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Abstract

This thesis examines several of the most central and fundamental complexity
classes. These classes are defined by polynomial and exponential time bounds both
uniform and nonuniform. Showing classes to be distinct or separate has been a long
standing objective in structural complexity theory. It is this objective that we address.
Specifically we are interested in separating classes in the exponential time hierarchy,
EXPH, from classes in the polynomial time hierarchy, PH. We show that, for any
fixed integer ¢, PNFIO(°)] ¢ NEXP. This improves a previous result by Fu, Li and
Zhong. Further we generalize this separation to related levels of PH and EXPH
showing that, for any fixed integer ¢ and z > 1, Af[o("c)] - nEXP

There is also an interest in separating exponential time classes from classes of sets
which are nonuniformly computable in polynomial time. By considering polynomial
advice classes we show that EXP ¢ DTIME(2°("*))/n% for fixed integers ¢; and
¢z. This implies, for example, that EXP ¢ E/lin.

Usually complexity theory is concerned with questions of set membership. An
alternative is to allow a model which computes a partial function and outputs a
value if one exists. In this way the time and space complexity of classes of partial

functions is studied. We show that our results relating both uniform and nonuniform
exponential and polynomial classes are true for the corresponding classes of function.
Further we show that P FNFPled g EXPFpp. This proof is then generalized to show
that P F=:[log] g EXPFpg, for 1+ > 1. Neither of these results is known for the
corresponding classes of sets and can not be shown using proof techniques which
relativize. Also we note that, for 2 > 1, PFEledl C PFNP ypless P = NP which
demonstrates that the structure of the polynomial hierarchy over function classes is

very different from the polynomial hierarchy over sets unless PH collapses to PVZ.



Chapter 1

Introduction

1.1 Computation and Complexity

Godel showed that no consistent system of logic could describe proofs of all true
assertions of arithmetic [G6d31]. This left as a question: Is there a method, or
mechanical process, which applied to a mathematical statement would give an answer
as to whether or not it was provable? Working on this question, both Turing and
Church independently answered in the negative by outlining rigorous system which
additionally isolate what has come to be accepted as the computable functions [Tur36,
Chu36]. Turing specifically developed a model for computation, the Turing machine,
which gave the theoretical underpinnings of the computer. So from a very deep
philosophical question, which lead to a series of truly landmark theoretical papers,
came an understanding of the theory of today’s computer.

It is not enough just to examine the nature of computation but one is also in-
terested in what can be computed in a reasonable world. Turing’s theoretical work,
after all, lead to the construction of one of the most widely used machines today
so, likewise, the practical limits of these machines is of interest. Alas, a very prac-

tical question again leads to an abstract theory, computational complexity theory.
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Thus the study of Turing’s model under the restriction of a reasonable amount of
computation time and memory space entered the picture.

One of the early steps in the study of resource-bounded computation was to define
a restricted model. This was succinctly done by Hartmanis and Sterns [HS65]. As
Richard Karp [Kar86] explains:

... but it is the 1965 paper by Juris Hartmanis and Richard Sterns that
marked the beginning of the modern era of complexity theory. Using
Turing machines as their model of an abstract computer, Hartmanis and
Sterns provide a precise definition of the “complexity class” consisting of
problems solvable in a number of steps bounded by some given function
of the input length. ... we now had a satisfactory formal framework for
pursuing the questions that Edmonds had raised earlier in an intuitive
fashion - questions about whether, for instance, the traveling salesman

problem is solvable in polynomial time.

Other early papers that contributed to the discussion of resource-bounded computa-
tion are [Edm65, Rab59, Rab60, Rit63]. This brief history leaves out many important
references and is intended only to give a broad outline of the development of structural
complexity theory.

Intuitively, we would like to know if a particular problem is computable in a
certain amount of time or space. This intuition translates into an examination of
classes of problems which can be shown to have common structural properties indi-
cating that they will be solvable using the same amount of time or space. A major
contribution towards this end was made in Cook’s paper [Coo71] where he laid the
foundation for the theory of N P-completeness. Independently, Levin obtained similar
results [Lev73]. As a part of Cook’s work he established the importance of polynomial

time many-one reductions as a tool for showing that two problems require the same
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amount of time. Subsequently, a paper by Karp [Kar72] showed that many interest-
ing problems are N P-complete, establishing NP as a complexity class of immense
interest.

A primary focus of structural complexity theory is showing that a class contains a
language which in fact can not be computed with less resources. In this way complex-
ity classes are shown to be distinct or separate. Intuitively, increasing the amount
of resources should allow us to recognize more languages. In fact various separa-
tion results are known between nondeterministic time classes [Coo73, SFM73, BG70]
and between deterministic time classes [HS65]. Separations between nondeterministic
and deterministic classes of the same time complexity have not been proved. This
thesis continues this line of inquiry specifically looking at the possible separation
of exponential time-bounded classes from both uniform and nonuniform polynomial

time-bounded classes.

1.2 Exponential Time

Computational complexity theory is the study of resource-bounded computation.
Two of the most commonly studied resources are the time and space needed to rec-
ognize the elements of a set or language. The complexity classes P and NP, poly-
nomial time-bounded deterministic and nondeterministic computation respectively,
have been a major focus of this study as they are known to contain many practical
problems [GJ79]. Although there are many open questions concerning P and NP
which are considered to be of great practical interest, these questions have thus far
resisted solutions and many of them have been shown, via relativization, not to be
solvable with many of the current techniques used in the field. Often questions con-
cerning P and NP can be related to questions about other complexity classes. As a

result, classes which appear to have less practical value are studied in hopes of better
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understanding P, NP and resource-bounded computation in general.

Problems for which there is no known solution in polynomial time; i.e., no known
efficient solution, are considered to be intractable !. These problems have been
broadly categorized as exponential time problems even though this includes prob-
lems in subexponential classes such as T/ M E(n'°¢™) [GJ79]. There are natural re-
lationships between many of the structural properties of P, NP, the classes in the
polynomial time hierarchy, PH, and related exponential time classes. For example, it
is known that if higher deterministic and nondeterministic classes are not equal then
there are corresponding lower classes that are also not equal. In many cases showing
that there exists a relationship between higher and lower classes will indicate that
resolving a question for exponential time is as hard as resolving a related question for
polynomial time.

Still, as will be discussed, the structure of exponential time classes does not always
mirror that of related polynomial time classes. Specifically, some of the techniques
which are used to demonstrate results in the polynomial time hierarchy do not gen-
eralize to exponential time hierarchies. For one, it has not been shown that general
downward separating results which apply to the polynomial time hierarchy can be
duplicated in natural exponential time hierarchies. This forces us to examine more
closely the semantics of oracle access.

Also the structure of the exponential time classes is of interest on its own. It
appears that many of the techniques from recursive function theory, which fail to
give positive results when applied to polynomial time classes, in fact can be used
to establish positive results about exponential time classes [KMR90]. So in some
respects, more is known about exponential time.

Exponential time is also of interest as natural complete sets for EX P are known.

'In different parts of the literature problems in both P, deterministic polynomial time, and BPP,
the class of languages recognized by polynomial time probabilistic Turing machines whose error is
bounded above by some positive constant € < 1/2 , have been considered tractable.
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In [SCT78] it is shown that some combinatorial games are complete for EXP. Also
the ”circularity problem for attribute grammars” is complete for EX P [JORT75] and
in [EPS87] a specific class of attribute problems is shown to be equal to EXP.

In the process of studying exponential time classes and their relationship to poly-
nomial time classes several questions have come to the forefront. Specifically, the

following questions have directly motivated different chapters of this thesis.
1. Is PNP properly contained in NEX P?
2. Is PNP properly contained in PNEXP?
3. Is BPP properly contained in EX P?
4. Is EXP ¢ P/poly ?

5. Does co— NEXP C NEXP/poly imply that the exponential time hierarchy

collapses?

6. Can the structure of function classes be used to show separations between classes

of sets?

None of these questions has been completely answered but a discussion of each is
presented. It turns out that questions 1 and 2 are equivalent. These questions are
the focus of Chapter 3. Questions 3 and 4 are related as every language in BPP
is in P/poly. Chapter 4 examines these questions. Chapter 5 examines question 5.
Lastly, Chapter 6 deals with relating polynomial time-bounded function classes to
exponential time-bounded function classes.

It should be noted here that there are several different ways to define expo-
nentially time-bounded classes. In this thesis EXP will be used to refer to the
classes DTIME'(Z”(”)) , where p is a polynomial and N EX P will be used to refer to
the classes NTIME(2P™). Likewise, E, (NE) will be used to refer to the classes
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DTIME(2™), (NTIME(2°") respectively), where ¢ is a constant. Definitions will

be presented in Chapter 2. The following containments are known:
PCNPCPHCPSPACECEXPCNEXP.
The following containments are proper [HS65, HLS65, Coo73]:
PCECEXPand NPC NEC NEXP.

Even though PH C PSPACE C EXP, it is not generally believed that PSPACE
is a subset of E or even that the polynomial hierarchy is contained in E. It is known
that PSPACE # E and that PH # E as both PSPACE and PH are closed under

polynomial time many-one reductions and E is not. However, it is not known if either

PSPACE or PH is contained in F.

1.3 Overview of Techniques and Results for Ex-
ponential Time

Previous results concerning exponential time classes and their relationship to com-
plexity classes in the polynomial time hierarchy will now be presented. This history
is intended to highlight results and specific techniques that have been used in the

study of exponential time classes and is not comprehensive.

1.3.1 If P= NP and Other Assumptions

In the study of complexity classes the technique of adding any easily recognizable suf-
fix to each word in a language, known as padding a language, is used to force a language
that is “hard” to recognize to be easier to recognize. Because the length of input words

is increased by the pad, and since the pad can be easily removed, the time complexity
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of a machine recognizing a padded language can be less than that of one recognizing
the unpadded language. This technique proves to be very useful in showing rela-
tionships between classes in the polynomial time hierarchy and related exponential
time classes. For example, Book used padding arguments to show that if P = NP,
then for every time constructible function f, DTIME(2°()) = NTIME(2°)) and
DTIME(f°W)) = NTIME(f°") [Boo74a]. Consequently, if P = NP then both
EXP =NEXP and E = NE. Book also showed via padding that if P = PSPACE
then, for every time computable function f, DTIME(2°()) = DSPACE(2°())
and DTIME(f°M)) = DSPACE(f°") [Boo74a]. So P = PSPACE implies
EXP = EXPSPACE. In general, padding arguments have been used to show
that if higher deterministic and nondeterministic classes are not equal, then there are
corresponding lower classes which are not equal. These are called downward separa-
tion results.

Another method which exploits increasing the length of strings is the use of tally
sets. A tally set is a set over a one symbol alphabet. For example, if A is any language
over {0,1}*, then tally(A) is defined to be {0™ | n € A}. Notice that the length of 0”
is exponential in the length of n. It is known that A is a member of £, (NE) if and
only if tally(A) € P, (NP resp.) and that E # NFE if and only if there is a tally set in
NP — P [Boo74b]. Along this same line, sparse sets, sets with at most a polynomial
number of strings of length n for any n, have been studied. In [HIS85], Hartmanis,
Immerman and Sewelson explored the relationship between sparse sets and lower and

higher complexity classes. They show, in part via an upward separation method, that
there exists a sparse set in NP — P, PSPACE — NP or PSPACE — P if and only
if, respectively, NE # E, ESPACE # NE, and ESPACE # E.
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1.3.2 With No Assumptions

By the time hierarchy theorems it is know that P # EXP and NP # NEXP
[HS65, Coo73, BG70]. Surprisingly, there have not been many results which improve
these separations, especially for deterministic classes. The proper containment of N P
in EXP is an open question and, as will be discussed, it appears to be difficult to
prove. In this thesis we show that PVPl*] C NEXP for any integer c. In general,
showing further separation of EXP and NEXP from polynomial time classes is
considered difficult 2.

A related result by Kannan separates the second level of the exponential time
hierarchy, NEX PN? from the polynomial time probabilistic class BPP. This result

will be discussed in Section 1.3.5.

1.3.3 What Oracles Say

An oracle Turing machine is a Turing machine with an additional oracle tape and 3
additional types of states, QUERY, YES and NO. If an oracle TM enters a QUERY
state with a string w written on the query tape, then if w is in a fixed oracle set the
YES state is entered next, otherwise the NO state is entered. Each such string w is
a query.

In the general case no restrictions are placed on the number of queries made by an
oracle Turing machine to an oracle set or on when during the computation queries are
made. Oracle machines where the number of queries made to the oracle is restricted
are considered in several areas of this thesis. The restriction is usually specified as a
function f(n), for inputs of length n. In the case where queries are made at any time
during the computation, the oracle machine is said to query the oracle adaptively or

in serial; i.e., answers to early queries can be used to determine later queries. If all

2Showing PN¥ g NEXP may in fact be possible with techniques which relativize. This is
discussed in Chapter 3.
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queries are made at one time, in other words in parallel, then the oracle is said to
be queried nonadaptively. Specifically in Chapter 3 we consider some consequences
of separating deterministic time classes relative to a fixed oracle where the oracle is
queried nonadaptive. Also in Chapter 3 we examine deterministic time classes relative
to a fixed oracle such that, for any input z where |z| = n, and function f, at most
f(n) adaptive queries are made.

The exact relationships between many of the central complexity classes, specifi-
cally, deterministic and nondeterministic classes are not known. To gain some insight
into these relationships they have been examined relative to oracle sets. Relativized
results are used as a tool to indicates the difficulty of resolving a proposition in the
unrelativized case. In some cases relationships which are generally believed to be
true can be shown to be true relative to an oracle set. If there is an oracle relative to
which a proposition is true, then this can be viewed as evidence that the proposition
is in fact true. Results relative to an oracle can also be counterintuitive. There may
be one oracle relative to which a proposition is true and another oracle relative to
which the same proposition is false. These contradictory results indicate that proof
methods that do relativize will not be useful in determining the truth of a proposi-
tion. As many of the techniques which have been used do relativize, resolving such
propositions is often said to be hard 3.

It has been shown by both Wilson and Dekhtyar [Dek76, Wil80, BWX82] that
there exist oracle sets A such that P4 # NP4 but E4 = NE#. This implies that a
proof showing P # NP would not necessarily show £ # NE. On the other hand, as
already mentioned, we know that if P = NP then £ = NE.

There are several results which give insight into the possibility of separating ex-

ponential time-bounded classes from polynomial time classes using techniques which

relativize. First Dekhtyar showed that there is an oracle A such that NP4 = EX P4

3Techniques which are borrowed from recursive function theory are widely used and do relativize.
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[Dek76]. This gives evidence that separating EX P from N P will be difficult. On the
other hand, in [GH83] it is shown that for each k& > 0 oracles A, B and C exist such
that (i) P4 - NP4 - EXP#, (ii) EXP? - NP8 and (iii) NP® and EXPF are
incomparable with respect to inclusion *.

