
Dynamic Routing of Bandwidth Guaranteed Multicasts with Failure Backup

Murali Kodialam T.V. Lakshman
Bell Labs, Lucent Technologies

Holmdel, NJ 07733
muralik@lucent.com, lakshman@lucent.com

Abstract

This paper presents a new algorithm for dynamic rout-
ing of bandwidth guaranteed multicast tunnels with fail-
ure backup. The multicast routing problem arises in many
contexts such as the routing of point-to-multipoint label
switched paths in Multi-Protocol Label Switched (MPLS)
Networks, and the provision of bandwidth guaranteed ser-
vices under the “hose” model [4]. Failure backup implies
that when a multicast tree is set-up alternate backup paths
be also set-up so that the multicast is unaffected by single
link or node failures. For dynamic routing, the multicast
routing requests arrive one-by-one and there is no a priori
knowledge regarding future requests. We believe that this
is the first paper that addresses the issue of multicast rout-
ing with failure backup. Each multicast request consists of
a source s, a set of receivers R, and a bandwidth require-
ment b. Offline multicast routing algorithms cannot be used
since they require a priori knowledge of all multicast tun-
nel requests that are to be routed. The newly developed al-
gorithm is an on-line algorithm that generates a reserved-
bandwidth multicast tree with additional backup links that
make the multicast tree resilient to single element failures in
the network. It shares backup bandwidth when possible and
only uses link usage information obtainable in a distributed
manner.

1 Introduction

We consider the problem of dynamically routing band-
width guaranteed multicasts with failure backup. For dy-
namic routing, we must be able to route multicast set-up
requests, from a specified source to a specified set of re-
ceivers, that are given one-by-one with future requests be-
ing unknown. Also, we must be able to handle dynamic
receiver joins and leaves from an already established multi-
cast tree. Failure resilient multicast, for the purposes of this
paper, implies the ability to locally bypass a single failed
node or link thereby restoring connectivity of the multicast

tree. Local switching permits fast recovery from failures
in comparison to schemes that require rerouting from the
source or from some point further away from the failed el-
ement. For efficiency, we would like different active mul-
ticast connections to share the backup reservations. This
sharing of backup bandwidth is explained in detail in Sec-
tion 1.4. Also, we would like the multicast routing algo-
rithm to only use information that is obtainable in a dis-
tributed manner precluding the use of information such as
the routes of all previously routed multicasts in the network.
The contribution of this paper is an algorithm for on-line
routing of bandwidth guaranteed multicasts that efficiently
shares backup path bandwidth while being resilient to single
element failures. It also only uses network usage informa-
tion that can be obtained in a distributed fashion. Before
describing the key ideas of the algorithm, we discuss the
restoration scheme considered and the motivation for the
assumptions regarding information obtainable from the net-
work.

1.1 Restoration Model

Backup for connections in a network can be built so
that there is end-to-end restoration or local restoration. In
the case of end-to-end restoration, the idea is to provide a
backup path from the source to the destinations for each
multicast request. This backup path is (link or node) dis-
joint from the primary multicast tree. However the draw-
back with this approach is that when there is a link or node
failure, this information has to propagate back to the sources
of all multicasts which traverse this link. The sources in
turn switch the multicast from the primary to the secondary
path. Note that the link failure information has to be prop-
agated to all nodes in the network. The end-to-end restora-
tion in a multicast tree is illustrated in Figure 1. The source
node for the multicast is node s and the destination node set
D = fD1; D2; D3; D4g. The dark lines in the figure repre-
sents the links that are used on the active path. The dashed
lines represents the backup paths. Note that there are four
end-to-end backup paths one corresponding to each desti-

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

nation.

