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AbstractThis thesis examines several of the most central and fundamental complexityclasses. These classes are de�ned by polynomial and exponential time bounds bothuniform and nonuniform. Showing classes to be distinct or separate has been a longstanding objective in structural complexity theory. It is this objective that we address.Speci�cally we are interested in separating classes in the exponential time hierarchy,EXPH, from classes in the polynomial time hierarchy, PH. We show that, for any�xed integer c, PNP [O(nc)] � NEXP . This improves a previous result by Fu, Li andZhong. Further we generalize this separation to related levels of PH and EXPHshowing that, for any �xed integer c and i � 1, �P [O(nc)]i � �EXPi�1 .There is also an interest in separating exponential time classes from classes of setswhich are nonuniformly computable in polynomial time. By considering polynomialadvice classes we show that EXP 6� DTIME(2O(nc1))=nc2 for �xed integers c1 andc2. This implies, for example, that EXP 6� E=lin.Usually complexity theory is concerned with questions of set membership. Analternative is to allow a model which computes a partial function and outputs avalue if one exists. In this way the time and space complexity of classes of partialfunctions is studied. We show that our results relating both uniform and nonuniformexponential and polynomial classes are true for the corresponding classes of function.Further we show that PFNP [log] � EXPFPB. This proof is then generalized to showthat PF�Pi [log] � EXPFPB, for i � 1. Neither of these results is known for thecorresponding classes of sets and can not be shown using proof techniques whichrelativize. Also we note that, for i � 1, PF�Pi [log] � PFNP unless P = NP whichdemonstrates that the structure of the polynomial hierarchy over function classes isvery di�erent from the polynomial hierarchy over sets unless PH collapses to PNP .1



Chapter 1Introduction1.1 Computation and ComplexityG�odel showed that no consistent system of logic could describe proofs of all trueassertions of arithmetic [G�od31]. This left as a question: Is there a method, ormechanical process, which applied to a mathematical statement would give an answeras to whether or not it was provable? Working on this question, both Turing andChurch independently answered in the negative by outlining rigorous system whichadditionally isolate what has come to be accepted as the computable functions [Tur36,Chu36]. Turing speci�cally developed a model for computation, the Turing machine,which gave the theoretical underpinnings of the computer. So from a very deepphilosophical question, which lead to a series of truly landmark theoretical papers,came an understanding of the theory of today's computer.It is not enough just to examine the nature of computation but one is also in-terested in what can be computed in a reasonable world. Turing's theoretical work,after all, lead to the construction of one of the most widely used machines todayso, likewise, the practical limits of these machines is of interest. Alas, a very prac-tical question again leads to an abstract theory, computational complexity theory.2



CHAPTER 1. INTRODUCTION 3Thus the study of Turing's model under the restriction of a reasonable amount ofcomputation time and memory space entered the picture.One of the early steps in the study of resource-bounded computation was to de�nea restricted model. This was succinctly done by Hartmanis and Sterns [HS65]. AsRichard Karp [Kar86] explains:: : : but it is the 1965 paper by Juris Hartmanis and Richard Sterns thatmarked the beginning of the modern era of complexity theory. UsingTuring machines as their model of an abstract computer, Hartmanis andSterns provide a precise de�nition of the \complexity class" consisting ofproblems solvable in a number of steps bounded by some given functionof the input length. : : : we now had a satisfactory formal framework forpursuing the questions that Edmonds had raised earlier in an intuitivefashion - questions about whether, for instance, the traveling salesmanproblem is solvable in polynomial time.Other early papers that contributed to the discussion of resource-bounded computa-tion are [Edm65, Rab59, Rab60, Rit63]. This brief history leaves out many importantreferences and is intended only to give a broad outline of the development of structuralcomplexity theory.Intuitively, we would like to know if a particular problem is computable in acertain amount of time or space. This intuition translates into an examination ofclasses of problems which can be shown to have common structural properties indi-cating that they will be solvable using the same amount of time or space. A majorcontribution towards this end was made in Cook's paper [Coo71] where he laid thefoundation for the theory of NP -completeness. Independently, Levin obtained similarresults [Lev73]. As a part of Cook's work he established the importance of polynomialtime many-one reductions as a tool for showing that two problems require the same



CHAPTER 1. INTRODUCTION 4amount of time. Subsequently, a paper by Karp [Kar72] showed that many interest-ing problems are NP -complete, establishing NP as a complexity class of immenseinterest.A primary focus of structural complexity theory is showing that a class contains alanguage which in fact can not be computed with less resources. In this way complex-ity classes are shown to be distinct or separate. Intuitively, increasing the amountof resources should allow us to recognize more languages. In fact various separa-tion results are known between nondeterministic time classes [Coo73, SFM73, BG70]and between deterministic time classes [HS65]. Separations between nondeterministicand deterministic classes of the same time complexity have not been proved. Thisthesis continues this line of inquiry speci�cally looking at the possible separationof exponential time-bounded classes from both uniform and nonuniform polynomialtime-bounded classes.1.2 Exponential TimeComputational complexity theory is the study of resource-bounded computation.Two of the most commonly studied resources are the time and space needed to rec-ognize the elements of a set or language. The complexity classes P and NP , poly-nomial time-bounded deterministic and nondeterministic computation respectively,have been a major focus of this study as they are known to contain many practicalproblems [GJ79]. Although there are many open questions concerning P and NPwhich are considered to be of great practical interest, these questions have thus farresisted solutions and many of them have been shown, via relativization, not to besolvable with many of the current techniques used in the �eld. Often questions con-cerning P and NP can be related to questions about other complexity classes. As aresult, classes which appear to have less practical value are studied in hopes of better



CHAPTER 1. INTRODUCTION 5understanding P , NP and resource-bounded computation in general.Problems for which there is no known solution in polynomial time; i.e., no knowne�cient solution, are considered to be intractable 1. These problems have beenbroadly categorized as exponential time problems even though this includes prob-lems in subexponential classes such as TIME(nlogn) [GJ79]. There are natural re-lationships between many of the structural properties of P; NP , the classes in thepolynomial time hierarchy, PH, and related exponential time classes. For example, itis known that if higher deterministic and nondeterministic classes are not equal thenthere are corresponding lower classes that are also not equal. In many cases showingthat there exists a relationship between higher and lower classes will indicate thatresolving a question for exponential time is as hard as resolving a related question forpolynomial time.Still, as will be discussed, the structure of exponential time classes does not alwaysmirror that of related polynomial time classes. Speci�cally, some of the techniqueswhich are used to demonstrate results in the polynomial time hierarchy do not gen-eralize to exponential time hierarchies. For one, it has not been shown that generaldownward separating results which apply to the polynomial time hierarchy can beduplicated in natural exponential time hierarchies. This forces us to examine moreclosely the semantics of oracle access.Also the structure of the exponential time classes is of interest on its own. Itappears that many of the techniques from recursive function theory, which fail togive positive results when applied to polynomial time classes, in fact can be usedto establish positive results about exponential time classes [KMR90]. So in somerespects, more is known about exponential time.Exponential time is also of interest as natural complete sets for EXP are known.1In di�erent parts of the literature problems in both P , deterministic polynomial time, and BPP ,the class of languages recognized by polynomial time probabilistic Turing machines whose error isbounded above by some positive constant � < 1=2 , have been considered tractable.



CHAPTER 1. INTRODUCTION 6In [SC78] it is shown that some combinatorial games are complete for EXP . Alsothe "circularity problem for attribute grammars" is complete for EXP [JOR75] andin [EPS87] a speci�c class of attribute problems is shown to be equal to EXP .In the process of studying exponential time classes and their relationship to poly-nomial time classes several questions have come to the forefront. Speci�cally, thefollowing questions have directly motivated di�erent chapters of this thesis.1. Is PNP properly contained in NEXP ?2. Is PNP properly contained in PNEXP ?3. Is BPP properly contained in EXP ?4. Is EXP 6� P=poly ?5. Does co�NEXP � NEXP=poly imply that the exponential time hierarchycollapses?6. Can the structure of function classes be used to show separations between classesof sets?None of these questions has been completely answered but a discussion of each ispresented. It turns out that questions 1 and 2 are equivalent. These questions arethe focus of Chapter 3. Questions 3 and 4 are related as every language in BPPis in P=poly. Chapter 4 examines these questions. Chapter 5 examines question 5.Lastly, Chapter 6 deals with relating polynomial time-bounded function classes toexponential time-bounded function classes.It should be noted here that there are several di�erent ways to de�ne expo-nentially time-bounded classes. In this thesis EXP will be used to refer to theclasses DTIME(2p(n)) , where p is a polynomial and NEXP will be used to refer tothe classes NTIME(2p(n)). Likewise, E; (NE) will be used to refer to the classes



CHAPTER 1. INTRODUCTION 7DTIME(2cn); (NTIME(2cn) respectively), where c is a constant. De�nitions willbe presented in Chapter 2. The following containments are known:P � NP � PH � PSPACE � EXP � NEXP:The following containments are proper [HS65, HLS65, Coo73]:P � E � EXP and NP � NE � NEXP:Even though PH � PSPACE � EXP , it is not generally believed that PSPACEis a subset of E or even that the polynomial hierarchy is contained in E. It is knownthat PSPACE 6= E and that PH 6= E as both PSPACE and PH are closed underpolynomial time many-one reductions and E is not. However, it is not known if eitherPSPACE or PH is contained in E.1.3 Overview of Techniques and Results for Ex-ponential TimePrevious results concerning exponential time classes and their relationship to com-plexity classes in the polynomial time hierarchy will now be presented. This historyis intended to highlight results and speci�c techniques that have been used in thestudy of exponential time classes and is not comprehensive.1.3.1 If P = NP and Other AssumptionsIn the study of complexity classes the technique of adding any easily recognizable suf-�x to each word in a language, known as padding a language, is used to force a languagethat is \hard" to recognize to be easier to recognize. Because the length of input wordsis increased by the pad, and since the pad can be easily removed, the time complexity



CHAPTER 1. INTRODUCTION 8of a machine recognizing a padded language can be less than that of one recognizingthe unpadded language. This technique proves to be very useful in showing rela-tionships between classes in the polynomial time hierarchy and related exponentialtime classes. For example, Book used padding arguments to show that if P = NP ,then for every time constructible function f , DTIME(2O(f)) = NTIME(2O(f)) andDTIME(fO(1)) = NTIME(fO(1)) [Boo74a]. Consequently, if P = NP then bothEXP = NEXP and E = NE. Book also showed via padding that if P = PSPACEthen, for every time computable function f , DTIME(2O(f)) = DSPACE(2O(f))and DTIME(fO(1)) = DSPACE(fO(1)) [Boo74a]. So P = PSPACE impliesEXP = EXPSPACE. In general, padding arguments have been used to showthat if higher deterministic and nondeterministic classes are not equal, then there arecorresponding lower classes which are not equal. These are called downward separa-tion results.Another method which exploits increasing the length of strings is the use of tallysets. A tally set is a set over a one symbol alphabet. For example, if A is any languageover f0; 1g�, then tally(A) is de�ned to be f0n j n 2 Ag. Notice that the length of 0nis exponential in the length of n. It is known that A is a member of E; (NE) if andonly if tally(A) 2 P; (NP resp.) and that E 6= NE if and only if there is a tally set inNP � P [Boo74b]. Along this same line, sparse sets, sets with at most a polynomialnumber of strings of length n for any n, have been studied. In [HIS85], Hartmanis,Immerman and Sewelson explored the relationship between sparse sets and lower andhigher complexity classes. They show, in part via an upward separation method, thatthere exists a sparse set in NP � P; PSPACE �NP or PSPACE � P if and onlyif, respectively, NE 6= E; ESPACE 6= NE, and ESPACE 6= E.



CHAPTER 1. INTRODUCTION 91.3.2 With No AssumptionsBy the time hierarchy theorems it is know that P 6= EXP and NP 6= NEXP[HS65, Coo73, BG70]. Surprisingly, there have not been many results which improvethese separations, especially for deterministic classes. The proper containment of NPin EXP is an open question and, as will be discussed, it appears to be di�cult toprove. In this thesis we show that PNP [nc ] � NEXP for any integer c. In general,showing further separation of EXP and NEXP from polynomial time classes isconsidered di�cult 2.A related result by Kannan separates the second level of the exponential timehierarchy, NEXPNP , from the polynomial time probabilistic class BPP . This resultwill be discussed in Section 1.3.5.1.3.3 What Oracles SayAn oracle Turing machine is a Turing machine with an additional oracle tape and 3additional types of states, QUERY, YES and NO. If an oracle TM enters a QUERYstate with a string w written on the query tape, then if w is in a �xed oracle set theYES state is entered next, otherwise the NO state is entered. Each such string w isa query.In the general case no restrictions are placed on the number of queries made by anoracle Turing machine to an oracle set or on when during the computation queries aremade. Oracle machines where the number of queries made to the oracle is restrictedare considered in several areas of this thesis. The restriction is usually speci�ed as afunction f(n), for inputs of length n. In the case where queries are made at any timeduring the computation, the oracle machine is said to query the oracle adaptively orin serial; i.e., answers to early queries can be used to determine later queries. If all2Showing PNP � NEXP may in fact be possible with techniques which relativize. This isdiscussed in Chapter 3.



CHAPTER 1. INTRODUCTION 10queries are made at one time, in other words in parallel, then the oracle is said tobe queried nonadaptively. Speci�cally in Chapter 3 we consider some consequencesof separating deterministic time classes relative to a �xed oracle where the oracle isqueried nonadaptive. Also in Chapter 3 we examine deterministic time classes relativeto a �xed oracle such that, for any input x where jxj = n, and function f , at mostf(n) adaptive queries are made.The exact relationships between many of the central complexity classes, speci�-cally, deterministic and nondeterministic classes are not known. To gain some insightinto these relationships they have been examined relative to oracle sets. Relativizedresults are used as a tool to indicates the di�culty of resolving a proposition in theunrelativized case. In some cases relationships which are generally believed to betrue can be shown to be true relative to an oracle set. If there is an oracle relative towhich a proposition is true, then this can be viewed as evidence that the propositionis in fact true. Results relative to an oracle can also be counterintuitive. There maybe one oracle relative to which a proposition is true and another oracle relative towhich the same proposition is false. These contradictory results indicate that proofmethods that do relativize will not be useful in determining the truth of a proposi-tion. As many of the techniques which have been used do relativize, resolving suchpropositions is often said to be hard 3.It has been shown by both Wilson and Dekhtyar [Dek76, Wil80, BWX82] thatthere exist oracle sets A such that PA 6= NPA but EA = NEA. This implies that aproof showing P 6= NP would not necessarily show E 6= NE. On the other hand, asalready mentioned, we know that if P = NP then E = NE.There are several results which give insight into the possibility of separating ex-ponential time-bounded classes from polynomial time classes using techniques whichrelativize. First Dekhtyar showed that there is an oracle A such that NPA = EXPA3Techniques which are borrowed from recursive function theory are widely used and do relativize.