We are especially interested in the possibility of separating NEXP from some
level of the polynomial hierarchy. A reasonable assumption is that PH C NEXP as
this is a consequence of EXP C NEXP, but it appears that proper containment of
PH in NEXP will be dificult to prove. From Heller we know that there is an oracle
A such that AP* - NPt = ABXPA - NEXP* [Hel86] so there is a set A such that
NPNPY — EXPA. As we know that PVPIn] ¢ NEXP, for any fixed integer c, this
leaves the relationship of PY¥ to NEXP as an open question. To date, no oracle
has been constructed such that PVP* is equal to NEXpPNP4,

If we consider probabilistic polynomial time then again there is an oracle A, due
to Heller, such that BPP4 = EX P4 [Hel86] ° Once again this gives evidence that
separating classes from EX P may be hard.

Oracle results also give evidence that the structure of the polynomial hierarchy,
PH, differs from that of exponential time hierarchies. Hartmanis, Immerman and
Sewelson [HIS85] show that there exists an oracle A such that E4 = NE4 but
NEA +£ E;EA. This leads them to comment that the upward collapse of the polyno-
mial hierarchy, which is implied if there is a collapse at any level of the polynomial
hierarchy, may be a peculiarity of the structure of the polynomial hierarchy and not
the general case. Nevertheless, Hartmanis, Immerman and Sewelson still conjecture

that if £ = NE then this implies the collapse of the entire exponential time hierarchy.

‘EXP, =J,_, DTIME(2°™").
SIn fact Heller shows that there is an oracle A such that R4 = A‘;"XPA.
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1.3.4 Strong Exponential Time Hierarchies

In the literature both EXPH and EH are frequently studied exponential time hier-
archies. These hierarchies are both defined by considering exponential time classes
using oracle sets that are in the polynomial time hierarchy. Two other hierarchies
defined via exponential time classes are SEH and SEXPH. They are called strong
ezponential time hierarchies ®. These hierarchies are defined by considering classes in
the polynomial hierarchy using sets in NEXP or NE as oracles. The first four levels
of SEXPH are

PNEXP

EXP, NEXP, NPNEXP NpN

SEH is defined similarly using £ and NE instead of EXP and NEXP. In both

hierarchies the A; classes are defined in an analogous way; i.e., AJEXP — pNEXP

These classes are extensively studied by Hemachandra in his thesis [Hem87]. In his

thesis Hemachandra shows that these hierarchies collapse,
E + PYE = SEH = PN**F — SEXPH
and gives the following downward separation results.
If either E= NE or EXP = NEXP then EXP=SEXPH.
If either NE =co—NE or NEXP =co— NEXP then NEXP =SEXPH.

Hemachandra also shows that EX PYP C PNEXP o there is a collapse at the lowest
level of the EX P H under the assumption that either EXP = NEXP or NEXP =
co— NEXP. In Chapter 3 we will further exploit this collapse.

6They are called strong because there exists an oracle A such that SEH# is not contained in
EH* (see [Hem87| for a discussion).
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1.3.5 Advice Classes and Exponential Time

We have already mentioned some results obtained using sparse sets, now we look at
results concerning sparse sets, the study of circuit complexity and advice classes. It
is well known that a language has small (polynomial-size) circuits if and only if it is
polynomial time Turing reducible to a sparse set. Equivalently, such a language is
said to be in the nonuniform complexity class P/poly also referred to as an advice
class. A set A is in P/poly if there is an advice function f : N — ¥* and a B € P
such that z € A if and only if (z, f(|z]|)) € B. So the advice string, f(|z|), depends
only on the length of z.

Kannan showed that NEX PN? does not have polynomial-size circuits [Kan82].
As every set in BP P has polynomial-size circuits this implies that BPP C NEXPNP,
Beside giving a separation of NEX PM? from bounded probabilistic polynomial time
this result indirectly relates NEX PNP to PH as BPP C P NIIY [Lau83, Sip83].

In Chapter 4 we further explore the relationship of exponential time classes and
advice classes. We show that EXP ¢ DTIME(2°"") /n%), for any fixed integers
c1, ¢a. This implies, for example, that EXP ¢ E/lin. We also show that EX PP ¢
PNP /ne for any fixed integer c. As was mentioned, there is an oracle A such that
BPP4 = EXP* so, since BPP ¢ P/poly nonrelativizing techniques will be needed
to improve these results.

In the context of an examination of superpolynomial circuits and almost sparse
oracles Buhrman and Homer [BH92| examine small circuits in relationship to the
E X P-time hierarchy. Buhrman and Homer show that if EX PN is in P/poly then
EXPNP = 2P NIIE and that if ENP is in P/poly then EN? C ¥ NIIJ. Buhrman
and Homer accomplish this by showing that if any A level of the EXP hierarchy
is contained in EXP/poly, then it is contained in EXP. Formally, if AFXP is
in EXP/poly, 1 > 1 then AEXP — EXP. Unfortunately, the techniques used in

Buhrman and Homer’s results do not appear to be applicable to N EX P/poly.
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In [BFNWO91] BPP is related to EXP and to probabilistically checkable proofs.
It is shown that BP P has weak subexponential simulations, i.e. a simulation in time
2" for infinitely many values of n and every € > 0, unless EX P has polynomial size
circuits and is contained in the class M A of languages with probabilistically checkable
proofs. Since MA € ©F JTIL then subexponential time simulations for BPP exist

unless £X P is in the second level of the polynomial-time hierarchy.

1.3.6 Further Work on Exponential Time Classes

This overview is limited to results which explore the relationship between exponential
time classes and polynomial time classes. It should be noted that interesting work
has been done strictly on the structure of exponential time classes. A few of these
papers are [Fu93, FLZ92, Gan90, LM93, TFL91, Wan90].

Although the structure of the NP complete sets is not well understood one of
the best understood classes of polynomial-time many-one complete sets are those in
EXP. Kurtz, Mahaney and Royer give a comprehensive overview of these results in
[KMRI0]. Results pertaining to the relationship of the isomorphism conjecture, one-
way functions and exponential time classes are also presented here. In general they
show that many of the proof techniques that are used in recursive function theory
apply nicely to exponential time classes.

Further, exponential time classes have been related to the probabilistic model
which describes interactive proof systems. In [BFL90] it is shown that the class of
languages having two-prover interactive proof systems, MIP is NEXP. This is in
direct contrast to an oracle result which states that relative to some oracle co— NP
does not have multi-prover interactive proof systems [FRS88].

There has also been a series of papers devoted to the systematic investigation of

the internal, measure-theoretic structure of £ and EX P. These results can be found

in [Lut93, LM93].
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1.4 The Boolean Hierarchy

The Boolean hierarchy has not been extensively examined with regard to exponential
time classes. As Chapter 4 of this thesis begin this study, a brief overview is presented
next.

The classes which form the lowest level of the Boolean hierarchy over NP, were
introduced initially in [PY82] and the complete hierarchy was studied under different
definitions in [KSW87, CH86, WW85]. We will characterize it as the hierarchy of
nested difference classes over NP. It is known that the classes in the Boolean hi-
erarchy, BH, are intertwined with the class of sets in Uy, PNPIIF [Beigl, KSW87).
(This notation indicates that for any language L in PNPIE the oracle Turing ma-
chine computing L makes at most k parallel queries to an NP oracle on any input
string.) These classes are referred to as parallel query classes. If queries are not
restricted to being in parallel then the resulting classes are referred to as bounded
query classes. Kadin [Kad88] showed that if the bottom two levels of BH collapse
then N P/poly = co— N P/poly. This, combined with a result by Yap [Yap83] that if
NP/poly = co— NP/poly then PH C ¥f and a close observation of Kadin’s proof
gives that if BH; = co— BH; then PH C Ag. This result links the collapse of both
the Boolean hierarchy and bounded query hierarchy to the collapse of the polyno-
mial hierarchy. In [CK90] this result is refined to show that if the Boolean hierarchy
collapses to level 7, then PH is equal to the 1** level of the Boolean hierarchy over
%', For a detailed examination of Boolean hierarchies see [Cha91, Sit90] [CGH*88]
[CGH*89] .

In Lozano’s thesis the Boolean hierarchy over NEX P is considered in his closing
remarks. Lozano observes that if the bounded query hierarchy over NE collapses
then this implies, via a padding argument , that co- NEXP C NEX P/poly [Loz92]
He leaves as an open question: Does this imply that NEXP = co—- NEXP?
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1.5 The Complexity of Function Classes

In general, problems in complexity theory have been stated as questions concerning set
membership. 7 An alternative is to consider the more general case of partial functions.
The advantage of considering functions as opposed to set membership questions is
that a function value can be an instance of a solution to a problem, whereas, a
corresponding set membership question just states the existence of an instance. In the
process of studying optimization problems Krentel [Kre88] began a very interesting
examination of partial functions with oracles, particularly PFNPU(™]  He directly
related the complexity of specific function classes to set recognition problems. In
addition, Krentel showed that if PFNPlel — PFNP then P = NP. A study of the
classes of partial functions that are obtained by limiting the number of queries to some
k> 1, PFNPI and PFt]tVP[k] was carried on by Beigel [Bei88|. Selman continued this
by formalizing the basic relationships between function classes, presenting all known
inclusion relations of these classes and examining function classes with both adaptive
and nonadaptive queries [Sel92]. For instance, Selman shows that PY?Y = P¥? if and
only if PFNP = PFNP and that if PFNPleenl = PFNP then R = NP. A further
study of function classes, where the oracle may also be a partial multivalued function

such as PFNPMV " can be found in [FHOS92].

1.6 Overview of Results

Each chapter is motivated by a specific question relating exponential time classes to
polynomial time classes. In Chapter 3 this question is: Is PVP properly contained

in NEXP? An equivalent question is: Is P¥¥ properly contained in PNY¥XP? In

"Even in [HS65] set recognition was not clearly the preferred model but was gaining popularity
probably eventually due to the simplification of the theory of nondeterminism [GJ79, Ste90].
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answer we show that
forz > 1, AEI_[TC] - »EXP  where c is a fixed integer.

A consequence of this is that PYNPln] C NEXP. This improves a corollary to Fu, Li
and Zhong’s result that NE ¢ PYPI®Y] namely that VPR C NEXP [FLZ92].

The general theorem which we prove is:

Theorem 1.6.1 Given C = U;cp DTIME(f(n)), where F is a fized family of time

constructible functions,
if C C EXP then, for any fized constant c, i + NEXP for i > 1.
In the same vein, we also show a similar result for truth-table reductions.

Theorem 1.6.2 Given C = U;cp DTIME(f(n)), where F is a fized family of time

constructible functions,
if C C EXP thenc, C # SEXP fori> 1.

This implies, for example, that PY? C NEXP.
We end Chapter 3 with a general hierarchy theorem. This theorem is stated in
terms of alternating Turing machines in which the number of alternations in bounded.
The motivating questions for Chapter 4 are: Is BP P properly contained in EX P?
and Is EXP ¢ P/poly? These are related as every set in BPP is in P/poly. With

regard to advice classes and exponential time classes we show:

Theorem 1.6.3 EXP ¢ DTIME(2°""))/n® for any fized integers ¢; and c,.

This implies for example that EXP ¢ E/lin. Along these same lines we show that

this theorem relativizes.

Theorem 1.6.4 For any oracle A EXPA ¢ DTIME(2°"™), A)/n for any fized

integers ¢; and c;.
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This implies EX PNP ¢ PNP /ne. This theorem is also, with a little work, modified
to give the same result with respect to truth table reductions implying EXPYF ¢
PNP Inc. These results were done jointly with Steve Homer.

Chapter 5 generalizes Kadin’s collapses of the polynomial time Boolean hierarchy
to the exponential time Boolean hierarchy over NEXP. It is shown that if the
lowest levels of the EX P-time Boolean hierarchy are equal then NEX P/poly =
co— NEXP/poly. This leads to the question: Does co— NEXP C NEXP/poly
imply that the exponential time hierarchy collapses? This question is discussed here.

In Chapter 6 the motivating question is: Can the structure of function classes be
used to show separations between classes of sets? Our answer is somewhat inconclu-
sive in that what we show is yes in some cases and probably not in other cases. Even

though it is not known if PNVPlo8l is properly contained in EX P we show that,
for all i, PF™ I8 C EXPFpp.®

This result does not imply that PF=! # E X PFpp because, unlike the corresponding
classes in PH, it does not appear that PF=! - PFEiP+1[1°g], for any 7, as this implies
P = NP. What we would like to show is that if PFNPI8l is properly contained
in EXPFpp, then PNPIogl is properly contained in EX P. Unfortunately, this does
not follow from the techniques used in Chapter 6. We do show that if Pév;[log"] is
properly contained in EX P¢p, the class of constant-bounded exponential functions,

then PNPlogn] C EXP. We end by showing that PFNEXP — EXPFII;.V;[pdy] and by
examining the relationship of PFNEXPlogl ¢4 FXPFpg.

8 p =108 is the set of all partial functions which can be computed deterministically by a poly-
nomial time-bounded oracle transducer which, on input #, makes at most O(log |z|) queries.



Chapter 2

Preliminaries

2.1 Basic Definitions and Notation

This chapter gives the basic notation and definitions used in this thesis. The standard
deterministic/nondeterministic multi-taped Turing machine is our basic computation
model. Variations of this model will be defined in this chapter. A knowledge of
the definitions of Turing machines, basic time and space-bounded computation, and
common reductions between classes ( <P | <F) is assumed. For further information
on these topics see [HU79, BDG88, BDG90].

All languages considered in this thesis are subsets of ¥ = {0, 1}*. Languages are
denoted by capital letters A, B, .... The complement of a language A is ¥* — A and 1s
denoted by A. Strings are elements of ¥* and are denoted by small letters w, z,, . . .
or by o, 3,7, .... We will use |z| to designate the length of z, where z is an element

of a language. Let N be the set of natural numbers. For a set A and n € N define
A, ={z € A|l|z| =n}.

Let (-,-) denote a natural encoding of two strings into one string. We may assume

that this pairing function is polynomial-time computable and invertible.

19
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A set S is sparse if ||[{z € S| |z| < n}|| < n° for some fixed ¢ and all n.

The class of languages of space complexity f(n) is denoted by DSPACE(f(n)).
The class of languages of time complexity f(n) is denoted by DTIM E(f(n)) and class
of languages of nondeterministic time complexity f(n) is denoted by NTIME(f(n)).
The following complexity classes appear through out this thesis.