S

D

D

D

D

1

3

2

4

Figure 1. Paths for End-to-End Restoration

The time taken for node/link failure information propa-
gation to the source (that is needed for end-to-end restora-
tion) may not be acceptable for many applications. There-
fore we consider a local restoration model. In the case
of local restoration, the backup paths are provided locally
and therefore failure information does not have to propa-
gate back to the source before connections are switched to
the backup path. The idea of local restoration is illustrated
in Figure 2. The source and the destination set for the mul-
ticast is the same as in Figure 1. The active multicast tree
is shown in dark lines and the backup paths are shown in
dashed lines. Note that if any node or link fails in the active
path, then there is connectivity on the backup path. In Sec-
tion 7 we outline how to reserve bandwidth on the backup
path. The advantage of having local restoration is outlined
next.

1.2 Failure Modes

The failure mode that we consider in this paper is pro-
tection against single element (node or link) failures. Algo-
rithms for a less stringent version where we protect against
single link failures can also be easily derived by modifying
the algorithms in this paper. When a link fails, the router
or switch interfaces at both ends of this link detect failure.
Traffic is locally switched, from the upstream end of the
failure, along the backup path as shown in Figure 2. The
information propagation in the case of a single link failure
is shown in Figure 3. The backup path that is activated is
shown in the dark dashed line in the figure.

When a node fails all the link interfaces at that node fail.
Therefore all links that are incident on the node fail and
requests are routed across the failed node. This is illustrated
in Figure 3. The relevant failed links are shown in light

S

D

D

D

D

1

3

2

4

Figure 2. Local Restoration: Primary and By-
pass Paths for Single Element Failures

S

D

D

D
3

2

4

D
1

Information propagation
on link failure

Figure 3. Restoration Path on Link Failure

dotted lines and the backup path that is activated is shown
as a dark dashed line.

If a node is a branch point then failure of that node will
lead to the activation of multiple backup paths. This is il-
lustrated in Figure 5 where the failed node is a branch point.
Note that two backup paths are activated on this node’s fail-
ure.

Note that we cannot provide backup to the failure of the
source node. Taking care of single node failures almost
handles all the link failures also except for the last link on
the forward path where a backup path is needed to protect
against the failure of this link.

1.3 Backup Paths

For the single link failure case, the backup path for a link
(i; j) can be any path connecting nodes i and j that does not

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

S

D

D

D
3

2

4

D1

Information propagation on
node failure

Figure 4. Restoration Path on Non-Branch-
Point Node Failure-Single Path Activation

S

D

D

D

D

1

3

2

4

Figure 5. Restoration Path on Branch-Point
Node Failure-Multiple Paths Activation

include link (i; j). This backup path for link (i; j) can tra-
verse any link, including links on the primary or backup
paths (other than those being considered for link (i; j)) for
the current request being set-up. For the single element
failure case, the backup path for the failure of node k in-
volves doing the following: First determine the links (j; k)
and (k; l) in the primary path. If node k fails, then it will
result in the failure of all links incident on node k, in par-
ticular link (j; k). Therefore the failure will be detected at
node j and if there is an alternate path from node j to node
l (or some other node between l and the destination t) then
node j can divert traffic onto this node k bypass or backup
path. Note that the backup path for the failure of node k has
to aviod all links incident on node k.

1.4 Sharing Backup Links

Because of the need to provide bandwidth guarantees,
capacity on the primary path cannot be shared. However,
even with bandwidth guarantees it is possible to share ca-
pacity on links used for backup paths. This is because the
backup link capacity is used only upon failure. This is ex-
plained in detail below. Capacity in the backup path can be
shared at two levels. Inter-request sharing refers to the case
of sharing the backup reservations belonging to different re-
quests that do not share links along the primary path. Figure
6 illustrates inter-request sharing. The routing of two mul-
ticast requests is shown in the figure. Request 1 has source
node s1 and destination nodes fD1; D2g and request 2 has
source node s2 with destination nodeD2. The backup paths
for the two requests are shown in dotted lines. Note that the
two links indicated in Figure 6 are shared backup links for
the two requests. Therefore, for example, if boths these re-
quests are for one unit of bandwidth, then on the two shared
links only one unit of bandwidth will be reserved. The
second kind of sharing is intra-request sharing. Since the
restoration is local in nature, there is a backup path to pro-
tect against the failure of each node/link in the current mul-
ticast tree, Since we assume that only one element can fail
at any given time, the backup paths for different node fail-
ures in the current multicast tree can be shared, This kind of
sharing of backup bandwidth between the different backup
paths in the current request is termed Intra-request sharing.
Figure 7 illustrates intra-request sharing. In Figure 7 note

S

D

D

D

D

1

3

2

4

Figure 6. Inter-request Sharing

that link (a;D2) is used to backup links (S; b) and (b;D2)
and also node failure b. This in turn means that backup ca-
pacity is shared on this link. The algorithms that we outline
exploit both inter request and intra request sharing in order
to minimize the amount of bandwidth consumed.

