
Computing the Edit-Distance Between Unrooted
Ordered Trees

Philip N. Klein?

Department of Computer Science, Brown University

Abstract. An ordered tree is a tree in which each node’s incident edges
are cyclically ordered; think of the tree as being embedded in the plane.
Let A and B be two ordered trees. The edit distance between A and
B is the minimum cost of a sequence of operations (contract an edge,
uncontract an edge, modify the label of an edge) needed to transform A
into B. We give an O(n3 logn) algorithm to compute the edit distance
between two ordered trees.

1 Introduction

A tree is said to be ordered if each node is assigned a cyclic ordering of its inci-
dent edges. Such an assignment of cyclic orderings constituted a combinatorial
planar embedding of the tree (and is called a rotation system; see [1]). Sev-
eral application areas involve the comparison between planar embedded trees.
Two examples are biochemistry (comparing the secondary structures of different
RNA molecules) and computer vision (comparing trees that represent different
shapes).

One way of comparing such trees is by their edit distance: the minimum cost
to transform one tree into another by elementary operations. The edit distance
between two trees can be computed using dynamic programming. This paper
provides a faster dynamic-programming algorithm than was previously known.

Let A and B be ordered trees. We assume in this paper that the edges are
labeled; node labels can be handled similarly. Two kinds of elementary opera-
tions are allowed: label modification and edge contraction. We assume that two
subroutines (or tables) have been provided. The first subroutine, given two la-
bels, outputs the cost of changing one label into the other. The second, given a
label, outputs the cost of contracting an edge with that label. We assume that
the costs are all nonnegative. The algorithmic goal is to find a minimum-cost set
of operations to perform on A and B to turn them into the same tree. The left
of Figure 1 gives an example.

In stating the time bounds for algorithms, we assume that the cost subrou-
tines take constant time.

A more familiar edit-distance problem is computing string edit-distance [7].
The edit-distance between two strings is the minimum cost of a set of symbol-
deletions and symbol-modifications required to turn them into the same string.
? research supported by NSF Grant CCR-9700146

G. Bilardi et al. (Eds.): ESA’98, LNCS 1461, pp. 91–102, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

92 P.N. Klein

a
b

c

d
e

f

g

v

w

xy

z

a
c

e

v

w
y

z

h

f

h

u

uTree A
Tree B

a
a’ b

b’

c c’

x x’

y y’

Fig. 1. The diagram on the left shows the comparison between two planar-
embedded trees A and B. They can be transformed into the same tree as follows.
In A, contract the edges f , d, b. In B, contract the edge x, and then change labels
u, v, w, y, z to f, h, a, c, e.

On the top-right is shown a rooted tree (in bold) and the corresponding Euler
string of darts (indicated by arrows).

On the bottom-right, two small trees are shown with labeled darts. The Euler
tour of the left tree is aa′bcc′b′ and that of the second is xyy′x′.

Edit-distance between trees that are simple paths is equivalent to the string
edit-distance problem. There is a simple O(ab)-time algorithm to compute the
distance between a length-a string and a length-b string. Thus the worst-case
time bound is O(n2).

A modification of the string edit-distance problem is the cyclic string edit-
distance problem. In this problem, the strings are considered to be cyclic, and
an algorithm must determine the best alignment of the beginnings of the two
strings. One can arbitrarily fix the beginning of the first string, and try all
possibilities for the beginning of the second string: for each, one computes an
ordinary edit-distance. This brute-force approach reduces a cyclic edit-distance
instance to n ordinary edit-distance instances, and hence yields an O(n3)-time
algorithm. An algorithm due to Maes [2] takes O(n2 logn) time.

The problem of rooted ordered tree edit-distance has previously been consid-
ered. This problem arises in settings where, e.g., parse trees need to be compared,
such as in natural language processing and image understanding.