CHAPTER 1. INTRODUCTION 11[Dek76]. This gives evidence that separating EXP from NP will be di�cult. On theother hand, in [GH83] it is shown that for each k > 0 oracles A; B and C exist suchthat (i) PA � NPA � EXPAk , (ii) EXPBk � NPB and (iii) NPC and EXPCk areincomparable with respect to inclusion 4.We are especially interested in the possibility of separating NEXP from somelevel of the polynomial hierarchy. A reasonable assumption is that PH � NEXP asthis is a consequence of EXP � NEXP , but it appears that proper containment ofPH in NEXP will be di�cult to prove. From Heller we know that there is an oracleA such that �PA2 � �PA2 = �EXPA2 � �EXPA2 [Hel86] so there is a set A such thatNPNPA = EXPA. As we know that PNP [nc] � NEXP , for any �xed integer c, thisleaves the relationship of PNP to NEXP as an open question. To date, no oraclehas been constructed such that PNPA is equal to NEXPNPA .If we consider probabilistic polynomial time then again there is an oracle A, dueto Heller, such that BPPA = EXPA [Hel86] 5 Once again this gives evidence thatseparating classes from EXP may be hard.Oracle results also give evidence that the structure of the polynomial hierarchy,PH, di�ers from that of exponential time hierarchies. Hartmanis, Immerman andSewelson [HIS85] show that there exists an oracle A such that EA = NEA butNEA 6= �EA2 . This leads them to comment that the upward collapse of the polyno-mial hierarchy, which is implied if there is a collapse at any level of the polynomialhierarchy, may be a peculiarity of the structure of the polynomial hierarchy and notthe general case. Nevertheless, Hartmanis, Immerman and Sewelson still conjecturethat if E = NE then this implies the collapse of the entire exponential time hierarchy.4EXPk = Sc=0DTIME(2cnk ).5In fact Heller shows that there is an oracle A such that RA = �EXPA2 .



CHAPTER 1. INTRODUCTION 121.3.4 Strong Exponential Time HierarchiesIn the literature both EXPH and EH are frequently studied exponential time hier-archies. These hierarchies are both de�ned by considering exponential time classesusing oracle sets that are in the polynomial time hierarchy. Two other hierarchiesde�ned via exponential time classes are SEH and SEXPH. They are called strongexponential time hierarchies 6. These hierarchies are de�ned by considering classes inthe polynomial hierarchy using sets in NEXP or NE as oracles. The �rst four levelsof SEXPH are EXP; NEXP; NPNEXP ; NPNPNEXP :SEH is de�ned similarly using E and NE instead of EXP and NEXP . In bothhierarchies the �i classes are de�ned in an analogous way; i.e., �SEXP1 = PNEXP .These classes are extensively studied by Hemachandra in his thesis [Hem87]. In histhesis Hemachandra shows that these hierarchies collapse,E 6= PNE = SEH = PNEXP = SEXPHand gives the following downward separation results.If either E = NE or EXP = NEXP then EXP = SEXPH.If either NE = co�NE or NEXP = co�NEXP then NEXP = SEXPH.Hemachandra also shows that EXPNPtt � PNEXP , so there is a collapse at the lowestlevel of the EXPH under the assumption that either EXP = NEXP or NEXP =co�NEXP . In Chapter 3 we will further exploit this collapse.6They are called strong because there exists an oracle A such that SEHA is not contained inEHA (see [Hem87] for a discussion).



CHAPTER 1. INTRODUCTION 131.3.5 Advice Classes and Exponential TimeWe have already mentioned some results obtained using sparse sets, now we look atresults concerning sparse sets, the study of circuit complexity and advice classes. Itis well known that a language has small (polynomial-size) circuits if and only if it ispolynomial time Turing reducible to a sparse set. Equivalently, such a language issaid to be in the nonuniform complexity class P=poly also referred to as an adviceclass. A set A is in P=poly if there is an advice function f : N ! �� and a B 2 Psuch that x 2 A if and only if hx; f(jxj)i 2 B. So the advice string, f(jxj), dependsonly on the length of x.Kannan showed that NEXPNP does not have polynomial-size circuits [Kan82].As every set inBPP has polynomial-size circuits this implies thatBPP � NEXPNP .Beside giving a separation of NEXPNP from bounded probabilistic polynomial timethis result indirectly relates NEXPNP to PH as BPP � �P2 T�P2 [Lau83, Sip83].In Chapter 4 we further explore the relationship of exponential time classes andadvice classes. We show that EXP 6� DTIME(2O(nc1)=nc2), for any �xed integersc1; c2. This implies, for example, that EXP 6� E=lin. We also show that EXPNP 6�PNP=nc, for any �xed integer c. As was mentioned, there is an oracle A such thatBPPA = EXPA so, since BPP 2 P=poly nonrelativizing techniques will be neededto improve these results.In the context of an examination of superpolynomial circuits and almost sparseoracles Buhrman and Homer [BH92] examine small circuits in relationship to theEXP -time hierarchy. Buhrman and Homer show that if EXPNP is in P=poly thenEXPNP = �P2 T�P2 and that if ENP is in P=poly then ENP � �P2 T�P2 . Buhrmanand Homer accomplish this by showing that if any � level of the EXP hierarchyis contained in EXP=poly, then it is contained in EXP . Formally, if �EXPi isin EXP=poly; i � 1 then �EXPi = EXP . Unfortunately, the techniques used inBuhrman and Homer's results do not appear to be applicable to NEXP=poly.



CHAPTER 1. INTRODUCTION 14In [BFNW91] BPP is related to EXP and to probabilistically checkable proofs.It is shown that BPP has weak subexponential simulations, i.e. a simulation in time2n� for in�nitely many values of n and every � > 0, unless EXP has polynomial sizecircuits and is contained in the classMA of languages with probabilistically checkableproofs. Since MA 2 �P2 S�P2 then subexponential time simulations for BPP existunless EXP is in the second level of the polynomial-time hierarchy.1.3.6 Further Work on Exponential Time ClassesThis overview is limited to results which explore the relationship between exponentialtime classes and polynomial time classes. It should be noted that interesting workhas been done strictly on the structure of exponential time classes. A few of thesepapers are [Fu93, FLZ92, Gan90, LM93, TFL91, Wan90].Although the structure of the NP complete sets is not well understood one ofthe best understood classes of polynomial-time many-one complete sets are those inEXP . Kurtz, Mahaney and Royer give a comprehensive overview of these results in[KMR90]. Results pertaining to the relationship of the isomorphism conjecture, one-way functions and exponential time classes are also presented here. In general theyshow that many of the proof techniques that are used in recursive function theoryapply nicely to exponential time classes.Further, exponential time classes have been related to the probabilistic modelwhich describes interactive proof systems. In [BFL90] it is shown that the class oflanguages having two-prover interactive proof systems, MIP is NEXP . This is indirect contrast to an oracle result which states that relative to some oracle co�NPdoes not have multi-prover interactive proof systems [FRS88].There has also been a series of papers devoted to the systematic investigation ofthe internal, measure-theoretic structure of E and EXP . These results can be foundin [Lut93, LM93].



CHAPTER 1. INTRODUCTION 151.4 The Boolean HierarchyThe Boolean hierarchy has not been extensively examined with regard to exponentialtime classes. As Chapter 4 of this thesis begin this study, a brief overview is presentednext.The classes which form the lowest level of the Boolean hierarchy over NP , wereintroduced initially in [PY82] and the complete hierarchy was studied under di�erentde�nitions in [KSW87, CH86, WW85]. We will characterize it as the hierarchy ofnested di�erence classes over NP . It is known that the classes in the Boolean hi-erarchy, BH, are intertwined with the class of sets in Sk�1 PNP jj[k] [Bei91, KSW87].(This notation indicates that for any language L in PNP jj[k] the oracle Turing ma-chine computing L makes at most k parallel queries to an NP oracle on any inputstring.) These classes are referred to as parallel query classes. If queries are notrestricted to being in parallel then the resulting classes are referred to as boundedquery classes. Kadin [Kad88] showed that if the bottom two levels of BH collapsethen NP=poly = co�NP=poly. This, combined with a result by Yap [Yap83] that ifNP=poly = co�NP=poly then PH � �P3 and a close observation of Kadin's proofgives that if BHi = co�BHi then PH � �P3 . This result links the collapse of boththe Boolean hierarchy and bounded query hierarchy to the collapse of the polyno-mial hierarchy. In [CK90] this result is re�ned to show that if the Boolean hierarchycollapses to level i, then PH is equal to the ith level of the Boolean hierarchy over�P2 . For a detailed examination of Boolean hierarchies see [Cha91, Sit90] [CGH+88][CGH+89] .In Lozano's thesis the Boolean hierarchy over NEXP is considered in his closingremarks. Lozano observes that if the bounded query hierarchy over NE collapsesthen this implies, via a padding argument , that co�NEXP � NEXP=poly [Loz92]He leaves as an open question: Does this imply that NEXP = co�NEXP ?



CHAPTER 1. INTRODUCTION 161.5 The Complexity of Function ClassesIn general, problems in complexity theory have been stated as questions concerning setmembership. 7 An alternative is to consider the more general case of partial functions.The advantage of considering functions as opposed to set membership questions isthat a function value can be an instance of a solution to a problem, whereas, acorresponding set membership question just states the existence of an instance. In theprocess of studying optimization problems Krentel [Kre88] began a very interestingexamination of partial functions with oracles, particularly PFNP [f(n)]. He directlyrelated the complexity of speci�c function classes to set recognition problems. Inaddition, Krentel showed that if PFNP [log] = PFNP then P = NP . A study of theclasses of partial functions that are obtained by limiting the number of queries to somek � 1, PFNP [k] and PFNP [k]tt was carried on by Beigel [Bei88]. Selman continued thisby formalizing the basic relationships between function classes, presenting all knowninclusion relations of these classes and examining function classes with both adaptiveand nonadaptive queries [Sel92]. For instance, Selman shows that PNPtt = PNP if andonly if PFNPtt = PFNP and that if PFNP [logn] = PFNPtt , then R = NP . A furtherstudy of function classes, where the oracle may also be a partial multivalued functionsuch as PFNPMV , can be found in [FHOS92].1.6 Overview of ResultsEach chapter is motivated by a speci�c question relating exponential time classes topolynomial time classes. In Chapter 3 this question is: Is PNP properly containedin NEXP ? An equivalent question is: Is PNP properly contained in PNEXP? In7Even in [HS65] set recognition was not clearly the preferred model but was gaining popularityprobably eventually due to the simpli�cation of the theory of nondeterminism [GJ79, Ste90].



CHAPTER 1. INTRODUCTION 17answer we show thatfor i � 1; �P [nc]i+1 � �EXPi ; where c is a �xed integer.A consequence of this is that PNP [lin] � NEXP . This improves a corollary to Fu, Liand Zhong's result that NE 6� PNP [no(1) ], namely that PNP [no(1) ] � NEXP [FLZ92].The general theorem which we prove is:Theorem 1.6.1 Given C = Sf2F DTIME(f(n)), where F is a �xed family of timeconstructible functions,if C � EXP then, for any �xed constant c; C�Pi [nc] 6= �EXPi for i � 1:In the same vein, we also show a similar result for truth-table reductions.Theorem 1.6.2 Given C = Sf2F DTIME(f(n)), where F is a �xed family of timeconstructible functions,if C � EXP then c; C�Pitt 6= �EXPi for i � 1:This implies, for example, that PNPtt � NEXP .We end Chapter 3 with a general hierarchy theorem. This theorem is stated interms of alternating Turing machines in which the number of alternations in bounded.The motivating questions for Chapter 4 are: Is BPP properly contained in EXP ?and Is EXP 6� P=poly? These are related as every set in BPP is in P=poly. Withregard to advice classes and exponential time classes we show:Theorem 1.6.3 EXP 6� DTIME(2O(nc1 ))=nc2 for any �xed integers c1 and c2.This implies for example that EXP 6� E=lin. Along these same lines we show thatthis theorem relativizes.Theorem 1.6.4 For any oracle A EXPA 6� DTIME(2O(nc1); A)=nc2 for any �xedintegers c1 and c2.



CHAPTER 1. INTRODUCTION 18This implies EXPNP 6� PNP=nc. This theorem is also, with a little work, modi�edto give the same result with respect to truth table reductions implying EXPNPtt 6�PNPtt =nc. These results were done jointly with Steve Homer.Chapter 5 generalizes Kadin's collapses of the polynomial time Boolean hierarchyto the exponential time Boolean hierarchy over NEXP . It is shown that if thelowest levels of the EXP -time Boolean hierarchy are equal then NEXP=poly =co�NEXP=poly. This leads to the question: Does co�NEXP � NEXP=polyimply that the exponential time hierarchy collapses? This question is discussed here.In Chapter 6 the motivating question is: Can the structure of function classes beused to show separations between classes of sets? Our answer is somewhat inconclu-sive in that what we show is yes in some cases and probably not in other cases. Eventhough it is not known if PNP [log] is properly contained in EXP we show that,for all i; PF�Pi [log] � EXPFPB:8This result does not imply that PF�Pi 6= EXPFPB because, unlike the correspondingclasses in PH, it does not appear that PF�Pi � PF�Pi+1[log], for any i, as this impliesP = NP . What we would like to show is that if PFNP [log] is properly containedin EXPFPB, then PNP [log] is properly contained in EXP . Unfortunately, this doesnot follow from the techniques used in Chapter 6. We do show that if PNP [logn]CB isproperly contained in EXPCB, the class of constant-bounded exponential functions,then PNP [logn] � EXP . We end by showing that PFNEXP = EXPFNP [poly]PB and byexamining the relationship of PFNEXP [log] to EXPFPB.8PF�Pi [log] is the set of all partial functions which can be computed deterministically by a poly-nomial time-bounded oracle transducer which, on input x, makes at most O(log jxj) queries.



Chapter 2Preliminaries2.1 Basic De�nitions and NotationThis chapter gives the basic notation and de�nitions used in this thesis. The standarddeterministic/nondeterministic multi-taped Turing machine is our basic computationmodel. Variations of this model will be de�ned in this chapter. A knowledge ofthe de�nitions of Turing machines, basic time and space-bounded computation, andcommon reductions between classes ( �Pm; �PT ) is assumed. For further informationon these topics see [HU79, BDG88, BDG90].All languages considered in this thesis are subsets of � = f0; 1g�. Languages aredenoted by capital letters A;B; : : :. The complement of a language A is ���A and isdenoted by �A. Strings are elements of �� and are denoted by small letters w; x; y; : : :or by �; �; 
; : : :. We will use jxj to designate the length of x, where x is an elementof a language. Let N be the set of natural numbers. For a set A and n 2 N de�neAn = fx 2 A j jxj = ng:Let h�; �i denote a natural encoding of two strings into one string. We may assumethat this pairing function is polynomial-time computable and invertible.19



CHAPTER 2. PRELIMINARIES 20A set S is sparse if jjfx 2 S j jxj � ngjj � nc for some �xed c and all n.The class of languages of space complexity f(n) is denoted by DSPACE(f(n)).The class of languages of time complexity f(n) is denoted byDTIME(f(n)) and classof languages of nondeterministic time complexity f(n) is denoted by NTIME(f(n)).The following complexity classes appear through out this thesis.PSPACE = Sc�0DSPACE(nc)EXPSPACE = Sc�0DSPACE(2nc)P = Sc�0DTIME(nc)NP = Sc�0NTIME(nc)E = Sc�0DTIME(2cn)NE = Sc�0NTIME(2cn)EXP = Sc�0DTIME(2nc)NEXP = Sc�0NTIME(2nc)For each class of languages C, let co�C be the set of complements of the setsin C, co�C = fA j �A 2 Cg. Classes which are de�ned via deterministic time orspace bounded Turing machines are closed under complementation. Various non-deterministic space classes are closed under complementation [Imm88, Sze88]. Forclasses de�ned via nondeterministic time-bounded machines this is an open question.If C is strictly contained in C 0, then we write C � C 0.By the time hierarchy theorems [HS65, Coo73, BG70] :P � E � EXP and NP � NE � NEXP:By the space hierarchy theorem [HLS65] :PSPACE � EXPSPACE:



CHAPTER 2. PRELIMINARIES 21References for the following inclusions can be found in [HU79, BDG88]P � NP � PSPACE � EXP � NEXP � EXPSPACE:Let M0;M1;M2; : : : be a �xed enumeration of Turing machines. Let Li = L(Mi),the language accepted by machineMi. For any of the complexity classes de�ned abovewe may consider an enumeration fMeg of machine for that class. Speci�cally we willconsider an enumeration of nondeterministic Turing machines for NEXP and de�neK�EXP1 = fhe; x; ti j Me accepts x in � t steps g. The set K�EXP1 is �Pm-complete forNEXP and for NE.The following function classes, as previously de�ned in [BDG90], will be used. Ineach case the function f is from �� to ��.log = ff j f(n) = c � log2 n for some constant c glin = ff j f(n) = c � n for some constant c gpoly = ff j f(n) = c � nk for some constants c; k g2.2 Computing Relative to an OracleMachine based complexity classes relativize by allowing a set to be used as an oracle.An oracle Turing machine is a multi-taped Turing machine that also has a separatework tape for queries and three distinguished states: QUERY, YES and NO. Givena �xed oracle set, if, on input x, a QUERY state is entered then the oracle Turingmachine will enter the YES or NO state depending on whether or not the stringcurrently on the query tape is in the oracle set. If some language L is accepted byan oracle Turing machine M using the set A as an oracle and if M is time-bounded(space-bounded) by some function f then we say that L is accepted in time (space)f(n) relative to A.