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

D
2

D
3

S

D1

a b

c
1

2

3

4

5

6
87 b-D 1

D - D
1 3

Link

Link

Link

Link

Node
Node

S-b

b-D 2

D 1

b

FAILURE ELEMENT BACKUP PATH

b-S S-c c-D
S-a a-D S-c c-D

D -c c-D

b-S S-c c-D

S-a a-D S-c c-D

1

12

b-a a-D 2

31

2

3

1

Figure 7. Intra-request Sharing

1.5 Information Model

The amount of sharing that can be achieved is a func-
tion of the amount of information that is shared between
the nodes in the network. We consider three different in-
formation models as in [7]. In order to share the backup
bandwidth, the best possible scenario is if every node knows
how each request in the network is routed. This is the com-
plete information case. This is a reasonable assumption if
the routing is done in a centralized manner. However, if
routing is done in a decentralized manner this assumption is
not reasonable since the entire path (forward and backup) of
every request has to be communicated to every node in the
network. We however assume that some link state flooding
mechanism exists in the network and that for each link the
total amount of bandwidth on that link that is used by pri-
mary paths, the total amount of bandwidth that is used by
backup paths, and the residual capacity on that link is prop-
agated through the network. This is termed partial infor-
mation case. It is easy to propagate this partial information
to all nodes in the network by making minor modifications
to existing link state unicast routing protocols like OSPF.
In the minimal information case we assume that only the
residual bandwidth at each link is known. In this case, there
can be no inter-request sharing. Intra-request sharing is still
possible. The minimal information case serves as a bench-
mark for comparison purposes.

2 Problem Definition

We consider a network of n nodes (switches/routers) and
m directed links. Each multicast request consists of a source
node s, a set of destination or receiver nodes D and a band-
width b. The objective is to route b units of bandwidth from
s to each d 2 D and determine local backup paths so that
the active path can survive single element failures in the
network. Each multicast request is assumed to arrive at the
source node which then determines the active multicast tree
along with associated backup paths. Multicast requests ar-

rive one at a time and each request is either fully accepted,
partially accepted or is rejected. In the case of partial ac-
ceptance where only some subset of the receiver set D can
be reached, we route as many as possible. Note that when
a multicast request is routed, all links on its active path will
reserve b units of bandwidth for this request. We denote
the bandwidth request for request k to be bk. The paper
explores the amount of sharing that can be achieved under
three different information scenarios. Towards this end we
define the following notation. Let Aij represent the set of
requests that use link (i; j) in its primary path, and Buv

ij

represent the set of requests that use link (i; j) as a backup
for link (u; v) in the primary path for that request. In other
words, k 2 Buv

ij if

� Link (u; v) is on the active tree of request k.

� Link (i; j) is used as part of the local backup path for
link (u; v) for the request k.

Let Æuvij =
P

k2Buv
ij
bk: Let Fij represent the total amount

of bandwidth reserved for the requests that use link (i; j)
on the primary path. Let Gij represent the total amount of
bandwidth reserved by links that use link (i; j) on its backup
path. Let Rij = Cij � Fij � Gij represent the residual
bandwidth of link (i; j). In the case of minimal information
model we assume that the only information known is Rij

for each link (i; j) in the network. Note that only the resid-
ual bandwidth is known, then it is not possible to share any
backup capacity between different requests. It may still be
possible to do intra-request bandwidth sharing. This mini-
mal information based sharing case serves as a benchmark
to compare the other cases where inter-request sharing is
possible. In the case of the complete information case we
assume that each node knows the sets Aij for all links (i; j)
and the set Buv