Computing the Edit-Distance Between Unrooted Ordered Trees 93

For this problem, the input consists of two rooted trees A and B where each
node’s children are ordered left to right. The fastest previously known algorithm
is due to Zhang and Shasha; it runs in time

O(|A| |B| LR colldepth(A) LR colldepth(B))

where |T | denotes the size of a tree T and LR colldepth(T) is a quantity they
define, called the collapsed depth. Zhang and Shasha bound the collapsed depth
of a tree T by

min{depth of T, number of leaves of T}
However, in the worst case, the collapsed depth of a tree T is Ω(|T |). Thus in
the worst case their algorithm runs in time O(n4) where n is the sum of the sizes
of the two trees.

Unrooted ordered trees are to rooted ordered trees as cyclic strings are to
ordinary strings, and it is possible to use a similar brute-force reduction from
edit-distance on unrooted trees to edit-distance on rooted trees. The brute-force
reduction would yield an algorithm that in the worst case required O(n5) time.

We give an algorithm that runs in O(n3 logn) time. It solves both the rooted
and the unrooted tree edit-distance problems. Thus it improves the worst-case
time on rooted trees by nearly a factor of n (although depending on the input
trees Zhang and Shasha’s algorithm may be faster). It beats the naiveO(n5)-time
algorithm for the unrooted case by nearly an n2 factor.

In particular, for trees A andB, our algorithm runs in timeO(|A|2|B| log |B|).
Our algorithm uses essentially the same approach as the algorithm of Zhang and
Shasha. We define a variant of collapsed depth that is always at most logarithmic,
and we generalize their algorithm to work with this variant. Loosely speaking,
the complexity of analyzing B is thus reduced from |B| LR colldepth(B) to
|B| log |B|. The price we pay, however, is that the complexity of analyzing A
goes from |A|LR colldepth(A) to |A|2. The consolation is that within this bound
we can consider all possible roots of A; thus we can solve the unrooted problem
within the same bounds.

1.1 Notation

For a rooted tree T , the root of T is denoted root(T). For any node v in T , the
subtree of T consisting of v and its descendents is called a rooted subtree of T ,
and is denoted T (v). A special case arises in which the tree is a descending path
P (the first node of P is taken as the root of the tree): in this case, P (v) denotes
the subpath beginning at v.

For an edge e of T , we let T (e) denote the subtree of T rooted at whichever
endpoint of e is farther from the root of T . Note that e does not occur in T (e).

Given an ordered, rooted tree T , replace each edge {x, y} of T by two oppo-
sitely directed arcs (x, y) and (y, x), called darts. The depth-first search traversal
of T (visiting each node’s children according to their order) defines an Euler tour
of the darts of T . Each dart appears exactly once. (See the top-right of Figure 1.)
We interpret the tour as a string, the Euler string of T , and we denote this string

94 P.N. Klein

by E(T). The first dart of the string goes from the root to the leftmost child of
the root.

For a dart a, the oppositely directed arc corresponding to the same edge will
be denoted aM (here M stands for “mate”) and will be called the mate of a.

A substring of a string is defined to be a consecutive subsequence of the
string.

The reverse of a string s is denoted sR. Thus sR contains the same elements
as s but in the reverse order. If the dart a is the first or last symbol of s, we use
s− a to denote the substring obtained from s by deleting a.

We use Λ to denote the empty string, and we use logx to denote log2 x.

2 Euler Strings: Parenthesized Strings for Representing
Trees

For now, we take as our goal calculating the edit-distance between two rooted
trees. For this purpose, it is notationally and conceptually useful to represent the
trees by their Euler strings. We can thus interpret the edit-distance problem on
trees as an edit-distance problem on strings. However, this string edit-distance
problem is not an ordinary one; each dart occurring in a tree’s Euler string has
a mate, and the pairing of darts affects the edit-distance calculation.

Think of each pair of darts as a pair of parentheses. The Euler string of a tree
is then a nesting of parentheses. In comparing one Euler string to another, we
must respect the parenthesization. Contracting an edge in one tree corresponds
to deleting a pair of paired parentheses in the corresponding string. Matching
an edge in one tree to an edge in the other corresponds to matching the pairs of
parentheses and then matching up what is inside one pair against what is inside
the other pair.1 (See Figure 1.)

