Lattice Based Cryptography: A Global Improvement

Daniele Micciancio
Laboratory for Computer Science
Massachusetts Institute of Technology
545 Technology Square
Cambridge MA, USA

miccianc@theory.lcs.mit.edu”

March 4, 1999

Abstract

We describe a general technique to simplify as well as to improve several lattice based
cryptographic protocols. The technique is rather straightforward and is easily applied to the
protocols, and gives both a simpler analysis and better performance than the original protocols.
The improvement is global: the modified protocols are simpler, faster, require less storage, use
less bandwidth and need less random bits than the originals. Moreover, the improvement is
achieved without any loss in security: we formally prove that the modified protocols are at least
as secure as the original ones. In fact, the modified protocols might even be more secure as
the adversary gets less information. We exemplify our technique on the Goldreich-Goldwasser
zero-knowledge proof systems for lattice problems and the GGH public key cryptosystem.

*Partially supported by DARPA grant DABT63-96-C-0018 and NTT grant 67627-00.

1 Introduction

Various cryptographic protocols based on the hardness of lattice problems requires the selection
of a random point from the lattice. An illustrative example is the following. Assume we want to
generate a “solved” instance of the closest vector problem. Let £(B) be a lattice. We can choose
a lattice point v € £(B) at random and then add a small random error 7 to it. The error must be
sufficiently small to assure that v is the lattice vector closest to v/ = v + 7, but large enough to
make recovering v from v/ computationally hard. Since lattices are infinite sets, sampling a lattice
point uniformly at random is neither computationally possible nor a mathematically well defined
operation. Still, the security of the protocol often relies on the “randomness” of the lattice point we
start with. In the previous example, if v is chosen from a small set of lattice vectors, then we can
easily recover it from v’ by exhaustive search. This difficulty is usually overcome by starting from
a lattice point uniformly chosen from a large region (say a sphere of radius exponentially bigger
than the longest vector in the lattice basis B). If the region is sufficiently large, this is essentially
the same as starting from a “random” lattice point.

We suggest to replace the sampling operation which introduces vectors much larger than the
vectors describing the original lattice, by a reduction operation modulo the basis of the lattice.
In our example, we choose a random error 7, and output v/ = 7 mod B as the target vector
(see figure 1). Although we always start from the origin, the lattice vector closest to v’ is not
in general the origin, and it can be formally proved that finding the lattice vector closest to v’
is as hard as finding it when we start from a random lattice point chosen from arbitrarily large
regions. This techniques can be applied to various cryptographic protocols based on the complexity
of lattice problems. The result is usually a simpler protocol (no need to perform the lattice sampling
operation) with better running time and smaller communication complexity (the output vector can
be exponentially shorter than in the original protocol, resulting in an n? bits saving per vector).
We use our techniques to obtained improved versions of the Goldreich-Goldwasser zero-knowledge
interactive proof systems for the Closest Vector Problem and the Shortest Vector Problem [6], and
the GGH public key cryptosystem [8]. In the case of the GGH cryptosystem we also show how a
clever choice of the public basis may lead to a modified cryptosystem with keys and ciphertexts
more than one order of magnitude shorter than the original scheme.

The rest of the paper is organized as follows. In section 2 we recall some basic definitions and
properties of lattices and statistical distance. In section 3 we apply our technique to the Goldreich-
Goldwasser interactive proof systems for the closest and shortest vector problem. Finally, in section
4 we show how the same technique can be applied to the GGH cryptosystem to get faster encryption
algorithms and shorter ciphertexts and keys. In all cases, we prove that the modified protocols are
at least as secure as the original ones.

2 Preliminaries

In this section we recall some basic facts about lattices and statistical distance.

2.1 Lattices

Let B = {by,...,b,} be a set of n linearly independent vectors. The lattice generated by B is the
set L(B) = {>_,xz;b; | z; € Z} of all integer linear combinations of the vectors in B. The set B
is called a basis for the lattice £(B), and it is usually identified with a matrix having the vectors
b; as columns. In matrix notation £(B) = {Bx | x € Z"}. The basis of a lattice is not unique.