ij for all link pairs (i; j); (u; v), In the partial
information case we assume that each node knows the value
of Fij ; Gij and Rij for all links (i; j) in the network. Since
we do not have any knowledge of the requests that will ar-
rive in the future, the objective of the routing algorithm is to
determine the active and backup path for the current tunnel
request that “optimizes” the use of network infrastructure.
One reasonable objective then is to minimize the sum of the
bandwidths that is used by the active and the backup paths.
In the case where no restoration is needed, i.e., we just have
to determine the active path to all the destination node, this
objective leads to the minimum directed Steiner tree prob-
lem. As stated earlier, the amount of sharing that can be
achieved on the backup path is a function of how much in-
formation is known about the requests that are still currently
active in the network. This objective of minimizing the to-
tal amount of bandwidth consumed by both the active and
the backup paths can be formulated as an integer program-
ming problem. However, the problem is NP-hard and we

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

use heuristics to sovle the problem. We now outline the key
ideas in the design of the algorithm to solve this problem.

3 Key Ideas in the Algorithm Design

Some of the restoration problems posed in the previous
section can be formulated as integer programming prob-
lems. Apart from using general purpose solvers there does
not seem to be any easy way to solve thse integer program-
ming problems. Therefore we design a heuristic algorithm
to solve the multicast routing problem. In this section we
outline the key ideas in algorithm design in three steps.

� In the first step we consider the dynamic multicast
routing problem without backup. This problem is NP-
hard and we adapt a Steiner tree heuristic that has good
performance and more importantly lends itself very
well to including the backup computation.

� In the second step we show how to include inter-
request sharing in the Steiner tree heuristic.

� In the third step we show how to incorporate intra-
request sharing.

3.1 Steiner Tree Computation

Without restorability, the multicast routing problem is a
directed Steiner Tree problem. The directed Steiner tree
problem is defined as follows: given a directed graph G =
(N;E), a specified source node s 2 N , and a set of re-
ceivers D � N , the objective is to find the minimum cost
arborescence rooted at s and spanning all the nodes in D,
i.e., source s should have a path to every vertex in R. Apart
from multicast routing, the Steiner tree problem has several
other applications to network design and network routing.
For a general survey on the use of Steiner tree problems in
networks, see Winter [11]. The directed Steiner tree prob-
lem is NP-complete even when the graph is induced by
points in the plane [5], and isMAXSNP-hard for general
graphs. Therefore, several heuristics have been designed
for the solution of this problem [1, 11]. We use the Nearest
Neighbor First (NNF) heuristic developed in [8] as a sub-
routine to develop algorithms for the construction of multi-
cast trees with local restoration. Our heuristic uses several
iterations of Dijkstra’s shortest path algorithm to construct
the multicast tree. In the description of the algorithm, we
assume that all executions of Dijkstra’s algorithm go back-
wards from the destination to the source. The reason for this
will be made clear in the next two sections.
The NNF Steiner tree heuristic works as follows: The set of
active destinations D0 is set to D. We run Dijkstra’s short-
est path algorithm from each destination node d 2 D0 to the
source. We pick the destination node d0 that is closest to the

source. The cost of all the links on the shortest path from
s to d0 is now set to zero and the set of active destinations
is set to D0nd0. The reasons for setting the costs to zero are
the following:

1. Since these edges have already been added to the
Steiner tree, the incremental cost of using them to
reach other nodes is zero.

2. Setting these edge costs to zero encourages future runs
of Dijkstra’s algorithm to use them. This is consistent
with the fact that increased sharing of paths to two dif-
ferent receivers leads to lower cost trees.

This process is repeated until the set of active destinations
is empty. At any intermediate point in the algorithm, the
solution will be a directed tree rooted at s and the leaves of
the tree will be set of destinations which are already routed.
Let ~D represent the set of destinations for which paths have
already been found. Let T (~D) represent the multicast tree
upto this point. When we attempt to find a path for the next
destination, note that it is necessary to find the shortest path
from that destination to T (~D). The shortest path from a
destination node to a given tree can be determined by exe-
cuting Dijkstras’s algorithm from the destination until some
node in T (~D) is permanently labelled.

