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Abstract—Cognitive radio is emerging as a promising tech-
nique to improve the utilization of radio frequency spectrum. In
this paper, we consider the problem of spectrum sharing among
primary (or ”licensed”) and secondary (or ”unlicensed”) users.
We formulate the problem based on bandwidth auction in which
each secondary user makes a bid for the amount of spectrum and
each primary user may assign the spectrum among secondary
users by itself according to the information from secondary
users without degrading its own performance. We show that the
auction is a non-cooperative game and Nash equilibrium can
be its solution. We first consider a single-primary-user network
to investigate the existence and uniqueness of Nash equilibrium,
and further discuss the fairness among secondary users under
given conditions. Then, we present a dynamic updating algorithm
in which each secondary user achieves Nash equilibrium in
a distributed manner. The stability condition of the dynamic
behavior for this spectrum sharing scheme is studied. The
discussion is generalized to the case in which there are multiple
primary users in the network, where the properties of Nash
equilibrium are shown under appropriate conditions. Simulations
were used to evaluate the system performance and verify the
effectiveness of the proposed algorithm.

Index Terms—Cognitive radio, spectrum sensing, spectrum
sharing, game theory, Nash equilibrium.

I. I NTRODUCTION

T HE current static spectrum allocation policies cause
under-utilization of radio frequency spectrum. Accord-

ing to Federal Communications Commission (FCC) [1], the
limited spectrum and inefficiency in spectrum usage necessi-
tate a new communication paradigm to exploit the existing
spectrum opportunistically. The concepts of software defined
radio and cognitive radio (CR) were introduced to enhance
the efficiency of spectrum usage [2]. Software radio provides
a programmable and scalable software platform for a wireless
radio transceiver and enables the radio receiver to operate
in multiple frequency bands by using multiple transmission
protocols. Cognitive radio is an extension of software radio,
which is able to change its transmission parameters and
adapt itself intelligently to the wireless environment. With this
agility and cognitive ability of the radio transceiver, frequency
spectrum can be shared among primary (i.e., licensed) and sec-
ondary (i.e., unlicensed) users to improve spectrum utilization.
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Meanwhile, dynamic spectrum sharing mechanism requires
that the performance of primary users should not be negatively
affected by the opportunistic behavior of secondary users (or
at least the negative impacts should be minimized). Therefore,
a well-designed spectrum sharing scheme which can guarantee
a ”peaceful” coexistence of primary and secondary users plays
an important role.

In this paper, we propose a novel auction-based model to
characterize and analyze some inherent features (e.g., com-
petition among secondary users and uncertainty about the
wireless environment for secondary users) in the problem
of dynamic spectrum sharing for cognitive radio networks.
Based on this model, we analyze how each primary user takes
”precautions” to avoid the degradation of its own performance.
We assume that secondary users are in general selfish, and we
show that this auction is a non-cooperative game in which
each secondary user behaves rationally to maximize its own
utility (i.e., payoff). In this non-cooperative game, we present
Nash equilibrium as a desirable outcome and investigate the
properties of this outcome. Our analysis concentrates on a
simple network with one primary user and multiple secondary
users, and an extension to a network with multiple primary
users is discussed in the text followed.

The rest of this paper is outlined as follows. We will
discuss the background and related works in II. We present
the system model in Section III, and we will further describe
the bandwidth auction scheme and investigate the properties
of its solution (i.e., Nash equilibrium) in Section IV. We also
present a distributed algorithm to achieve the Nash equilibrium
and study its stability. We provide extensive simulation results
to evaluate system performance and verify the effectiveness of
proposed algorithm in Section V, followed by the conclusions
of this work in Section VI.

II. BACKGROUND AND RELATED WORKS

An introduction to cognitive radio was provided in [3] where
cognitive radio was defined as an intelligent wireless system
and the fundamental cognitive tasks as well as the behaviorsof
cognitive radio were discussed. In [4], a comprehensive survey
of the functionalities and research challenges in cognitive radio
networks (also referred to as NeXt Generation (xG) networks)
was presented. The key functions and implementation aspects
for this cognitive radio network, including spectrum sensing,
spectrum management, spectrum mobility, and spectrum shar-
ing, were discussed. The categorization of different spectrum
sharing models in cognitive radio networks, namely, open
sharing, hierarchical access, and dynamic exclusive usage
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models, was provided in [5] and the major issues related to
primary user detection and spectrum sensing were discussed.