3 Comparing Substrings of Euler Strings

The subproblems arising in comparing two Euler strings involve comparing sub-
strings of these strings.

For the purpose of comparing one substring s to another, we ignore each dart
in s whose mate does not also occur in s.

We are interested in measuring the distance between substrings s and t of
the Euler strings of trees A and B. The operations allowed are: delete a pair of
parentheses in one of the strings (i.e. contracting the corresponding edge), and
match a pair of parentheses in one string to a pair in the other (i.e. match an
edge in one tree to an edge in the other).

In this subsection, we give a recurrence relation for the edit distance dist(s, t)
between two substrings. This recurrence relation implies a dynamic program—in
1 Shapiro [3] compares trees by comparing their Euler strings. However, he does not

seem to treat paired darts in any special way; he compares the strings using an
ordinary string-edit distance algorithm. Thus he does not compute the true tree
edit-distance.

Computing the Edit-Distance Between Unrooted Ordered Trees 95

a
b

c
d e

c e

a c d e b c e

. . .(() () ())... ...(() (() (...)))...

Fig. 2. Matching an edge in one tree to an edge in the other corresponding to
matching a pair of parentheses in one string to a pair in the other. Note that if
we are to match edge a to edge b, then we must somehow match the interior of
the pair of parentheses corresponding to the edge a to the interior of the pair
corresponding to b.

fact, it is a simplified (and less efficient) version of the algorithm of Zhang and
Shasha2

We first give an auxiliary definition

match(s, t)=
If s has the form s1((s2)), t1[[t2]]

then dist(s1, t1) + dist(s2, t2) + cost(change (())to [[]])
else ∞

where the “cost” term represents the cost of changing the label of the edge in
tree A corresponding to (()) into the label of the edge in tree B corresponding
to [[]].
Now we give the recurrence relation. The base case is

dist(Λ, Λ) = 0

The recursive part is

dist(s, t) = min{match(s, t),
if t = Λ then ∞ else dist(s, t− last(t)) + cost(delete last dart of t),
if s = Λ then ∞ else dist(s− last(s), t) + cost(delete last dart of s)}

where the cost of the deletion is zero if the last dart’s mate does not appear in
the string. We use the notation t − last(t) to denote the string obtained from t
by deleting its last dart.
2 Note, however, that we use notation very different from that of Zhang and Shasha.

They described their algorithm in terms of (disconnected) forests induced by sub-
sequences of the nodes ordered by preorder, whereas we use substrings of Euler
strings.

96 P.N. Klein

As an example of how the recurrence is applied, consider the two trees at the
bottom-right of Figure 1. Applying the recurrence relation to the Euler strings of
these trees, we obtain dist(aa′bcc′b′, xyy′x′)=min{dist(aa′bcc′, xyy′x′)+cost(delete b′),
dist(aa′bcc′b′, xyy′) + cost(delete x′), match(aa′bcc′b′, xyy′x′)}.

Invoking the definition of match, the last term is equal to dist(aa′, Λ) +
dist(cc′, yy′) + cost(change bb′ to xx′).

The correctness of the recurrence relation is based on the following observa-
tion, which in turn is based on the fact that deletions and label modifications
do not change the order among remaining symbols in a string.

Proposition 1 (Zhang and Shasha). Consider the cheapest set of operations
to transform s and t into the same string x. If the last dart of s is not deleted
and the last dart of t is not deleted, then these two darts must both correspond
to the last dart in x.

The value of dist(s, t) is the minimum over at most three expressions, and
each depends on the distance between smaller substrings. Therefore, to com-
pute the distance between Euler strings E(A) and E(B), we can use a dynamic
program in which there is a subproblem “compute dist(s, t)” for every pair of
substrings s, t of E(A) and E(B). The subproblems are solved in increasing or-
der of |s| and |t|. The number of pairs s, t of substrings is O(|A|2|B|2), and each
value dist(s, t) can be calculated in constant time. Thus the time required is
(|A|2|B|2), which is O(n4).