3.2 Inter-Demand Sharing

The Steiner tree heuristic outlined above lends itself well
to the inclusion of locally restorable paths. Consider some
intermediate stage in the NNF algorithm. We now consider
how to include the costs due to local backup path estab-
lishment. When running Dijkstra’s algorithm, to find the
cost of including link (i; j) in the primary path, we have to
determine the cost of finding a backup from node i to the
successor of node j without using any of the links incident
on node j. Of course when the algorithm is run backwards
from the destination, the successors of all the nodes that
are permanently labeled by Dijkstra’s algorithm are already
known since a path as been established from that node to the
destination. Therefore when running Dijkstra’s algorithm,
for any permanently labelled node j, let S(j) represent the
set of nodes from node j to the destination node currently
under consideration. When node j fails, all the links inci-
dent on that node fails. Therefore the cost of the backup has
to account for all the links failing simultaneously. When
computing the cost of using link (i; j) in the primary path,
we have to consider the cost of backing up requests that
use link (j; l) for l 2 V . Therefore the cost of links have
to be modified as follows. Let �uvij represent the amount
of backup bandwidth that has to be reserved on link (u; v)
when link (i; j) is used in the active path. Recall that Æuvij
represents the amount of flow on backup link (u; v) if link

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

(i; j) goes down. In the complete information case

�uvij =

8>>>>>>>><
>>>>>>>>:

0
if
P

(j;k)2E Æ
uv
jk + b � Guv and j 6= v

P
(j;k)2E Æ

uv
jk + b�Guv

if
P

(j;k)2E Æ
uv
ij + b > Guv

and Ruv �
P

(j;k)2E Æ
uv
jk + b�Guv and j 6= v

1 Otherwise

If we consider the case where only partial information is
available then the cost of link (u; v) is given by the equation
below:

�uvij =

8>>>>>>>><
>>>>>>>>:

0
if
P

(j;k)2E Fjk + b � Guv and j 6= v

P
(j;k)2E Fjk + b�Guv

if
P

(j;k)2E Fjk + b > Guv

and Ruv �
P

(j;k)2E Fjk + b�Guv and j 6= v
1 Otherwise

Therefore the next algorithmic idea is the following: The
cost of creating backup paths can be accounted for by mod-
ifying the cost of the links in the Steiner Tree computation.
Let L�(i; j) represent the length of the shortest path from
node i to some node in S(j) using a cost of �uvij on link
(u; v). This can be computed easily by running Dijkstra’s
algorithm starting at node i until some node in S(j) is la-
belled permanently. This permanent label of the node in
S(j), in fact is L�(i; j). There are two cases to consider
now. If i is not in the current multicast tree then, as shown
in Figure 10, the local backup is one path. The cost of this
path is given byL�(i; j). In case i is in the current multicast
tree, then an additional path has to be added to account for
the failure of node i. This is illustrated in Figure 8. If node
i is in the multicast tree, let P (i) represent the predecessor
to node i in the multicast tree. In other words P (i) is the
last node before node i on the path from the source node s
to node i.

Therefore the cost of adding link (i; j) is given by

cij =

�
d+ L�(i; j) if i not in multicast tree
d+ L�(i; j) + L�(P (i); j) if i in multicast tree

Note that the value of �uvij changes after each destination
is routed and therefore the value of cij has to be computed
dynamically.