In the literature, extensive researches have been done on
the traditional problem of channel allocation, particularly on
base station frequency/channel assignment in cellular networks
[6]. The channel assignment in cellular networks is driven
by call requests to reduce the probability of call blocking.
In the channel/slot assignment problems, a graph coloring
algorithm was used in [7] to produce an allocation that avoids
all possible collisions for a given network topology. The
objective is to minimize the color usage where each vertex
is assigned with one color. Distributed channel assignmentfor
OFDM based systems was studied in [8] but it was limited to
fully-connected networks, where different flows may interfere
with each other. Apart from analytical frameworks, practical
strategies were proposed for sharing a single channel. For
instance, contention based schemes invoke a random access
protocol such as ALOHA and CSMA, where users contend
in time to share a common channel [9] [10] [11]. Although
spectrum sharing for cognitive radio networks is similar to
traditional channel allocation problem in a sense that they
both belong to a general problem of spectrum allocation. But
traditional spectrum/channel allocation scheme was demand-
based and fixed, while in cognitive radio networks it requires
that secondary users dynamically and opportunistically utilize
unused licensed spectrum on a non-interfering or leasing basis.

Dynamic spectrum sharing is one of the main challenges in
the design of cognitive radio networks due to the requirement
of ”peaceful” coexistence of both primary (i.e., licensed)and
secondary (i.e., unlicensed) users as well as the availability
of wide range of radio spectrum. Various techniques were
used to model the spectrum sharing problems for cognitive
radio networks. Graph theory was used to analyze spectrum
allocation schemes among secondary users. In [12], spatial
opportunistic spectrum assignment was reduced to a graph-
coloring problem and fairness issue was also considered. Game
theory [21] has been identified as one of the key techniques
to characterize the competitiveness and cooperation among
secondary users. In [13], the game theory was used to carry
out spatial spectrum allocation and an interesting connection
between the resultant colored graph and the Nash equilibria
of the corresponding games was provided. A game-theoretic
Cournot model was presented in [14], where secondary users
(i.e., the oligopolists) compete to share the bandwidth offered
by the primary user (i.e., the market). Also, a Bertrand model
was presented in [15] where a joint consideration of competi-
tive pricing among primary users and spectrum sharing among
secondary users was addressed. Furthermore, auction theory
[22] has been introduced recently to several types of resource
allocation problems (e.g., time slot allocation [16], power
allocation [17] and cooperative communications [18]). In the
context of spectrum allocation, power allocation subject to a
constraint on the interference temperature at a measurement
point was addressed in [19]. However, the interaction between
primary and secondary users was not considered there and the
bid of one secondary user was unbounded which is unrealistic.

In this paper we are motivated to propose an auction-based
model to characterize how primary and secondary users behave
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Fig. 1. System model for spectrum sharing.

to share the common spectrum and how they interact with each
other in real situations, and we will present analysis basedon
this model. To the best of our knowledge, this paper is the first
that applies the auction theory in designing spectrum sharing
scheme among primary and secondary users for cognitive radio
networks.

III. SYSTEM MODEL

A. Primary and Secondary Users

Let us consider a simple system where there are only one
primary user (PU) and a groupI = (1, . . . , I) of secondary
users (SUs) who want to share the spectrum allocated to the
primary userBtot (as shown in Figure 1). In this system, we
assume that the primary user can enhance the efficiency of
spectrum usage by sharing some portion of the bandwidth
Bi (Bi ≤ Btot) with secondary useri (i ∈ I). However,
the primary user should retain a given amount of bandwidth
Brem to guarantee its own performance. The constraint on
the remaining bandwidth held by the primary user is given as
follows:

Brem = Btot −
∑

i∈I

Bi ≥ Breq, (1)

whereBreq is the required bandwidth for the primary user to
provide a particular quality of service requirement. It is noted
that this requirement may be time-varying. The primary user
charges secondary users for the spectrum at a price ofp per
unit bandwidth. After the allocation, the secondary users may
transmit in the allocated spectrum using adaptive modulation
to enhance the transmission performance. The revenue of the
secondary useri is denoted byri per unit of achievable
transmission rate.

B. Wireless Transmission

By using adaptive modulation, the secondary users can
dynamically adjust transmission rate based on channel quality.
For modulation schemes such as uncoded quadrature ampli-
tude modulation (QAM) with square constellation (e.g., 4-
QAM and 16-QAM) the bit-error-rate (BER) in single-input-
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single-output Gaussian noise channel can be well approxi-
mated as follows [20]:

BER ≈ 0.2 exp

(
−1.5γ

2k − 1

)
, (2)

whereγ is the SNR (signal to noise radio) at the receiver andk
is the spectral efficiency of the modulation scheme used. With-
out loss of generality, let us assume that the spectral efficiency
is a non-negative real number. To meet the requirement of a
specific application, BER must be maintained at a target level
(i.e.,BER tar

i ). The spectral efficiency of the transmission for
the secondary useri can be expressed as follows:

ki = log2

(
1 + Kγi

)
, (3)

where
K =

1.5

ln 0.2/BER tar
i

. (4)

We assume that through channel estimation, the secondary
users can obtain the received SNR of the channel. In summary,
for the secondary useri, given the received SNRγ, target
BER tar

i , and assigned spectrumBi, the transmission rate (in
bits per second) can be obtained.

