epoxygenases synthesize all four EETs when they oxidize 

arachidonic acid, most of the enzymes produce substantial amounts of only two or at most three 

of the regioisomers.  

 

Fig. 2.  EET metabolic pathways. The diagram in Fig. 2a provides an overview of EET 

metabolism, though there are quantitative and qualitative differences among the four 

regioisomers. The main pathways are (i) incorporation into phospholipids through an 

acyltransferase reaction requiring ATP and coenzyme A (CoA), (ii) phospholipase A2 (PLA2)-

catalyzed hydrolysis from phospholipids, and (iii) hydration to form the corresponding diol by 

soluble epoxide hydrolase (sEH). β-Oxidation and chain-elongation occur to an appreciable 

extent only when EET begins to accumulate intracellularly because the sEH activity either is 

inherently low or is inhibited. These two pathways have been demonstrated only with 11,12- and 

14,15-EET. 8,9-, 11,12- and 14,15-EET can undergo ω-oxidation, and 5,6- and 8,9-EET are 

converted to bioactive products by cyclooxygenase (COX). Fig 2b illustrates four of the 

metabolic products where the EET is structurally modified, using 14,15-EET and its products for 

illustration. These are chain elongation (16,17-EDT), hydration (14,15-DHET, ω-oxidation (20-

OH-14,15-EET) and β-oxidation (10,11-EHD).    
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Fig. 3. Membrane receptor mechanism of EET action. The key element in this mechanism is 

EET binding to a putative plasma membrane EET receptor that activates various intracellular 

signaling pathways to elicit a functional response. The intracellular signaling pathways are 

shown in different colors ttto indicate that each is active in different tissues under unique 

conditions. There is evidence that EETs utilize cAMP and tyrosine kinase cascade signal 

transduction mechanisms. Activation of BKCa channels occurs through a Gαs-protein coupled to 

the putative receptor. While the cAMP-PKA, PI3K-Akt, MAPK and src-kinase pathways 

produce responses by activating gene expression, the anti-inflammatory effect produced by the 

IKK pathway is due to inhibition of cytokine-induced NF-κB activation. 

 

Fig. 4. Intracellular mechanism of EET action. The key element in this mechanism is direct 

activation of the response by intracellular EET, rather than through cell surface receptor-

mediated activation of a second messenger pathway. Autocrine responses are produced by EETs 

synthesized from arachidonic acid (AA) or released from intracellular phospholipids by 

phospholipase A2. Paracrine effects are produced by uptake of the EET released into the 

extracellular fluid from an adjacent cell. A pool of EET is maintained in the cytosol through 

binding to FABP and is available for direct interaction with ion channels, components of signal 

transduction pathways and transcription factors. Alternatively, the EETs are incorporated into 

phospholipids that interact with ion channels or activate phospholipid-dependent signaling 

mechanisms. Channel abbreviations: BKCa - large conductance calcium-activated potassium 

channel; KATP - ATP-sensitive potassium channel; TRPV4 - transient receptor potential cation 

channel, subfamily V, member 4. 
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Fig. 5. Effects of sEH inhibitors on EET function. Because DHET formation is inhibited, EET 

produced from arachidonic acid by CYP epoxygenase, released from intracellular phospholipids, 

or taken up from an extracellular source accumulates intracellularly.  As a result, higher 

concentrations of EET are available for a prolonged period to enhance autocrine or paracrine 

functional responses. 

 

Fig. 6. Selective soluble epoxide hydrolase inhibitors that are effective in intact cells and 

experimental animals.   
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Table 1. Functions of EETs 

Function    Mechanisms    References 

Angiogenesis   p38 MAPK                           54, 105, 107 

PI3K, Akt, cyclin D1     55, 109, 125, 126, 127, 157 

cAMP, PKA, COX-2   106                         

Antiinflammatory                   Inhibition of IKK    120 

Apoptosis    PI3K, Akt    15 

Bronchodilation                         BKCa channel     3, 31 

 Cl− channel    133, 134 

Ca2+ signaling              TRPV4 channel   156 
 
Fibrinolysis   t-PA expression, Gαs, cAMP  121 

Mitogenesis   Src kinase, EGFR, MAPK  13, 14  

 PI3K, Akt       

Myocardial preconditioning KATP channel, p42/p44 MAPK     140 

 PI3K     139 

Platelet anti-aggregation              BKCa channel     90 

Polypeptide hormone secretion Not determined   81, 145, 173 

Smooth muscle anti-migratory cAMP, PKA     151 

Vasodilation BKCa channel    7, 8, 51, 59, 

 Gαs, ADP-ribosylation    61, 75, 95  

TRPV4 channel   55 
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