PSPACE = .5, DSPACE(nc)
EXPSPACE = .5, DSPACE(2™)
P =U.s0 DTIME(n)

NP =U.5o NTIME(n®)

E = U0 DTIME(2)

NE = U5 NTIME(2)

EXP =U.o DTIME(2™)

NEXP = U, NTIME(2™)

For each class of languages C, let co—C be the set of complements of the sets
in C, co—C = {A ] Ac C}. Classes which are defined via deterministic time or
space bounded Turing machines are closed under complementation. Various non-
deterministic space classes are closed under complementation [Imm88, Sze88]. For
classes defined via nondeterministic time-bounded machines this is an open question.
If C is strictly contained in C’, then we write C' C C".

By the time hierarchy theorems [HS65, Coo73, BG70] :

PCEC EXPand NPC NEC NEXP.
By the space hierarchy theorem [HLS65] :

PSPACE C EXPSPACE.
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References for the following inclusions can be found in [HU79, BDG88]
PCNPCPSPACECEXPCNEXP CEXPSPACE.

Let Mo, My, Ms, ... be a fixed enumeration of Turing machines. Let L, = L(M;),
the language accepted by machine M;. For any of the complexity classes defined above
we may consider an enumeration { M.} of machine for that class. Specifically we will
consider an enumeration of nondeterministic Turing machines for NEX P and define
Kyoxr = {(e,2,1) | M. accepts z in <t steps }. The set Kynxr is <P _complete for
NEXP and for NE.

The following function classes, as previously defined in [BDG90], will be used. In

each case the function f is from ¥* to X*.
log={f| f(n) = c-log,n for some constant ¢ }
lin={f | f(n) = ¢ n for some constant ¢ }

poly = {f | f(n) = c-n* for some constants c, k }

2.2 Computing Relative to an Oracle

Machine based complexity classes relativize by allowing a set to be used as an oracle.
An oracle Turing machine is a multi-taped Turing machine that also has a separate
work tape for queries and three distinguished states: QUERY, YES and NO. Given
a fixed oracle set, if, on input z, a QUERY state is entered then the oracle Turing
machine will enter the YES or NO state depending on whether or not the string
currently on the query tape is in the oracle set. If some language L is accepted by
an oracle Turing machine M using the set A as an oracle and if M is time-bounded

(space-bounded) by some function f then we say that L is accepted in time (space)

f(n) relative to A.
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If L is accepted in time f(n) relative to A and TIME(f(n)) C C for some
complexity class C, then L € C4. We will specifically be interested in the classes
P4 NP4 EXP4 and NEXP# for various oracle sets A. The definitions for space-
bounded classes are analogous except in this case the size of the oracle tape must also
be specified ®.

Clearly, if a language L is in C* and A is in C’ then L is in C¢". For any language
L € C¢,if C is a class of languages that are at least polynomial time-bounded and A
is polynomial time many-one complete for C’ then L € C4. For example, if L €¢ PN?
then L € P54T,

The number of queries to the oracle can be limited. If L is in C4 for a fixed oracle
set A via Turing machine M and on input z at most f(n) queries are made to A,
then we write L € C4f(™)] or simply L € C4F! where F is a family of functions and
f € F. In particular the classes PA(] N pAL(] pX pAlf()] and NEX pAY(®)
will be considered for various sets A and functions f.

We will also consider polynomial time truth-table reductions denoted by <P. We
say A <P B if and only if A <% B via an oracle Turing machine which writes down
all of the queries on the query tape before any queries are made. In other words,
all queries are made without considering the answer to previously asked queries; i.e.,
nonadaptively. The definition of polynomial time truth-table reductions is generalized
to other time-bounds as follows. L <$ A if and only if A <% B via a f(n) time-
bounded oracle Turing machine which writes down all of the queries on the query
tape before any queries are made and such that TIM E(f(n)) C C. If L < A, then

we write L € C{}. The classes PYY and EXPYF will be of interest.

1For example, consider PSPACEZXP  If the size of the query tape is not bounded by some
polynomial then it is possible to write a string which is exponentially long, relative to the input
length, on the query tape. But this is then equivalent to querying an oracle in double exponential
time.
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2.3 Hierarchies

2.3.1 Using Alternating Turing Machines to Define Hierar-

chies

Alternating machines will be used to define time-bounded hierarchies. An alternating
Turing machine, or ATM, is a generalization of a multi-tape nondeterministic Turing
machine in the following way. The computation of a nondeterministic Turing ma-
chine can be thought of as answering an existential question; i.e., does there exist
a computation path through a computation tree that results in an accepting state.
Likewise, we can think of the universally quantified question; i.e., do all computation
paths through a computation tree lead to accepting states. An alternating Turing ma-
chine is a Turing machine in which each state is labeled either existential, universal,
accepting or rejecting. [BDG90].

A configuration of an ATM, M on input z, is defined in the same way that a
configuration of a Turing machine is defined. In addition, if the current state is a uni-
versal (resp., existential, accepting, rejecting) state then the configuration is said to
be a universal (resp., existential, accepting, rejecting) configuration. Likewise, com-
putation path, tnitial configuration, immediate successor, successor and computation
tree are all defined as for Turing machines.

We will define an accepting computation for an alternating Turing machine via a

labeling of a computation tree as in [BDG90].

Definition 1 Given a tree in which internal nodes are either universal or existential,

we denote by [ the result of the following labeling procedure:

1. the accepting leaves are labeled 1;
2. an emstential node 1s labeled 1 if at least one of it’s sons is labeled 1;

3. a unwversal node s labeled 1 if all of it’s sons are labeled 1.
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We say that an ATM M accepts z if there is a computation tree of M on z in which
the root gets label 1. The subtree of the computation tree which has all the nodes
labeled 1 is called the accepting computation tree of M on =z.

An ATM, M, is time-bounded by t if for any input z in L(M), with |z| = n,
there exists an accepting computation subtree of M on z with height at most ¢(n).
Similarly,an ATM, M, is space-bounded by s if for any input z in L(M), with |z| = n,
there exists an accepting computation subtree of M on z such that the space used by
each configuration in this computation subtree is bounded above by s(n). The class

of languages accepted by time-bounded alternating machines is defined as follows

(ASPACE(t(n)) is defined analogously).

Definition 2 For any time bound function t(n) denote by ATIME(t(n)) the class

of languages accepted by t(n) time-bounded ATMs.

By bounding the number of alternations a general definition for time and space-

bounded hierarchies arises.

Definition 3 Let M be an ATM and let z be an input. We say M is A(n)-alternation
bounded on z if any path of mazimum length of any accepting computation tree of M

on z alternates universal and exzistential configurations at most A(n) — 1 times.

So we say, for any k£ > 0, a A¥Y -machine (resp. All;-machine) is a k-alternation
bounded ATM which starts with an existential (resp. universal) state.

Then, for a function f, let E,’: (H,’:) denote the class of languages accepted by
a AXi(AIl;) alternating Turing machine which runs in time f(n). For a class of
functions F, 2f = User E,’: and II} = User H,’:. Using this definition we define three

hierarchies that will be studied in this paper:

1.) Letting F = { polynomial-time computable functions } we obtain the usual

levels of the polynomial-time hierarchy, PH.
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2.) Letting F = {2P(") | p is a polynomial } we obtain the levels of the exponential-
time hierarchy EXPH.

3.) Letting F = {2° | ¢ is a constant} we obtain the levels of the exponential-time

hierarchy FH.

The 4t* sigma levels of these hierarchies will be denoted XF, XFX? and ¥Z. The pi
levels will be denoted ITF, TIZX® and IIZ. Each of these hierarchies defined inductively
can also be represented using the classes usually denoted by AF. For PH, AP =
P™~1. The delta classes in both exponential hierarchies are defined in terms of
classes in the polynomial hierarchy 2. For EXPH, AEXP — EXP¥-1 and for E,
AE = B

The inductive definition of each of these hierarchies is based on using the class %7
as an oracles to build the :-+1% delta, sigma and pi levels. As these classes are modeled
using oracle Turing machines we can consider the variations of the Turing machine
model that are presented in Section 2.2. Specifically, in terms of the polynomial

hierarchy:

P is the set of languages in NPZLIF,

1

1P is the set of languages in co— NPZlF],

1

AP is the set of languages in PrL IR,

. . =F
Eftt is the set of languages in NP,,".

. : bl
Hftt is the set of languages in co— NP,,"™".

P
i—1

: . >
Aftt is the set of languages in P,

2Unlike polynomial functions, an exponential function composed with an exponential does not
yield another exponential function but will be doubly exponential. It follows then that EX PNVEXP
is not even in EXPSPACE.
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The definitions for EX PH are similar.

EZ-EXP[F] is the set of languages in NEX P>l

HZ-EXP[F] is the set of languages in co— NEX PZ11F],

AiEXP[F] is the set of languages in EX PPl

The definitions for EH are analogous to those for EXPH.

2.3.2 The Strong Exponential Hierarchy

The most frequently studied hierarchies can be defined via alternating Turing ma-
chines but not all hierarchies are known to be definable in this way. An open question
in [Hem87] asks if the strong exponential hierarchies can be defined via alternating
Turing machines. The following inductive definition of the strong exponential hierar-

chies will be used.

Definition 4 The strong ezponential hierarchy.

NSEH — |
NSEH — NE
NSEH — NPZEY fori > 2

ASEH — prE" forev>2

SEH - UiZo AfEH - UiZo EfEH

Substituting EXP for £ and NEXP for NE, the classes of SEXPH are defined
analogously. As was mentioned in the previous chapter both hierarchies collapse to

the A, level and SEH = SEXPH = PNE = pNEXP [Hem87).
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2.4 Computing with Probabilistic Models and Com-
puting with Advice

A nondeterministic Turing machine can compute a probabilistic algorithm by giving
the machine access to an random source such as an ideal random number generator.
Further, complexity classes can be defined in terms of these probabilistic machines.
In this thesis we will be concerned with two such class denoted BP P, bounded error
probabilistic polynomial time, and R, random polynomial time. These class were
originally defined in [Gil77, AM77] and references to all of the properties stated here
can be found in [Sch85, BDG88].

First we describe a general probabilistic machine. A probabilistic Turing machine
is a nondeterministic Turing machine where each nondeterministic choice is consid-
ered a random experiment in which the outcome has equal probability. We assume,
with out loss of generality, that each nondeterministic branch has two possible out-
comes each with probability 1/2. Now each nondeterministic computation of length
n has probability 27™. A probabilistic Turing machine has three types of final states:
accepting or a-state, rejecting or r-states and undetermined or ?-state. The outcome
of the machine on input z is now a random variable whose range is (a,r,7). Let
Pr[M(z) = y] denote the probability that machine M on input z halts in a y-state.
The probability that M accepts an input z is the sum of the probabilities of all
accepting paths.

Definition 5 BPP is the class of languages recognized by polynomial time proba-
bilistic Turing machines whose error probability is bounded above by some positive

constant € < 1/2.

Definition 6 R is the class of languages recognized by polynomaial time probabilistic

Turing machines which have zero error probability for inputs not in the language, and
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error probability bounded above by some positive constant € < 1/2 for words in the

language.

It is easy to see that R C BPP and as BPP is closed under complementation
which implies that co— R C BPP. In addition, it is known that

PCRCNP

The relationship of NP to BPP is not known. It is known that NP C BPP implies
that NP = R [Ko82] and also that NP C BPP implies that PH = %F [KL80].
Neither of these consequences is believed to be true.

It is known that every language in BPP is in the nonuniform complexity class

P/poly which is defined using the following general definition for advice classes.

Definition 7 An advice functions is a functions f : N — X*. Let C be a complezity
class, and F' a family of advice functions. The class C/F is the collection of all sets
A such that for some B € C and a function f € F

z € A if and only if (z, f(|z|)) € B.

2.5 The Boolean Hierarchy over NEXP

As was mentioned in the introduction there are several equivalent definitions for the
Boolean hierarchy. We will start by defining the bottom levels of both the polynomial
time and exponential time Boolean hierarchies. The bottom levels of the Boolean
hierarchy over NP are Df and co— DF. These classes were originally defined in
[PY82].

DP ={LyNLy| Ly, Ly € NP}

co—DY ={L, ULy | Li,L, € NP} ={L|Lc D¥}
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Complete sets for D and co— D¥ are:
SAT NSAT = {(F1, F,) | F1 € SAT and F, € SAT}

SATV SAT = {(F,, F,) | F, € SAT or F, € SAT}

where F; and F; are boolean formulas. The following classes are the analogous classes

for exponential time.
D®¥ ={L,NLy;| Ly, L, € NEXP}

co—D¥ ={L UL, | Ly, L, ¢ NEXP}

As will be shown in Chapter 4, complete sets for D? and co— D¥ are:

KEFXP A KEFXP == {(<€1, T, t1>, <€2, T2, t2>) | <€1, T, t1> € KEFXP and
<62, 2, t2> € KEFXP}
KEFXP \% KEFXP == {(<€1, T, t1>, <€2, T2, t2>) | <€1, T, t1> € KEFXP or

<62, T2, t2> € KEFXP}

where e is treated as the index of a NEX P machine,  as an input string and ¢ as a

time bound. Following the definition of the Boolean hierarchy for polynomial time in

[CGH*88] define the Boolean hierarchy for exponential time, EX PBH, as follows.
Definition 8 The Boolean hierarchy over NEXP.

EXPBH, = NEXP
EXPBHy; = {Li(\Ly | Ly € EXPBHy_, and L, € NEXP}
EXPBHyyy = {I1ULy | L, € EXPBHy; and L, € NEX P}
co— EXPBH; = {L|L € EXPBH,}

EXPBH = U;», EXPBH;
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2.6 Function Classes

The standard definitions for function classes will be used. Many of these definitions
appear in [Sel92] where there is a complete discussion of function classes.

The computation model we use generalizes the basic definition for determinis-
tic/nondeterministic multi-tape Turing machines by allowing a value to be written
on an output tape. A transducer T is a nondeterministic Turing machine with a
read-only input tape and a write-only output tape. On input string =, T' computes
a value y if there is an accepting computation path of 7" on z for which y is the
final contents on the output tape. Nondeterministic transducers compute partial,
multivalued functions. Accordingly, for an input string z, 7' may have many different
possible output values each resulting from a different accepting computation path. If
T on z outputs y then we write T'(z) — y.

The following function classes appear throughout this thesis.

PSPACEF = the set of all partial functions which can be computed in poly-

nomial space.

PF = the set of all partial functions which can be computed deterministically

by polynomial time-bounded transducer.

NPMV = the set of all partial functions which can be computed nondetermin-

istically by polynomial time-bounded transducer.
NPSV = the set of all f € NPMYV that are single valued.

EXPF = the set of all partial functions which can be computed deterministi-

cally by an 2" time-bounded transducer where c is a constant.

NEXPMYV = the set of all partial functions which can be computed nondeter-

ministically by an 2" time-bounded transducer where c is a constant.
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NEXPSV = theset of all f € NEXPMYV that are single valued.