IV. SPECTRUM SHARING SCHEMES

A. Bandwidth Auction

We formulate the problem of spectrum sharing as an auc-
tion in which the secondary users (SUs) make bids for the
bandwidth allocated to the primary user (PU). An auction is
a decentralized market mechanism for allocating resourcesin
an economy. Based on the assumption about rational behavior,
an auction is essentially a non-cooperative game, where the
players are the bidders, the strategies are the bids, and both
allocations and payments are functions of the bids. A well
known auction scheme is the Vickrey-Clarke-Groves (VCG)
auction [22], which requires to gather global information from
the network and perform centralized computations. However,
the communication overhead and computational complexity
make VCG auction unsuitable to this scenario. To characterize
the behaviors of the interaction between the primary user and
multiple secondary users, we propose an auction which has
relatively simple rules as described below.

1) Information: Each SUi knows its revenueri per unit
of achievable transmission rate, and it also knows its
spectral efficiencyki of transmission through channel
estimation.ri relates to the QoS in a real network. In
other words, the higher the QoS required by the SUi
is, the greater the revenueri will be. As for the precise
relationship between QoS levels required by SUi andri,
it is not our focus in this paper. Andki can be obtained
from (3). The PU announces a positive reserve bidβ > 0
and the pricep > 0 to all SUs before the auction starts.

2) Bids: The SUi submits a bidbi (0 ≤ bi ≤ Btot) which
generally represents the maximum bandwidth that SU
desires for data transmission.

3) Allocation: The PU allocates bandwidth according to
(here we only consider the FDM scheme, and OFDM
scheme is more applicable. Once the bandwidth is

allocated by PU, there is no contention among SUs.
Thus, MAC layer or DLL layer is not involved here.)

Bi =
bi∑

j∈I

bj + β
Btot. (5)

4) Payments: SU i pays the PU

Ci = p θibi, (6)

where θi is a user-dependent priority parameter (i.e.,
this payment differentiation is in a spirit similar to the
”price discrimination” in an economical market). In this
auction, we adopt a ”prepay” mechanism that each SU
pays for the bandwidth it bids instead of that it is
assigned by the PU.

A bidding profile is defined as the vector containing the
SUs’ bids,b = (b1, . . . , bI). The bidding profile of SUi’s
opponents is defined asb−i = (b1, . . . , bi−1, bi+1, . . . , bI),
such thatb = (bi;b−i). Under the rule of this auction, we
notice thatbi ∈ br , [0, Btot] and the bidding profileb is
constrained by

b ∈ bR ,

{
b

∣∣∣ 0 ≤ bi ≤ Btot, ∀i ∈ I
}

. (7)

In this auction, a positive reserve bidβ is used by the PU
to control the remaining portion of the spectrum for its own
usage. The PU setsβ such that (1) is satisfied. The minimum
bandwidth that the PU could possibly hold after allocation is
given as follows:

min
b∈bR

Brem =
βBtot

IBtot + β
> 0. (8)

The PU can obtain the total number of SUs (i.e.,I) by
broadcasting a pilot signal before the auction starts, and the
safest strategy for the PU is to set the reserve bidβ such that
minb∈bR

Brem ≥ Breq, and from (8) we obtain the required
β for this strategy as follows:

β̃ =
BreqIBtot

Btot − Breq

. (9)

If the PU sets the reserve bidβ = β̃, it always hold enough
bandwidth for its own usage, given the requirement of a
particular type of quality of service. Ifβ > β̃, some bandwidth
would be wasted.

The ”prepay” mechanism is a crucial part of the auction
rules and we can explain this mechanism as follows. By
regulating that each SU pays for its own bid, the PU prohibits
SUs from over-bidding the bandwidth, which is limited in
this situation. Under this regulation, each SU takes risks
in bidding the bandwidth which represents the maximum
bandwidth it desires, since the SU makes profit (i.e., payoff
is positive) when there are few other SUs competing for the
bandwidth, and the SU loses profit (i.e., payoff is negative)
otherwise. Based on this mechanism, the risks reflect one SU’s
uncertainty of the changing wireless environment.