Figure 1: Sphere centered around a generic lattice point and sphere reduced modulo the lattice
basis

However, not every basis of span(B) = {Bx | x € R"} (as a vector space) is a basis of the lattice
L(B). Every lattice £(B) induces an equivalence relation over span(B) defined as follows: v =w
(mod L(B)) if and only if v — w € L(B).

The fundamental parallelepiped spanned by the basis B is defined as the set P(B) = {)_, z;b; |
0 < z; < 1}. It is easy to see that for every basis B and every point v € span(B), there exists a
unique vector w € P(B) such that v=w (mod L(B)). Vector w can be easily computed from
v and B as follows. Let x be the solution to the linear system Bx = v (a solution always exists
because v € span(B) and is unique by linear independence of the vectors in B). Let x' = x — |x]
be the vector obtained by replacing each coordinate of x by its fractional part. Then, it is easy to
check that w = Bx' € P(B) and v =w (mod £(B)). The unique element of P(B) congruent
to v modulo L£(B) is denoted v mod B. Notice that although the equivalence relation v = w
(mod £(B)) does not depend on the particular choice of the basis B for the lattice £(B), the
definition of the reduced vector (v mod B) is basis dependent.

Pictorially, we can think the vector space span(B) as partitioned into parallelepiped {P(B)+w |
w € L(B)}. Then, the reduced vector v mod B is the relative position of v in the parallelepiped
P(B) + w it belongs to. Notice that the reduced vector v mod B can be longer than the original
vector v, but it is never longer than the sum of the lengths of the basis vectors ||by|| + -+ + || bn]|.

The technique presented in this paper easily adapts to any norm. However, for concreteness,
we will concentrate on the Euclidean norm. The distance between two vectors v and w is defined
by dist(v,w) = |[v —w| = />_,(v; —w;)?. The distance function is extended to set of vectors as
usual

diSt(Sl, SQ) = 1nf{||v — WH :VES|,wE SQ}

In particular the distance of a vector from a lattice is given by dist(v, £(B)) = min{||v —w|| : w €
L(B)}. For every vector v and real r € R, we define the ball B(v,r) = {w : dist(v,w) < r} of
radius r centered in w.

Two fundamental computational problems on lattices and the Shortest Vector Problem (SVP)
and the Closest Vector Problem (CVP). In SVP, one is given a basis B and must find the shortest

non-zero vector in £(B). In CVP, one is given a basis B and a target vector v (not necessarily
in the lattice) and must find the lattice vector in £(B) closest to v. Approximation versions of
the above problems are easily defined. In the y-approximate SVP one must find a non-zero lattice
vector of length at most 7 the shortest, and in the approximate CVP one must find a lattice vector
at distance at most vy - dist(v, L(B)).

To date, the best polynomial time algorithms to approximate SVP and CVP achieve only a
worst case approximation factor v exponential in the dimension of the lattice [11, 4, 13]. On
the other hand, CVP is NP-hard to approximate within a factor v = oln' " n [3, 5], and SVP is
NP-hard (for randomized reductions) to approximate within any factor less than /2 [12]. The
relation between the two problems has also been investigated, and in [9] it is proved that CVP is
at least as hard as SVP. In general, finding good approximations to SVP and CVP seems to be
computationally hard problems and have been used as the basis of various cryptographic protocols
(e.g., [1, 2, 8]).

The approximation problems associated to the shortest vector problem and the closest vector
problem are usually formalized in terms of the following promise problems [6].

Definition 1 (Approximate SVP) The promise problem GapSVP,, where v (the gap function)
is a function of the dimension, is defined as follows:

e YES instances are pairs (B,d) where B € Z"** d € R and |Bz|| < d for some z € Z* \ {0}.

e NO instances are pairs (B,d) where B € Z™<*, d € R and ||Bz|| > d for all z € Z" \ {0}.

Definition 2 (Approximate CVP) The promise problem GapCVP., where y (the gap function)
s a function of the dimension, is defined as follows:

e YES instances are triples (B,y,d) where B € Z" y € 7", d € R and |Bz — y|| < d for
some z € Z".

e NO instances are triples (B,y,d) where B € Z"** y € Z", d € R and ||Bz — y|| > vd for all
z € ZF.