A function [ is constant-bounded if there is a constant ¢ such that for all z in
the domain of f |f(z)| < ¢. For any classes of functions, let Ccp = the set of all
constant-bounded functions in C.

A function f is polynomial-bounded if there is a polynomial p such that, for all z
in the domain of f, |f(z)| < p(|z|). For any classes of functions, let Cpp = the set of
all polynomial-bounded functions in C.

We will assume that all functions in PSPACEF are in fact in PSPACEFpg
unless specifically stated otherwise; i.e., that the function output is also bounded by
the space-bound.

Given partial multivalued functions f and g, define g to be a refinement of f if
the domain of g is equal to the domain of f and for all z in the domain of ¢ and all
y, if g(z) — y, then f(z) — y.

Let F' and G be classes of partial multivalued functions. If f is a partial multi-
valued function, we define f €. G if G contains a refinement g of f, and we define
FC.Gifforevery feF, fe. G

We also allow a transducer T to access an oracle set in the same way that we have
already defined for Turing machines. In this way we may consider a function f in
PFNPlosl Tn this thesis oracle sets will always be subsets of £* and will never return
a value other than 0 or 1.

If alternating machines are allowed to write a string to an output tape, in other
words, the alternating machine is now a transducer, then we would like to generalize
the notion of defining hierarchies based on alternating machines with output. In fact,
this is not exactly correct as a particular nondeterministic transducer may compute
a multivalued function. In this case there may be several different possible output
values for some input. As the hierarchy of function classes that will be examined in

this thesis are the A classes, we will use an inductive definition which does not rely
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on ATM’s.

Definition 9 The polynomial hierarchy for function classes.

APF = PF
APE = PF¥ >0

PHF = U;>o AFF

Likewise, exponential hierarchies can be defined for function classes. As in the case
of EXP and E, these hierarchies are defined in terms of the polynomial hierarchy.
The definition for EXPHF is as follows and EHF is defined analogously.

ABXPF — EXPF

ABXPF — EXPF® i >0

EXPHF = ;5o APXPF



Chapter 3

Exponential Time Classes and PH

In this chapter we relate the polynomial time hierarchy to the exponential time hier-

archy. The main motivation is to answer the following open question:
Is PY? properly contained in NEX P?

Recently progress was made on this question by Fu, Li and Zhong using standard

translation methods. In [FLZ92] Fu, Li and Zhong show that NE ¢ PNPn*M1 A

‘M is properly contained in NEXP. This follows

consequence of this is that PNF»
easily as pNPR] C NEXP and if we assume that NEXP C PNPRO] then this
of course implies that NE C PNPRY] which contradicts Fu, Li and Zhong’s result.
Further progress is made in this chapter.

How practical is it to assume that Fu, Li and Zhong’s result can be improved?

PNP is properly contained in NEXP?

For example, how hard is it to show that
We answer this question by the convoluted reasoning that there is a lack of evidence
indicating that a separation of PN* from NEXP will in fact be hard to prove. In

other words, no proof has been given to show that these two classes are equal relative

to an oracle set. It has not been proved that there is an oracle A such that pNPA —

NEXPA. There is an oracle due to Heller [Hel86] such that PN?* - NPVPA —

33
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NEXPA = EXPNP* 56 we can’t easily hope to separate NPN¥ form NEXP but
this only makes extending Fu, Li and Zhong’s separation to PYF more interesting.
In fact Fu, Li and Zhong mention that they have tried unsuccessfully to show either
that NE ¢ PNP or that there is an oracle A such that NE4 C PYP* [FLZ92].

We now present a related question. In Hemachandra’s thesis [Hem87] | as a part
of his examination of the strong exponential time hierarchy, he shows that answering

the question:

Is PY? properly contained in PNEXP?

is equivalent to answering the question:
Is PY? properly contained in NEX P?

Obviously, if PN? is properly contained in NEX P then it is also properly contained
in PVEXP G4 if the second question is answered in the affirmative then so is the first.
What Hemachandra observed is that if NEXP = co-NEXP then NEXP = PNEXP,
Using this downward separation result, we see that a positive answer to the first
question implies a positive answer to the second question. If in fact PNP £ pNEXP
then under the assumption that PY? = NEXP we see that, since NEXP is closed
under complementation, NEXP = co— NEXP = NEXP = PNPXP We conclude
from this that PY? = PVEXP which would be a contradiction. Therefore, if PV? is
properly contained in PYEXP then PNF is also properly contained in NEXP.

Again, to date, it has not been shown that P¥¥ is equal to PVEXP relative to
an oracle so we have no evidence that separating PY? from PVZXP will be hard.
Although results in complexity theory can often be counterintuitive, since we know
that NP # NEXP we expect that PY? is not equal to PVEXF,

In this chapter, we improve Fu, Li and Zhong’s result. First, using the fact that

the time hierarchy theorem relativizes and that this can be generalized so that the
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relativized time hierarchy theorem is true even if only nonadaptive queries are consid-
ered, we show that A}, ,, C XF*P. This implies, for example, that PY” C NEXP.
Next we give a hierarchy theorem which diagonalizes over time-bounded oracle Tur-
ing machines while also bounding the number of queries made to the oracle. This
is then used to show that AEEC] - YEXP  where ¢ is any constant. For example,
this yields PNP’] C NEXP which implies pNPln] C NEXP. In the last section
of this chapter we give a general hierarchy theorem in terms of alternating Turing
machines. This theorem is used to demonstrate some simple relationships between
the polynomial hierarchy and hierarchies for classes which use more than polynomial

time.

3.1 Using Truth-table and Bounded Query Classes
to Separate Classes in the PH from Classes

in the Exponential Hierarchy

A consequence of the fact that the time hierarchy theorem relativizes is that every
level of the polynomial hierarchy separates from the corresponding level of the ex-
ponential time hierarchy (see Section 3.2 for this proof). In this section we improve
this separation by showing that for any fixed constant c, AEI_[TC] is properly contained

in XFXP  This implies, for example, that for any 1, Af:_[llm] is properly contained in

TEXP PNPliin]

and specifically that is properly contained in NEXP.

First we give a slightly weaker result that uses the same general proof technique.
We show that every Af:_l,tt level of the polynomial hierarchy is properly contained in
the ©EXF level of EXPH. This implies, for example, that PYF is properly contained
in NEXP. This result is developed by generalizing and extending several observa-

tions that Hemachandra made about the class PN¥XP  In [Hem87], Hemachandra
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gives a downward separation result showing that
if NEXP = co—- NEXP then NEXP = PVFXP,

Further he shows that EXPXY? is contained in PNPXP_ Consequently if NEXP =
co— NEXP then NEXP = EXPY?. We explore these observations with respect to

the classes PE'" for any i. In this section, we show that

if BEXP — co—NEXP then REXF — P for any 7 > 1.

.. . . . EXP . E X P[pol
Similarly we show that Aﬁ_)fft is contained in P*" and in fact A} leoly] Aﬁ_)fft =

PE*F for 4 > 1. Now under the assumption that NEXP — Af:_l,tt the class XZXP

will be closed under complementation and therefore equal to Aﬁ_)fft. This implies
that Af:_l,tt = Afl_)fft which contradicts the time hierarchy theorem with respect to

truth-table reductions.

Consequently, PYF is properly contained in NEXP. This is not a new result
as this is implied by a corollary of Fu, Li and Zhong’s result that NE ¢ pNPm]
[FLZ92]. It follows from their result that PNPR] i properly contained in NEXP.
Since PNFlosl — PINP and n°() majorizes log(n) Fu, Li and Zhong’s result implies
that PYF is already properly contained in NEXP.

The time (space) hierarchy theorem relativizes so it has been observed that, if
time classes T} and T, are distinct via the time hierarchy theorem, then so are T#
and T3 for any oracle A. This can be extended further to show that the classes of
sets which are 74 truth-table reducible to A are distinct from the class of set which
are T, truth-table reducible to A. To see this we consider the proof of the time
hierarchy theorem. In this theorem, one machine M treats its input (7, w) as a tuple
representing the index to a Turing machine M; (in a fixed enumeration of machines)
and an input string w. The machine M then proceeds to simulate the computation

of M; on w. Given a particular time bound ¢ on M, the machine M can then be used
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to diagonalize over all machines in an enumeration. Observe, all that is needed to
adapt the time hierarchy theorem to consider only nonadaptive oracle machines is to
reject any input (2, w) such that during the simulation of M; on w, all queries are not
made one step of M/s computation on w.

The following proposition is a straight forward generalization of a similar result

covering the polynomial time hierarchy.
Proposition 3.1.1 For any oracle A, EX PAlPoll C EX PA.

Proof. Given any set L in EXP4lP there are polynomials p and p’ such that
there exists a 2°(™) time-bounded oracle Turing machine M accepting L that makes
at most p'(n) queries to A on any input of length n. Given any input of length n, if
we consider all possible queries that can be made by M to the oracle then there are
at most 2P(") x p’(n) queries. Since 2P(") x p'(n) < 2P(M+P' (") then all queries in the

computation can be made nonadaptively by a EX P/ machine. L

Lemma 3.1.1 For all 1 > 1, AFXE C P=777.

Proof. Given L € Aﬁ_)fft via oracle machine M with an oracle set A in %F. Let

27(") be the running time of M. Consider input z with |z| = n. If we know how many

of the 2P(") queries made to A receive a YES answer then a ¥¥*F machine can guess

which queries receive a YES, verify that they are in fact in A and then simulate the

computation of M on z substituting the correct oracle answers. So given the correct

number of YES answers only one query to a %P oracle is needed to determine if

z € L. But the number of correct YES answers can be found in polynomial time

. . . EXP
given a LF*F oracle via binary search, so AZXE C P77, [

Lemma 3.1.1 can be found in [Hem87] for « = 1.
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In general, given a fixed enumeration, { M.}, of nondeterministic oracle Turing

machines which run in NEX P time we have the following complete set for BEXF:
=P . oL
Ksexe = {(e, z, t) | M. "' on input z accepts in time t}.
We can also consider the set
D = {{{e, z, t), 0°) | (e, z, t) € Kypxe }

which is formed by padding elements of Kz?xp with a possibly exponentially long
pad. Clearly, given an oracle Turing machine, M;, which computes Kz?xp then there
exists a nondeterministic oracle Turing machine which accepts D . One such machine,
on input (e, z, t), 0%), just simulates the computation of M; on (e, z, t) and accepts
or rejects accordingly. It is easy to see that the language accepted by such a machine

will be in £ and that (e, z, t) € Kgoxe if and only if {{e, z, ), 0¢) € D.

Lemma 3.1.2 For all1 > 1, Aﬁfp[p"ly] = AFE = 2

E X Ppoly]

Proof. From Proposition 3.1.1 and Lemma 3.1.1 we have that A, C
Aﬁ_)fft C P It remains to show that P C Aﬁ_)ip[pdy]. Assume L is a

language in P and that M is a polynomial time oracle machine computing L.
Without loss of generality, we may assume the oracle set is Kz?xp, a complete set
for XEXP Define a deterministic oracle Turing machine M’ as follows. Assume that
D, as defined above, is the oracle set used by M’. On input w, M’ simulates M on
w. If during the simulation M queries g = (e, , t) then M’ queries ((e, z, t), 0%) to
D. If {{e, z, t), 0*) € D then M’ proceeds with the simulation of M as if (e, z, t)
were 1n Kz?xp. Otherwise, M’ proceeds as if the query were not in Kz?xp. If the
simulation ends in an accepting state then M’ accept, otherwise M’ reject. Since
(e, z, t) € Ksexe ¢ {(e, z, t), 0Y) € D and ((e, z, t), 0°) can be constructed in time
exponential in the length of w, all queries are answered correctly in exponential time.

As only polynomial many queries are made L(M) € Afl_)fp[p"ly]- O
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For example, this gives that EXPNFlll — EXPNP — PNEXP  Note that
PNEXP — EXPINFP is a peculiarity of these classes. In fact, since EXY - EXPYF

and PNE = PNEXP we can conclude that ENFP # PNE,

Lemma 3.1.3 Fori > 1, XEXP = co—SFXP implies that SEXP = p=F77

EXP
Ei

Proof. Assume for some ¢, that BFXF = co—2EXP  Let L€ P . Consider the

oracle Turing machine computing L. For ever query q made to a %P oracle, since

NEXP — co—nEXP it is sufficient to guess and check a witness for ¢ to determine the

EXP
Ei

. . . . . . EXP
oracle answer. As this is a computation, this implies BEXP = pE™" L

Theorem 3.1.1 Given C = Ujcp DTIME(f(n)), where F is a fized family of time-

constructible functions,
if C C EXP then Cp # SF¥P fori> 1.

Proof. Let C = Ujcp DTIME(f(n)), where F is some fixed family of functions
and C C EXP. Assume Ctzt:f = NEXP s Ctzt:f is closed under complementation we
have that XZXP = co— NEXP which by Lemma 3.1.3 implies LEXF = P We
are given by Lemma 3.1.2, that Aﬁ_)fft = P 5o this implies that Ctzt:f = Aﬁ_)fft

P P
which is equivalent to saying Ctzt:i = E'XPtzt:i . This last statement contradicts the

time hierarchy Theorem with regard to truth-table reductions. 0

For example, if we assume that PY¥ = NEXP then, since PY'? is closed under
complementation, NEXP = co-NEXP. This in turn implies that NEXP = PNEXP
by Lemma 3.1.3. Since, by Lemma 3.1.2, PNEXP — EXPNP we conclude that
PYNP — EXPYNP which contradicts the time hierarchy theorem with respect to truth-

table reductions, therefore PY? C NEXP.
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As was already mentioned, Fu, Li and Zhong give a result which implies that
pNPMl ¢ NEXP [FLZ92). As PYP = pNPlognl 4nd logn is contained in n°®)
for all n, then it is already known that PY? ¢ NEXP. In fact Fu, Li and Zhong
show that PYFE ¢ NEXP which is also implied by our theorem 1. To see this
consider that by a simple proof in which the length of queries is padded we know
that PYPL C PLYP. Then from Theorem 3.1.1 we get that PLY? C NEXP which
implies that PYPL ¢ NEXP.

In the proof of Theorem 3.1.1 we use that if 2EXP = co— NEXP then this implies
that REXP = Aﬁ_)fft. As Lemma 3.1.2 shows that, for any ¢, Aft)fp = AiEXP[pdy]
then we can also use that if BEXP = co— NEXP then REXP — Aﬂfp[pdy]. In fact,
using this observation Theorem 3.1.1 can be improved to show that for any fixed
constant c, AEI_[TC] is properly contained in the XZXF level of EXPH. To do this a

general hierarchy theorem which separates relativized classes while also considering

the number of queries made to the oracle is needed.

Theorem 3.1.2 Let t1,t, be time constructible functions, where for all n , ta(n) <

t1(n); infrseo ti(% = 0 and , for all n, ta(n) < ta(n) then, for any oracle
A[f(n)], where f(n) is the number of queries made to A for any input length n,

DTIME(ti(n), Alta(n)]) contains a language which is not in DT IM E(t3(n), Alts(n)]).