4 Obtaining a Faster Dynamic Program

Zhang and Shasha take advantage of the fact that not all substring pairs s, t
need be considered, and thereby obtain an algorithm that, depending on the
input trees, can be much faster than the naive algorithm. However, in the worst
case their algorithm takes Ω(n4) time like the naive algorithm.

We modify some of their ideas to obtain an algorithm that takes O(n3 logn)
time. In this section, we present our new ingredients and the algorithm that
employs them. In the next section, we will discuss how this algorithm relates to
that of Zhang and Shasha.

We start by presenting the ingredients, a sequence of substrings of a tree’s
Euler string and a decomposition of a tree into paths. Then we show how to
combine these ingredients to obtain the algorithm.

4.1 Special substrings

Let T be a tree, and let P be a path starting at the root of T and descending
to a leaf. We shall define a sequence of substrings of E(T), called the special
substrings. The first special substring is simply E(T) itself; each subsequent
substring is obtained by deleting either the first or last dart of the previous sub-
string. It is therefore convenient to define the sequence of substrings by defining

Computing the Edit-Distance Between Unrooted Ordered Trees 97

the sequence of darts to be deleted, which we call the difference sequence. The
recursive procedure below defines this sequence. (We use ◦ to denote concatena-
tion of sequences.)

Diff(T, P):
Let r := root(T).
If r has no children then return the empty sequence
Else let v be r’s child in P .

Let Tleft denote the prefix of E(T) ending on (r, v).
Let Tright denote the suffix of E(T) beginning on (v, r).
Return Tleft ◦ TRright ◦Diff(T (v), P (v))

a
a’ b b’ c

c’

d d’e e’

f
f’

g
g’

Let e1, . . . e|E(T)|+1 denote the difference sequence. For example, for the tree
shown to the right of the procedure, the difference sequence is aa′bc′d′dcb′ee′ff ′gg′.
Now we can define the special substrings t0, t1, . . . , t|E(T)|+1 of T with respect
to P . Substring ti is obtained from E(T) by deleting e1, . . . , ei.

Lemma 1. The sequence of special substrings ti of T with respect to P has the
following properties.

1. For i = 1, . . . , m, the substring ti is a substring of ti−1 and is shorter than
ti−1 by one dart ei.

2. Suppose ei is an dart not on P and ej = eMi (j > i). Then ti−1 is either
tj ej E(T (ei)) ei or ei E(T (ei)) ej tj.

3. For each node v of P , the string E(T (v)) is one of the special strings.

Definition 1. For a nonempty special substring ti, define the successor of ti to
be ti+1, and define the difference dart of ti to be ei+1.

Thus the successor of ti is obtained from ti by deleting the difference dart of
ti. Note that the difference dart of ti is either the leftmost or the rightmost dart
occuring in ti.

4.2 Decomposition of a rooted tree into paths

The next idea is the employment of a tree decomposition into heavy paths. This
decomposition is used, e.g., in the dynamic-tree data structure [4]. Given a rooted
tree T , define the weight of each node v of T be the size of the subtree rooted
at v. For each nonleaf node v, let heavy(v) denote the child of v having greatest
weight (breaking ties arbitrarily). The sequence of nodes

r, heavy(r), heavy(heavy(r)), . . .

defines a descending path which is called the heavy path; we denote this path by
P (T).

Each of the subtrees hanging off of P (T) has size at most |T |/2 (for oth-
erwise the heavy path would enter the subtree). We recursively define the tree
decomposition of T to include the path P (T) together with the union of the tree
decompositions of all the subtrees hanging off of P (T).

98 P.N. Klein

Fig. 3. In the left picture, a tree’s heavy path is indicated in bold. On the right
is depicted the decomposition of a tree into heavy paths and associated special
subtrees. The dots indicate trivial, one-node heavy paths.