CHAPTER 2. PRELIMINARIES 22If L is accepted in time f(n) relative to A and TIME(f(n)) � C for somecomplexity class C, then L 2 CA. We will speci�cally be interested in the classesPA, NPA, EXPA and NEXPA for various oracle sets A. The de�nitions for space-bounded classes are analogous except in this case the size of the oracle tape must alsobe speci�ed 1.Clearly, if a language L is in CA and A is in C 0 then L is in CC0. For any languageL 2 CC0, if C is a class of languages that are at least polynomial time-bounded and Ais polynomial time many-one complete for C 0 then L 2 CA. For example, if L 2 PNPthen L 2 P SAT .The number of queries to the oracle can be limited. If L is in CA for a �xed oracleset A via Turing machine M and on input x at most f(n) queries are made to A,then we write L 2 CA[f(n)] or simply L 2 CA[F ] where F is a family of functions andf 2 F . In particular the classes PA[f(n)], NPA[f(n)], EXPA[f(n)] and NEXPA[f(n)]will be considered for various sets A and functions f .We will also consider polynomial time truth-table reductions denoted by �Ptt. Wesay A �Ptt B if and only if A �PT B via an oracle Turing machine which writes downall of the queries on the query tape before any queries are made. In other words,all queries are made without considering the answer to previously asked queries; i.e.,nonadaptively. The de�nition of polynomial time truth-table reductions is generalizedto other time-bounds as follows. L �Ctt A if and only if A �CT B via a f(n) time-bounded oracle Turing machine which writes down all of the queries on the querytape before any queries are made and such that TIME(f(n)) � C. If L �Ctt A, thenwe write L 2 CAtt . The classes PNPtt and EXPNPtt will be of interest.1For example, consider PSPACEEXP . If the size of the query tape is not bounded by somepolynomial then it is possible to write a string which is exponentially long, relative to the inputlength, on the query tape. But this is then equivalent to querying an oracle in double exponentialtime.



CHAPTER 2. PRELIMINARIES 232.3 Hierarchies2.3.1 Using Alternating Turing Machines to De�ne Hierar-chiesAlternating machines will be used to de�ne time-bounded hierarchies. An alternatingTuring machine, or ATM, is a generalization of a multi-tape nondeterministic Turingmachine in the following way. The computation of a nondeterministic Turing ma-chine can be thought of as answering an existential question; i.e., does there exista computation path through a computation tree that results in an accepting state.Likewise, we can think of the universally quanti�ed question; i.e., do all computationpaths through a computation tree lead to accepting states. An alternating Turing ma-chine is a Turing machine in which each state is labeled either existential, universal,accepting or rejecting. [BDG90].A con�guration of an ATM, M on input x, is de�ned in the same way that acon�guration of a Turing machine is de�ned. In addition, if the current state is a uni-versal (resp., existential, accepting, rejecting) state then the con�guration is said tobe a universal (resp., existential, accepting, rejecting) con�guration. Likewise, com-putation path, initial con�guration, immediate successor, successor and computationtree are all de�ned as for Turing machines.We will de�ne an accepting computation for an alternating Turing machine via alabeling of a computation tree as in [BDG90].De�nition 1 Given a tree in which internal nodes are either universal or existential,we denote by l the result of the following labeling procedure:1. the accepting leaves are labeled 1;2. an existential node is labeled 1 if at least one of it's sons is labeled 1;3. a universal node is labeled 1 if all of it's sons are labeled 1.



CHAPTER 2. PRELIMINARIES 24We say that an ATM M accepts x if there is a computation tree of M on x in whichthe root gets label 1. The subtree of the computation tree which has all the nodeslabeled 1 is called the accepting computation tree of M on x.An ATM, M , is time-bounded by t if for any input x in L(M), with jxj = n,there exists an accepting computation subtree of M on x with height at most t(n).Similarly, an ATM,M , is space-bounded by s if for any input x in L(M), with jxj = n,there exists an accepting computation subtree of M on x such that the space used byeach con�guration in this computation subtree is bounded above by s(n). The classof languages accepted by time-bounded alternating machines is de�ned as follows(ASPACE(t(n)) is de�ned analogously).De�nition 2 For any time bound function t(n) denote by ATIME(t(n)) the classof languages accepted by t(n) time-bounded ATMs.By bounding the number of alternations a general de�nition for time and space-bounded hierarchies arises.De�nition 3 LetM be an ATM and let x be an input. We sayM is A(n)-alternationbounded on x if any path of maximum length of any accepting computation tree of Mon x alternates universal and existential con�gurations at most A(n)� 1 times.So we say, for any k > 0, a A�k -machine (resp. A�k -machine) is a k-alternationbounded ATM which starts with an existential (resp. universal) state.Then, for a function f , let �fk (�fk) denote the class of languages accepted bya A�k(A�k) alternating Turing machine which runs in time f(n). For a class offunctions F , �Fk = Sf2F �fk and �Fk = Sf2F �fk. Using this de�nition we de�ne threehierarchies that will be studied in this paper:1.) Letting F = f polynomial-time computable functions g we obtain the usuallevels of the polynomial-time hierarchy, PH.



CHAPTER 2. PRELIMINARIES 252.) Letting F = f2p(n) j p is a polynomial g we obtain the levels of the exponential-time hierarchy EXPH.3.) Letting F = f2cn j c is a constantg we obtain the levels of the exponential-timehierarchy EH.The ith sigma levels of these hierarchies will be denoted �Pi , �EXPi and �Ei . The pilevels will be denoted �Pi , �EXPi and �Ei . Each of these hierarchies de�ned inductivelycan also be represented using the classes usually denoted by �Fi . For PH, �Pi =P�Pi�1 . The delta classes in both exponential hierarchies are de�ned in terms ofclasses in the polynomial hierarchy 2. For EXPH, �EXPi = EXP�Pi�1 and for E,�Ei = E�Pi�1 .The inductive de�nition of each of these hierarchies is based on using the class �Pias an oracles to build the i+1st delta, sigma and pi levels. As these classes are modeledusing oracle Turing machines we can consider the variations of the Turing machinemodel that are presented in Section 2.2. Speci�cally, in terms of the polynomialhierarchy:�P [F ]i is the set of languages in NP�Pi�1 [F ].�P [F ]i is the set of languages in co�NP�Pi�1 [F ].�P [F ]i is the set of languages in P�Pi�1 [F ].�Pi;tt is the set of languages in NP�Pi�1tt .�Pi;tt is the set of languages in co�NP�Pi�1tt .�Pi;tt is the set of languages in P�Pi�1tt .2Unlike polynomial functions, an exponential function composed with an exponential does notyield another exponential function but will be doubly exponential. It follows then that EXPNEXPis not even in EXPSPACE.



CHAPTER 2. PRELIMINARIES 26The de�nitions for EXPH are similar.�EXP [F ]i is the set of languages in NEXP�Pi�1 [F ].�EXP [F ]i is the set of languages in co�NEXP�Pi�1 [F ].�EXP [F ]i is the set of languages in EXP�Pi�1 [F ].The de�nitions for EH are analogous to those for EXPH.2.3.2 The Strong Exponential HierarchyThe most frequently studied hierarchies can be de�ned via alternating Turing ma-chines but not all hierarchies are known to be de�nable in this way. An open questionin [Hem87] asks if the strong exponential hierarchies can be de�ned via alternatingTuring machines. The following inductive de�nition of the strong exponential hierar-chies will be used.De�nition 4 The strong exponential hierarchy.�SEH0 = E�SEH1 = NE�SEHi = NP�SEHi�1 for i � 2�SEHi = P�SEHi�1 for i � 2SEH = Si�o�SEHi = Si�o �SEHiSubstituting EXP for E and NEXP for NE, the classes of SEXPH are de�nedanalogously. As was mentioned in the previous chapter both hierarchies collapse tothe �2 level and SEH = SEXPH = PNE = PNEXP [Hem87].



CHAPTER 2. PRELIMINARIES 272.4 Computing with Probabilistic Models and Com-puting with AdviceA nondeterministic Turing machine can compute a probabilistic algorithm by givingthe machine access to an random source such as an ideal random number generator.Further, complexity classes can be de�ned in terms of these probabilistic machines.In this thesis we will be concerned with two such class denoted BPP , bounded errorprobabilistic polynomial time, and R, random polynomial time. These class wereoriginally de�ned in [Gil77, AM77] and references to all of the properties stated herecan be found in [Sch85, BDG88].First we describe a general probabilistic machine. A probabilistic Turing machineis a nondeterministic Turing machine where each nondeterministic choice is consid-ered a random experiment in which the outcome has equal probability. We assume,with out loss of generality, that each nondeterministic branch has two possible out-comes each with probability 1/2. Now each nondeterministic computation of lengthn has probability 2�n. A probabilistic Turing machine has three types of �nal states:accepting or a-state, rejecting or r-states and undetermined or ?-state. The outcomeof the machine on input x is now a random variable whose range is (a; r; ?). LetPr[M(x) = y] denote the probability that machine M on input x halts in a y-state.The probability that M accepts an input x is the sum of the probabilities of allaccepting paths.De�nition 5 BPP is the class of languages recognized by polynomial time proba-bilistic Turing machines whose error probability is bounded above by some positiveconstant � < 1=2.De�nition 6 R is the class of languages recognized by polynomial time probabilisticTuring machines which have zero error probability for inputs not in the language, and



CHAPTER 2. PRELIMINARIES 28error probability bounded above by some positive constant � < 1=2 for words in thelanguage.It is easy to see that R � BPP and as BPP is closed under complementationwhich implies that co�R � BPP . In addition, it is known thatP � R � NP:The relationship of NP to BPP is not known. It is known that NP � BPP impliesthat NP = R [Ko82] and also that NP � BPP implies that PH = �P2 [KL80].Neither of these consequences is believed to be true.It is known that every language in BPP is in the nonuniform complexity classP=poly which is de�ned using the following general de�nition for advice classes.De�nition 7 An advice functions is a functions f :N! ��. Let C be a complexityclass, and F a family of advice functions. The class C=F is the collection of all setsA such that for some B 2 C and a function f 2 Fx 2 A if and only if hx; f(jxj)i 2 B:2.5 The Boolean Hierarchy over NEXPAs was mentioned in the introduction there are several equivalent de�nitions for theBoolean hierarchy. We will start by de�ning the bottom levels of both the polynomialtime and exponential time Boolean hierarchies. The bottom levels of the Booleanhierarchy over NP are DP and co�DP . These classes were originally de�ned in[PY82]. DP = fL1 \ L2 j L1; L2 2 NPgco�DP = fL1 [ L2 j L1; L2 2 NPg = fL j L 2 DP g



CHAPTER 2. PRELIMINARIES 29Complete sets for DP and co�DP are:SAT ^ SAT = f(F1; F2) j F1 2 SAT and F2 2 SATgSAT _ SAT = f(F1; F2) j F1 2 SAT or F2 2 SATgwhere F1 and F2 are boolean formulas. The following classes are the analogous classesfor exponential time. DE = fL1 \ L2 j L1; L2 2 NEXPgco�DE = fL1 [ L2 j L1; L2 2 NEXPgAs will be shown in Chapter 4, complete sets for DE and co�DE are:K�EXP1 ^K�EXP1 = f(he1; x1; t1i; he2; x2; t2i) j he1; x1; t1i 2 K�EXP1 andhe2; x2; t2i 2 K�EXP1 gK�EXP1 _K�EXP1 = f(he1; x1; t1i; he2; x2; t2i) j he1; x1; t1i 2 K�EXP1 orhe2; x2; t2i 2 K�EXP1 gwhere e is treated as the index of a NEXP machine, x as an input string and t as atime bound. Following the de�nition of the Boolean hierarchy for polynomial time in[CGH+88] de�ne the Boolean hierarchy for exponential time, EXPBH, as follows.De�nition 8 The Boolean hierarchy over NEXP .EXPBH1 = NEXPEXPBH2i = fL1TL2 j L1 2 EXPBH2i�1 and L2 2 NEXPgEXPBH2i+1 = fL1SL2 j L1 2 EXPBH2i and L2 2 NEXPgco�EXPBHi = fL j L 2 EXPBHigEXPBH = Si�1EXPBHi



CHAPTER 2. PRELIMINARIES 302.6 Function ClassesThe standard de�nitions for function classes will be used. Many of these de�nitionsappear in [Sel92] where there is a complete discussion of function classes.The computation model we use generalizes the basic de�nition for determinis-tic/nondeterministic multi-tape Turing machines by allowing a value to be writtenon an output tape. A transducer T is a nondeterministic Turing machine with aread-only input tape and a write-only output tape. On input string x, T computesa value y if there is an accepting computation path of T on x for which y is the�nal contents on the output tape. Nondeterministic transducers compute partial,multivalued functions. Accordingly, for an input string x, T may have many di�erentpossible output values each resulting from a di�erent accepting computation path. IfT on x outputs y then we write T (x) 7! y.The following function classes appear throughout this thesis.PSPACEF = the set of all partial functions which can be computed in poly-nomial space.PF = the set of all partial functions which can be computed deterministicallyby polynomial time-bounded transducer.NPMV = the set of all partial functions which can be computed nondetermin-istically by polynomial time-bounded transducer.NPSV = the set of all f 2 NPMV that are single valued.EXPF = the set of all partial functions which can be computed deterministi-cally by an 2nc time-bounded transducer where c is a constant.NEXPMV = the set of all partial functions which can be computed nondeter-ministically by an 2nc time-bounded transducer where c is a constant.