2.2 Statistical Distance

Let Xy, X7 be two random variables over the same set X. The statistical distance between X and
X1 is defined by
A(Xo,Xl) = Iglca:))((‘ PI‘{XO € S} — PI‘{Xl € S}|

In the rest of the paper we will make extensive use of the following simple facts about the statistical
distance.

e When X is countable, A(Xg, X1) = § 3,1 | Pr{Xo = 2} — Pr{X; = 2}|.

‘Xoﬂxl‘

e If each X; is uniformly distributed over some set X; C X, then A(Xy, X;) =1— PR E

e For any (possibly randomized) function f with domain X, A(f(Xy), f(X1)) < A(Xp, X1).

3 Interactive Protocols

In [6], Goldreich and Goldwasser describe interactive protocols to prove in zero-knowledge that a
point is far from a lattice, or that the shortest vector in a lattice is long. More formally, they give

honest verifier perfect zero-knowledge constant round one-sided error interactive proof systems for

The protocols essentially work as follows. Let (B,v) be an instance of GapCVP,. The verifier
select a lattice point uniformly at random from a large subset of the lattice, a bit o € {0,1} and
an error vector 1 uniformly from a sphere of radius vd/2. The vector r + 1 + oy is sent to the
prover, who must guess the value of o.

The protocol for GapSVP, is similar. A lattice point is chosen at random from a sufficiently large
region of the lattice. A small error is added to it and the prover is left with the task of recovering
the original lattice point.

In the next subsections we describe our modified protocols for CVP and SVP, obtained applying
the technique outlined in the introduction to the original Goldreich-Goldwasser protocols.

the complement of the promise problems GapCVP,, and GapSVP,, where v =

3.1 Closest Vector Problem

Our modified interactive proof system for the closest vector problem works as follows. Let (B, v,d)

be an instance of GapCVP,, where y(n) =

1. The verifier uniformly selects a bit 0 € {0,1} and an error vector n uniformly distributed in
a sphere of radius yd/2. The verifier sends w = (7 + ov) mod B to the prover.

2. The prover responds with the value 7 € {0,1} such that dist(7v,w + L£(B)) is minimized.
3. The verifier accepts if and only if 7 = 0.

Proposition 1 When v = m, the above protocol is a honest-verifier zero-knowledge inter-

active proof system for the complement of GapCVP, , with perfect completeness and soundness error

bounded away from 1.

’y7
In the rest of this subsection we prove the above Proposition.

Zero-Knowledge: The simulator simply executes the honest verifier protocol and return o as
the prover’s answer.

Completeness: Assume dist(y, £L(B)) > yd. We want to prove that
dist(ov,w + L(B)) < dist((1 — o)v,w) + L(B).
Notice that w + L(B) = (n+ ov) mod B + L(B) = n+ ov + L(B) and therefore
dist(ov,w + L(B)) = dist(ov,ov + 1+ L(B)) < ||n] < ~vd/2.
On the other hand
dist((1 — o)v,w + L(B))

dist((1 —o)v,ov +n+ L(B))
dist((1 — 20)v,n + L(B)

> dist(+v, L(B)) — |In]|
yd vd
d—— =1
T =

Therefore the prover always output the correct value 7 = o.

Soundness: Assume dist(v, £(B)) < d and let x be an integer vector such that |[v—Bx|| < d. Let
&0 and &; be two random variables uniformly distributed on spheres B(0,yd/2) and B(v — Bx, yd/2)
respectively. Notice that when 7 is chosen uniformly at random, ((n + ov) mod B) = ((n 4+ ov —
Bx) mod B) is distributed identically to (¢, mod B) for o = 0, 1. Therefore the protocol followed
by the verifier is equivalent to choosing o € {0,1} at random and sending (£, mod B) to the
prover. We use the bound on the size of the relative intersection of two spheres from [6] to bound
the statistical distance between £y and &;:

vol(B(0,vd/2), B(v — Bx,~d/2))

A&, &) vol(B(0,vd/2))

IN

1

< 1-—
- poly(n)

We can now bound the soundness error as follows:

%(Pr{P*(&) mod B) = 0} + Pr{P*(& mod B) = 1})
= %(1 + Pr{P*(& mod B) = 1} — Pr{P*({y mod B) = 1})
1

— 5(1 + A(& mod B, ¢ mod B))

< S+ A%6)
)

Pr{P*({, mod B) =0} =

< 1 (2 !
- 2 poly(n)
1
poly(n)

This concludes the proof of Proposition 1.