Let P1, . . . , Pk be the descending paths comprising the tree decomposition of
T , and let r1, . . . , rk be the first nodes of these paths. For example, r1 is the root
of T . Define the collapsed depth of a node v in T to be the number of ancestors
of v that are members of {r1, . . . , rk}.

Lemma 2 (Sleator and Tarjan, 1983). For any node v, the collapsed depth
of v is at most log |T |.

For i = 1, . . . , k, let Ti be the subtree of T rooted at ri. We call each Ti a
special subtree. We use P (Ti) to denote the heavy path Pi that starts at ri.

4.3 Special substrings of special subtrees

For a tree T equipped with a decomposition into heavy paths, we define the
relevant substrings of E(T) to be the union, over all special subtrees T ′ of T , of
the special substrings of T ′ with respect to P (T ′).

Lemma 3. The number of relevant substrings of T is at most 2|T | log |T |

Proof. The proof consists in combining a slight modification of Lemma 7 of
Zhang and Shasha [10] with our Lemma 2.

The analogue of Zhang and Shasha’s lemma states that∑
special subtree T ′

|T ′| =
∑
v∈T

collapsed depth of v (1)

To prove this equality, note that for each node v, the number of special subtrees
T ′ containing v is the collapsed depth of v. Thus v contributes the same amount
to the left and right sides.

For each special subtree T ′, the number of special substrings is one plus
the number of darts in T ′, which is 1 + 2(|T ′| − 1). Thus the total number of
relevant substrings is at most the sum, over all special subtrees T ′, of 2|T ′|. By
combining (1) with Lemma 2, we bound this sum by 2|T | log |T |.

Computing the Edit-Distance Between Unrooted Ordered Trees 99

Lemma 4. For every node v of T , E(T (v)) (the Euler string of the subtree
rooted at v) is a relevant substring.

Proof. Every node v occurs in the heavy path P of some special subtree T ′.
By part 3 of Lemma 1, E(T ′(v)) is a special substring of T ′, hence a relevant
substring of T .

4.4 Unrooted, ordered trees

Given an unrooted, ordered tree T , let E∗(T) denote the Euler tour of the darts
of T , interpreted as a cyclic string. For each dart d, we can obtain a non-cyclic
string from E∗(T) by designating d as the starting dart of the string. Each non-
cyclic string thus obtained is the Euler string of one of the rooted versions of T ,
and conversely each rooted version of T can be obtained in this way. Let R(T)
denote the set of these Euler strings. Note that |R(T)| = O(|T |).

4.5 The new dynamic program

We finally give the new algorithm for computing the edit distance between trees
A and B. Essentially the same algorithm is used for the rooted case and the
unrooted case.

– If B is unrooted, root it arbitrarily.
– Find a heavy-path decomposition of B, and then identify the relevant sub-

strings of each special subtree of B.
– By dynamic programming, calculate dist(s, t) for every substring s of the

cyclic string E∗(A) and every relevant substring t of B.
– For the rooted distance, output dist(s̄, t̄), where s̄ is the Euler string of the

(rooted) tree A, and t̄ is that of B.
– For the unrooted distance, output mins∈R(A) dist(s, t̄), where t̄ = E(B). Note

that the min is over all Euler strings of rooted versions of A.

For the unrooted edit-distance between A and B, we see that the algorithm
arbitrarily roots B and compares it (using rooted edit-distance) to every rooted
version of A. The correctness of this approach is intuitively evident, and has
been formally proved by Srikanta Tirthapura [6]

Now we consider the analysis. The dominant step is the dynamic program-
ming. The number of substrings s of E∗(A) is O(|A|2). By Lemma 3, the number
of relevant substrings t of B is O(|B| log |B|). We show below how each value
dist(s, t) can be calculated in constant time from a few “easier” values dist(s′, t′).
Hence the time (and space) required is O(|A|2|B| log |B|), which is O(n3 logn).

We must show that the answer to every subproblem can be computed in
constant time from the answers to “easier” subproblems.