3.3 Intra-Demand Sharing

Consider two links (i; j) and (k; l) which are both in the
current multicast tree. Intra-request sharing of bandwidth
occurs when the link (i; j) uses link (u; v) for a backup and
reserves a bandwidth ofw on link (u; v). If link (k; l) on the

Nodes already in tree

Permanently labelled nodes

S

v

u

w

Nodes not permanently labelled

P
1

Figure 8. Backup Cost Determination if i is
not in the Multicast Tree

Nodes already in tree

Permanently labelled nodes

Nodes not permanently labelled

S

v

w

u

P
2

P
1

m

Figure 9. Backup Cost Determination if i is in
the Multicast Tree

primary path wants to use link (u; v) for its backup then, in
addition to any inter-request sharing it can use the already
reserved bandwidth of w for free. At some intermediate
point in the execution of the algorithm, all the backup re-
served for the current tree comes for free. In addition since
the shortest path algorithm is to be run backward from the
destination all the backup that is reserved on the path from
the current node to the current destination d0 is also free. Let
uv represent total amount of backup reservations made on
link (u; v) by the current multicast tree so far. We introduce
a m-vector �u corresponding to node u in the network to
accumulate the amount of reservation made by the current
running of Dijkstra’s algorithm. (Recall that the number
of links in the network is m.) �uij represents the amount of
bandwidth reserved by the current request for all the backup
paths for all the links leading from node u to the current
destination d0. This bandwidth reservation for the current
request can be used to back up for free, the links from u to

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

the source s that are yet to be determined. Consider the case
where the backup path for link (k; j) is being determined.
Assume that the shortest path is being determined in the
backward direction from node j to node k. The m-vector
�j represents the reservation made for this request for all
the backup paths from node j to the destination. This path
is known since there is a unique path from node j to the
destination in the shortest path tree. We now outline how
to adjust the cost of link (m;n) to account for intra-request
sharing. Define

�mn =
X

(j;k)2E

Fkj + d�Gmn � mn � �jmn:

Then the cost of link (m;n) when determining the shortest
backup path is given by

lmn =

8<
:

0 if �mn � 0 and n 6= j

�mn if 0 � �mn � d and Rmn � �mn and n 6= j

1 Otherwise

The cost in the case of the complete information case can
algo be modified similarly. Therefore the above procedure
gives us a method for accounting for the intra-request
sharing. This gives the next algorithm design idea:
Maintaining the link length vector at each node that
gives us the amount of bandwidth reserved for the current
request for backing up all links from the the given node to
the destination can be used to account for intra-request
sharing.

NEAREST NEIGHBOR FIRST(s, D)

� INITIALIZATION

1: X = D; T = ;

� ITERATIVE STEP

2: MIN = 1
3: For all a 2 X

C = PATH COST (a; T)
if (C < MIN)

MIN = C

f = a

4: T = T [PATH(f) X = Xnf If X 6=
; Go to Step 2

� TERMINATION

5: Exit.

4 Formal Description of the Algorithm

Let s represent the source of the multicast request
and D the destination set. The main routine is NEAR-
EST NEIGHBOR FIRST(s;D) which iterates through the
set of destinations one at a time. On each iteration, it picks
the ”closest” destination to the current multicast tree and
adds the path from the tree to that destination to the cur-
rent tree. The iterations are repeated until a path is found
from the source to all the destinations. The routine to find
the distance between the current destination node a and the
current (partial) multicast tree T is determined in the rou-
tine PATH COST(a; T). Note that this routine runs Di-
jkstra’s algorithm backwards from the destination a until
some node in T is labelled permanently. The routine main-
tains the set of successor nodes for a given node j in the
set SUCCSET(j). This set represents the set of all nodes
from node j to the current destination a. The algorithm
also maintains the predecessor node for node j 2 T as
PRED(j) which is the node immediately before j on the
path from s to j. The SUCCSET() and PRED() are used to
determine the cost of backing up a given link. Unlike Di-
jkstra’s algorithm where the cost of a link is fixed, in this
case the cost of link (c; j) is determined dynamically by the
routine COMPUTE COST(c; j). The COMPUTE COST()
routine shown here is for the partial information case. Note
that there are two cases to consider here as shown in Fig-
ures 4 and 5. If node c is not part of the current multicast
tree T then one backup path has to be determined. If node
c 2 T then two backup paths have to be determined. We use
Dijkstra’s algorithm for SHORTEST PATH(). Note that in
this description we have not taken into consideration intra-
request sharing. This can be incorporated into the COM-
PUTE COST() routine by keeping track of bandwidth that
is already reserved for the current multicast request. The
algorithms presented in the next section incorporate intra-
request sharing. However in order to keep the clarity of pre-
sentation, intra-request sharing as well as the backup path
for the last link in the active path is left out from the high
level description in this section.