CHAPTER 2. PRELIMINARIES 31NEXPSV = the set of all f 2 NEXPMV that are single valued.A function f is constant-bounded if there is a constant c such that for all x inthe domain of f jf(x)j � c. For any classes of functions, let CCB = the set of allconstant-bounded functions in C.A function f is polynomial-bounded if there is a polynomial p such that, for all xin the domain of f , jf(x)j � p(jxj). For any classes of functions, let CPB = the set ofall polynomial-bounded functions in C.We will assume that all functions in PSPACEF are in fact in PSPACEFPBunless speci�cally stated otherwise; i.e., that the function output is also bounded bythe space-bound.Given partial multivalued functions f and g, de�ne g to be a re�nement of f ifthe domain of g is equal to the domain of f and for all x in the domain of g and ally, if g(x) 7! y, then f(x) 7! y.Let F and G be classes of partial multivalued functions. If f is a partial multi-valued function, we de�ne f 2c G if G contains a re�nement g of f , and we de�neF �c G if for every f 2 F , f 2c G.We also allow a transducer T to access an oracle set in the same way that we havealready de�ned for Turing machines. In this way we may consider a function f inPFNP [log]. In this thesis oracle sets will always be subsets of �� and will never returna value other than 0 or 1.If alternating machines are allowed to write a string to an output tape, in otherwords, the alternating machine is now a transducer, then we would like to generalizethe notion of de�ning hierarchies based on alternating machines with output. In fact,this is not exactly correct as a particular nondeterministic transducer may computea multivalued function. In this case there may be several di�erent possible outputvalues for some input. As the hierarchy of function classes that will be examined inthis thesis are the � classes, we will use an inductive de�nition which does not rely



CHAPTER 2. PRELIMINARIES 32on ATM's.De�nition 9 The polynomial hierarchy for function classes.�PF0 = PF�PFi+1 = PF�Pi , i � 0PHF = Si�0�PFiLikewise, exponential hierarchies can be de�ned for function classes. As in the caseof EXP and E, these hierarchies are de�ned in terms of the polynomial hierarchy.The de�nition for EXPHF is as follows and EHF is de�ned analogously.�EXPF0 = EXPF�EXPFi+1 = EXPF�Pi , i � 0EXPHF = Si�0�EXPFi



Chapter 3Exponential Time Classes and PHIn this chapter we relate the polynomial time hierarchy to the exponential time hier-archy. The main motivation is to answer the following open question:Is PNP properly contained in NEXP ?Recently progress was made on this question by Fu, Li and Zhong using standardtranslation methods. In [FLZ92] Fu, Li and Zhong show that NE 6� PNP [no(1) ]. Aconsequence of this is that PNP [no(1) ] is properly contained in NEXP . This followseasily as PNP [no(1) ] � NEXP and if we assume that NEXP � PNP [no(1) ] then thisof course implies that NE � PNP [no(1) ] which contradicts Fu, Li and Zhong's result.Further progress is made in this chapter.How practical is it to assume that Fu, Li and Zhong's result can be improved?For example, how hard is it to show that PNP is properly contained in NEXP ?We answer this question by the convoluted reasoning that there is a lack of evidenceindicating that a separation of PNP from NEXP will in fact be hard to prove. Inother words, no proof has been given to show that these two classes are equal relativeto an oracle set. It has not been proved that there is an oracle A such that PNPA =NEXPA. There is an oracle due to Heller [Hel86] such that PNPA � NPNPA =33



CHAPTER 3. EXPONENTIAL TIME CLASSES AND PH 34NEXPA = EXPNPA so we can't easily hope to separate NPNP form NEXP butthis only makes extending Fu, Li and Zhong's separation to PNP more interesting.In fact Fu, Li and Zhong mention that they have tried unsuccessfully to show eitherthat NE 6� PNP or that there is an oracle A such that NEA � PNPA [FLZ92].We now present a related question. In Hemachandra's thesis [Hem87] , as a partof his examination of the strong exponential time hierarchy, he shows that answeringthe question: Is PNP properly contained in PNEXP?is equivalent to answering the question:Is PNP properly contained in NEXP ?Obviously, if PNP is properly contained in NEXP then it is also properly containedin PNEXP . So if the second question is answered in the a�rmative then so is the �rst.What Hemachandra observed is that ifNEXP = co�NEXP thenNEXP = PNEXP .Using this downward separation result, we see that a positive answer to the �rstquestion implies a positive answer to the second question. If in fact PNP 6= PNEXP ,then under the assumption that PNP = NEXP we see that, since NEXP is closedunder complementation, NEXP = co�NEXP ) NEXP = PNEXP . We concludefrom this that PNP = PNEXP which would be a contradiction. Therefore, if PNP isproperly contained in PNEXP then PNP is also properly contained in NEXP .Again, to date, it has not been shown that PNP is equal to PNEXP relative toan oracle so we have no evidence that separating PNP from PNEXP will be hard.Although results in complexity theory can often be counterintuitive, since we knowthat NP 6= NEXP we expect that PNP is not equal to PNEXP .In this chapter, we improve Fu, Li and Zhong's result. First, using the fact thatthe time hierarchy theorem relativizes and that this can be generalized so that the



CHAPTER 3. EXPONENTIAL TIME CLASSES AND PH 35relativized time hierarchy theorem is true even if only nonadaptive queries are consid-ered, we show that �Pi+1;tt � �EXPi . This implies, for example, that PNPtt � NEXP .Next we give a hierarchy theorem which diagonalizes over time-bounded oracle Tur-ing machines while also bounding the number of queries made to the oracle. Thisis then used to show that �P[nc]i+1 � �EXPi , where c is any constant. For example,this yields PNP [nc] � NEXP which implies PNP [lin] � NEXP . In the last sectionof this chapter we give a general hierarchy theorem in terms of alternating Turingmachines. This theorem is used to demonstrate some simple relationships betweenthe polynomial hierarchy and hierarchies for classes which use more than polynomialtime.3.1 Using Truth-table and Bounded Query Classesto Separate Classes in the PH from Classesin the Exponential HierarchyA consequence of the fact that the time hierarchy theorem relativizes is that everylevel of the polynomial hierarchy separates from the corresponding level of the ex-ponential time hierarchy (see Section 3.2 for this proof). In this section we improvethis separation by showing that for any �xed constant c, �P [nc ]i+1 is properly containedin �EXPi . This implies, for example, that for any i, �P [lin]i+1 is properly contained in�EXPi and speci�cally that PNP [lin] is properly contained in NEXP .First we give a slightly weaker result that uses the same general proof technique.We show that every �Pi+1;tt level of the polynomial hierarchy is properly contained inthe �EXPi level of EXPH. This implies, for example, that PNPtt is properly containedin NEXP . This result is developed by generalizing and extending several observa-tions that Hemachandra made about the class PNEXP . In [Hem87], Hemachandra



CHAPTER 3. EXPONENTIAL TIME CLASSES AND PH 36gives a downward separation result showing thatif NEXP = co�NEXP then NEXP = PNEXP :Further he shows that EXPNPtt is contained in PNEXP . Consequently if NEXP =co�NEXP then NEXP = EXPNPtt . We explore these observations with respect tothe classes P�EXPi for any i. In this section, we show thatif �EXPi = co��EXPi then �EXPi = P�EXPi for any i � 1:Similarly we show that �EXPi+1;tt is contained in P�EXPi and in fact �EXP [poly]i+1 = �EXPi+1;tt =P�EXPi for i � 1. Now under the assumption that �EXPi = �Pi+1;tt the class �EXPiwill be closed under complementation and therefore equal to �EXPi+1;tt. This impliesthat �Pi+1;tt = �EXPi+1;tt which contradicts the time hierarchy theorem with respect totruth-table reductions.Consequently, PNPtt is properly contained in NEXP . This is not a new resultas this is implied by a corollary of Fu, Li and Zhong's result that NE 6� PNP [no(1) ][FLZ92]. It follows from their result that PNP [no(1) ] is properly contained in NEXP .Since PNP [log] = PNPtt and no(1) majorizes log(n) Fu, Li and Zhong's result impliesthat PNPtt is already properly contained in NEXP .The time (space) hierarchy theorem relativizes so it has been observed that, iftime classes T1 and T2 are distinct via the time hierarchy theorem, then so are TA1and TA2 for any oracle A. This can be extended further to show that the classes ofsets which are T1 truth-table reducible to A are distinct from the class of set whichare T2 truth-table reducible to A. To see this we consider the proof of the timehierarchy theorem. In this theorem, one machine M treats its input hi; wi as a tuplerepresenting the index to a Turing machine Mi (in a �xed enumeration of machines)and an input string w. The machine M then proceeds to simulate the computationof Mi on w. Given a particular time bound t on M , the machineM can then be used



CHAPTER 3. EXPONENTIAL TIME CLASSES AND PH 37to diagonalize over all machines in an enumeration. Observe, all that is needed toadapt the time hierarchy theorem to consider only nonadaptive oracle machines is toreject any input hi; wi such that during the simulation of Mi on w, all queries are notmade one step of M 0is computation on w.The following proposition is a straight forward generalization of a similar resultcovering the polynomial time hierarchy.Proposition 3.1.1 For any oracle A, EXPA[poly] � EXPAtt .Proof. Given any set L in EXPA[poly] there are polynomials p and p0 such thatthere exists a 2p(n) time-bounded oracle Turing machine M accepting L that makesat most p0(n) queries to A on any input of length n. Given any input of length n, ifwe consider all possible queries that can be made by M to the oracle then there areat most 2p(n) � p0(n) queries. Since 2p(n) � p0(n) � 2p(n)+p0(n), then all queries in thecomputation can be made nonadaptively by a EXPAtt machine. 2Lemma 3.1.1 For all i � 1, �EXPi+1;tt � P�EXPi .Proof. Given L 2 �EXPi+1;tt via oracle machine M with an oracle set A in �Pi . Let2p(n) be the running time of M . Consider input x with jxj = n. If we know how manyof the 2p(n) queries made to A receive a YES answer then a �EXPi machine can guesswhich queries receive a YES, verify that they are in fact in A and then simulate thecomputation of M on x substituting the correct oracle answers. So given the correctnumber of YES answers only one query to a �EXPi oracle is needed to determine ifx 2 L. But the number of correct YES answers can be found in polynomial timegiven a �EXPi oracle via binary search, so �EXPi+1;tt � P�EXPi . 2Lemma 3.1.1 can be found in [Hem87] for i = 1.



CHAPTER 3. EXPONENTIAL TIME CLASSES AND PH 38In general, given a �xed enumeration, fMeg, of nondeterministic oracle Turingmachines which run in NEXP time we have the following complete set for �EXPi :K�EXPi = fhe; x; ti jM�Pi�1e on input x accepts in time tg:We can also consider the setD = fhhe; x; ti; 0ti j he; x; ti 2 K�EXPi gwhich is formed by padding elements of K�EXPi with a possibly exponentially longpad. Clearly, given an oracle Turing machine,M1, which computes K�EXPi then thereexists a nondeterministic oracle Turing machine which acceptsD . One such machine,on input hhe; x; ti; 0ti, just simulates the computation of M1 on he; x; ti and acceptsor rejects accordingly. It is easy to see that the language accepted by such a machinewill be in �Pi and that he; x; ti 2 K�EXPi if and only if hhe; x; ti; 0ti 2 D.Lemma 3.1.2 For all i � 1, �EXP [poly]i+1 = �EXPi+1;tt = P�EXPi .Proof. From Proposition 3.1.1 and Lemma 3.1.1 we have that �EXP [poly]i+1 ��EXPi+1;tt � P�EXPi . It remains to show that P�EXPi � �EXP [poly]i+1 . Assume L is alanguage in P�EXPi and that M is a polynomial time oracle machine computing L.Without loss of generality, we may assume the oracle set is K�EXPi , a complete setfor �EXPi . De�ne a deterministic oracle Turing machine M 0 as follows. Assume thatD, as de�ned above, is the oracle set used by M 0. On input w, M 0 simulates M onw. If during the simulation M queries q = he; x; ti then M 0 queries hhe; x; ti; 0ti toD. If hhe; x; ti; 0ti 2 D then M 0 proceeds with the simulation of M as if he; x; tiwere in K�EXPi . Otherwise, M 0 proceeds as if the query were not in K�EXPi . If thesimulation ends in an accepting state then M 0 accept, otherwise M 0 reject. Sincehe; x; ti 2 K�EXPi $ hhe; x; ti; 0ti 2 D and hhe; x; ti; 0ti can be constructed in timeexponential in the length of w, all queries are answered correctly in exponential time.As only polynomial many queries are made L(M) 2 �EXP [poly]i+1 . 2



CHAPTER 3. EXPONENTIAL TIME CLASSES AND PH 39For example, this gives that EXPNP [poly] = EXPNPtt = PNEXP . Note thatPNEXP = EXPNPtt is a peculiarity of these classes. In fact, since ENPtt � EXPNPttand PNE = PNEXP we can conclude that ENPtt 6= PNE.Lemma 3.1.3 For i � 1, �EXPi = co��EXPi implies that �EXPi = P�EXPi .Proof. Assume for some i, that �EXPi = co��EXPi . Let L 2 P�EXPi . Consider theoracle Turing machine computing L. For ever query q made to a �EXPi oracle, since�EXPi = co��EXPi , it is su�cient to guess and check a witness for q to determine theoracle answer. As this is a �EXPi computation, this implies �EXPi = P�EXPi . 2Theorem 3.1.1 Given C = Sf2F DTIME(f(n)), where F is a �xed family of time-constructible functions,if C � EXP then C�Pitt 6= �EXPi for i � 1:Proof. Let C = Sf2F DTIME(f(n)), where F is some �xed family of functionsand C � EXP . Assume C�Pitt = �EXPi . As C�Pitt is closed under complementation wehave that �EXPi = co��EXPi which by Lemma 3.1.3 implies �EXPi = P�EXPi . Weare given by Lemma 3.1.2, that �EXPi+1;tt = P�EXPi so this implies that C�Pitt = �EXPi+1;ttwhich is equivalent to saying C�Pitt = EXP�Pitt . This last statement contradicts thetime hierarchy Theorem with regard to truth-table reductions. 2For example, if we assume that PNPtt = NEXP then, since PNPtt is closed undercomplementation,NEXP = co�NEXP . This in turn implies thatNEXP = PNEXPby Lemma 3.1.3. Since, by Lemma 3.1.2, PNEXP = EXPNPtt we conclude thatPNPtt = EXPNPtt which contradicts the time hierarchy theorem with respect to truth-table reductions, therefore PNPtt � NEXP .



CHAPTER 3. EXPONENTIAL TIME CLASSES AND PH 40As was already mentioned, Fu, Li and Zhong give a result which implies thatPNP [no(1) ] 6� NEXP [FLZ92]. As PNPtt = PNP [logn] and log n is contained in no(1)for all n, then it is already known that PNPtt � NEXP . In fact Fu, Li and Zhongshow that PNPLtt � NEXP which is also implied by our theorem 1. To see thisconsider that by a simple proof in which the length of queries is padded we knowthat PNPLtt � PLNPtt . Then from Theorem 3.1.1 we get that PLNPtt � NEXP whichimplies that PNPLtt � NEXP .In the proof of Theorem 3.1.1 we use that if �EXPi = co��EXPi then this impliesthat �EXPi = �EXPi+1;tt. As Lemma 3.1.2 shows that, for any i, �EXPi;tt = �EXP [poly]ithen we can also use that if �EXPi = co��EXPi then �EXPi = �EXP [poly]i+1 . In fact,using this observation Theorem 3.1.1 can be improved to show that for any �xedconstant c, �P [nc]i+1 is properly contained in the �EXPi level of EXPH. To do this ageneral hierarchy theorem which separates relativized classes while also consideringthe number of queries made to the oracle is needed.Theorem 3.1.2 Let t1; t2 be time constructible functions, where for all n , t2(n) �t1(n); infn!1 t3(n) log t3(n)t1(n) = 0 and , for all n, t4(n) � t2(n) then, for any oracleA[f(n)], where f(n) is the number of queries made to A for any input length n,DTIME(t1(n); A[t2(n)]) contains a language which is not in DTIME(t3(n); A[t4(n)]).Proof. We construct via diagonalization a set L in DTIME(t1(n); A[t2(n)]) whichis not in DTIME(t3(n); A[t4(n)]). For x in f0; 1g�, let Mx denote an oracle Turingmachine which has x as its G�odel number. Without loss of generality, we give a prooffor oracle machines on input alphabet f0; 1g.Fix an oracle set A. We construct an oracle TM, M , that runs in time t1(n) andmakes at most t2(n) queries to A and disagrees on at least one input with any t3(n)time bounded oracle TM making at most t4(n) queries to A.1NPL = Sc�0NTIME(2logc n).