Note that the recurrence relation in Section 3, whose correctness is based on
Observation 1, relies on deletion of the rightmost darts of substrings. We can
invoke a symmetric version of Observation 1 to justify an alternative recurrence
relation based on deletion of the leftmost darts.

100 P.N. Klein

The ability to delete from the left gives us freedom which we exploit as
follows. Our goal is to compute dist(s, t) from a few “easier” values dist(s′, t′)
(i.e. where |s′| + |t′| is smaller than |s| + |t|). We need to ensure that for each
such value we use, the substring t′ is a relevant substring of B. Since t is itself
relevant, the successor of t is such a relevant substring t′. However, the successor
of t is either the substring obtained from t by deleting the last dart in t or the
substring obtained by deleting the first dart of t.

We now give a formula for computing dist(s, t). It is computed as the mini-
mum of three terms.

dist(s, t) = min{Delete-From-s(s, t),Delete-From-t(s, t),Match(s, t)}
We proceed to define the terms.

Delete-From-t(s, t):
If t is the empty string, return ∞
Let e be the difference dart of t.
If eM occurs in t, return dist(s, t− e) + cost(delete e from t)
else return dist(s, t − e)

Delete-From-s(s, t):
If s is the empty string, return ∞.
If t is the empty string, let e be the rightmost dart of s
else if the difference dart of t is the rightmost dart of t

then let e be the rightmost dart of s.
else let e be the leftmost dart of s.

If eM occurs in s, return dist(s− e, t) + cost(delete e from s)
else return dist(s− e, t)

Match(s, t):
If s or t is empty, return ∞.
Let e be the difference dart of t.
If t has the form t′ eM t′′ e then write s as s′ e′M s′′ e′.
If t has the form e t′′ eM t′ then write s as e′ s′′ e′M s′.
Return dist(s′, t′) + dist(s′′, t′′) + cost(match e in t with e′ in s)

The correctness of the formula follows from Observation 1 and its symmetric
version.

It remains to verify that, for each “easier” distance subproblem dist(s′, t′)
appearing in the formula, t′ is a relevant substring.

In Delete-From-t, the substring t′ is t− e where e is the difference dart of t.
Hence t− e is the successor of t, and is therefore relevant.

In Match, we have to check the substrings t′ and t′′. Since t′′ is the Euler
string of a rooted subtree, it is relevant by Lemma 4. We use part 2 of Lemma 1
to show that t′ is relevant. Assume t has the form t′ eM t′′ e (the other case is
symmetric). Say e is the ith difference dart, so t is the i− 1st special substring,
ti−1. Then by part 2, t′ is the jth special substring tj , where eM is the jth

difference dart.

Computing the Edit-Distance Between Unrooted Ordered Trees 101

5 Concluding Remarks

5.1 The algorithm of Zhang and Shasha

We have presented an algorithm that solves the edit-distance problem for both
rooted and unrooted ordered trees. Our algorithm has a better worse case bound
than the previous algorithm for rooted trees, that of Zhang and Shasha, and is
especially suitable for the unrooted case, for which Zhang and Shasha’s algorithm
alone is insufficient.

However, for the rooted case Zhang and Shasha’s algorithm may run faster
depending on the structure of the trees being compared. For this reason, it
may be useful for future research to interpret their algorithm in the present
framework; perhaps someone can combine the advantages of the two algorithms.

In the algorithm of Zhang and Shasha, the analogue of decomposition into
heavy paths might be called decomposition into leftmost paths. The leftmost
path descends via leftmost children. The disadvantage of this decomposition is
that it does not guarantee small collapsed depth; indeed, the collapsed depth
can be Ω(n).

Fig. 4. The decomposition of a tree into leftmost paths is depicted. The dots
indicate trivial, one-node leftmost paths.