3.2 Shortest Vector Problem

The proof system for the Shortest Vector Problem uses a similar idea, but the reduction is made
modulo 2B, the basis of 2£(B) obtained by doubling each vector in B. Let (B,d) an instance of

GapSVP

- where v =

1. The verifier uniformly selects a bit string s € {0,1}" and an error vector n uniformly dis-

tributed in a sphere of radius yd/2. The verifier sends w = (1 + Bs) mod (2B) to the prover.

2. The prover finds t € {0,1}"” such that dist(Bt,w + £(2B)) is minimized and sends it to the
verifier.

3. The verifier accepts if and only if t = s.

Proposition 2 The above protocol is a honest-verifier zero-knowledge interactive proof system for

the complement of GapSVP,, with perfect completeness and soundness error bounded away from 1.

’y7

In the rest of this subsection we prove the above Proposition.

Zero-Knowledge: The simulator simply executes the honest verifier protocol and return s as
the prover’s answer.

Completeness: Assume dist(y, £(B)) > yd. We want to prove that dist(Bs,w + L(2B)) <
dist(Bt,w + L(2B)) for any t # s. First of all notice that

dist(Bs,w + L(2B)) = dist(Bs,n + Bs + L(2B)) < ||n|| < ~vd/2.
We now prove that dist(Bt,w + L£(2B) > ~yd/2 for all t # s. Notice that

dist(Bt,w + L(2B)) = dist(Bt,n+ Bs+ L(2B))
> dist(B(t —s), L(2B)) — [|n]|
_yd _vd
> vd 5 =

because for any vector v € £(2B) and for any t € {0,1}" \ {s}, B(t —s) — v is a non-zero vector
in L(B), and therefore dist(B(t —s), L(2B)) > «d (here we are using the fact that s #t and s — t
must have some odd component). This proves the prover always outputs the correct value t = s.

Soundness: Let P* be an arbitrary prover and let p be the probability of success p = Pr{P*((n+
Bs) mod 2B) = s} (probability computed with respect to the choice of s € {0,1}" and n €
B(0,vd/2)). Consider the following mental experiment. Let Bx be a shortest non-zero vector in
L(B) and assume | Bx| < d. Notice that x # 0 (mod 2) because otherwise B(x/2) is a shorter
non-zero vector in £(B). Choose s € {0,1}" at random and let s, = (sg + ox) mod 2 for o =0, 1.
Choose o € {0,1} at random and sends Bs, mod (2B) to the prover. Since sy and s; are uniformly
distributed on 2", this is equivalent to the protocol followed by the honest verifier. It follows by a
simple averaging argument that there exists an s such that the prover succeed with probability

ps = Pr{P*((n + Bs,) mod 2B) =s,} > p.

We now prove that ps is bounded away from 1. Let £y and &; be two random variables uniformly
distributed on spheres B(s,yd/2) and B(B(s + z),vd/2) respectively. Notice that (n + B(s +
ox)) mod (2B) = (g + Bs,) mod (2B) is distributed identically to &, mod 2B for o = 0,1. As for
the CVP proof system, the statistical distance between &; and &; is at most

- vol(B(Bs,vd/2), B(B(s + x),vd/2))

A <
(fo.81) = vol(B(Bs, vd/2))
1
< 1-
- poly(n)
Let P* a prover that tries to guess the value of 0. We can bound the soundness error as follows:
1
Pr{P*({, mod B) =s,} = §(Pr{P*(§0 mod B) = sy} + Pr{P*(&; mod B) =s1})
1
< 5(1+A(§0 mod B,£1 mod B))
1
< 5(1 + A& &1))
1 1
< —=(2-
< 5 poly(n))
1
= 1- .
poly(n)

7

This prover that ps is bounded away from 1, and therefore also the soundness error p < psg is
bounded away from 1.