COMPUTE COST(j, c)

1: Set link costs �uvij .

2: Let v =SHORTEST PATH(j,SUCCSET(j)nfcg).

3: If c 2 NnT , then Return(v).

3: If c 2 T , then v = v+SHORTEST PATH(PRED
(j), SUCCSET(j)).

4: Return(v)

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

PATH COST(a, T)

� INITIALIZATION

1: P = a, c = a, Q = Nna and
SUCCSET(a) = ;.

2: L(a) = 0 and L(i) =1 if i 6= a.

� ITERATIVE STEP

3: if c 2 T go to Step 6.

For each j such that (j; c) 2 E

djc =COMPUTE COST (j; c)
if (L(j) � djc + L(c))

L(j) = L(c) + djc
PRED(c) = j

SUCCSET(j) =
SUCCSET(c) [fcg

4: c = Arg minj2Q L(j); P = P [fcg; Q =
Qnc.

5: Go to Step 3.

� TERMINATION

6: Set PATH(a) to the shortest path from c to
a.

5 Experimental Results

In this paper, we developed a heuristic algorithm for on-
line routing of multicast requests with failure backup. It is
actually surprisingly difficult to even formulate this prob-
lem exactly as an integer programming problem let alone
solve it. Therefore the main objective of this experimental
section is to compare the performance of the heuristic al-
gorithm with the three different information models. The
experimental set up is the following: We performed experi-
ments on two networks

� Network 1: 15 nodes and 56 arcs.

� Network 2: 70 nodes and 206 arcs.

he primary objective of the experiments is to determine the
amount of sharing that can be achieved in the the different
information models. Therefore we test the following sce-
narios:

1. Multicast with minimal information (MMI).

2. Multicast with partial information (MPI).

3. Multicast with complete information (MCI).

We measure the effectiveness of the different schemes by
doing the following experiments. Multicast requests arrive
one at a time to the network. The source node is picked
randomly from the set of nodes. The rest of the nodes
have a ten percent chance of being in the multicast tree
in Network 1 and a five percent chance in Network 2. (If
there are no destinations selected then the request is not
used for the experiment.) The bandwidth requested is uni-
formly distributed between 1 and 6 units. The multicast
request is routed. In the minimal information case, only the
residual bandwidth of each link is known and only intra-
request sharing is possible. In the case of partial informa-
tion, the forward flow, backup reservation and the residual
bandwidth of each link is known to all the nodes and there-
fore intra-request as well as some inter-request sharing is
possible. In the complete information case all the actual
path taken by all requests is known to all nodes and there-
fore intra-request as well as complete inter-request sharing
is possible. The objective of the experiments is to determine
how much bandwidth is saved by this sharing. For exper-
iments with this objective, the capacity of the links in the
network can be set to infinity.

We load a fixed number (100) of requests onto the net-
work and measure the following two quantities:

1. The total amount of bandwidth consumed by the re-
quests (for both active and backup).

2. The ratio of the amount of bandwidth consumed for
the backup to the bandwidth consumed on the active
path, backup to active bandwidth ratio.

Figure 10 shows the evolution of the backup to active band-
width ratio as requests are loaded onto the network. Note
that as more requests are loaded onto the network, there will
be more sharing and leads to better backup bandwidth effi-
ciency. However the backup to active ratio reaches some
steady state value which depends on the information model
used. Note that the ratio is about 0.5 for MCI, 1.5 for MPI
and 2.5 for MMI for Network 1 and 0.3, 2 and 4 for MCI,
MPI and MMI for Network 2. Therefore there is significant
benefit to getting partial information over minimal informa-
tion. The actual amount of gain depends on the structure of
the network as well as the number of destinations per mul-
ticast request.