Given the allocated bandwidth, the SUi’s revenue is

Ri = rikiBi (10)
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The SUi chooses the bidbi to maximize its payoff

Ui(bi;b−i, p) = Ri

[
Bi(bi;b−i)

]
− Ci(bi, p). (11)

The desirable outcome of an auction (non-cooperative game)
is Nash equilibrium (NE), which is a bidding profileb∗ such
that no SU wants to deviate unilaterally, i.e.,

Ui(b
∗
i ;b

∗
−i

, p) ≥ U(bi;b
∗
−i

, p), ∀i ∈ I, bi ∈ bR. (12)

We define SUi’s best response as

B(b−i, p) =

{
bi

∣∣∣ bi = arg max
b∈bR

Ui(bi;b−i, p)

}
, (13)

which in general could be a set. A NE is also a fixed point
solution of all SUs’ best responses. In the following part,
we would like to investigate the properties of the NE, and
we would like also to present a dynamic updating algorithm
to reach the NE in a distributed fashion. First, we have the
theorem given as follows.

Theorem 1: There are two extreme prices,pi andpi, which
are defined as

pi =
rikiBtot

{
(I − 1)Btot + β

}

θi(IBtot + β)2
, (14)

pi =
rikiBtot

θiβ
. (15)

If p < pi, all SUs would bid the maximum bandwidth
allocated to the PU (i.e.,bi = Btot, ∀i ∈ I); if p > pi,
no SU would be willing to use any of the spectrum provided
by the PU (i.e.,bi = 0, ∀i ∈ I).

Proof: From the equation given below

∂Ui

∂bi

=

rikiBtot

(∑

j 6=i

bj + β
)

(∑

j∈I

bj + β
)2

− p θi, (16)

we observe that the first derivative ofUi in terms ofbi is a
decreasing function of bothbi and

∑
j 6=i bj , and we definepi

andpi as





pi ,

min
b∈bR

∂Ui

∂bi

θi

=
rikiBtot

{
(I − 1)Btot + β

}

θi(IBtot + β)2
,

for bi = Btot, ∀i ∈ I

pi ,

max
b∈bR

∂Ui

∂bi

θi

=
rikiBtot

θiβ
, for bi = 0, ∀i ∈ I

(17)

respectively. We observe that ifp < pi, then ∂Ui

∂bi
> 0, when

bi ∈ br, ∀i ∈ I, and thereforeb∗i = Btot; if p > pi, ∂Ui

∂bi
< 0,

whenbi ∈ br, ∀i ∈ I, and therefore we haveb∗i = 0.

In the price-setting process, the PU could gather the infor-
mation (i.e.,ri, ki, θi, I) from SUs to calculate bothpi and
pi. We also notepi < pi and that a reasonable price (at least

one SU can achieve its best response) must lie betweenpi and
pi.

Theorem 2: There is a unique Nash equilibrium for the bids
of the SUs. And ifp ∈ (pi, pi), the SUi’s unique best response
function is given as follows:

B(b−i, p) =




√√√√√√√
rikiBtot




∑

j 6=i

bj + β





p θi

−



∑

j 6=i

bj + β







Btot

0
(18)

where[x]
b

a is defined as[x]
b

a = max {min {x, b}, a}.

Proof: Let us first consider the existence of the Nash
equilibrium. The equilibrium point exists for every concave
n-person game [23]. In this case, it can be shown that the
payoff function of each SU is continuous in all SUs’ bids and
concave with respect to that SU’s bid (i.e.,bi). Using (16),
this concavity can be shown by observing

∂2Ui(bi;b−i, p)

∂b2
i

< 0.

It is observed that this auction is a concaven-person game
with orthogonal constraints and we useTheorem 2 in [23] to
prove the uniqueness of the Nash equilibrium. First, we show
that the payoff of each SU is convex with respect to the bids
of other SUs. That is,

∂2Ui(bi;b−i, p)

∂b2
j

∣∣∣∣∣
j 6=i

≥ 0. (19)

Then, a nonnegative weighted sum of the payoff functions
can be obtained as follows:S (b,x) =

∑I
i=1

xiUi(bi;b−i, p).
The pseudo gradient ofS (b,x) is given by

F (b,x) =




x1∇1Ui(b1;b−1, p)
...

xI∇IUI(bI ;b−I, p)


 . (20)

Using (16) and (19), we can show thatS (b,x) is concave in
bi based on the observation

∂2S (b,x)

∂b2
i

< 0. (21)

Let the Jacobian of the pseudo-gradient ofF (b,x) with
respect tobi be denoted asJ. Based on (19) and (21), we
observe that(J+J

T) is negative definite. Therefore,S (b,x)
is diagonally strictly concave, and the Nash equilibrium ofthe
bids is unique.

Using the first order condition in (16), we can obtain the
best response function taking the constraint on the amount of
bid (i.e., bi ∈ br) into account. This completes the proof.