Proof. We construct via diagonalization a set L in DT IM E(t1(n), Alt2(n)]) which
is not in DTIM E(t3(n), Alta(n)]). For z in {0,1}*, let M, denote an oracle Turing
machine which has z as its Godel number. Without loss of generality, we give a proof
for oracle machines on input alphabet {0,1}.

Fix an oracle set A. We construct an oracle TM, M, that runs in time ¢;(n) and
makes at most t3(n) queries to A and disagrees on at least one input with any ¢3(n)

time bounded oracle TM making at most ¢4(n) queries to A.

INPL=J,5o NTIM E(2'°8° ™).
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On input w, M constructs both a t1(n) and a t2(n) counter, where n = |w|. As
both these functions are fully time constructible so this is possible. Now M simulates
M, on input w. If during the simulation M,, queries an oracle on some query g then
M queries A on g and proceeds with the simulation based on the result of the query to
A. Since M has a fixed number of tapes and tape symbols then time cxt3(n) log t3(n),
where ¢ is a constant, is needed to complete the simulation.

In order to insure that the simulation of M, is ¢; time bounded the ¢;(n) counter
is decremented with each step of the simulation. Likewise, the ¢3(n) counter is decre-
mented with each oracle query. After ¢;(n) steps M halts and accepts only if the
simulation of M, on w is completed; no more than t»(n) queries were made to an
oracle and M, rejects w.

So w is in L(M, A[tz(n)]) if and only if w is not in L(M,, A[ts(n)]). Thus
L(M, A) # L(M,, A) for any M, that is ¢t3(n) time bounded and queries A at most
ta(n) times. ]

Corollary 3.1.1

1. pNPI’] < E X PNPIpolyl for any fized constant c.

2 PNP[lin] C EXPNP[poly] ]
-+

Theorem 3.1.3 Given C = U;er DTIME(f(n)), where F is a fized family of time-

constructible functions,
if C C EXP then, for any fized constant c, oy £ NEXP for i > 1.

Proof. Let C =U;crp DTIME(f(n)), where F is a fixed family of time-constructible
functions, and C C EXP. Fix a constant c. Assume that cxl = YEXP  Since

=[] is closed under complementation then BEXP = co— NEXP which in turn, by
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Lemmas 3.1.3 and 3.1.2, implies ¥FXP = Afl_)ip[pdy]. Now CZ ] = EX Ppilpol],
Since CZ "] C EXPE] C EXPE ol this implies that % [ = EX PEi ]
which contradicts Theorem 3.1.2. 0

Corollary 3.1.2
1. pPNPI G NEXP for any fized constant c.
2. pNPlinl C NEXP.
3. PLNPlnl C NEXP.

This improves all previous results.

Considering just the polynomial time hierarchy and EX PH the next question is:
Can this result be improved? In [Hel86] Heller gives an oracle A such that NPNP* —
EXPNP®, Consequently any result which shows that NPNP ¢ NEXP will not
relativize. This leaves as an open question the relationship of PY¥ and NEXP.
There is an easy oracle such that Af:_Al +# EX P4 for 1 > 1 but an oracle showing that
Al
such that Afm + EX P4 consider using the set Kszxr, a complete set for NEX P, as

and YZXP are equal appears to be difficult. To see that there is an oracle A

an oracle. Let A = Kyexp. Due to the collapse of the strong exponential hierarchy
Afm = P4 for any i. This gives P4 - EX P4 by the relativization of the time
hierarchy theorem.

In related work, Beigel examines the relationship of PVF to the probabilistic class
PP [Bei92]. This relates to our discussion as PP C PSPACE. In his paper Beigel
gives an oracle relative to which P¥® is not contained in PP. In fact he shows
that if f(n) & O(logn) then there is an A such that PYP*I/(")] is not contained in
PP4. Previously Beigel, Hemachandra and Wechsung showed that PNFlel C pp
[BHWO1].
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3.2 A General Hierarchy Theorem for Alternat-
ing Machines with Bounded Alternations

In the proof of the next theorem we use one alternating Turing machine to simulate
the computation of another alternating Turing machine. In [PPR78], it is shown that
every language that is accepted by a k-tape, t(n) time-bounded ATM is accepted by
a l-tape, t(n) time-bounded ATM, but, as this proof relies on the use of additional
alternations, we will use a 2-tape simulation that does not introduce additional alter-
nations. In [CS76], the authors claim that if L € ATIM E(t(n)), then L is accepted
by a 2-tape alternating TM within time ct(n). This proof is similar to the correspond-
ing proof for nondeterministic time-bounded Turing machines [BG70]. Chandra and
Stockmeyer also claim that standard diagonalization arguments give complexity hi-
erarchies for ATM’s. Under the assumption that ¢;(n) and t»(n) are countable and
inf, oo :%E% = 0 then ATIME(¢:1(n)) — ATIME(t2(n)) # 0. Next we give a similar
theorem but we also bound the number of alternations. Intuitively, as keeping track
of alternations is a matter of keeping track of which type of state the simulation is

currently in this alone should not change the simulation.

Theorem 3.2.1 Let t; be a time constructible function, and inf,_,, :%E% = 0. Then

for any constant k > 1 A%} contains a language which is not in AllY.

Proof. We construct via diagonalization a set L in AN: which is not in Al For
z in {0, 1}*, let M, denote a alternating Turing machine which has z as its Godel
number. We will assume that if L = L(M,) for some z, then there are encodings of
machines which accept L infinitely often in the enumeration of machines. Without
loss of generality, we give the proof for alternating machines on input alphabet {0, 1}.

Consider the following four-tape alternating machine M.

input (w, )
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let n be the length of w.
if w # z#y for some y € {0, 1}*, then reject
else
1. compute the binary representation of ¢; and using the time constructibility
of t1, write it on tape 1. This will be used as a t; “clock”.
2. compute the binary representation of & and write it on tape 2. This will be
used as a counter, subtracting one at each state where a quantifier is alternated.
3. If the initial configuration of M, is an existential configuration then existentially
guess z where |z| < p(n) and decrement the counter
4. simulate the computation of M, on w
interchange the accepting and rejecting states
interchange the existential and universal states
if the counter = 1; the clock reaches 0 and the simulation accepts then accept
(note, the simulation accepts when M, on w rejects)

else reject

Using the 2-tape simulation of a multitape ATM and allowing a constant ¢, de-
pending on the machine M,, which accounts for the encoding of some fixed number
of symbols used by M, we see that the simulation requires time ct3(n). For long
enough w encoding M,, cts(n) < t1(n), so M accepts within time ¢;(n); starts with
an existential configuration and makes less than k alternations. L(M) € ANE.

Assume L(M) € All?. Then there will be an alternating machine M,/ accept-
ing every string in L(M) within ¢, steps; k alternations and starts with a universal
configuration. As inf, o % = 0 this implies that M will have enough time to
complete the simulation of M, on w and accept if and only if M, rejects. Thus
L(M) # L(M,/) contradicting our assumption. L(M) is in A% but is not in AIlp.

0
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Corollary 3.2.1 For all constants k, ©f # NEXP gnd TIY £ TIEXP,

Proof. We will show the proof for ¥ # REXP  Agsume REXP = %P | Given
»P C EXP C XEXP then, by assumption, ¥ = EXP. This implies that I is
closed under complementation. Since ¥ = II¥ and X = RIXP then I = nEXP

which contradicts Theorem 3.2.1. ]

Although it is believed that both PH C NEXPand EXP = NEXP = NEXP =
EX PH there is a relativized result in terms of NE and EH contradicting the later
statment. By Hartmanis, Immerman and Sewelson [HIS85] there is an oracle A such
that B4 = NE4 but ©* £ NE4. If, in fact, EXP = NEXP = NEXP = EXPH
then by the theorem just proved this would imply that PH C NEXP.

Corollary 3.2.2 If EXP = NEXP = NEXP = EXPH then the polynomial

hierarchy 1s properly contained in NEXP.

Proof. Assume EXP = NEXP = NEXP = EXPH. Assume that NEXP C
¥ for some k. Since X¥ C EXP C NEXP this implies EXP = NEXP. By
the first assumption NEXP = EXPH so XEXP = NEXP = % contradicting
Corollary 3.2.1. 0

Let PL, (NPL) denote the class of problems computable in deterministic (non-
deterministic) 2P°¥°9 time.

Letting F' = {21°gk” | k € N} we obtain the subexponential hierarchy based on
opolylog length alternating computations. Call this hierarchy PLH. This hierarchy

obeys downward separation: if Ef:_li C ©PL then for all 5 > 1, Efl’ C xPL,

Corollary 3.2.3 Forall: >0, NPL # P UTI?.
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Proof. Assume that for some 2, NPL = XY UTIIY. Then as XX UIIY is closed
under complementation, NPL = co— NPL and PLH collapses to NPL, but then
SPEUTIPE = 5P I m

This corollary is not new. A direct result of the fact that for all oracles A,
P4+ PL* is that NPL # P* for i > 0. Assume NPL = P* . Then again NPL
is closed under complementation which implies NPL = PLH. This in turn implies
P = PL* which contradicts the relativized version of the time hierarch theorem.

Theorem 3.2.1 can also be stated in terms of space bounded alternating Turing
machines. In [CS76], it is stated that if L € ASPACE(S(n)), then L is accepted by
a l-tape alternating TM within space s(n).

Theorem 3.2.2 Let s1, s» be space constructible functions, where s;(n) > logn and

inf,, o0 ZEZ; = 0, then, for any constant k, A contains a language which is not in

82
ATz,




Chapter 4

The Exponential Hierarchy and

Advice Classes

4.1 BPP, PYf and EXPH

Until about a decade ago, the notion of tractable problems was synonymous to the
notion of polynomial time computable, or the class P. As randomized algorithms be-
came more central, the class B PP also became associated with the notion of tractable.
In this case tractable means the capability of determining set membership correctly
with arbitrarily high probability in polynomial time. In many ways the questions
that are of interest concerning P and NP are as enticing when phrased in terms of
BPP. As this thesis is primarily concerned with the relationships between exponen-
tial time-bounded classes and lower classes it is natural to examine the relationship
of exponential classes to BPP. It is known that P C BPP C Eg ﬂﬂg C EXP but
even though P # EXP none of these containments is known to be proper. A long
standing open question concerning the relationship of BPP to EXP:

Is BPP properly contained in EX P?

47
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motivates the results presented in this chapter.

We are also interested in the relationship of BPP to NEXP. Even though the
classes NP and BPP may be incomparable (see [Sch85] for a discussion on this) the
relationship of BPP to NEXP is still of interest. It is know that BPP is contained
in NEXP but, unlike NP, this containment is not known to be proper. Therefore,

we also consider the question:
Is BPP properly contained in NEX P?

Since BPP C R NI [Sip83, Lau83] the motivating questions in this chapter are

similar to the question addressed in Chapter 3, namely: Is PVP

in NEXP? Both BPP and PNF are located below £ NIIZ but there is no inclusion

properly contained

relationship known between these two classes . On the one hand, it is unlikely that
PNP C BPP. If PNP C BPP then NP C P/poly which implies PH = I’ [Sch85].
This is not generally believed to be true. The consequences of BPP C PNF are less
clear. Stockmeyer [Sto83] has constructed an oracle A such that BPP4 ¢ pNP4,
One crucial difference between the questions about BPP and the question about
PNP is that there is an oracle A such that BPP4 = AFXP* [Hel86], hence BPP4 =
NEX P4
NEXP.

, whereas, there is no know oracle result which states that P¥¥ is equal to

In this chapter, although ultimately we are concerned with the relationship of
BPP to EXP and NEXP, we do not directly consider BPP but the nonuniform
class P/poly. As every set in BPP is in P/poly [Sch85] we can restate our questions
in terms of the relationship of the classes EX P and NEXP to the nonuniform class
P/poly.

Is EXP C P/poly?

Is NEXP C NP/poly?



CHAPTER 4. THE EXPONENTIAL HIERARCHY AND ADVICE CLASSES 49

Wilson has constructed oracles relative to which EXPNF (and hence EXP and
NEXP) is in P/poly [Wil85]. So we cannot answer these questions using proof
techniques that relativize. Along this same line of inquery Lutz and Mayordomo have
proved related results using measure theoretic techniques. They show that almost
every language in F, and almost every language in EX P, is statistically unpredictable
by feasible deterministic algorithms, even with linear nonuniform advice [LM93]. In
this chapter we give, using techniques that do relativize, several results which address
these last two questions.

The main result of this section is that EXP ¢ DTIME(2°))/n°2, for fixed
integers ¢; and c¢;. This implies that EXP ¢ E/lin. The results in this chapter were

done jointly with Steve Homer.

4.2 Separating FXP from Advice Classes

This section will use a variation on a proof technique that was used by Fu to show
that EX P is not Turing reducible to a sparse set where the reduction is restricted to at
most n® queries for a < 1 [Fu93]. Formally, Fu showed that EXP € R,._7(SPARSE),
for @ < 1. This proof is based on resource-bounded Kolmogorov complexity.

The following is a standard definition for Kolmogorov time-bounded complexity
[BDG90]. Fix any reasonable universal transducer, U. For any string z, let U(z)
denote the output of U on input z.

Definition 10 The Kolmogorov time-bounded complezity set is

K[f, 9] = {u]|Fw(lw| < f(lu])),U(w) = u and this result is obtained in at most
9(lul) steps }.

So K|[f, g] is the set of strings u each of which can be retrieved from some string

w that represents a compression of u by a factor of f(|u|) and for which the retrieval
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process takes time g(|u|). We assume that the reader is familiar with the fundamental
results in Kolmogorov complexity.

We will need to divide some string z into substrings each of length k. Formally,
for any string € »* and integer n if = z,z, ...z, for some integer k, and if, for

1 <1<k, |z;| = n then we say that z; is a n-block of z.
Theorem 4.2.1 EXP ¢ DTIME(2°""))/n® for any fized integers ¢; and c,.

The intuition behind the proof is the following. First we assume that EXP C
DTIME(2°™*))/n. Then we construct a set A in DTIME(2°™), where m =
n3tecz Clearly A € EXP. The set of strings in A of length n, A, is constructed by
selecting a string, 7, of length m which is not in K[m—1,22™], then breaking this string
up into n-blocks. The n-blocks are the elements of A,. So strings in A, are n length
segments of a sting 7 which has high Kolmogorov complexity. Under the assumption
that EXP C DTIME(2°("*))/n%  and hence A C DTIME(2°("*))/n%  we show
that there is a string ¢ in K[m — 1,2*"] from which 7 can be generated. This
contradicts the choice of 7 and therefore our initial assumption.