Figures 11 and 13 show the total amount of bandwidth
consumed for 100 multicast requests for the different infor-
mation models for five different experiments. Note from
the figures that the partial information models shows signif-
icant bandwidth reduction for the backup for some minimal
extra information over the no-sharing case. Figure 12 and
14 give the backup to active bandwidth ratio for the same
five experiments. There seems to be a significant benefit to
having partial information.

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

REQUEST NUMBER

C
U

M
. B

A
C

K
U

P
 B

A
N

D
W

ID
T

H
 /

C
U

M
. A

C
T

IV
E

 B
A

N
D

W
ID

T
H

0 20 40 60 80 100

0.
5

1.
0

1.
5

2.
0

2.
5

MPI
MCI
MMI

Figure 10. Network 1: Ratio of Backup to

Active Bandwidth Consumed versus Request

Number

References

[1] P. Berman and V. Ramaiyer. Improved approximation
algorithms for the Steiner tree problem. Journal of
Algorithms, 17:381–408, 1994.

[2] R. Callon, N. Feldman, A. Fredette, G. Swallow, A.
Viswanathan. A Framework for Multiprotocol Label
Switching, Internet Draft draft-ietf-mpls-framework-
03.txt, June 1999.

[3] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel,
S. Guha, and M. Li. Approximation Algorithms for
Directed Steiner Problems. Symposium on Discrete
Algorithms (SODA), 1998.

[4] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K.
K. Ramakrishnan. A Flexible Model for Resource
Management in Virtual Private Networks. Proceed-
ings of ACM SIGCOMM 1999, pp. 95-104, September
1999.

[5] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, New
York, 1979.

[6] K. Kar, M. Kodialam, T. V. Lakshman, “Minimum In-
terference Routing of Bandwidth Guaranteed Tunnels
with MPLS Traffic Engineering Applications”, IEEE

EXPERIMENT NUMBER

B
A

C
K

U
P

 B
A

N
D

W
ID

T
H

 /
A

C
T

IV
E

 B
A

N
D

W
ID

T
H

1 2 3 4 5

0.
5

1.
0

1.
5

2.
0

MPI
MCI
MMI

Figure 11. Network 1: Total Bandwidth Con-

sumed for Routing 100 Multicast Requests

Journal on Selected Areas in Communications, Vol.
18, No. 12, December 2000.

[7] M. Kodialam, T. V. Lakshman. Dynamic Routing of
Bandwidth Guaranteed Tunnels with Restoration, IN-
FOCOM 2000, Tel-Aviv, Israel.

[8] M.Kodialam, T. V. Lakshman and S. Sengupta, Multi-
cast Routing With Bandwidth Guarantees: A New Ap-
proach Using Multicast Network Flow, SIGMETRICS
2000., San Jose, CA.

[9] D. Ooms, W. Livens, B. Sales, M. Ramalho, A.
Acharya, F. Griffoul, F. Ansari. Framework for IP
Multicast in MPLS. MPLS Working Group Internet
Draft, June 1999.

[10] B. M. Waxman. Routing of Multipoint Connections.
IEEE Journal of Selected Areas in Communications,
pp. 1617–1622, 1988.

[11] P. Winter. Steiner problem in networks: a survey, Net-
works, 17:129–167, 1987.

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

EXPERIMENT NUMBER

T
O

T
A

L
B

A
N

D
W

ID
T

H
 (

A
C

T
IV

E
 +

 B
A

C
K

U
P

)

1 2 3 4 5

10
00

0
12

00
0

14
00

0
16

00
0

18
00

0
20

00
0

22
00

0

MPI
MCI
MMI

Figure 12. Network 2: Total Bandwidth Con-

sumed for Routing 100 Multicast Requests

EXPERIMENT NUMBER

B
A

C
K

U
P

 B
A

N
D

W
ID

T
H

 /
A

C
T

IV
E

 B
A

N
D

W
ID

T
H

1 2 3 4 5

1
2

3
4

MPI
MCI
MMI

Figure 13. Network 2: Ratio of Backup to Ac-

tive Bandwidth for 100 Multicast Requests

Proceedings of the 10 th IEEE International Conference on Network Protocols (ICNP’02)
1092-1648/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