This concludes the proof of Proposition 2.

Interestingly, the proof systems we just described for SVP and CVP are reminiscent of the
connection between the two problems discovered in [9]. In that work, an SVP instance B is
reduced to a CVP problem by removing some basis vector b; from the lattice £(B) by doubling
the corresponding basis element, and then looking for a lattice vector (in the doubled sub-lattice)
closest to b;. Our protocols for SVP, doubles the basis vectors 2B removing all vectors in B from
the lattice and then executes a protocols which can be thought as a multidimensional extension of
the CVP protocol with lattice 2B and “targets” B. In a certain sense, the SVP protocol corresponds
to first reducing SVP to CVP as in [9] and then running the interactive protocol for CVP.

4 The GGH encryption scheme

In [8] Goldreich, Goldwasser and Halevi propose a trapdoor permutation based on the hardness
of the closest vector problem, and use it to construct encryption schemes. The trapdoor function
and the corresponding trapdoor are described by two bases B, R of the same lattice £(B) = L(R)
(called the public and private basis respectively). The private key R is a particularly good basis
that allows to solve the Closest Vector Problem in the lattice, when the distance of the target point
from the lattice is sufficiently small. The function takes in input an integer vector v and a small
error vector r, and returns Bv +r, i.e. the lattice vector with public coefficients v perturbed by r.
The error vector r must be sufficiently small to allow to recover Bv using the private basis R. Once
Bv is recovered, one can easily compute v and r using simple linear algebra, therefore inverting
the trapdoor function.

The above function is used to build two public key encryption schemes, depending on how the
message is embedded into the input (v,r). In particular, one can either encode the message in the
error vector r, and choose v completely at random from a sufficiently large cube, or alternatively,
choose r completely at random (from a sufficiently small sphere) and encode the message bits as
the lowest order bit of the entries in v.

In both cases the vector v must be chosen from a sufficiently large cube. The exact effect of
the size of the cube on the security of the system is not clear, so for efficiency reasons [8] sets the
size of the cube to a relatively small value (polynomial in n) which seems in practice sufficient to
withstand known attacks. Using our technique, we can achieve the same effect of using an arbitrary
large cube, and make the scheme more efficient at the same time.

The specific way we apply our technique to the trapdoor function depends on the encryption
method we want to use, and is described in the next two subsections.

4.1 Embedding the message in the error vector

If the message is encoded in the error vector r, then we don’t need to consider v at all: we can just
take the error vector r and output
E(m) = r mod B.

The reader can easily check that the same decryption procedure of the original scheme still
works. Moreover the new scheme is at least as secure as the original one. That is, given a decryption
oracle for our scheme, we can easily decrypt the original GGH cryptosystem as follows: let v be the
ciphertext of the GGH cryptosystem. Compute w = v mod B and call the decryption oracle for
our scheme. It is easy to verify that the ciphertext is decrypted correctly if and only if the oracle

returns the right answer. Therefore the attack to the GGH encryption function will succeed with
the same probability as the original attack.

4.2 Embedding the message in the lattice vector

If we want to embed the message in the coefficient vector v we proceed as follows. Let v be the
message itself. Compute Bv and add a random error r (chosen as in the original protocol). Finally,
reduce the result modulo 25:

E(m) = (Bm+r) mod 2B

Again, the same decryption algorithm will work, and the modified scheme is at least as secure
as the original one. The proof is essentially the same as in the previous cryptosystem.

4.3 On the choice of the public basis

In the GGH cryptosystem the public basis B is obtained from the private basis by applying a random
unimodular transformation (or alternatively, performing a sufficiently long sequence of elementary
column operations). This results in a public basis B much bigger than the private basis. As a
consequence, the public basis is fairly large even for moderate sizes of the parameters. We suggest
a modification to the public key generation process analogous to the encryption function. Instead
of choosing some “random” basis generating the same lattice as R, we always output some standard
basis that depends only on the lattice generated by R (and not on the specific private basis we
started from). A natural choice is to let B be the Hermite Normal Form (HNF) of B. Matrix B is
the HNF of R! if

1. they generate the same lattice
2. B is upper triangular, i.e., b; ; = 0 for all i > j
3. For all i < 7,0 <b;,; <bj;.