Proof. Assume EXP C DTIME'(ZO(”CI))/TLCZ for some fixed integers ¢; and c,.

Construct the set A as follows:

Stage n

Let m = nitac
Choose the first string 7 € ¥™ such that 7 ¢ K[m — 1, 22™]
Set A, = {w; | w; is a n-block of 7}

end of stage n
Let A =U;2, An.

Claim 4.2.1 A€ DTIME(2¥°7" ) .
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Proof of Claim. We need to find the first string 7 of length m which is not in
K[m — 1, 22™]. This can be done by simulating U(z) on all z € X™ ! for 2™ steps
and then lexicographically listing all resulting strings of length m. The first string in
Y™ that is not in the listing is 7. The n-blocks of 7 then give the elements of A4,,. In
this way = € A, can be decided in time 2™712%™ + O(2%™). If n is large enough, then
gm-192m | O(22™) < 2% = 93T O

By assumption A € DTIME(2°(""))/n% so by definition there exists an advice
function f, which on inputs of length n outputs an advice string of length n®, and a

B € DTIME(2%""), for some fixed integer d, such that
z € A+ (z, f(|z])) € B.

Let the string ayay - - - apee, where a; € {0, 1}, be the advice for inputs of length n.

Given the string ajay - - a,» we can generate all of the strings in A, in time
912! as follows. Let M be a Turing machine which computes B. For each string
u in X" simulate the computation of M on (u, o - ope). If M accepts then u is in
A, otherwise u is in A.

The length of (u, o ---ane) in terms of n is 2(n® 4+ n + 2) allowing for pair-
ing. There are 2™ strings to check and the simulation for each string takes at most
time 24(2n2+2n+4)% 404 5o for all strings 2n24(2n2+2nt4)  9n2™ £41 arge enough
n. Therefore, given ajay--- a,» we can generate all of the n-blocks of 7 by first
generating all of the strings in A, in time 277",

Now we can show that 7 € K[m — 1, 2*™]. What we need are an encoding of
the advice ayay - - - apee , from which we can generate all of the n-blocks of 7, and an
encoding of the order in which the n-blocks appear in 7.

Let code(z) = lajlay - - - laj, where z = ajay - - - a;.

Set 8 = code(ayas - - - anez) . Clearly ajas - - - apee can be retrieved from f in 2x|5)|
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steps and the length of § is 2n® .

Let LEX be a lexicographic listing of all of the n-blocks that form strings in A,.
Let 21, 2o, ..., Zz2+ce; be such that z is the position in LEX of the :** n-block of
T.

Let v = code(z1, 22, ..., Zp2+aey). Clearly, 21, 22, ..., Zp2+eac, can be retrived
from « in 2% |y| steps. The length of 7 is 2(n?Te% log(n?te1e) 4 087" ) where we
also account for the encoding of a list.

Let £ = $00y. So |£| = 2n%2 + 2(n?te12 Jog(n2tee2) + Qlogn®*<1 CZ) + 2 which is less
than m. This means that, for sufficiently large n, there is a string with length less
than m that generates 7. Now we need to show that this can be done in less than or

22m

equal to steps.

22m

Given ¢ we can retrieve 7 in time as follows. If we have £ then in a linear

amount of time we can get both ajay- - aue and 21, 23, ..., z,24c6. Given the
advice ajay - - - ape; we can generate all n-blocks in A, in lexicographical order in
912" steps and construct LEX. From LEX and 21, 22, ..., 2Z2+cc the string 7
can be generated in 2" steps. and for large values of n, 2% 2™ < 92m

Therefore, for large enough n, 7 is generated by a string of length < m in 2?™

steps. So 7 € K[m — 1, 2°™] contradicting the requirement for constructing A,. L

Corollary 4.2.1
1. EXP Z P/n°, for a fized c.
9. EXP ¢ E/lin.
3. NEXP ¢ E/lin.

It was already known that EXP ¢ P/log as this would imply P = NP which in
turn implies that P = PH = EX P [KL80].
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Observing that the set A which is constructed in the proof of Theorem 4.2.1 is

sparse we have the following corollary.

Corollary 4.2.2 There exists a sparse set S € EXP such that for fized constants ¢,
and ¢y, S ¢ DTIME(2°0)) /nc2.

In [PY93] the class LOGS N P is defined and several problems are shown to be com-
plete for this class. Also it is shown that LOGSNP C N P[log’ n] DSPACE(log®n).
The class N P[log®n| is the subclass of NP problems in which only the first log®n
steps are nondeterministic. Kintala and Fischer [KF80] and Didz and Toran [DT90]

studied classes that use polylogarithmic nondeterminism.
Corollary 4.2.3 EXP ¢ NP[log’n]/n%.

Proof.  Clearly NP[log’n] C DTIME(log(2"°8 "p(n))p(n)2'°8’™), where p is a
polynomial, since there are at most 9log”n possible paths in the entire computation
tree of any problem in N P[log?n] and the length of each of these paths is at most
polynomial in the length of n. Since, for large enough n, 10g(21°g2 ”p(n))p(n)Zng” <
272 for some fixed constant c,, then NP[log?n]/n C DTIME(2"?)/n® . This
implies, by Theorem 4.2.1, that EXP ¢ N Pllog®n]/n°. [

Theorem 4.2.2 E  DTIME(2%™)/can for fized integers ¢; and c,.

With care, the proof of Theorem 4.2.1 can be modified to prove theorem 4.2.2.

4.3 Separating EXPY? and EXPYY from Advice
Classes

Next, using relativized resource-bounded Kolmogorov complexity, we present a rela-

tivized version of Theorem 4.2.1. We can assume that a universal machine used to
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measure Kolmogorov complexity can query an oracle. Let K4[f, g] denote the set of
strings u such that there exists a word w, |w| < f(|ul), so that U with oracle A on

input w outputs w and this result is obtained in at most g(|u|) steps.

Theorem 4.3.1 For any oracle D, EXPP ¢ DTIME(2°("™), D)/n% for any fized

integers ¢; and c;.

Proof Outline. Assume for some fixed oracle set D and for fixed integers ¢; and

ca, EXPP C DTIME(2°(""), D)/nc. Construct the set A as follows:

Stage n
Let m = n3taic
Choose the first string 7 € ¥™ such that 7 ¢ KP[m — 1, 22™]
Set A, = {w; | w; is a n-block of 7}

end of stage n
Let A = U, A,.
Claim 4.3.1 A e DTIME(2>"™ ", D) .

Proof of Claim. As in the proof of Theorem 4.2.1 we need to find the first string
7 of length m which is not in KP[m — 1, 2™]. This can be done by simulating U(z)
with D as an oracle on all z € ¥™! for 22™ steps and then lexicographically listing
all resulting strings of length m. The first string in ¥™ that is not in the listing is 7.
The n-blocks of 7 then give the elements of A,. In this way z € A,, can be decided in
time 2(m-1)92m O(2°™). If n is large enough, then 9(m=1)92m 0(2°™) < 2™, ]

By assumption A € DTIME(2°™) D)/n® so by definition there exists an
advice function f, which on inputs of length n outputs an advice string of length n°,

and a B € DTIME(2%" | D), for some fixed integer d, such that

z € A+ (z, f(|z])) € B.
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Let the string ayay - - - apee, where a; € {0, 1}, be the advice for inputs of length n.

Given the string ajay - - a,» we can generate all of the strings in A, in time
971?™" ysing an oracle Turning machine and oracle set D as follows. Let M be an
oracle Turing machine which runs in deterministic time 2% and using D as an oracle
set computes B. For each string u in %" simulate the computation of M with D on
(u, @y ape). If M with D accepts then u is in A, otherwise u is in A.

The length of (u, o ---ane) in terms of n is 2(n® 4+ n + 2) allowing for pair-
ing. There are 2™ strings to check and the simulation for each string takes at most
time 24(2n2+2n+4)% 404 5o for all strings 2n24(2n2+2nt4)  9n2™ £41 arge enough
n. Therefore, given ajay--- a,e» we can generate all of the n-blocks of 7 by first
generating all of the strings in A, in time 2***"" using oracle D.

Now we can show that 7 € KP[m — 1, 2*™]. What we need are an encoding of
the advice ayay - - - apee , from which we can generate all of the n-blocks of 7, and an
encoding of the order in which the n-blocks appear in 7.

Refer to the proof of Theorem 4.2.1 for the details of this portion of the proof.

Therefore, for large enough n, 7 is generated by a string of length < m in 2?™
steps by an oracle Turing machine using D as an oracle. So 7 € KP[m — 1, 2]

contradicting the requirement for constructing A,. 0

Corollary 4.3.1
1. EXPNP @ NP/n, for any fized integer c.
2. EXPNP ¢ PNP/nc. for any fized integer c.
3. EXPNP @ ENP [nc, for any fized integer c.

In a related paper, Buhrman and Homer show that if EXP¥? C EX P/poly then
EXPNP = EXP and that if EXPN? C P/poly then EXP = ©f Y1} [BH92].
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The proof of Theorem 4.3.1 can be modified to show that the same result holds
with reguard to truth-table reductions, EXPY ¢ DTIME(2°"*) D, tt)/n° *.
First we restrict the universal machine used to measure the Kolmogorov complexity
so that all queries are made in one step of the computation. We will denote this
by KZ2|[f, g], where D is an oracle set. Then there are two portions of the proof
of Theorem 4.3.1 that need to be considered. The first is the claim that A is in
DTIME(23”2+C, D). It must be shown that all queries are made to the oracle in
one computation step so that A € EXPP. Secondly we must show that under
the assumption that EXPP C DTIME(2°(""), D, tt)/n, the elements of A, can
be decided in DT[ME'(Z”CICZH, D) by a machine that makes all queries in one
computation step. With a little thought it can be seen that both propositions hold.

The general outline of this proof is given next.

Theorem 4.3.2 For any set D, EXPP ¢ DTIME(2°™") D, tt)/n°, for fized

integers ¢; and c;.

Proof Outline. Restrict the oracle Turing machine, U, which measures the Kol-
mogorov complexity so that it makes all queries in one computation step. Assume
for some fixed oracle set D, EXPP ¢ DTIME(2°(""), D, tt)/n¢, for fixed integers

c; and ¢y. Construct the set A as follows:

Stage n

Let m = n2te
Choose the first string 7 € ¥™ such that 7 ¢ K2 [m — 1, 22™]
Set A, = {w; | each w; is a n-block of 7}

end of stage n

Let A=, A,.

IDTIM E(2°("™), D, tt) is the set of all languages in DTIM E(2°"™), D) that are accepted by
oracle Turing machines which make only nonadaptive queries.
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Claim 4.3.2 Ac EXPP.

Proof of Claim. The proof of this is the same the proof of Claim 4.3.1 except, on
every string z € X™" !, we first simulate U on z up to the step where D is queried on
some string w = (wy, Wa, - Wy ). At this point we save the query string w. When
all such queries have been collected then U queries D on all queries at once. Since
all query answers are now known then, for each z € ¥™ !, the simulation of U on 2
is repeated using the correct query answers. In this way A is accepted by an oracle
Turing machine that makes all queries to D in one computation step. Since this
procedure only increases the time of the procedure used in the proof of Claim 4.3.1

by a constant factor then A, € EXPP. [

By assumption A € DTIME(2°(**), D, tt)/n°, so by definition there exists an
advice function f, which on inputs of length n outputs an advice string of length n®,

and a B € DTIME(2%" | D, tt), for a fixed integer d such that
z € A+ (z, f(|z])) € B.

Let the string ayas - - - o be the advice for inputs of length n.
Given the advice string ajas - - - ane we can generate all of the strings in A4, in
DTIME(2™ 2D, tt) as follows. Let M be an oracle Turing machine which runs

4 . .
297t and using D as an oracle set computes B. We are given

in deterministic time
that M makes all queries to D in one computation step.

As in the proof of Theorem 4.3.1, for each string u in 3™ we simulate the com-
putation of M with D on (u, oy ---ope) and if M with D accepts then u is in A,
otherwise u is in A. Now need to modify this so that all queries are made in one

computation step. Notice, as in the proof of Claim 4.3.2, all of the queries can be

collected into a list of queries and then made in one computation step.
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First, given the advice string, we simulate M on u up to the step where D is
queried on some string w = (w1, Wa, - - - Wy ). At this point we save the query string
w. When all such queries have been collected then M queries D on all queries at
once. Since all query answers are now known then, for each u € X", the simulation
of M on u and the advice string, is repeated using the correct query answers. In
this way A, is generated by an oracle Turing machine that makes all queries to D
in one computation step. Since this procedure only increases the time of analogous
procedure used in the proof of Theorem 4.3.1 by a constant, generating the strings in
A, takes time DTIME(2"*"" | D, tt).

Now we can show that 7 € KJ[m — 1, 2*™]. What we need are an encoding of
the advice ayay - - - apes , from which we can generate all of the n-blocks of 7, and an
encoding of the order in which the n-blocks appear in 7.

Refer to the proof of Theorem 4.2.1 for the details of this portion of the proof.

Therefore, for large enough n, 7 is generated by a string of length < m in 2?™
steps by an oracle Turing machine using D as an oracle. So 7 € K2[m — 1, 2]

contradicting the requirement for constructing A,. 0

Theorem 4.3.2 gives that EXPYY ¢ PYF /nc for fixed integer c.

4.4 Considering Sparse Sets

Theorem 4.3.1 implies EXPN? ¢ NP/n°, for any fixed integer c. It is well known
that NP/poly = NP® where S is sparse. We show that it is probably the case that
NP/n® C NP5 1t is easy to see that NPS = NPSUL.

Proposition 4.4.1 NP5 = NP5 where S is the set of all sparse sets.
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Proof. That NP5l C NP5 is obvious. To see that NP5 C NPSM con-
sider any set A € NP" via a nondeterministic oracle Turing machine M using a
fixed sparse oracle S;. Now we can construct a sparse oracle S,, such that S, =
{{({wiy - ywip )y ooy (W, .. wy,)) | for 4,7 > 0 and m > 1, if (wy,,wa,,...,w;,)
are the stings of length n in S;} . Now S, contains at most one string of any length
and that string is polynomial in the length of m. Let the longest query made during
any computation path of M on z have length m. So to determine if z € A we can
first guess all of the strings in S; up to and including some length m and then query
Sy on this guess. If the guess is correct then we can simulate M on z using the correct
query answers otherwise we reject. Since |m| is at most a polynomial in |z| this can

be done in polynomial time and A € NP1, L

Since is probably true that N P/n° C N P/poly, we conjecture that N P/n® C N PSS,



Chapter 5

The Boolean Hierarchy over NEXP

Kadin [Kad88] showed that for all constants k, if PNP*l = co— PNkl then N P/poly =
co— NP/poly. NP/poly and co— N P/poly are the nonuniform analogies of NP and
co— NP. Kadin’s result combined with a result by Yap [Yap83| shows that for all
constants k > 1, PNPE = co— PNPIF implies PH = . In this chapter we show that
if the Boolean hierarchy over N EX P collapses, then NEX P/poly = co-N EX P/poly.
Because the classes of the EX P hierarchy are defined in terms of the polynomial
hierarchy and not in terms of the exponential hierarchy the techniques which are
used to collapse the polynomial hierarchy do not seem to apply to the exponential
time hierarchy. Yap’s proof that N P/poly = co—N P/poly implies PH = Y. exploits
characteristics of the polynomial hierarchy that do not appear to generalize to the
exponential time case. Consequently, the result which we obtain for the exponential
time Boolean hierarchy is not as strong as Kadin’s result for the polynomial time
Boolean hierarchy. The question which pertains to this chapter arises because we
would like to generalize both Kadin’s result and Yap’s result to the exponential time

hierarchy. Namely we would like to know:

60
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Does co— NEXP C NEXP/poly imply that the exponential time hier-

archy collapse?