CHAPTER 3. EXPONENTIAL TIME CLASSES AND PH 41On input w, M constructs both a t1(n) and a t2(n) counter, where n = jwj. Asboth these functions are fully time constructible so this is possible. Now M simulatesMw on input w. If during the simulation Mw queries an oracle on some query q thenM queries A on q and proceeds with the simulation based on the result of the query toA. SinceM has a �xed number of tapes and tape symbols then time c�t3(n) log t3(n),where c is a constant, is needed to complete the simulation.In order to insure that the simulation of Mw is t1 time bounded the t1(n) counteris decremented with each step of the simulation. Likewise, the t2(n) counter is decre-mented with each oracle query. After t1(n) steps M halts and accepts only if thesimulation of Mw on w is completed; no more than t2(n) queries were made to anoracle and Mw rejects w.So w is in L(M; A[t2(n)]) if and only if w is not in L(Mw; A[t4(n)]). ThusL(M; A) 6= L(Mw; A) for any Mw that is t3(n) time bounded and queries A at mostt4(n) times. 2Corollary 3.1.11. PNP [nc] � EXPNP [poly] for any �xed constant c.2. PNP [lin] � EXPNP [poly].Theorem 3.1.3 Given C = Sf2F DTIME(f(n)), where F is a �xed family of time-constructible functions,if C � EXP then, for any �xed constant c; C�Pi [nc] 6= �EXPi for i � 1:Proof. Let C = Sf2F DTIME(f(n)), where F is a �xed family of time-constructiblefunctions, and C � EXP . Fix a constant c. Assume that C�Pi [nc] = �EXPi . SinceC�Pi [nc ] is closed under complementation then �EXPi = co��EXPi which in turn, by



CHAPTER 3. EXPONENTIAL TIME CLASSES AND PH 42Lemmas 3.1.3 and 3.1.2, implies �EXPi = �EXP [poly]i+1 . Now C�Pi [nc] = EXP�Pi [poly].Since C�Pi [nc] � EXP�Pi [nc] � EXP�Pi [poly] this implies that C�Pi [nc] = EXP�Pi [nc]which contradicts Theorem 3.1.2. 2Corollary 3.1.21. PNP [nc] � NEXP for any �xed constant c.2. PNP [lin] � NEXP .3. PLNP [lin] � NEXP .This improves all previous results.Considering just the polynomial time hierarchy and EXPH the next question is:Can this result be improved? In [Hel86] Heller gives an oracle A such that NPNPA =EXPNPA . Consequently any result which shows that NPNP � NEXP will notrelativize. This leaves as an open question the relationship of PNP and NEXP .There is an easy oracle such that �PAi+1 6= EXPA for i � 1 but an oracle showing that�Pi+1 and �EXPi are equal appears to be di�cult. To see that there is an oracle Asuch that �PAi 6= EXPA consider using the set K�EXP1 , a complete set for NEXP , asan oracle. Let A = K�EXP1 . Due to the collapse of the strong exponential hierarchy�PAi = PA for any i. This gives PA � EXPA by the relativization of the timehierarchy theorem.In related work, Beigel examines the relationship of PNP to the probabilistic classPP [Bei92]. This relates to our discussion as PP � PSPACE. In his paper Beigelgives an oracle relative to which PNP is not contained in PP . In fact he showsthat if f(n) 62 O(log n) then there is an A such that PNPA[f(n)] is not contained inPPA. Previously Beigel, Hemachandra and Wechsung showed that PNP [log] � PP[BHW91].



CHAPTER 3. EXPONENTIAL TIME CLASSES AND PH 433.2 A General Hierarchy Theorem for Alternat-ing Machines with Bounded AlternationsIn the proof of the next theorem we use one alternating Turing machine to simulatethe computation of another alternating Turing machine. In [PPR78], it is shown thatevery language that is accepted by a k-tape, t(n) time-bounded ATM is accepted bya 1-tape, t(n) time-bounded ATM, but, as this proof relies on the use of additionalalternations, we will use a 2-tape simulation that does not introduce additional alter-nations. In [CS76], the authors claim that if L 2 ATIME(t(n)), then L is acceptedby a 2-tape alternating TM within time c t(n). This proof is similar to the correspond-ing proof for nondeterministic time-bounded Turing machines [BG70]. Chandra andStockmeyer also claim that standard diagonalization arguments give complexity hi-erarchies for ATM's. Under the assumption that t1(n) and t2(n) are countable andinfn!1 t2(n)t1(n) = 0 then ATIME(t1(n)) �ATIME(t2(n)) 6= ;. Next we give a similartheorem but we also bound the number of alternations. Intuitively, as keeping trackof alternations is a matter of keeping track of which type of state the simulation iscurrently in this alone should not change the simulation.Theorem 3.2.1 Let t1 be a time constructible function, and infn!1 t2(n)t1(n) = 0. Thenfor any constant k � 1 A�t1k contains a language which is not in A�t2k .Proof. We construct via diagonalization a set L in A�t1k which is not in A�t2k Forx in f0; 1g�, let Mx denote a alternating Turing machine which has x as its G�odelnumber. We will assume that if L = L(Mx) for some x, then there are encodings ofmachines which accept L in�nitely often in the enumeration of machines. Withoutloss of generality, we give the proof for alternating machines on input alphabet f0; 1g.Consider the following four-tape alternating machine M .input hw; xi



CHAPTER 3. EXPONENTIAL TIME CLASSES AND PH 44let n be the length of w.if w 6= x#y for some y 2 f0; 1g�, then rejectelse 1. compute the binary representation of t1 and using the time constructibilityof t1, write it on tape 1. This will be used as a t1 \clock".2. compute the binary representation of k and write it on tape 2. This will beused as a counter, subtracting one at each state where a quanti�er is alternated.3. If the initial con�guration of Mx is an existential con�guration then existentiallyguess z where jzj � p(n) and decrement the counter4. simulate the computation of Mx on winterchange the accepting and rejecting statesinterchange the existential and universal statesif the counter = 1; the clock reaches 0 and the simulation accepts then accept(note, the simulation accepts when Mx on w rejects)else rejectUsing the 2-tape simulation of a multitape ATM and allowing a constant c, de-pending on the machine Mx, which accounts for the encoding of some �xed numberof symbols used by Mx we see that the simulation requires time c t2(n). For longenough w encoding Mx, c t2(n) � t1(n), so M accepts within time t1(n); starts withan existential con�guration and makes less than k alternations. L(M) 2 A�t1k .Assume L(M) 2 A�t2k . Then there will be an alternating machine Mx0 accept-ing every string in L(M) within t2 steps; k alternations and starts with a universalcon�guration. As infn!1 t2(n)t1(n) = 0 this implies that M will have enough time tocomplete the simulation of Mx0 on w and accept if and only if Mx0 rejects. ThusL(M) 6= L(Mx0) contradicting our assumption. L(M) is in A�t1k but is not in A�t2k .2



CHAPTER 3. EXPONENTIAL TIME CLASSES AND PH 45Corollary 3.2.1 For all constants k, �Pk 6= �EXPk and �Pk 6= �EXPk :Proof. We will show the proof for �Pk 6= �EXPk . Assume �EXPk = �Pk . Given�Pk � EXP � �EXPk , then, by assumption, �Pk = EXP . This implies that �Pk isclosed under complementation. Since �Pk = �Pk and �Pk = �EXPk then �Pk = �EXPkwhich contradicts Theorem 3.2.1. 2Although it is believed that both PH � NEXP and EXP = NEXP ) NEXP =EXPH there is a relativized result in terms of NE and EH contradicting the laterstatment. By Hartmanis, Immerman and Sewelson [HIS85] there is an oracle A suchthat EA = NEA but �EA2 6= NEA. If, in fact, EXP = NEXP ) NEXP = EXPHthen by the theorem just proved this would imply that PH � NEXP .Corollary 3.2.2 If EXP = NEXP ) NEXP = EXPH then the polynomialhierarchy is properly contained in NEXP .Proof. Assume EXP = NEXP ) NEXP = EXPH. Assume that NEXP ��Pk for some k. Since �Pk � EXP � NEXP this implies EXP = NEXP . Bythe �rst assumption NEXP = EXPH so �EXPk = NEXP = �Pk contradictingCorollary 3.2.1. 2Let PL; (NPL) denote the class of problems computable in deterministic (non-deterministic) 2polylog time.Letting F = f2logk n j k 2 Ng we obtain the subexponential hierarchy based on2polylog length alternating computations. Call this hierarchy PLH. This hierarchyobeys downward separation: if �PLi+1 � �PLi then for all j > i; �PLj � �PLi .Corollary 3.2.3 For all i � 0, NPL 6= �Pi S�Pi .



CHAPTER 3. EXPONENTIAL TIME CLASSES AND PH 46Proof. Assume that for some i; NPL = �Pi S�Pi . Then as �Pi S�Pi is closedunder complementation, NPL = co�NPL and PLH collapses to NPL, but then�PLi S�PLi = �Pi S�Pi . 2This corollary is not new. A direct result of the fact that for all oracles A,PA 6= PLA is that NPL 6= P�Pi for i � 0. Assume NPL = P�Pi . Then again NPLis closed under complementation which implies NPL = PLH. This in turn impliesP�Pi = PL�Pi which contradicts the relativized version of the time hierarch theorem.Theorem 3.2.1 can also be stated in terms of space bounded alternating Turingmachines. In [CS76], it is stated that if L 2 ASPACE(S(n)), then L is accepted bya 1-tape alternating TM within space s(n).Theorem 3.2.2 Let s1; s2 be space constructible functions, where s1(n) � log n andinfn!1 s2(n)s1(n) = 0, then, for any constant k, A�s1k contains a language which is not inA�s2k .



Chapter 4The Exponential Hierarchy andAdvice Classes4.1 BPP; PNP and EXPHUntil about a decade ago, the notion of tractable problems was synonymous to thenotion of polynomial time computable, or the class P . As randomized algorithms be-camemore central, the classBPP also became associated with the notion of tractable.In this case tractable means the capability of determining set membership correctlywith arbitrarily high probability in polynomial time. In many ways the questionsthat are of interest concerning P and NP are as enticing when phrased in terms ofBPP . As this thesis is primarily concerned with the relationships between exponen-tial time-bounded classes and lower classes it is natural to examine the relationshipof exponential classes to BPP . It is known that P � BPP � �P2 T�P2 � EXP buteven though P 6= EXP none of these containments is known to be proper. A longstanding open question concerning the relationship of BPP to EXP :Is BPP properly contained in EXP ?47



CHAPTER 4. THE EXPONENTIAL HIERARCHY AND ADVICE CLASSES 48motivates the results presented in this chapter.We are also interested in the relationship of BPP to NEXP . Even though theclasses NP and BPP may be incomparable (see [Sch85] for a discussion on this) therelationship of BPP to NEXP is still of interest. It is know that BPP is containedin NEXP but, unlike NP , this containment is not known to be proper. Therefore,we also consider the question:Is BPP properly contained in NEXP ?Since BPP � �P2 T�P2 [Sip83, Lau83] the motivating questions in this chapter aresimilar to the question addressed in Chapter 3, namely: Is PNP properly containedin NEXP ? Both BPP and PNP are located below �P2 T�P2 but there is no inclusionrelationship known between these two classes . On the one hand, it is unlikely thatPNP � BPP . If PNP � BPP then NP � P=poly which implies PH = �P2 [Sch85].This is not generally believed to be true. The consequences of BPP � PNP are lessclear. Stockmeyer [Sto83] has constructed an oracle A such that BPPA 6� PNPA.One crucial di�erence between the questions about BPP and the question aboutPNP is that there is an oracle A such that BPPA = �EXPA2 [Hel86], hence BPPA =NEXPA, whereas, there is no know oracle result which states that PNP is equal toNEXP .In this chapter, although ultimately we are concerned with the relationship ofBPP to EXP and NEXP , we do not directly consider BPP but the nonuniformclass P=poly. As every set in BPP is in P=poly [Sch85] we can restate our questionsin terms of the relationship of the classes EXP and NEXP to the nonuniform classP=poly. Is EXP � P=poly?Is NEXP � NP=poly?



CHAPTER 4. THE EXPONENTIAL HIERARCHY AND ADVICE CLASSES 49Wilson has constructed oracles relative to which EXPNP (and hence EXP andNEXP ) is in P=poly [Wil85]. So we cannot answer these questions using prooftechniques that relativize. Along this same line of inquery Lutz and Mayordomo haveproved related results using measure theoretic techniques. They show that almostevery language in E, and almost every language in EXP , is statistically unpredictableby feasible deterministic algorithms, even with linear nonuniform advice [LM93]. Inthis chapter we give, using techniques that do relativize, several results which addressthese last two questions.The main result of this section is that EXP 6� DTIME(2O(nc1 ))=nc2 , for �xedintegers c1 and c2. This implies that EXP 6� E=lin. The results in this chapter weredone jointly with Steve Homer.4.2 Separating EXP from Advice ClassesThis section will use a variation on a proof technique that was used by Fu to showthat EXP is not Turing reducible to a sparse set where the reduction is restricted to atmost na queries for a < 1 [Fu93]. Formally, Fu showed that EXP 6� Rna�T (SPARSE),for a < 1. This proof is based on resource-bounded Kolmogorov complexity.The following is a standard de�nition for Kolmogorov time-bounded complexity[BDG90]. Fix any reasonable universal transducer, U . For any string x, let U(x)denote the output of U on input x.De�nition 10 The Kolmogorov time-bounded complexity set isK[f; g] = fu j 9w(jwj � f(juj)); U(w) = u and this result is obtained in at mostg(juj) steps g:So K[f; g] is the set of strings u each of which can be retrieved from some stringw that represents a compression of u by a factor of f(juj) and for which the retrieval



CHAPTER 4. THE EXPONENTIAL HIERARCHY AND ADVICE CLASSES 50process takes time g(juj). We assume that the reader is familiar with the fundamentalresults in Kolmogorov complexity.We will need to divide some string x into substrings each of length k. Formally,for any string x 2 �� and integer n if x = x1x2 : : : xk, for some integer k, and if, for1 � i � k, jxij = n then we say that xi is a n-block of x.Theorem 4.2.1 EXP 6� DTIME(2O(nc1 ))=nc2 for any �xed integers c1 and c2.The intuition behind the proof is the following. First we assume that EXP �DTIME(2O(nc1 ))=nc2 . Then we construct a set A in DTIME(23m), where m =n3+c1c2. Clearly A 2 EXP . The set of strings in A of length n, An, is constructed byselecting a string, � , of lengthm which is not inK[m�1; 22m], then breaking this stringup into n-blocks. The n-blocks are the elements of An. So strings in An are n lengthsegments of a sting � which has high Kolmogorov complexity. Under the assumptionthat EXP � DTIME(2O(nc1))=nc2 , and hence A � DTIME(2O(nc1 ))=nc2 , we showthat there is a string � in K[m � 1; 22m] from which � can be generated. Thiscontradicts the choice of � and therefore our initial assumption.Proof. Assume EXP � DTIME(2O(nc1 ))=nc2 for some �xed integers c1 and c2.Construct the set A as follows:Stage nLet m = n3+c1c2Choose the �rst string � 2 �m such that � 62 K[m� 1; 22m]Set An = fwi j wi is a n-block of �gend of stage nLet A = S1n=1An.Claim 4.2.1 A 2 DTIME(23n3+c1c2 ) .