Given the existence of a unique NE, next we characterize the
resulting bid profile. We consider a fair bandwidth allocation,
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which solves the following problem:

min
b∈bR

c, (22)

subject to

∂Ri(bi;b−i)

∂bi

= c θi 1{bi>0}, ∀i ∈ I

where 1{·} is the indicator function, andθi is the priority
parameter defined above in the payment of SUs. Whenθi = 1
for each SUi, all SUs who use the spectrum offered by the
PU will have the same marginal revenue, which leads to strict
fairness among SUs (i.e., all SUs have equal rights to bid the
maximum bandwidth they desire).1 It is possible to assign
different weights to different SUs to achieve different QoS
requirements. One such example is to let

θi =
rikiBtot

β
=

∂Ri

∂bi

∣∣∣∣∣
bi=0, bj=0, ∀j 6=i

(23)

i.e., θi represents SUi’s eagerness to bid extra bandwidth
offered by the PU before the auction starts. The intuition
behind the problem (22) is that for all SUs that choose to
use the spectrum provided by the PU, the corresponding
bi should be maximized subject to the ”weighted marginal
revenue equalization” condition. This can be transformed into
the minimization of the common coefficientc due to the
concavity ofRi in terms ofbi.

It is noted that a fair bandwidth allocation is the Pareto
optimal, i.e, no SU’s revenue (i.e.,Ri) can be further increased
without decreasing the revenue of another SU.

Theorem 3: If the unique Nash equilibrium is interior2,
then the bandwidth allocation is fair.

Proof: If the first order conditions in (16) hold for each
SU i, then we prove that the ”weighted marginal revenue
equalization” property of a fair bandwidth allocation (i.e., the
constraint in the problem (22)) is satisfied at the NE of the
auction.

We notice that a properly-set pricep∗ (pi ≤ p∗ ≤ pi) such
that the NE is interior can lead to a fair bandwidth allocation.
However, it is difficult to findp∗ analytically. Since SUs’ best
responses in (18) are monotonically non-increasing in price,
here we propose a simple search algorithm for seeking the best
pricep∗ as shown in Figure 2. In the text followed, we would
investigate how each SU achieves the Nash equilibrium in a
distributed manner. For notational simplicity, the dependence
on p is omitted.

1This is one type of fairness. The other types of fairness, including max-min
fairness and proportional fairness, are also commonly usedin the literature.

2Interior equilibrium is the one in which the first order conditions hold for
each player. The alternative is the boundary equilibrium inwhich at least one
of the players selects the strategy on the boundary of his strategy space.

Algorithm : Seeking the best pricep∗

1. Set p = p, announcep to all SUs.
2. SU i calculates its best responseb∗i , ∀i ∈ I.
3. if b∗i ≤ Btot, ∀i ∈ I,

then go to step 5.
4. PU incrementsp = p + △p and updatesp to all SUs,

then go to step 2.
5. Stop, and declares the best pricep∗ = p.

Fig. 2. The price-seeking algorithm.

B. Dynamic Updating Algorithm

In a practical cognitive radio network, the secondary users
(SUs) may only be able to observe the pricing and assignment
information from the primary user (PU), but not the strategies
and payoffs of other secondary users. Therefore, we should
investigate a distributed algorithm for each SU to achieve Nash
equilibrium based on its own interaction with the PU only.
In this case, each SU communicates with the PU to obtain
the price and different assignment functions for differentbids.
Then, each SU updates its bid according to its marginal payoff
function as follows:

bi(t + 1) = bi(t) + αi bi(t)
∂Ui(b)

∂bi(t)
, (24)

where bi(t + 1) is the bid in terms of bandwidth at timet,
andαi is the speed adjustment parameter (i.e., learning speed)
of SU i. The dynamic updating process for each SU can be
expressed as

bi(t+1) = bi(t)+αibi(t)





rikiBtot




∑

j 6=i

bj + β




∑

j∈I

bj




2




− p θi





.

(25)

C. Local Stability Analysis

We can write the dynamic updating function in a matrix
form as follows: [24]:

b(t + 1) = S

{
b(t)

}
. (26)

At the equilibrium, we haveb(t+1) = b(t) = b, namelyb =
S(b), whereS is the self-mapping function of the fixed point
b. With the payoff function in this auction, the fixed point can
be obtained by solving the set of equations as follows:

αibi(t)






rikiBtot




∑

j 6=i

bi + β



∑

j∈I

bj




2




− p θi






= 0, ∀i ∈ I

(27)
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With two SUs in a cognitive radio network, we have fixed
pointsb0, b1, b2, andb3 which can be expressed as

b0 = (0, 0) ,

b1 =

(√
r1k1Btotβ

p θ1

− β, 0

)
,

b2 =

(
0,

√
r2k2Btotβ

p θ2

− β

)
,

b3 =

(√
r1k1Btot(b2 + β)

p θ1

− (b2 + β),

√
r2k2Btot(b1 + β)

p θ2

− (b1 + β)