It should be noted that in [Loz92], Lozano observes that a consequence of a the-
orem presented in his thesis indirectly proves a result which is similar to our re-
sult. His theorem implies that if the Boolean hierarchy over NEX P collapses, then
co—NEXP C NEXP/poly.

The question motivating this chapter is closely related to the general open ques-
tion: Does a collapse of lower levels of EXPH or EH imply a collapse of higher
levels? In the case of EH, there is an oracle A such that E4 = NE4 but NE4 +# E;EA
[HIS85]. This means that nonrelativizing results will be need to show this type of
collapse.

One the other hand, there are exponential hierarchies that in fact do collapse.
For example, the strong exponential time hierarchies collapses without assumption.
This collapse also implies that EN¥ = NENE  In [HIS85] it is shown that for any A,
there are sparse sets in NP4 — P4 if and only if E4 # NE4. Letting A be KEFXP, a
complete set for NE, we see by the collapse of SEH to PNE that NP4 = P4, so, in
fact, EN? = NEV®Z  This alone does not imply that NENEY® — NENE_ Asnoted by
Hartmanis, Immerman and Sewelson, the collapse of the polynomial time hierarchy,
under the assumption that P = NP, may be a peculiarity of the polynomial time

hierarchy and not the case for all time hierarchies.

5.1 The Collapses of EXPBH

First we give a complete set for DE. For brevity, we use (e, z, t); to represent the

triple (e;, i, ;).

Lemma 5.1.1 Kgsxr A Kgexe is complete for DE.
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Proof. Let

L = {({e, z, t)1, (e, @, t)2) | (e, z, t)1 € KEFXP}

Ly ={((e, z, t)3, (e, z, t)a) | (e, @, t)s € Kymxr}.
and let z;, = (e, z, t);. Then L; — Ly = {(21,22) — (23,24) | 21 € KEFXP and z4 €
Kymxr} but that is Kypexr A W.

For all L € D¥, LS,P;KEFXP A W. Let L be some set in D¥. Then for some
Li,Lyin NEXP we get L = L; N Ly. Let My, M, be the machines accepting L, L,
resp.. The reduction, on input z, produces the pair ((Mi, z, t), (M>, z, t)). By the
definition of D¥ and KEFXP A m, z € L if and only if (M, z, t) € KEFXP and
(Ms, z, t) € m. O]

Following the same argument that Kadin used to show that Df = co— DF =

N P/poly = co— N P/poly we show a similar result for D¥ = co— DE.
Theorem 5.1.1 If DE = co— DE then NEX P/poly = co— NEX P/poly.

Proof. Suppose that D = co— DF. Then there is a <% reduction from Kypxe A

Kyexp to Kyexp V Ksexp since Kyeexp A Keexe € DE and Keexe V Kypxp is <P
xI xI xI Y Y Y Y Sm

complete for co— D¥. Then , for all z,
z € Kypxr A Kypxr <= h(z) € Kgpxe V Kgpxe.
As z is a pair of tuples we can rewrite this as, for all ({e, z, t)1, (e, , t)a),
(e, z, t); € Kysxp and (e, z, t)s € m < (e, z, t)3 € m or (e, z, t)s € Kysxe,

where (e, z, t)3 = mi(h({e, z, t)1, (e, z, t)2)) and (e, z, t)s = ma(h({e, z, t)1, (e, z, t)2))

Define a triple (e, z, t) to be easy if

(e, z,t) € Kysexr and Jy, ly| = |(e, z, t)|, such that (e, z, t)s € Kspxp
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where (e, z, t)s = ma(h(y, (e, z,t))). If all strings in Kysxp are easy then the
following NEX P machine, Neysy, recognizes co— NEXP. On input (e, z, t),

1. Guess y with |y| = |(e, z, t)|.
2. Compute (e, z, t)s = ma(h(y, (e, z, t))) .
3. Guess an accepting computation path of M, on z, z.
4. Accept if z is an accepting computation path.
Define a triple H to be hard if it is not easy. Let n = |(e, z, t)|. So,
H e m and Yy, |y| =n, (e, z, t)2 & Kypxr
where (e, z, t)s = m2(h(y, H)).
(e, z, t); € Kysxp and H € m < (e, z, t)3 € m or (e, z, t)s € Kysxp,

where (e, z, t)3 = m1(h({e, z, t)1, H)) and (e, z, t)s = ma(h({e, z, t)1,H)) . As we
know H € Ksexr and (e, z,t)s & Kysxp so for all (e, z, t)1, |(e, z, t)| = n,

<€, x, t>1 € KEFXP <~ <€, x, t>3 € KEFXP.
Negating both sides,
<€, x, t>1 € KEFXP <~ <€, x, t>3 € KEFXP.

The following N EX P machine, Npq,4, recognizes triples of length n in co-NEXP.
On input ({e, z, t)1, H), where H is a hard string,

L. If [{e, z, t)1] = n, reject.
2. Compute (e, z, t)3 = ma(h(y, H)) .

3. Guess an accepting computation path of M, on z, z.
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4. Accept if z is an accepting computation path for (e, z, t)3.

If H is a hard string then Npqrq accept if and only if (e, z, t)1| = |H| and (e, z, t); €
W. Clearly, if (e, z, t); & Ksexp then ((e, z, t)1, H) & Kspxp /\m. So
(e, z, t)3 € Kspxr by definition of h and Nhara((e, z, t)1, H) accepts. On the other
hand, if (e, z, t); € Kysxp, then ({e, z, t)1, H)KEFXP/\m. So, either (e, z, t)3 €
m or (e, z, t)s € Kssxp. However, H is a hard string, so (e, z,t)s & Kysxp.
Thus (e, z, t)3 € m and Nparq((e, z, t)1, H) rejects.

To compute the above algorithm in nondeterministic exponential time all we need
is a hard string H, if one exists, or to know that no such string of length n exists.
Clearly an advice function can, on input 1™ either provide H or indicate that all
stings length n are easy. Hence co— NEXP C NEXP/poly and NEXP/poly =
co— NEXP/poly. L



Chapter 6

On Function Classes

The question which motivates this chapter is:

Can the structure of function classes be used to show separations between

classes of sets?

And more specifically, will an examination of function classes help in answering the

following question:
Is PNPlogl properly contained in EX P?

We can’t hope to answer this question with techniques which relativize as there is
an oracle A such that NP4 = EXP# [Dek76]. Surprisingly, using techniques which
relativize, we show that the corresponding function classes, PFNPUel and EXPFpp,

are not equal. In this chapter we show that:
For any 2 > 1, PF=leel g properly contained in EXPFpp.

This gives evidence that the structure of the polynomial hierarchy is quite different
from the structure of the polynomial hierarchy defined via function classes, PHF.

Specifically, we believe that the function classes

NP

PFNP[IOg], PFNPNP[log]7 PFNPNP [log]7 o
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PFNP[log]

Figure 1: Polynomial time function hierarchies.

are not interleaved with the classes

PFNP PFNPNP PFNPNPNP

PECIEED

in the same way in which the corresponding classes of sets are. In fact, there is reason
to believe that the hierarchy of function classes in which oracle access is restricted
to log queries is contained in PFYFP. We come to this conclusion as, for 1 > 1,
PFE C pF¥led implies that P = NP and further if PFNP C pFEfled for
any ¢ then P = NP. The proof of these last two statements is implicit in Krentel’s
proof that if PFNFP C PFNPlogl then P = NP [Kre88]. Figure 1 shows the known
relationships between these function classes.

The class PFNPl°8 has been well studied and was shown to contains the following

interesting complete problems [Kre88]:

(i) given a CNF boolean formula,

computing the maximum number of simultaneously satisfiable clauses
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(ii) given a graph G
(a) computing the size of the largest clique in G,
(b) computing the chromatic number of G

(c) computing the length of the longest cycle in G.

Also a particularly detailed study of the finer structure of the polynomial-time hier-
archy of functions below PFNP was carried out by Beigel [Bei88]. Krentel [Kre88]
showed that if f(n) < 3 then P FNPf(n)-1] C PFNPIf(m)] ynless P = NP. Beigel
[Bei91] shows that this is true for larger values of f(n) unless certain natural com-
plexity classes, which we expect to differ, coincide.

We begin this chapter by giving some general results about exponentially time-
bounded function classes. As we are primarily interested in relating exponentially
time-bounded function classes to polynomial time-bounded function classes, the ex-
ponential time classes that we consider are restricted to those which contain only
partial functions that are polynomial-bounded; i.e., for a function f(z) = vy, |y| is
bounded by some polynomial in |z|. Next we study the relationship of PHF to
EX PFpp showing that pFf g EXPFpg for all 2. In Section 6.3 we discuss the
relationship of the class PFYEXP to function classes which have an exponential time
bound. Last, we show that the results of Chapters 3 and 4 are still true, when applied

to the corresponding function classes.

6.1 Some Basic Observations

First we need to establish some simple relationships between function classes. For any
single-valued function f, code(f) is defined by Selman [Sel92] to be the set of all triples
(0,z,k), where 0 € {0,1}, z € ¥* and k is the binary representation of a number,
such that: (0,z,k) € code(f) if and only if f(z) has a k** bit and (1, z,k) € code(f)
if and only if the k** bit of f(z)is a 1.
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Selman has shown that if f is a single-valued function, then f € PF4 & code(f) €
P4 [Sel92]. The proof from right to left follows from the fact that the bits of f(z)
can be retrieved by repeatedly computing (0, z, k) € code(f) and (1,z,k) € code(f).
As |f(z)| < p(|z]), for some polynomial p, this procedure can be done in polynomial
time.

It follows directly that if f is a single-valued function, then f € EXPF4 &
code(f) € EXPA.

Further, if f is a single-valued function, then f € EXPFﬁg’Oly] & code(f) €
EX PAlPoldl . The proof is the same as for EXPF4 and EXP“: we only need to
observe that it only takes a polynomial number of queries to determine a polynomial
length output.

The next proposition allows us to infer relationships about function classes based

on relationships between classes of sets.

Proposition 6.1.1 (Generalizing Selman [Sel92]) For any single valued func-

tion [ and any deterministic time or space-bounded complexity classes C1, Cs, if

f € C1F = code(f) € C1; code(f) € Cy = f € CoF and C, C Cy then C1F C CoF.

Proof. Let classes C; and C; be defined as there are above with f € C1F =
code(f) € C1; code(f) € Cy = f € CoF and €y C C,. Consider any partial function
f1 € C1F. Since code(f1) € Cy and C; C C, then code(f1) € Cy so f1 € CoF. ]

Let C be any of the complexity classes PH, PSPACE or EXP, then code(f) €
C= feCF,where CFis PHF, PSPACEF or EXPFpp. Suppose that for some
partial function f and polynomial p, such that |f(z)| < p(|z|), code(f) € C via a
Turing machine M. Now in an obvious way we can retrieve the k" bit of f(z), if it
exists, by simulating M on the inputs (0,z,k) and (1,z,k). As the length of f(z) is

bounded by p(|z|) then to retrieve f(z) we simulate M at most p(|z|) * 2 times. This
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implies that f € CF.

Note that it is not known if code(f) € PNFloel — f ¢ pFNPlosl  The above
argument does not succeed. Using the above argument, more than log |z| queries
would be made to the oracle. Further, since we show that P FNPllog] g EXPFpg
then, if code(f) € PNFPloel — f ¢ PFNPlog were true we could conclude that
PN Pllog] C EXP. As there is an oracle relative to which PNPlogl and EXP are
equal we can conclude that a nonrelativizing proof is needed to show that code(f) €
pNPleg -, f ¢ pFNPliog]

Some of the consequences of Proposition 6.1.1 are that PHF C PSPACEF C
EXPFpp. Since PH C PSPACE and for any partial function f € PFEf, for any
1, code(f) € P we conclude that PHF C PSPACEF. Likewise, as PSPACE C
EXP andforall fin PSPACEF, code(f) € PSPACE so PSPACEF C EXPFpp.
This last statement is restricted to exponential functions which are polynomial bounded

as we assume that functions in PSPACEF are polynomial-bounded.

6.2 Separating FXPFpg From P i llog]

Although it is not known if PNPlosl is properly contained in EXP we show that
PFNPlod] ig properly contained in the class of exponentially time bounded partial
functions in which the length of the function values are at most polynomially greater
than the length of the input. If this result is improved to show that the length of
the function values are bounded by a constant; i.e., PFév;[log] ¢ EXPFcp, then this
would imply that P¥Plo#l is properly contained in EXP.

The idea that Krentel [Kre88] used to show that PFNFPOUesn)] — pFpNP — p —
NP will be repeatedly used in this chapter so we will review his argument next.

First, Krentel defined the function, MSA (Maximum Satisfying Assignment), over
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the domain of boolean formulas as follows:

MSA(¢(z1,...,2zn)) = {the lexicographically maximum ,,...,z, € {0,1}"

that satisfies ¢, or 0 if ¢ is unsatisfiable}

and showed that it is complete for PFN?. Given this, his proof that PFNPO(egn)] —
PFNP = P = NP is as follows. Assume that PFNPIOUsm)] = PFNP A5 MSA €
PFNPO(ogn)] there is a PFS4T machine, M, that computes MSA making at most
O(logn) queries. Now to determine if a formula ¢ is satisfiable, simulate M (¢) for
all possible oracle answers. This gives a polynomial number of possible assignments,

at least one of which is a satisfying assignment if ¢ € SAT.

Proposition 6.2.1 (Generalizing Krentel [Kre88]) For any class C and oracle
set A, if C C PFAldl gnd MSA € C then P = NP.

The proof of this follows directly from Krentel’s proof that PFNPIO(lesn)] —
PFNP — P = NP. Note that we are only considering oracle sets which decide
set membership. On the other hand, if we consider A € NPMYV then the proof of

Proposition 6.2.1 fails.
Lemma 6.2.1 For;>1, EXPFpg C PF¥ e = p = NP.