CHAPTER 4. THE EXPONENTIAL HIERARCHY AND ADVICE CLASSES 51Proof of Claim. We need to �nd the �rst string � of length m which is not inK[m� 1; 22m]. This can be done by simulating U(z) on all z 2 �m�1 for 22m stepsand then lexicographically listing all resulting strings of length m. The �rst string in�m that is not in the listing is � . The n-blocks of � then give the elements of An. Inthis way x 2 An can be decided in time 2m�122m+O(22m). If n is large enough, then2m�122m +O(22m) � 23m = 23n3+c1c2 . 2By assumption A 2 DTIME(2O(nc1 ))=nc2 so by de�nition there exists an advicefunction f , which on inputs of length n outputs an advice string of length nc2 , and aB 2 DTIME(2dnc1 ), for some �xed integer d, such thatx 2 A$ hx; f(jxj)i 2 B:Let the string �1�2 � � ��nc2 , where �i 2 f0; 1g, be the advice for inputs of length n.Given the string �1�2 � � ��nc2 we can generate all of the strings in An in time2nc1c2+1 as follows. Let M be a Turing machine which computes B. For each stringu in �n simulate the computation of M on hu; �1 � � ��nc2 i. If M accepts then u is inA, otherwise u is in �A.The length of hu; �1 � � ��nc2 i in terms of n is 2(nc2 + n + 2) allowing for pair-ing. There are 2n strings to check and the simulation for each string takes at mosttime 2d(2nc2+2n+4)c1 and so for all strings 2n2d(2nc2+2n+4)c1 < 2nc1c2+1 for large enoughn. Therefore, given �1�2 � � ��nc2 we can generate all of the n-blocks of � by �rstgenerating all of the strings in An in time 2nc1c2+1 .Now we can show that � 2 K[m � 1; 22m]. What we need are an encoding ofthe advice �1�2 � � ��nc2 , from which we can generate all of the n-blocks of � , and anencoding of the order in which the n-blocks appear in � .Let code(x) = 1a11a2 � � � 1aj , where x = a1a2 � � � aj.Set � = code(�1�2 � � ��nc2 ) . Clearly �1�2 � � ��nc2 can be retrieved from � in 2�j�j



CHAPTER 4. THE EXPONENTIAL HIERARCHY AND ADVICE CLASSES 52steps and the length of � is 2nc2 .Let LEX be a lexicographic listing of all of the n-blocks that form strings in An.Let z1; z2; : : : ; zn2+c1c2 be such that zi is the position in LEX of the ith n-block of� . Let 
 = code(z1; z2; : : : ; zn2+c1c2 ). Clearly, z1; z2; : : : ; zn2+c1c2 can be retrivedfrom 
 in 2 � j
j steps. The length of 
 is 2(n2+c1c2 log(n2+c1c2)+ 0logn2+c1c2 ) where wealso account for the encoding of a list.Let � = �00
. So j�j = 2nc2 + 2(n2+c1c2 log(n2+c1c2) + 0logn2+c1c2 ) + 2 which is lessthan m. This means that, for su�ciently large n, there is a string with length lessthan m that generates � . Now we need to show that this can be done in less than orequal to 22m steps.Given � we can retrieve � in time 22m as follows. If we have � then in a linearamount of time we can get both �1�2 � � ��nc2 and z1; z2; : : : ; zn2+c1c2 . Given theadvice �1�2 � � ��nc2 we can generate all n-blocks in An in lexicographical order in2nc1c2+2 steps and construct LEX. From LEX and z1; z2; : : : ; zn2+c1c2 the string �can be generated in 2nc1c2+3 steps. and for large values of n, 2nc1c2+3 � 22m.Therefore, for large enough n, � is generated by a string of length < m in 22msteps. So � 2 K[m� 1; 22m] contradicting the requirement for constructing An. 2Corollary 4.2.11. EXP 6� P=nc, for a �xed c.2. EXP 6� E=lin.3. NEXP 6� E=lin.It was already known that EXP 6� P=log as this would imply P = NP which inturn implies that P = PH = EXP [KL80].



CHAPTER 4. THE EXPONENTIAL HIERARCHY AND ADVICE CLASSES 53Observing that the set A which is constructed in the proof of Theorem 4.2.1 issparse we have the following corollary.Corollary 4.2.2 There exists a sparse set S 2 EXP such that for �xed constants c1and c2, S 62 DTIME(2O(nc1))=nc2 .In [PY93] the class LOGSNP is de�ned and several problems are shown to be com-plete for this class. Also it is shown that LOGSNP � NP [log2 n]TDSPACE(log2 n).The class NP [log2 n] is the subclass of NP problems in which only the �rst log2 nsteps are nondeterministic. Kintala and Fischer [KF80] and Di�az and Tor�an [DT90]studied classes that use polylogarithmic nondeterminism.Corollary 4.2.3 EXP 6� NP [log2 n]=nc1.Proof. Clearly NP [log2 n] � DTIME(log(2log2 np(n))p(n)2log2 n), where p is apolynomial, since there are at most 2log2 n possible paths in the entire computationtree of any problem in NP [log2 n] and the length of each of these paths is at mostpolynomial in the length of n. Since, for large enough n, log(2log2 np(n))p(n)2log2 n �2nc2 , for some �xed constant c2, then NP [log2 n]=nc1 � DTIME(2nc2 )=nc1 . Thisimplies, by Theorem 4.2.1, that EXP 6� NP [log2 n]=nc1. 2Theorem 4.2.2 E 6� DTIME(2c1n)=c2n for �xed integers c1 and c2.With care, the proof of Theorem 4.2.1 can be modi�ed to prove theorem 4.2.2.4.3 Separating EXPNP and EXPNPtt from AdviceClassesNext, using relativized resource-bounded Kolmogorov complexity, we present a rela-tivized version of Theorem 4.2.1. We can assume that a universal machine used to



CHAPTER 4. THE EXPONENTIAL HIERARCHY AND ADVICE CLASSES 54measure Kolmogorov complexity can query an oracle. Let KA[f; g] denote the set ofstrings u such that there exists a word w, jwj � f(juj), so that U with oracle A oninput w outputs u and this result is obtained in at most g(juj) steps.Theorem 4.3.1 For any oracle D, EXPD 6� DTIME(2O(nc1); D)=nc2 for any �xedintegers c1 and c2.Proof Outline. Assume for some �xed oracle set D and for �xed integers c1 andc2, EXPD � DTIME(2O(nc1); D)=nc2 . Construct the set A as follows:Stage nLet m = n3+c1c2Choose the �rst string � 2 �m such that � 62 KD[m� 1; 22m]Set An = fwi j wi is a n-block of �gend of stage nLet A = S1n=1An.Claim 4.3.1 A 2 DTIME(23n3+c1c2 ; D) .Proof of Claim. As in the proof of Theorem 4.2.1 we need to �nd the �rst string� of length m which is not in KD[m� 1; 22m]. This can be done by simulating U(z)with D as an oracle on all z 2 �m�1 for 22m steps and then lexicographically listingall resulting strings of length m. The �rst string in �m that is not in the listing is � .The n-blocks of � then give the elements of An. In this way x 2 An can be decided intime 2(m�1)22m +O(22m). If n is large enough, then 2(m�1)22m +O(22m) � 23m. 2By assumption A 2 DTIME(2O(nc1 ); D)=nc2 so by de�nition there exists anadvice function f , which on inputs of length n outputs an advice string of length nc2,and a B 2 DTIME(2dnc1 ; D), for some �xed integer d, such thatx 2 A$ hx; f(jxj)i 2 B:



CHAPTER 4. THE EXPONENTIAL HIERARCHY AND ADVICE CLASSES 55Let the string �1�2 � � ��nc2 , where �i 2 f0; 1g, be the advice for inputs of length n.Given the string �1�2 � � ��nc2 we can generate all of the strings in An in time2nc1c2+1 using an oracle Turning machine and oracle set D as follows. Let M be anoracle Turing machine which runs in deterministic time 2dnc1 and using D as an oracleset computes B. For each string u in �n simulate the computation of M with D onhu; �1 � � ��nc2 i. If M with D accepts then u is in A, otherwise u is in �A.The length of hu; �1 � � ��nc2 i in terms of n is 2(nc2 + n + 2) allowing for pair-ing. There are 2n strings to check and the simulation for each string takes at mosttime 2d(2nc2+2n+4)c1 and so for all strings 2n2d(2nc2+2n+4)c1 < 2nc1c2+1 for large enoughn. Therefore, given �1�2 � � ��nc2 we can generate all of the n-blocks of � by �rstgenerating all of the strings in An in time 2nc1c2+1 using oracle D.Now we can show that � 2 KD[m � 1; 22m]. What we need are an encoding ofthe advice �1�2 � � ��nc2 , from which we can generate all of the n-blocks of � , and anencoding of the order in which the n-blocks appear in � .Refer to the proof of Theorem 4.2.1 for the details of this portion of the proof.Therefore, for large enough n, � is generated by a string of length < m in 22msteps by an oracle Turing machine using D as an oracle. So � 2 KD[m � 1; 22m]contradicting the requirement for constructing An. 2Corollary 4.3.11. EXPNP 6� NP=nc, for any �xed integer c.2. EXPNP 6� PNP=nc, for any �xed integer c.3. EXPNP 6� ENP=nc, for any �xed integer c.In a related paper, Buhrman and Homer show that if EXPNP � EXP=poly thenEXPNP = EXP and that if EXPNP � P=poly then EXP = �P2 S�P2 [BH92].



CHAPTER 4. THE EXPONENTIAL HIERARCHY AND ADVICE CLASSES 56The proof of Theorem 4.3.1 can be modi�ed to show that the same result holdswith reguard to truth-table reductions, EXPDtt 6� DTIME(20(nc1); D; tt)=nc 1.First we restrict the universal machine used to measure the Kolmogorov complexityso that all queries are made in one step of the computation. We will denote thisby KDtt [f; g], where D is an oracle set. Then there are two portions of the proofof Theorem 4.3.1 that need to be considered. The �rst is the claim that A is inDTIME(23n2+c ; D). It must be shown that all queries are made to the oracle inone computation step so that A 2 EXPDtt . Secondly we must show that underthe assumption that EXPDtt � DTIME(20(nc1 ); D; tt)=nc, the elements of An canbe decided in DTIME(2nc1c2+1; D) by a machine that makes all queries in onecomputation step. With a little thought it can be seen that both propositions hold.The general outline of this proof is given next.Theorem 4.3.2 For any set D, EXPDtt 6� DTIME(20(nc1); D; tt)=nc, for �xedintegers c1 and c2.Proof Outline. Restrict the oracle Turing machine, U , which measures the Kol-mogorov complexity so that it makes all queries in one computation step. Assumefor some �xed oracle set D, EXPDtt 6� DTIME(20(nc1); D; tt)=nc, for �xed integersc1 and c2. Construct the set A as follows:Stage nLet m = n2+cChoose the �rst string � 2 �m such that � 62 KDtt [m� 1; 22m]Set An = fwi j each wi is a n-block of �gend of stage nLet A = S1n=1An.1DTIME(20(nc1 ); D; tt) is the set of all languages in DTIME(20(nc1 ); D) that are accepted byoracle Turing machines which make only nonadaptive queries.



CHAPTER 4. THE EXPONENTIAL HIERARCHY AND ADVICE CLASSES 57Claim 4.3.2 A 2 EXPDtt .Proof of Claim. The proof of this is the same the proof of Claim 4.3.1 except, onevery string z 2 �m�1, we �rst simulate U on z up to the step where D is queried onsome string w = hw1; w2; � � �wmi. At this point we save the query string w. Whenall such queries have been collected then U queries D on all queries at once. Sinceall query answers are now known then, for each z 2 �m�1, the simulation of U on zis repeated using the correct query answers. In this way A is accepted by an oracleTuring machine that makes all queries to D in one computation step. Since thisprocedure only increases the time of the procedure used in the proof of Claim 4.3.1by a constant factor then An 2 EXPDtt . 2By assumption A 2 DTIME(20(nc1); D; tt)=nc, so by de�nition there exists anadvice function f , which on inputs of length n outputs an advice string of length nc,and a B 2 DTIME(2dnc1 ; D; tt), for a �xed integer d such thatx 2 A$ hx; f(jxj)i 2 B:Let the string �1�2 � � ��nc be the advice for inputs of length n.Given the advice string �1�2 � � ��nc we can generate all of the strings in An inDTIME(2nc1c2+1 ; D; tt) as follows. Let M be an oracle Turing machine which runsin deterministic time 2dnc1 and using D as an oracle set computes B. We are giventhat M makes all queries to D in one computation step.As in the proof of Theorem 4.3.1, for each string u in �n we simulate the com-putation of M with D on hu; �1 � � ��nc2 i and if M with D accepts then u is in A,otherwise u is in �A. Now need to modify this so that all queries are made in onecomputation step. Notice, as in the proof of Claim 4.3.2, all of the queries can becollected into a list of queries and then made in one computation step.



CHAPTER 4. THE EXPONENTIAL HIERARCHY AND ADVICE CLASSES 58First, given the advice string, we simulate M on u up to the step where D isqueried on some string w = hw1; w2; � � �wmi. At this point we save the query stringw. When all such queries have been collected then M queries D on all queries atonce. Since all query answers are now known then, for each u 2 �n, the simulationof M on u and the advice string, is repeated using the correct query answers. Inthis way An is generated by an oracle Turing machine that makes all queries to Din one computation step. Since this procedure only increases the time of analogousprocedure used in the proof of Theorem 4.3.1 by a constant, generating the strings inAn takes time DTIME(2nc1c2+1; D; tt).Now we can show that � 2 KDtt [m � 1; 22m]. What we need are an encoding ofthe advice �1�2 � � ��nc2 , from which we can generate all of the n-blocks of � , and anencoding of the order in which the n-blocks appear in � .Refer to the proof of Theorem 4.2.1 for the details of this portion of the proof.Therefore, for large enough n, � is generated by a string of length < m in 22msteps by an oracle Turing machine using D as an oracle. So � 2 KDtt [m � 1; 22m]contradicting the requirement for constructing An. 2Theorem 4.3.2 gives that EXPNPtt 6� PNPtt =nc for �xed integer c.4.4 Considering Sparse SetsTheorem 4.3.1 implies EXPNP 6� NP=nc, for any �xed integer c. It is well knownthat NP=poly = NP S where S is sparse. We show that it is probably the case thatNP=nc � NP S[1]. It is easy to see that NP S = NP S[1].Proposition 4.4.1 NP S = NP S[1], where S is the set of all sparse sets.



CHAPTER 4. THE EXPONENTIAL HIERARCHY AND ADVICE CLASSES 59Proof. That NP S[1] � NP S is obvious. To see that NP S � NP S[1] con-sider any set A 2 NP S1 via a nondeterministic oracle Turing machine M using a�xed sparse oracle S1. Now we can construct a sparse oracle S2, such that S2 =fhhw11 ; : : : ; wi1i; : : : ; hw1m; : : :wjmii j for i; j � 0 and m � 1, if hw1n; w2n; : : : ; winiare the stings of length n in S1g . Now S2 contains at most one string of any lengthand that string is polynomial in the length of m. Let the longest query made duringany computation path of M on x have length m. So to determine if x 2 A we can�rst guess all of the strings in S1 up to and including some length m and then queryS2 on this guess. If the guess is correct then we can simulateM on x using the correctquery answers otherwise we reject. Since jmj is at most a polynomial in jxj this canbe done in polynomial time and A 2 NP S2[1]. 2Since is probably true that NP=nc � NP=poly, we conjecture thatNP=nc � NP S[1].