)
,

(28)

whereb3 is the Nash equilibrium.
We analyze the local stability of this spectrum sharing

auction scheme based on localization by considering the eigen-
values of the Jacobian matrix of the mapping. By definition,
the fixed point is stable if and only if the eigenvalues are all
inside the unit circle of the complex plane (i.e.,|λi| < 1 for
i = 1 ∈ I) [24]. With two SUs, there are two eigenvalues,
and the Jacobian matrix can be expressed as

J(b1, b2) =

[
ξ1 ζ1

η1 κ1

]
, (29)

whereξ1, ζ1, η1 andκ1 are defined as follows:

ξ1 = 1 + α1

{
r1k1Btot

(
1 −

2b1

b1 + b2 + β

)
b2 + β

(b1 + b2 + β)2

− p θ1

}
, (30)

ζ1 =
α1b1r1k1Btot(b1 − b2 − β)

(b1 + b2 + β)3
, (31)

η1 =
α2b2r2k2Btot(b2 − b1 − β)

(b1 + b2 + β)3
, (32)

κ1 = 1 + α2

{
r2k2Btot

(
1 −

2b2

b1 + b2 + β

)
b1 + β

(b1 + b2 + β)2

− p θ2

}
. (33)

We investigate the stability condition at each fixed point.
For b0, we have

J(0, 0) =



1+α1

(
r1k1Btot

β
−p θ1

)
, 0

0, 1+α2

(
r2k2Btot

β
−p θ2

)


 . (34)

It is noted that the eigenvalues are given by the diagonal
elements ofJ(·) if matrix J(·) is diagonal or triangular. The
coordinate(0, 0) would be stable if

∣∣∣∣1 + α1

(
r1k1Btot

β
− p θ1

)∣∣∣∣ ≤ 1, (35)

and ∣∣∣∣1 + α2

(
r2k2Btot

β
− p θ2

)∣∣∣∣ ≤ 1. (36)

However, with a properly set price or

p < pi =
rikiBtot

θiβ
, (37)

the cognitive system with two SUs is not stable. This agrees
with Theorem 1 that when the PU sets a proper price, SUs
would like to use some spectrum provided by the PU and
thenb0 = (0, 0) is not stable. On the other hand, if the price
is higher thanpi, all SUs will stay out of the auction.

For the fixed pointb1, we have the Jacobian matrix ex-
pressed as

J

(√
r1k1Btotβ

p θ1

− β, 0

)
=

[
ξ2 ζ2

η2 κ2

]
, (38)

whereξ2, ζ2, η2 andκ2 are defined as

ξ2 = 1 − 2α1p θ1

(
1 −

√
p θ1β

r1k1Btot

)
, (39)

ζ2 =
α1p θ1

β

(
1 −

√
p θ1β

r1k1Btot

)(
1 − 2

√
p θ1β

r1k1Btot

)
,(40)

η2 = 0, (41)

κ2 = 1 + α2




√

r2
2k

2
2p θ1

r1k1β
− p θ2



 . (42)

We observe that whether a system is stable forb1 is not
straightforwardly seen and it depends on system parameters
(i.e., ri, ki, θi, β, p). It would be stable if

∣∣∣∣∣1 − 2α1p θ1

(
1 −

√
p θ1β

r1k1Btot

)∣∣∣∣∣ ≤ 1, (43)

and ∣∣∣∣∣∣
1 + α2



√

r2
2k

2
2p θ1

r1k1β
− p θ2




∣∣∣∣∣∣
≤ 1. (44)

Detail discussions are omitted here due to space limitation.
We only verify that in our simulation settings used in Section
V the fixed pointb1 is not stable. Similarly, the fixed point
b2, depending on system parameters, is not stable in our
simulation settings given in Section V. For the fixed point
b3, which is the Nash equilibrium, the Jacobian matrix can
be expressed as

J(b∗1, b
∗
2) =

[
ji,j

]
, (45)

where

j1,1 = 1 − α1p θ1

2b∗1
b∗1 + b∗2 + β

,

j1,2 =
α1b

∗
1(b

∗
1 − b∗2 − β)

(b∗2 + β)(b∗1 + b∗2 + β)
,

j2,1 =
α2b

∗
2(b

∗
2 − b∗1 − β)

(b∗1 + β)(b∗1 + b∗2 + β)
,

j2,2 = 1 − α2p θ2

2b∗2
b∗1 + b∗2 + β

,
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and (b∗1,b∗2) is the Nash equilibrium of the auction. If the NE is
interior, we can obtainb∗1,b∗2 by solving the following equations

b∗1 =

√
r1k1Btot(b∗2 + β)

p θ1

− (b∗2 + β),

b∗2 =

√
r2k2Btot(b∗1 + β)

p θ2

− (b∗1 + β).