Proof. Assume that, for 1 > 1, EXPFpg C PFZllsl As PHF C EXPFpg
then PF* C EXPFpg, for all i. Since PF¥ I8l C PF*{ then, by assumption,
PF¥ilesl — PEE] Clearly, as MSA € PF*T then, foralls > 1, MSA € PFE . By
Proposition 6.2.1 this implies that P = NP. L

Proposition 6.2.2 Fori>1, EXPFpg C PFEllgl o X P C pZilled,
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Proof. Assume EXPFpg C PFEf[bg], for somes. Let L € EXP. This implies that
the characteristic function for L is in EX P Fpp so, by assumption, the characteristic

function for L is in PF*i l°gl_ But then if follows that L is in PZ: o8], ]

Theorem 6.2.1 For all i, PF>°8l £ EXPFpg.

Proof. We will show that EXPFpg C PF¥lgl = P — EXP. Assume
PFE el — EXPFpg, for some 5. As PFZleel C PFX C EXPFpg then by
Lemma 6.2.1,

EXPFpg C PF=lesl o p — NP,

Since P = NP then by the collapse of PH, P = PE%l. By Proposition 6.2.2,
EXPFpp C PF™ o8l o pxp C p¥iled,

Combining the above two lines we get that prillesl — p — EXP contradicting the

time hierarchy theorem. L

Corollary 6.2.1 PFNPlel C EXPFpg.

This does not result in PHF being properly contained in EX P Fpg. Unlike the
polynomial hierarchy, it does not appear that PFZ C PFZillod] for any ¢ as this
would imply P = NP. In fact, it may be that, for every 1, PFE g ig properly
contained in PFY?. From this we can conjecture that the polynomial hierarchy over
function classes has a very different structure then the polynomial hierarchy over sets.

It is not clear what the relationship is between the function classes PFEf[bg],
1 > 1, and the nondeterministic classes NPSV and NPMV. From Selman we know
that if either PFNPlosl C NPSV or PFNFleel C NPMYV then NP = co—N P [Sel92].
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Clearly both of these results also show that, for 2 > 1, if either PF¥lesl C NPSV
or PF¥lesl ¢ NPMV then NP = co— NP because PFNFPlod C pp=iled for
all = > 1. Examining the reverse containment, Selman showed that if NPMV C.
PFNPlogl then P = NP and if NPSV C PFNPlogl then P = UP. The proof that
if NPMV C. PFNPlogl then P = NP can easily be generalized to show that, for
i>1,if NPMV C, PF*l°8l then P = NP. To see this assume that a P FZ log]
machine M can output a satisfying assignment for a formula; i.e., can compute a
partial function in NPMV. Then a polynomial time machine can simulate M on
all possible queries and determine if some computation path ends in a satisfying

assignment.

Unfortunately, code( f) can not be used directly to show that P FZ{ log] C EXPFpp
implies P llos] C EXP. Ifour result is improved to show that PFév;[log] C EXPFcp

then we will get the desired consequence. This result would once again not relativize.
Theorem 6.2.1 PFy "8 C EXPFyp = PNFled C EXP.

Proof. We will show that PYPleel = EXP = PFYLI — EXPFop. Assume
pNPloel — EXP. We know that for all f in EXPFgp, code(f) € EXP so by as-
sumption code(f) € PNPlogl, But then using code(f) we can retrieve f(z) with a
P FNPlogl machine. To retrieve one bit of f(n) a PNPI°8l computation is performed

at most twice. To retrieve all the bits of f(n) a PVPl°8l computation is performed at

most 2 * ¢ times, where |f(n)| = ¢. Thus f € PFév;[log] and PFév;[log] = EXPF¢p.
0

Again using Krentel’s basic idea we strengthen the result that P = PSPACE if
and only if PF = PSPACEF .

Theorem 6.2.2 For alli, P + PSPACE < PF*logl £ PSPACEF.
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Proof. From right to left is trivial. For the converse, we show that if PSPACEF C
PF¥l8 then P = PSPACE. Assume PSPACEF C PF*I°¢l. Since MSA €
PSPACE, by Proposition 6.2.1 P = NP which gives that P = PH. Once again it is
easy to see that PSPACEF C PFfleel - pSPACE C PZileg a5 the character-
istic function for every set in PSPACE is in PSPACEF. Combining the collapse
of the polynomial hierarchy to P and the fact that PSPACE C prilo8] e get that
P =PSPACE. O

6.3 The Relationship of PFVEXP to EXPHF

We do not expect that PFNEXP C ppNEXPllogl o even PF* C PFNEXP[logl 55 if
either of these statements is true then by Proposition 6.2.1 P = NP. In this section
we show that EXPFII;.V;[pdy] — PFNEXP

By definition, given any partial function f € PFNEXP for any z in the domain
of f, |f(z)| is bounded by some polynomial in |z|. So it is reasonable to compare the
class PFNEXP only with exponentially time-bounded function classes C, such that,
if fisin C then f is polynomially-bounded. In fact we see that the relationship
of PFNEXP ¢4 EXPFII;.V;[pdy] is similar to that of the corresponding classes of sets,

PNEXP gnd EX PNPPW] (See Chapter 3 for a discussion of PVEXF )
Proposition 6.3.1 EXPFALP™ — ppNBXP,

Proof. We show only that EXPFII;.V;[pdy] C PFNEXP the proof of the oppo-
site inclusion follows the same idea. Clearly f € EXPFII;.V;[pdy] < code(f) €
EXPNPIPl] and f € PFNBXP & code(f) € PNEXP. Consider a partial func-
tion f; € EXPFII;.V;[pdy]. As code(f,) € EXPNPIPW] and from Chapter 3 we know
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PFNEXP[log]

PFNPNP[log]

PFNP[log]

Figure 2: Polynomial time and exponential time function classes.

that EX PNPlpolyl — pNEXP then code(f,) € PNEXP But since f; € PFNEXP o
code(f,) € PNEXP then f; ¢ PFNEXP, L

So this gives that

EXPFpg C PFNEXP C EXPFYY.

Again, it is not likely that EXPFpg C PFNEXPledl gince by by Proposition 6.2.1
this implies P = NP.
Figure 2 illustrates the relationships between the function classes that have been

discussed in this chapter.
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6.4 Separations between Classes of Sets Imply
Separations of Function Classes

In this section we show that the results of Chapters 3 and 4 imply similar results for
the corresponding classes of functions. As these results follow directly they are stated
as propositions.

In Chapter 3 we show that PVP[l C NEXP for any integer c.
Proposition 6.4.1 PFNFPM G NEXPMVpg for any integer c.

Proof. Assume NEXPMVpg C. PFNPI" for some integer ¢. This implies that
the characteristic function for every set in NEXP is in PFNPI"l an hence every set

in NEXP can be computed in PNP[*’l, This contradicts Theorem 3.1.3. 0

In Chapter 4 we show that EXP ¢ DTIME(2™")/n® for any fixed integers c;

and c,.
Proposition 6.4.2 EXPF ¢ DTIMEF(2"")/n® for any fized integers c¢; and c;.

Proof. Assume EXPF C DTIMEF(2™")/n% for some fixed integers ¢; and c;.
But then the characteristic function for every EX P set is in DTIMEF(2™")/n® an
hence every set in EXP can be computed in DTIME(2™")/n®. This contradicts
Theorem 4.2.1. 0



Chapter 7

Concluding Remarks

We have seen that a closer examination of exponential time classes gives separations
between exponential time classes and polynomial time classes, both uniform and
nonuniform. It is apparent that these results can be improved and that it may be
possible to get improvements by using techniques which relativize.

The question which directly and indirectly motivated much of the work in this
thesis is: PNP C NEXP? This question still remains unanswered. As we showed
in Chapter 3, an equivalent question is: PN? - PNEXP? Tn particular, since NP #
NEXP, we would assume that PNP - PNEXP Tt may be possible to answer these
questions via a proof which uses techniques that relativize. There is currently no
proof giving an oracle A such that PNPY — NEXPA. Tt would be interesting to show
either of these containments or to show an oracle A such that PY?* = NEXP4 or
equivalently pNP* — pNEXPA

In Section 3.2, it should be possible to improve the Theorem 3.2.1 from infinitely
often to an almost everywhere, a.e., result. In [ABHH90| Allender, Beigel, Hertrampf
and Homer present an a.e. complexity hierarchy for nondeterministic time. Their
result may imply the same for alternating machines.

The most interesting question raised in Chapter 5 is: What are the implications
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of NEX P/poly = co— NEX P/poly. Unfortunately, it does not appear that this will
be proved with proof techniques which relativize. Gavalda [Gav92] has bounded the
complexity on advice functions for P/poly. Can the same be done for NEX P/poly?

Chapter 6 begins a discussion on function classes for exponential time. This is
an area that has not been closely examined to date and therefore is open to further
discoveries.

In Chapter 6 we do not directly consider the relationship between the number of
queries that can be made to an oracle and the number of bits that can be output
by a transducer but it appears that there may be some general relationship. In the
case of PNPleg]l depending on whether we allow polynomial length output or restrict
output to a constant number of bits we can show different consequences in PH. On
a slightly different track, if PFNEXF is restricted to log queries and log many output
bits then does this also alter the type of results that can be stated relating to EXPH.
A general interesting question is: How does the bound on the number of queries relate
to the bound on the length of the output?

Also, as PHF and EXPHF do not appear to contain the same properties as
PH and EXPH (for example, PN? C PN

PYPI] but the same is not true for the

corresponding function classes unless P = NP), an area to examine is the finer
structure of PHF and EXPHF.

We have limited our study to partial functions that are computed by time-bounded
transducers with oracles in NP or NEXP. In [FHOS92| partial functions that are
computed in polynomial time with oracles in NPMYV are considered. Using this type
of oracle slightly different results are achieved with regard to polynomial time function
classes. Likewise, the work that was begun in this chapter could be reconsidered using
NPMV and NEXPMYV as oracle sets. Clearly, this would give different results since
EXPFpg C PFNEXPMVQ] p general, comparing results obtained using both types

of oracles is of interest.
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Complexity classes:
PSPACE = .50 DSPACE(n°)
EXPSPACE = .5, DSPACE(2™)
P = U0 DTIME(n®)
NP = .o NTIME(n®)
PL =0 DTIME (2 ™)
NPL = NTIME(2"s")
E = U0 DTIME(2°)
NE = Ueo NTIME(27)
EXP = .0 DTIME(2™)
NEXP = U, NTIME(2™)
Function classes, f : ¥* to X*:
log={f| f(n) = c-log,n for some constant ¢ }
lin={f | f(n) = ¢ n for some constant ¢ }
poly = {f | f(n) = c-n* for some constants c, k }
Restricted oracle queries:

PAF(M)] = the set of languages computable in P# that on input = make at most

f(Jz]) queries to A
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NP4 ()] = the set of languages computable in NP4 that on input = make at
most f(|z|) queries to A

EX PAf()] = the set of languages computable in EX P4 that on input z make

at most f(|z|) queries to A

NEX PAU(")] = the set of languages computable in NEX P4 that on input x

make at most f(|z|) queries to A

PNP

PYP = the set of languages in in which all queries are written to the query

tape before any queries are made

EXPYFP = the set of languages in EX PN in which all queries are written to

the query tape before any queries are made

Hierarchies

For a function f, let E,’: (H,’:) denote the class of languages accepted by a AY,(Allg)
alternating Turing machine which runs in time f(n). For a class of functions F,

oF = User EI]: and IIf = User HI]:'
PH = { Let F be polynomial-time computable functions }
EXPH = { Let F2?(") | p is a polynomial }
EH = { Let F2°* | ¢ is a constant }

The 4t* sigma levels of these hierarchies will be denoted XF, XFX? and ¥Z. The pi

levels will be denoted I1¥, TZX® and I1Z. Each of these hierarchies defined inductively

can also be represented using the classes usually denoted by AF.
PH = AP = P*

EXPH = AFXP — gx p*,
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E = AF = E%
Restricted oracle access in PH:

2P s the set of languages in NP

1

TP is the set of languages in co— NPl

1

AP s the set of languages in PrL IR,

1

. . =F
Eftt is the set of languages in NP,,".

. . =F
Hftt is the set of languages in co— NP,,*™*.

P
i—1

) ) by
Aftt is the set of languages in P,
Restricted oracle access in EXPH:

SEXPIF] is the set of languages in NEX P>l

1

TIZ*PIFL is the set of languages in co— NEX P*1F],

1

ABEXP

1

F1is the set of languages in EX PPl

The definitions for EH are analogous to those for EXPH.

Probabilistic classes and advice classes

BPP = the class of languages recognized by polynomial time probabilistic
Turing machines whose error probability is bounded above by some positive

constant € < 1/2.

R = is the class of languages recognized by polynomial time probabilistic Turing
machines which have zero error probability for inputs not in the language, and
error probability bounded above by some positive constant € < 1/2 for words

in the language.
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Definition 11 An advice function is a function f : N — X*. Let C be a complezity
class, and F' a family of advice functions. The class C/F is the collection of all sets
A such that for some B € C and a function f € F

z € A if and only if (z, f(|z|)) € B.

Boolean hierarchy for exponential time, EXPBH.:

EXPBH, = NEXP

EXPBHy; = {Li(\Ly | L, € EXPBHy_; and L, € NEXP}
EXPBHyyy = {I1ULy | Ly € EXPBHy,; and L, € NEXP}
co— EXPBH; = {L|L € EXPBH,}

EXPBH = Ui21 EXPBH,
Function classes:

PSPACEF = the set of all partial functions which can be computed in poly-

nomial space.

PF = the set of all partial functions which can be computed deterministically

by polynomial time-bounded transducer.

NPMV = the set of all partial functions which can be computed nondetermin-

istically by polynomial time-bounded transducer.
NPSV = the set of all f € NPMYV that are single valued.

EXPF = the set of all partial functions which can be computed deterministi-

cally by an 2" time-bounded transducer where c is a constant.

NEXPMYV = the set of all partial functions which can be computed nondeter-

ministically by an 2" time-bounded transducer where c is a constant.
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NEXPSV = theset of all f € NEXPMYV that are single valued.

A function f is constant-bounded if there is a constant ¢ such that, for all z in the
domain of f, |f(z)] <ec.
A function f is polynomial-bounded if there is a polynomial p such that, for all z

in the domain of f, |f(z)| < p(|z]).

PFop = the set of all constant-bounded functions in C'F.
EXPFqp = the set of all constant-bounded functions in EXPF.

EXPFpg = the set of all polynomial-bounded functions in EXPF.

Polynomial hierarchy for function classes:

AP = PF
APE = PF >0

PHF = U;»o APF
Exponential hierarchy for function classes:

ABXPF _ EX PR

APXPF — EXPF™ i >0

EXPHF = U, ABXPF
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