Chapter 5The Boolean Hierarchy over NEXPKadin [Kad88] showed that for all constants k, if PNP [k] = co�PNP [k] then NP=poly =co�NP=poly. NP=poly and co�NP=poly are the nonuniform analogies of NP andco�NP . Kadin's result combined with a result by Yap [Yap83] shows that for allconstants k � 1, PNP [k] = co�PNP [k] implies PH = �P3 . In this chapter we show thatif the Boolean hierarchy overNEXP collapses, thenNEXP=poly = co�NEXP=poly.Because the classes of the EXP hierarchy are de�ned in terms of the polynomialhierarchy and not in terms of the exponential hierarchy the techniques which areused to collapse the polynomial hierarchy do not seem to apply to the exponentialtime hierarchy. Yap's proof that NP=poly = co�NP=poly implies PH = �P3 exploitscharacteristics of the polynomial hierarchy that do not appear to generalize to theexponential time case. Consequently, the result which we obtain for the exponentialtime Boolean hierarchy is not as strong as Kadin's result for the polynomial timeBoolean hierarchy. The question which pertains to this chapter arises because wewould like to generalize both Kadin's result and Yap's result to the exponential timehierarchy. Namely we would like to know:60



CHAPTER 5. THE BOOLEAN HIERARCHY OVER NEXP 61Does co�NEXP � NEXP=poly imply that the exponential time hier-archy collapse?It should be noted that in [Loz92], Lozano observes that a consequence of a the-orem presented in his thesis indirectly proves a result which is similar to our re-sult. His theorem implies that if the Boolean hierarchy over NEXP collapses, thenco�NEXP � NEXP=poly.The question motivating this chapter is closely related to the general open ques-tion: Does a collapse of lower levels of EXPH or EH imply a collapse of higherlevels? In the case of EH, there is an oracle A such that EA = NEA but NEA 6= �EA2[HIS85]. This means that nonrelativizing results will be need to show this type ofcollapse.One the other hand, there are exponential hierarchies that in fact do collapse.For example, the strong exponential time hierarchies collapses without assumption.This collapse also implies that ENE = NENE. In [HIS85] it is shown that for any A,there are sparse sets in NPA �PA if and only if EA 6= NEA. Letting A be K�EXP1 , acomplete set for NE, we see by the collapse of SEH to PNE that NPA = PA, so, infact, ENE = NENE. This alone does not imply that NENENE = NENE. As noted byHartmanis, Immerman and Sewelson, the collapse of the polynomial time hierarchy,under the assumption that P = NP , may be a peculiarity of the polynomial timehierarchy and not the case for all time hierarchies.5.1 The Collapses of EXPBHFirst we give a complete set for DE. For brevity, we use he; x; tii to represent thetriple hei; xi; tii.Lemma 5.1.1 K�EXP1 ^K�EXP1 is complete for DE .



CHAPTER 5. THE BOOLEAN HIERARCHY OVER NEXP 62Proof. Let L1 = f(he; x; ti1; he; x; ti2) j he; x; ti1 2 K�EXP1 gL2 = f(he; x; ti3; he; x; ti4) j he; x; ti4 2 K�EXP1 g:and let zi = he; x; tii. Then L1 � L2 = f(z1; z2) � (z3; z4) j z1 2 K�EXP1 and z4 2K�EXP1 g but that is K�EXP1 ^K�EXP1 .For all L 2 DE ; L�PmK�EXP1 ^K�EXP1 . Let L be some set in DE . Then for someL1; L2 in NEXP we get L = L1 \ L2. Let M1;M2 be the machines accepting L1; L2resp.. The reduction, on input x, produces the pair (hM1; x; ti; hM2; x; ti). By thede�nition of DE and K�EXP1 ^K�EXP1 , x 2 L if and only if hM1; x; ti 2 K�EXP1 andhM2; x; ti 2 K�EXP1 . 2Following the same argument that Kadin used to show that DP = co�DP )NP=poly = co�NP=poly we show a similar result for DE = co�DE.Theorem 5.1.1 If DE = co�DE then NEXP=poly = co�NEXP=poly:Proof. Suppose that DE = co�DE . Then there is a �Pm reduction from K�EXP1 ^K�EXP1 to K�EXP1 _ K�EXP1 since K�EXP1 ^ K�EXP1 2 DE and K�EXP1 _K�EXP1 is �Pmcomplete for co�DE . Then , for all x,x 2 K�EXP1 ^K�EXP1 () h(x) 2 K�EXP1 _K�EXP1 :As x is a pair of tuples we can rewrite this as, for all (he; x; ti1; he; x; ti2),he; x; ti1 2 K�EXP1 and he; x; ti2 2 K�EXP1 () he; x; ti3 2 K�EXP1 or he; x; ti4 2 K�EXP1 ;where he; x; ti3 = �1(h(he; x; ti1; he; x; ti2)) and he; x; ti4 = �2(h(he; x; ti1; he; x; ti2)). De�ne a triple he; x; ti to be easy ifhe; x; ti 2 K�EXP1 and 9y; jyj = jhe; x; tij; such that he; x; ti2 2 K�EXP1



CHAPTER 5. THE BOOLEAN HIERARCHY OVER NEXP 63where he; x; ti2 = �2(h(y; he; x; ti)). If all strings in K�EXP1 are easy then thefollowing NEXP machine, Neasy, recognizes co�NEXP . On input he; x; ti,1. Guess y with jyj = jhe; x; tij.2. Compute he; x; ti2 = �2(h(y; he; x; ti)) .3. Guess an accepting computation path of Me on x, z.4. Accept if z is an accepting computation path.De�ne a triple H to be hard if it is not easy. Let n = jhe; x; tij. So,H 2 K�EXP1 and 8y; jyj = n; he; x; ti2 62 K�EXP1where he; x; ti2 = �2(h(y; H)).he; x; ti1 2 K�EXP1 and H 2 K�EXP1 () he; x; ti3 2 K�EXP1 or he; x; ti4 2 K�EXP1 ;where he; x; ti3 = �1(h(he; x; ti1;H)) and he; x; ti4 = �2(h(he; x; ti1;H)) . As weknow H 2 K�EXP1 and he; x; ti4 62 K�EXP1 so for all he; x; ti1; jhe; x; tij = n,he; x; ti1 2 K�EXP1 () he; x; ti3 2 K�EXP1 :Negating both sides,he; x; ti1 2 K�EXP1 () he; x; ti3 2 K�EXP1 :The followingNEXP machine,Nhard, recognizes triples of length n in co�NEXP .On input (he; x; ti1; H), where H is a hard string,1. If jhe; x; ti1j = n, reject.2. Compute he; x; ti3 = �2(h(y; H)) .3. Guess an accepting computation path of Me on x, z.



CHAPTER 5. THE BOOLEAN HIERARCHY OVER NEXP 644. Accept if z is an accepting computation path for he; x; ti3.If H is a hard string then Nhard accept if and only if jhe; x; ti1j = jHj and he; x; ti1 2K�EXP1 . Clearly, if he; x; ti1 62 K�EXP1 then (he; x; ti1; H) 62 K�EXP1 ^ K�EXP1 . Sohe; x; ti3 2 K�EXP1 by de�nition of h and Nhard(he; x; ti1; H) accepts. On the otherhand, if he; x; ti1 2 K�EXP1 , then (he; x; ti1; H)K�EXP1 ^K�EXP1 . So, either he; x; ti3 2K�EXP1 or he; x; ti2 2 K�EXP1 . However, H is a hard string, so he; x; ti2 62 K�EXP1 .Thus he; x; ti3 2 K�EXP1 and Nhard(he; x; ti1; H) rejects.To compute the above algorithm in nondeterministic exponential time all we needis a hard string H, if one exists, or to know that no such string of length n exists.Clearly an advice function can, on input 1n either provide H or indicate that allstings length n are easy. Hence co�NEXP � NEXP=poly and NEXP=poly =co�NEXP=poly. 2



Chapter 6On Function ClassesThe question which motivates this chapter is:Can the structure of function classes be used to show separations betweenclasses of sets?And more speci�cally, will an examination of function classes help in answering thefollowing question: Is PNP [log] properly contained in EXP ?We can't hope to answer this question with techniques which relativize as there isan oracle A such that NPA = EXPA [Dek76]. Surprisingly, using techniques whichrelativize, we show that the corresponding function classes, PFNP [log] and EXPFPB,are not equal. In this chapter we show that:For any i � 1; PF�Pi [log] is properly contained in EXPFPB:This gives evidence that the structure of the polynomial hierarchy is quite di�erentfrom the structure of the polynomial hierarchy de�ned via function classes, PHF .Speci�cally, we believe that the function classesPFNP [log]; PFNPNP [log]; PFNPNPNP [log]; : : :65



CHAPTER 6. ON FUNCTION CLASSES 66
��������������������������������������NPMV PFNP PFNPNP� � � PHF EXPFPB

PFNP [log]PFNPNP [log]Figure 1: Polynomial time function hierarchies.are not interleaved with the classesPFNP ; PFNPNP ; PFNPNPNP ; : : :in the same way in which the corresponding classes of sets are. In fact, there is reasonto believe that the hierarchy of function classes in which oracle access is restrictedto log queries is contained in PFNP . We come to this conclusion as, for i � 1,PF�Pi � PF�Pi+1 [log] implies that P = NP and further if PFNP � PF�Pi [log] forany i then P = NP . The proof of these last two statements is implicit in Krentel'sproof that if PFNP � PFNP [log] then P = NP [Kre88]. Figure 1 shows the knownrelationships between these function classes.The class PFNP [log] has been well studied and was shown to contains the followinginteresting complete problems [Kre88]:(i) given a CNF boolean formula,computing the maximum number of simultaneously satis�able clauses



CHAPTER 6. ON FUNCTION CLASSES 67(ii) given a graph G(a) computing the size of the largest clique in G,(b) computing the chromatic number of G(c) computing the length of the longest cycle in G.Also a particularly detailed study of the �ner structure of the polynomial-time hier-archy of functions below PFNP was carried out by Beigel [Bei88]. Krentel [Kre88]showed that if f(n) � 12 then PFNP [f(n)�1] � PFNP [f(n)] unless P = NP . Beigel[Bei91] shows that this is true for larger values of f(n) unless certain natural com-plexity classes, which we expect to di�er, coincide.We begin this chapter by giving some general results about exponentially time-bounded function classes. As we are primarily interested in relating exponentiallytime-bounded function classes to polynomial time-bounded function classes, the ex-ponential time classes that we consider are restricted to those which contain onlypartial functions that are polynomial-bounded; i.e., for a function f(x) = y, jyj isbounded by some polynomial in jxj. Next we study the relationship of PHF toEXPFPB showing that PF�Pi � EXPFPB for all i. In Section 6.3 we discuss therelationship of the class PFNEXP to function classes which have an exponential timebound. Last, we show that the results of Chapters 3 and 4 are still true, when appliedto the corresponding function classes.6.1 Some Basic ObservationsFirst we need to establish some simple relationships between function classes. For anysingle-valued function f , code(f) is de�ned by Selman [Sel92] to be the set of all triples(�; x; k), where � 2 f0; 1g, x 2 �� and k is the binary representation of a number,such that: (0; x; k) 2 code(f) if and only if f(x) has a kth bit and (1; x; k) 2 code(f)if and only if the kth bit of f(x) is a 1.



CHAPTER 6. ON FUNCTION CLASSES 68Selman has shown that if f is a single-valued function, then f 2 PFA , code(f) 2PA [Sel92]. The proof from right to left follows from the fact that the bits of f(x)can be retrieved by repeatedly computing (0; x; k) 2 code(f) and (1; x; k) 2 code(f).As jf(x)j � p(jxj), for some polynomial p, this procedure can be done in polynomialtime.It follows directly that if f is a single-valued function, then f 2 EXPFA ,code(f) 2 EXPA.Further, if f is a single-valued function, then f 2 EXPFA[poly]PB , code(f) 2EXPA[poly]. The proof is the same as for EXPFA and EXPA: we only need toobserve that it only takes a polynomial number of queries to determine a polynomiallength output.The next proposition allows us to infer relationships about function classes basedon relationships between classes of sets.Proposition 6.1.1 (Generalizing Selman [Sel92]) For any single valued func-tion f and any deterministic time or space-bounded complexity classes C1; C2, iff 2 C1F ) code(f) 2 C1; code(f) 2 C2 ) f 2 C2F and C1 � C2 then C1F � C2F .Proof. Let classes C1 and C2 be de�ned as there are above with f 2 C1F )code(f) 2 C1; code(f) 2 C2 ) f 2 C2F and C1 � C2. Consider any partial functionf1 2 C1F . Since code(f1) 2 C1 and C1 � C2 then code(f1) 2 C2 so f1 2 C2F . 2Let C be any of the complexity classes PH; PSPACE or EXP , then code(f) 2C ) f 2 CF , where CF is PHF; PSPACEF or EXPFPB. Suppose that for somepartial function f and polynomial p, such that jf(x)j � p(jxj), code(f) 2 C via aTuring machine M . Now in an obvious way we can retrieve the kth bit of f(x), if itexists, by simulating M on the inputs (0; x; k) and (1; x; k). As the length of f(x) isbounded by p(jxj) then to retrieve f(x) we simulateM at most p(jxj) � 2 times. This



CHAPTER 6. ON FUNCTION CLASSES 69implies that f 2 CF .Note that it is not known if code(f) 2 PNP [log] ) f 2 PFNP [log]. The aboveargument does not succeed. Using the above argument, more than log jxj querieswould be made to the oracle. Further, since we show that PFNP [log] � EXPFPBthen, if code(f) 2 PNP [log] ) f 2 PFNP [log] were true we could conclude thatPNP [log] � EXP . As there is an oracle relative to which PNP [log] and EXP areequal we can conclude that a nonrelativizing proof is needed to show that code(f) 2PNP [log] ) f 2 PFNP [log].Some of the consequences of Proposition 6.1.1 are that PHF � PSPACEF �EXPFPB: Since PH � PSPACE and for any partial function f 2 PF�Pi , for anyi, code(f) 2 P�Pi we conclude that PHF � PSPACEF . Likewise, as PSPACE �EXP and for all f in PSPACEF , code(f) 2 PSPACE so PSPACEF � EXPFPB.This last statement is restricted to exponential functions which are polynomial boundedas we assume that functions in PSPACEF are polynomial-bounded.6.2 Separating EXPFPB From PF�Pi [log]Although it is not known if PNP [log] is properly contained in EXP we show thatPFNP [log] is properly contained in the class of exponentially time bounded partialfunctions in which the length of the function values are at most polynomially greaterthan the length of the input. If this result is improved to show that the length ofthe function values are bounded by a constant; i.e., PFNP [log]CB � EXPFCB, then thiswould imply that PNP [log] is properly contained in EXP .The idea that Krentel [Kre88] used to show that PFNP [O(logn)] = PFNP ) P =NP will be repeatedly used in this chapter so we will review his argument next.First, Krentel de�ned the function, MSA (Maximum Satisfying Assignment), over



CHAPTER 6. ON FUNCTION CLASSES 70the domain of boolean formulas as follows:MSA(�(x1; : : : ; xn)) = fthe lexicographically maximum x1; : : : ; xn 2 f0; 1gnthat satis�es �; or 0 if � is unsatis�ablegand showed that it is complete for PFNP . Given this, his proof that PFNP [O(logn)] =PFNP ) P = NP is as follows. Assume that PFNP [O(logn)] = PFNP . As MSA 2PFNP [O(logn)] there is a PF SAT machine, M , that computes MSA making at mostO(log n) queries. Now to determine if a formula � is satis�able, simulate M(�) forall possible oracle answers. This gives a polynomial number of possible assignments,at least one of which is a satisfying assignment if � 2 SAT .Proposition 6.2.1 (Generalizing Krentel [Kre88]) For any class C and oracleset A, if C � PFA[log] and MSA 2 C then P = NP .The proof of this follows directly from Krentel's proof that PFNP [O(logn)] =PFNP ) P = NP . Note that we are only considering oracle sets which decideset membership. On the other hand, if we consider A 2 NPMV then the proof ofProposition 6.2.1 fails.Lemma 6.2.1 For i � 1, EXPFPB � PF�Pi [log] ) P = NP .Proof. Assume that, for i � 1, EXPFPB � PF�Pi [log]. As PHF � EXPFPBthen PF�Pi � EXPFPB, for all i. Since PF�Pi [log] � PF�Pi then, by assumption,PF�Pi [log] = PF�Pi . Clearly, as MSA 2 PF�P1 then, for all i � 1, MSA 2 PF�Pi . ByProposition 6.2.1 this implies that P = NP . 2Proposition 6.2.2 For i � 1, EXPFPB � PF�Pi [log] ) EXP � P�Pi [log].