It is observed that this Jacobian matrix is neither diagonalnor
triangular, and therefore the characteristic equation to obtain
the eigenvalues is given as follows:

λ2 − λ
(
j1,1 + j2,2

)
+
(
j1,1j2,2 − j1,2j2,1

)
= 0. (46)

We can solve this by using the standard formula

λ1, λ2 =
(j1,1 + j2,2) ±

√
4j1,2j2,1 + (j1,1 − j2,2)2

2
. (47)

Basically, givenr1, r2, k1, k2, Btot and β, p (announced
by the PU to all SUs before the auction starts), we can
obtain the relationship betweenα1 andα2 in the auction such
that the fixed point of Nash equilibrium is stable. When the
Nash equilibrium is stable, the payoff of the SUs can not
be increased by altering the spectrum bandwidth bids (i.e.,
marginal payoff is zero).

D. Extension To Multiple Primary User Networks

The proposed auction-based spectrum sharing scheme can
be generalized to cognitive radio networks with multiple
primary users (PU). We define the set of primary users as
L = 1, . . . , L. Each primary userl ∈ L announces a pricepl

and a reserved bidβl without knowing the prices and reserved
bids of other primary users. To maximize its own revenue, the
secondary user (SU)i would submit its bid to the optimal
PU for the channel that the SUi achieves the highest spectral
efficiency in transmission. Based on the bids, PUl allocates
the secondary useri with bandwidth given by

Bil =
bil∑

j∈Il

bjl + βl

Bl
tot, (48)

whereBl
tot is the total bandwidth allocated to PUl and the

set of SUs who choose PUl is denoted byIl.
The revenue and the payment of SUi can be expressed as

Ri = rikilBil, (49)

Ci = plθibil, (50)

respectively. After choosing its optimal PU, each SU competes
with other SUs which choose the same PU for the bandwidth
allocated to that PU. This implies that we can divide a
multiple-primary-user network intoL clusters of nodes: each
of the L clusters contains one PU and the SUs which use the
bandwidth allocated to this PU. Then we can analyze each
cluster independently as a single-primary-user network aswe
did in Section IV-A. Similar to a single-primary-user network,
a unique Nash equilibrium exists for each cluster. Therefore,
there is a NE for the whole network and using the dynamic

updating algorithm all SUs can globally converge to that NE.
Also, if a PU sets a proper price, a fair bandwidth allocation
among SUs can be achieved for the cluster in which that PU
lies.

Each SU’s choice of PU increases the risks it takes in
bidding, and the risks again reflect the uncertainty of the
wireless environment for one particular SU with an increased
complexity. The intuition behind is that each SUi has no
information about other SU’s choices and how many other
SUs it competes with for the bandwidth offered by the PU
l, and it risks in choosing the optimal PU for its channel
in which the SU achieves the best spectral efficiency. There
is a case in which SUi gains lower revenue by choosing
its optimal PU due to fierce competition (i.e., many SU’s
choose the same PU to bid), whereas SUi can gain an higher
revenue even though it chooses the PU which is not the best.
Numerical examples are shown in Section V. In this case,
cooperation is likely to be beneficial to competing secondary
users. System performance can be improved when a well-
designed cooperation mechanism is used. However, this is
beyond the scope of this paper and left for our future research.

V. PERFORMANCEEVALUATION

A. Parameter Setting

Let us first consider a cognitive radio environment with one
primary user (PU) and two secondary users (SUs) sharing a
frequency spectrum of sizeBtot = 10 MHz. The target BER
for both SUs isBER tar

i = 10−4. The revenue of a SU per
unit transmission rate isri = 10, ∀i ∈ I. First, let us assume
that SNR informationγi is already available to SUs by channel
estimation, and later in the case of multiple primary users
network we will adopt a location-based model in which SNR
γi is determined by distances. In this case, the PU sets the price
p = 10 per unit bandwidth and reserves bidβ = 0.2 (i.e., the
PU is idle at a given time and uses only a tiny amount of
bandwidth to transmit control signals).