The leftmost decomposition has a considerable benefit, however. One can
define the special substrings of a subtree to be the prefixes of the Euler string
of the subtree. The successor of a special substring is obtained by deleting
its last symbol. The advantage is that only rightmost deletes are needed in
the algorithm. For this reason, the decomposition idea can be applied to both
trees A and B being compared, not just B. The number of subproblems is
therefore O(|A| LR colldepth(A) |B| LR colldepth(B)) instead of O(|A|2 |B|
LR colldepth(B)).

One must verify that the analogue of Lemma 1 holds for this set of special
substrings. Part 1 holds trivially. Part 2 is easy to verify. Part 3 does not hold;
however, because of the leftmost decomposition, something just as useful does
hold. Say two substrings of E(T) are equivalent if upon removal of unmatched
darts the strings become equal. Note that we ignore such darts in computing

102 P.N. Klein

edit-distance; thus the edit-distance between equivalent substrings is zero. The
notion of equivalence gives us a variant of part 3: for each node v in the leftmost
path of a subtree T ′, there is a special substring (a prefix of E(T ′)) that is
equivalent to E(T (v)).

5.2 Related problems on trees

Zhang and Shasha point out that their dynamic program can be adapted to
solve similar problems, and give as examples two possible generalizations of
approximate string matching to trees; these problems involve finding a modified
version of a pattern tree in a text tree.

For some applications, comparison of unordered trees would make more sense.
Unfortunately, computing edit-distance on unordered trees is NP-complete, as
shown by Zhang, Statman, and Shasha [12]. Zhang has given an algorithm [9]
for computing a kind of constrained edit-distance between unordered trees.

One might consider generalizing from edit-distance between ordered trees to
edit-distance between planar graphs. However, the problem of finding a Hamilto-
nian path in a planar graph can be reduced to finding the edit-distance between
planar graphs (by using the dual graph).

5.3 Acknowledgements

Many thanks to Srikanta Tirthapura for his perceptive remarks and his skepti-
cism. He has been a great help in this research.

References

1. J. L. Gross and and T. W. Tucker, Topological Graph Theory, Wiley, 1987.
2. M. Maes, ”On a cyclic string-to-string correction problem,” Information Processing

Letters 35 (1990), pp. 73-78.
3. B. A. Shapiro, “An algorithm for comparing multiple RNA secondary structures,”

Computer Applications in the Biosciences (1988), pp. 387-393.
4. D. D. Sleator and R. E. Tarjan, ”A data structure for dynamic trees,” Journal of

Computer and System Sciences 26 (1983), pp. 362-391.
5. K.-C. Tai, “The tree-to-tree correction problem”, Journal of the Association for

Computing Machinery 26 (1979), pp. 422-433.
6. Srikanta Tirthapura, personal communication, 1998.
7. R. A. Wagner and M. J. Fischer, “The string-to-string correction problem,” Journal

of the Association for Computing Machinery 21, (1974), pp. 168-173.
8. J. T.-L. Wang, K. Zhang, K. Jeong, and D. Shasha, “A system for approximate

tree matching,” IEEE Transactions on Knowledge and Data Engineering 6 (1994),
pp. 559-571. 5

9. K. Zhang, “A constrained edit distance between unordered labeled trees,” Algo-
rithmica 15 (1996), pp. 205-222.

10. K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance between
trees and related problems, SIAM Journal on Computing 18 (1989), pp. 1245-1262.

11. K. Zhang and D. Shasha, “Approximate tree pattern matching,” Chapter 14 of
Pattern Matching Algorithms, Oxford University Press (1997)

12. K. Zhang, R. Statman and D. Shasha, “On the editing distance between unordered
labeled trees,” Information Processing Letters 42 (1992), pp. 133-139

	Introduction
	Notation

	Euler Strings: Parenthesized Strings for Representing Trees
	Comparing Substrings of Euler Strings
	Obtaining a Faster Dynamic Program
	Special substrings
	Decomposition of a rooted tree into paths
	Special substrings of special subtrees
	Unrooted, ordered trees
	The new dynamic program

	Concluding Remarks
	The algorithm of Zhang and Shasha
	Related problems on trees
	Acknowledgements