CHAPTER 6. ON FUNCTION CLASSES 71Proof. AssumeEXPFPB � PF�Pi [log], for some i. Let L 2 EXP . This implies thatthe characteristic function for L is in EXPFPB so, by assumption, the characteristicfunction for L is in PF�Pi [log]. But then if follows that L is in P�Pi [log]. 2Theorem 6.2.1 For all i, PF�Pi [log] 6= EXPFPB.Proof. We will show that EXPFPB � PF�Pi [log] ) P = EXP . AssumePF�Pi [log] = EXPFPB, for some i. As PF�Pi [log] � PF�Pi � EXPFPB then byLemma 6.2.1, EXPFPB � PF�Pi [log] ) P = NP:Since P = NP then by the collapse of PH, P = P�Pi [log]. By Proposition 6.2.2,EXPFPB � PF�Pi [log] ) EXP � P�Pi [log]:Combining the above two lines we get that P�Pi [log] = P = EXP contradicting thetime hierarchy theorem. 2Corollary 6.2.1 PFNP [log] � EXPFPB.This does not result in PHF being properly contained in EXPFPB. Unlike thepolynomial hierarchy, it does not appear that PF�Pi � PF�Pi+1[log] for any i as thiswould imply P = NP . In fact, it may be that, for every i, PF�Pi [log] is properlycontained in PFNP . From this we can conjecture that the polynomial hierarchy overfunction classes has a very di�erent structure then the polynomial hierarchy over sets.It is not clear what the relationship is between the function classes PF�Pi [log],i � 1, and the nondeterministic classes NPSV and NPMV . From Selman we knowthat if either PFNP [log] � NPSV or PFNP [log] � NPMV then NP = co�NP [Sel92].



CHAPTER 6. ON FUNCTION CLASSES 72Clearly both of these results also show that, for i � 1, if either PF�Pi [log] � NPSVor PF�Pi [log] � NPMV then NP = co�NP because PFNP [log] � PF�Pi [log] forall i � 1. Examining the reverse containment, Selman showed that if NPMV �cPFNP [log] then P = NP and if NPSV � PFNP [log] then P = UP . The proof thatif NPMV �c PFNP [log] then P = NP can easily be generalized to show that, fori � 1, if NPMV �c PF�Pi [log] then P = NP . To see this assume that a PF�Pi [log]machine M can output a satisfying assignment for a formula; i.e., can compute apartial function in NPMV . Then a polynomial time machine can simulate M onall possible queries and determine if some computation path ends in a satisfyingassignment.Unfortunately, code(f) can not be used directly to show that PF�Pi [log] � EXPFPBimpliesP�Pi [log] � EXP . If our result is improved to show that PFNP [log]CB � EXPFCBthen we will get the desired consequence. This result would once again not relativize.Theorem 6.2.1 PFNP [log]CB � EXPFCB ) PNP [log] � EXP:Proof. We will show that PNP [log] = EXP ) PFNP [log]CB = EXPFCB: AssumePNP [log] = EXP: We know that for all f in EXPFCB, code(f) 2 EXP so by as-sumption code(f) 2 PNP [log]. But then using code(f) we can retrieve f(x) with aPFNP [log] machine. To retrieve one bit of f(n) a PNP [log] computation is performedat most twice. To retrieve all the bits of f(n) a PNP [log] computation is performed atmost 2 � c times, where jf(n)j = c. Thus f 2 PFNP [log]CB and PFNP [log]CB = EXPFCB.2Again using Krentel's basic idea we strengthen the result that P = PSPACE ifand only if PF = PSPACEF .Theorem 6.2.2 For all i, P 6= PSPACE , PF�Pi [log] 6= PSPACEF:



CHAPTER 6. ON FUNCTION CLASSES 73Proof. From right to left is trivial. For the converse, we show that if PSPACEF �PF�Pi [log] then P = PSPACE: Assume PSPACEF � PF�Pi [log]. Since MSA 2PSPACE, by Proposition 6.2.1 P = NP which gives that P = PH. Once again it iseasy to see that PSPACEF � PF�Pi [log] ) PSPACE � P�Pi [log] as the character-istic function for every set in PSPACE is in PSPACEF . Combining the collapseof the polynomial hierarchy to P and the fact that PSPACE � P�Pi [log] we get thatP = PSPACE. 26.3 The Relationship of PFNEXP to EXPHFWe do not expect that PFNEXP � PFNEXP [log] or even PF�P2 � PFNEXP [log] as ifeither of these statements is true then by Proposition 6.2.1 P = NP . In this sectionwe show that EXPFNP [poly]PB = PFNEXP :By de�nition, given any partial function f 2 PFNEXP , for any x in the domainof f , jf(x)j is bounded by some polynomial in jxj. So it is reasonable to compare theclass PFNEXP only with exponentially time-bounded function classes C, such that,if f is in C then f is polynomially-bounded. In fact we see that the relationshipof PFNEXP to EXPFNP [poly]PB is similar to that of the corresponding classes of sets,PNEXP and EXPNP [poly]. (See Chapter 3 for a discussion of PNEXP .)Proposition 6.3.1 EXPFNP [poly]PB = PFNEXP :Proof. We show only that EXPFNP [poly]PB � PFNEXP the proof of the oppo-site inclusion follows the same idea. Clearly f 2 EXPFNP [poly]PB $ code(f) 2EXPNP [poly] and f 2 PFNEXP $ code(f) 2 PNEXP . Consider a partial func-tion f1 2 EXPFNP [poly]PB . As code(f1) 2 EXPNP [poly] and from Chapter 3 we know
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Figure 2: Polynomial time and exponential time function classes.that EXPNP [poly] = PNEXP then code(f1) 2 PNEXP . But since f1 2 PFNEXP $code(f1) 2 PNEXP then f1 2 PFNEXP . 2So this gives that EXPFPB � PFNEXP � EXPFNPPB :Again, it is not likely that EXPFPB � PFNEXP [log] since by by Proposition 6.2.1this implies P = NP .Figure 2 illustrates the relationships between the function classes that have beendiscussed in this chapter.



CHAPTER 6. ON FUNCTION CLASSES 756.4 Separations between Classes of Sets ImplySeparations of Function ClassesIn this section we show that the results of Chapters 3 and 4 imply similar results forthe corresponding classes of functions. As these results follow directly they are statedas propositions.In Chapter 3 we show that PNP [nc] � NEXP for any integer c.Proposition 6.4.1 PFNP [nc] � NEXPMVPB for any integer c.Proof. Assume NEXPMVPB �c PFNP [nc] for some integer c. This implies thatthe characteristic function for every set in NEXP is in PFNP [nc] an hence every setin NEXP can be computed in PNP [nc]. This contradicts Theorem 3.1.3. 2In Chapter 4 we show that EXP 6� DTIME(2nc1 )=nc2 for any �xed integers c1and c2.Proposition 6.4.2 EXPF 6� DTIMEF (2nc1 )=nc2 for any �xed integers c1 and c2.Proof. Assume EXPF � DTIMEF (2nc1 )=nc2 for some �xed integers c1 and c2.But then the characteristic function for every EXP set is in DTIMEF (2nc1 )=nc2 anhence every set in EXP can be computed in DTIME(2nc1 )=nc2 . This contradictsTheorem 4.2.1. 2



Chapter 7Concluding RemarksWe have seen that a closer examination of exponential time classes gives separationsbetween exponential time classes and polynomial time classes, both uniform andnonuniform. It is apparent that these results can be improved and that it may bepossible to get improvements by using techniques which relativize.The question which directly and indirectly motivated much of the work in thisthesis is: PNP � NEXP ? This question still remains unanswered. As we showedin Chapter 3, an equivalent question is: PNP � PNEXP ? In particular, since NP 6=NEXP , we would assume that PNP � PNEXP . It may be possible to answer thesequestions via a proof which uses techniques that relativize. There is currently noproof giving an oracle A such that PNPA = NEXPA. It would be interesting to showeither of these containments or to show an oracle A such that PNPA = NEXPA orequivalently PNPA = PNEXPA.In Section 3.2, it should be possible to improve the Theorem 3.2.1 from in�nitelyoften to an almost everywhere, a.e., result. In [ABHH90] Allender, Beigel, Hertrampfand Homer present an a.e. complexity hierarchy for nondeterministic time. Theirresult may imply the same for alternating machines.The most interesting question raised in Chapter 5 is: What are the implications76



CHAPTER 7. CONCLUDING REMARKS 77of NEXP=poly = co�NEXP=poly. Unfortunately, it does not appear that this willbe proved with proof techniques which relativize. Gavald�a [Gav92] has bounded thecomplexity on advice functions for P=poly. Can the same be done for NEXP=poly?Chapter 6 begins a discussion on function classes for exponential time. This isan area that has not been closely examined to date and therefore is open to furtherdiscoveries.In Chapter 6 we do not directly consider the relationship between the number ofqueries that can be made to an oracle and the number of bits that can be outputby a transducer but it appears that there may be some general relationship. In thecase of PNP [log] depending on whether we allow polynomial length output or restrictoutput to a constant number of bits we can show di�erent consequences in PH. Ona slightly di�erent track, if PFNEXP is restricted to log queries and log many outputbits then does this also alter the type of results that can be stated relating to EXPH.A general interesting question is: How does the bound on the number of queries relateto the bound on the length of the output?Also, as PHF and EXPHF do not appear to contain the same properties asPH and EXPH (for example, PNP � PNPNP [1] but the same is not true for thecorresponding function classes unless P = NP ), an area to examine is the �nerstructure of PHF and EXPHF .We have limited our study to partial functions that are computed by time-boundedtransducers with oracles in NP or NEXP . In [FHOS92] partial functions that arecomputed in polynomial time with oracles in NPMV are considered. Using this typeof oracle slightly di�erent results are achieved with regard to polynomial time functionclasses. Likewise, the work that was begun in this chapter could be reconsidered usingNPMV and NEXPMV as oracle sets. Clearly, this would give di�erent results sinceEXPFPB � PFNEXPMV [1]. In general, comparing results obtained using both typesof oracles is of interest.



AppendixComplexity classes:PSPACE = Sc�0DSPACE(nc)EXPSPACE = Sc�0DSPACE(2nc)P = Sc�0DTIME(nc)NP = Sc�0NTIME(nc)PL = Sc�0DTIME(2logc n)NPL = Sc�0NTIME(2logc n)E = Sc�0DTIME(2cn)NE = Sc�0NTIME(2cn)EXP = Sc�0DTIME(2nc)NEXP = Sc�0NTIME(2nc)Function classes, f : �� to ��:log = ff j f(n) = c � log2 n for some constant c glin = ff j f(n) = c � n for some constant c gpoly = ff j f(n) = c � nk for some constants c; k gRestricted oracle queries:PA[f(n)] = the set of languages computable in PA that on input x make at mostf(jxj) queries to A 78



APPENDIX 79NPA[f(n)] = the set of languages computable in NPA that on input x make atmost f(jxj) queries to AEXPA[f(n)] = the set of languages computable in EXPA that on input x makeat most f(jxj) queries to ANEXPA[f(n)] = the set of languages computable in NEXPA that on input xmake at most f(jxj) queries to APNPtt = the set of languages in PNP in which all queries are written to the querytape before any queries are madeEXPNPtt = the set of languages in EXPNP in which all queries are written tothe query tape before any queries are madeHierarchiesFor a function f , let �fk (�fk) denote the class of languages accepted by a A�k(A�k)alternating Turing machine which runs in time f(n). For a class of functions F ,�Fk = Sf2F �fk and �Fk = Sf2F �fk .PH = f Let F be polynomial-time computable functions gEXPH = f Let F2p(n) j p is a polynomial gEH = f Let F2cn j c is a constant gThe ith sigma levels of these hierarchies will be denoted �Pi , �EXPi and �Ei . The pilevels will be denoted �Pi , �EXPi and �Ei . Each of these hierarchies de�ned inductivelycan also be represented using the classes usually denoted by �Fi .PH = �Pi = P�Pi�1EXPH = �EXPi = EXP�Pi�1



APPENDIX 80E = �Ei = E�Pi�1Restricted oracle access in PH:�P [F ]i is the set of languages in NP�Pi�1 [F ].�P [F ]i is the set of languages in co�NP�Pi�1 [F ].�P [F ]i is the set of languages in P�Pi�1 [F ].�Pi;tt is the set of languages in NP�Pi�1tt .�Pi;tt is the set of languages in co�NP�Pi�1tt .�Pi;tt is the set of languages in P�Pi�1tt .Restricted oracle access in EXPH:�EXP [F ]i is the set of languages in NEXP�Pi�1 [F ].�EXP [F ]i is the set of languages in co�NEXP�Pi�1 [F ].�EXP [F ]i is the set of languages in EXP�Pi�1 [F ].The de�nitions for EH are analogous to those for EXPH.Probabilistic classes and advice classesBPP = the class of languages recognized by polynomial time probabilisticTuring machines whose error probability is bounded above by some positiveconstant � < 1=2.R = is the class of languages recognized by polynomial time probabilistic Turingmachines which have zero error probability for inputs not in the language, anderror probability bounded above by some positive constant � < 1=2 for wordsin the language.



APPENDIX 81De�nition 11 An advice function is a function f : N! ��. Let C be a complexityclass, and F a family of advice functions. The class C=F is the collection of all setsA such that for some B 2 C and a function f 2 Fx 2 A if and only if hx; f(jxj)i 2 B:Boolean hierarchy for exponential time, EXPBH:EXPBH1 = NEXPEXPBH2i = fL1TL2 j L1 2 EXPBH2i�1 and L2 2 NEXPgEXPBH2i+1 = fL1SL2 j L1 2 EXPBH2i and L2 2 NEXPgco�EXPBHi = fL j L 2 EXPBHigEXPBH = Si�1EXPBHiFunction classes:PSPACEF = the set of all partial functions which can be computed in poly-nomial space.PF = the set of all partial functions which can be computed deterministicallyby polynomial time-bounded transducer.NPMV = the set of all partial functions which can be computed nondetermin-istically by polynomial time-bounded transducer.NPSV = the set of all f 2 NPMV that are single valued.EXPF = the set of all partial functions which can be computed deterministi-cally by an 2nc time-bounded transducer where c is a constant.NEXPMV = the set of all partial functions which can be computed nondeter-ministically by an 2nc time-bounded transducer where c is a constant.



APPENDIX 82NEXPSV = the set of all f 2 NEXPMV that are single valued.A function f is constant-bounded if there is a constant c such that, for all x in thedomain of f , jf(x)j � c.A function f is polynomial-bounded if there is a polynomial p such that, for all xin the domain of f , jf(x)j � p(jxj).PFCB = the set of all constant-bounded functions in CF .EXPFCB = the set of all constant-bounded functions in EXPF .EXPFPB = the set of all polynomial-bounded functions in EXPF .Polynomial hierarchy for function classes:�PF0 = PF�PFi+1 = PF�Pi , i � 0PHF = Si�0�PFiExponential hierarchy for function classes:�EXPF0 = EXPF�EXPFi+1 = EXPF�Pi , i � 0EXPHF = Si�0�EXPFi
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