B. Numerical Results

We first setθ1 = θ2 = 1, which leads to a strict fairness
among SUs. Figure 3 shows the best response of both SUs
in this auction. The best response of each SU is a nonlinear
function of the other user’s strategy (i.e., bid). The Nash
equilibrium is located at the point at which the best responses
of both the SUs intersect. It is observed that under different
channel qualities, the Nash equilibrium is located at the differ-
ent places. Since the SU can achieve an higher transmission
rate from the same spectrum size due to adaptive modulation,
an SU with a better channel quality (or spectral efficiency)
prefers to bid a larger spectrum size. Also, the trajectory of
spectrum sharing in the dynamic updating process is shown
for the case ofα1 = α2 = 0.14. Again, we observe that with
the same speed adjustment parameter, a better channel quality
results in more fluctuations in the trajectory leading to the
Nash equilibrium.

Based on the eigenvalues of the Jacobian matrix derived
in (45), the relationship betweenα1 andα2 to provide stable
spectrum sharing can be obtained. In particular, the stability
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regions in (α1, α2) plane for different channel qualities are
shown in Figure 4. Ifα1 and α2 are set with the values in
this region (i.e., region indicated by arrows in Figure 4), the
spectrum sharing is stable and the Nash equilibrium would
be reached. Otherwise, the sharing would be unstable, and
fluctuations would occur.

The adaption of SU’s bids under different channel qualities
is presented in Figure 5 and then the variation of revenues
is presented in Figure 6. As expected, the SU 2 bids more
bandwidth and achieves an higher revenue when its channel
quality becomes better. Also, we observe that the channel
quality of one secondary user affects the bid and the revenues
of the other secondary users. We observe that one SU’s
reaction to the improvement of its opponent’s channel quality
is divided into two cases. In Figure 5, when SU 2’s channel
quality becomes better, a) SU 1 would increase its bid as long
as it maintains the superiority in channel quality to SU 2; b)
otherwise, it decreases its bid. In any case, the revenue of the
SU 1 decreases as its opponent’s channel quality improves.
This reflects the impact of competitiveness among SUs on
each SU’s strategy (i.e., bid) and also the risks that SU takes
in bidding bandwidth.

In Figure 7, it is observed that the revenues of SUs scale lin-
early with the total bandwidth allocated to the PU. It is obvious
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that all the SUs can obtain more bandwidth and therefore gain
higher revenues when the PU has more bandwidth to share.
For comparison between SUs with different weights, we set
θ1 = 2, θ2 = 1 in this case. Considering the payment of each
SU, we note that the ”price discrimination” mechanism can be
well implemented. It is seen that the SU with a higher priority
gains a higher revenue as expected. Furthermore, marginal
revenues (i.e., the slope of the lines) of SUs are proportional
to the weights and by our definition it is a fair bandwidth
allocation among all SUs.

To extend the problem to a multiple-primary-user case, Let
us consider a network with two PUs and two SUs. We still
set θ1 = θ2 = 1. For illustration purpose, we use a location-
based model here. As shown in Figure 8, the locations of
two PUs (P1 andP2) and two SUs (S1 andS2) are fixed at
(0,0), (50,0), (0,100), and (0,−100). In the simulations, the
propagation loss factorα is set to four, and the channel gains
are distance based (i.e., time-varying fading is not considered
here). The transmit power of an SU isPi = 0.01 W, the noise
level is σ2 = 10−11 W. For the SUi, its SNR γi can be
calculated fromγi = Pid

−α/σ2.
In Figure 9, we show that if two SUs both choose their

optimal PU (in this caseP1 is optimal for both the SUs) for
the channel in which both of the SUs achieve the best spectral
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efficiency in transmission, they compete for the bandwidth
possessed by that PU. In this case,P1 and P2 achieve the
same revenue since they have the same spectral efficiency
in transmission using that channel. However, if they can
cooperate somehow with each other such thatS2 is willing
to chooseP2 which is not optimal andS1 still choosesP1.
Both of S1 and S2 can achieve higher revenues. Based on
this observation, we know that an appropriate cooperation
mechanism is sometimes beneficial to all competing SUs. And
the design of this cooperation mechanism is our future work.

For more information about our works in this area, please
refer to the references [28]- [34].

VI. CONCLUSION

Dynamic spectrum sharing is one of the key functions
for CR networks. In this paper, we proposed a competitive
spectrum sharing scheme based on the auction theory. For
a CR network consisting of one primary user and multiple
secondary users sharing the same frequency spectrum, we
introduced this auction scheme and investigated the properties
of Nash equilibrium in terms of bids, followed by a dis-
cussion on fairness among secondary users. We presented a
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Fig. 9. The Nash equilibrium of revenue in a multiple-primary-user network.

dynamic updating algorithm for secondary users to achieve
the Nash equilibrium in a distributed fashion. We analytically
investigated the stability of this dynamic updating behavior
using local stability theory. We have also shown that a similar
analysis is applicable for CR networks with multiple primary
users. This spectrum sharing scheme characterizes the inherent
properties of a CR system and will be useful for design of CR
networks.
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