The HNF is unique and can be computed in polynomial time from any basis of the lattice (e.g.,
using the algorithm in [10]). Since the HNF of R can be computed in polynomial time from any
other public basis B’ generating the same lattice as R, choosing B = HNF(R) as a public basis
is the best possible choice from the security point of view: one can easily prove that any attack to
the modified scheme using B = HNF(R) as a public basis easily translates to an attack (with at
least the same success probability) to the original scheme where B is chosen at random applying
an arbitrarily long sequence of elementary column operations.

The triangular form of B also makes the encryption algorithm (i.e., the reduction modulo B
or 2B) extremely simple. Given r, the reduced vector r mod B can be easily determined as follow.
Compute the integer vector x one coordinate at a time (starting from z,,) using the formula

- Ti = Dj>i DijTj
i e .

The output of the encryption algorithm is y = r— Bx = r mod B. The reader can easily check that
for every i, 0 < y; < b;;, i.e., the result is the unique point in the parallelepiped {w | 0 < w; < b;;}
which is congruent to r modulo £(B). Notice that this is slightly different, but equivalent, to the
reduction operation modulo the basis described in the introduction.

!We are assuming R generate a full rank lattice.

Basis Size Ciphertext
dimension GGH | New scheme | GGH | New scheme
200 250 KB 32 KB | 2 KB 160 B
250 500 KB 50 KB | 3 KB 200 B
300 750 KB 75 KB | 4 KB 250 B
350 1250 KB 100 KB | 5 KB 300 B
400 1850 KB 140 KB | 6 KB 350 B

Figure 2: Comparison of the key and ciphertext sizes in the GGH scheme and the modified scheme.
Sizes in kilobytes (KB) and bytes (B).

We now analyze the size of the public key and the ciphertext of the new encryption algorithm.
First of all notice that the product of the elements on the diagonal of B equals the determinant of
the lattice det(B) = det(R). Therefore we can bound the bit-size of the ciphertexts and the basis
vectors by

> 1gbi; =1g][bii =lgdet(R).

A nlgdet(R) bound on the bit-size of the public basis immediately follows. The saving with respect
to the original GGH encryption algorithm can be substantial. Estimates of the key and ciphertext
sizes for the GGH and the modified scheme are shown in Figure 2. The estimates are based on
the GGH challenges published at [7]. One can easily see that the modified scheme results in keys
and ciphertexts more than an order of magnitude smaller than the original scheme. We remark
that the sizes relative to the modified scheme are only upper bounds obtained using the Hadamard
inequality to estimate the determinant of the lattice, and the actual sizes of the keys and ciphertexts
of the modified cryptosystem can be even smaller than shown in the table.

5 Discussion

We presented a general technique that can be used to simplify and improve various cryptographic
protocols based on the hardness of lattice problems. The improvement can be quite significant
in practice, as demonstrated for the GGH encryption scheme. Moreover, the modified protocols
perform better than the original ones from essentially all points of view: they are faster, more
secure, require less storage, use less bandwidth and need less random bits. Finally, they are also
simpler than the original protocols. This is clearly a significant advantage both in practice and in
theory, because the simplified protocols are easier to implement, and their security can be better
understood and analyzed.

References

[1] Mikl6s Ajtai. Generating hard instances of lattice problems (extended abstract). In Proceedings
of the Twenty-FEighth Annual ACM Symposium on the Theory of Computing, pages 99 108,
Philadelphia, Pennsylvania, 22-24 May 1996.

[2] Miklés Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case
equivalence. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Com-
puting, pages 284-293, El Paso, Texas, 4-6 May 1997.

10

3]

[10]

[11]

[12]

Sanjeev Arora, Laszlé Babai, Jacques Stern, and Z. Sweedyk. The hardness of approximate
optima in lattices, codes, and systems of linear equations. Journal of Computer and System
Sciences, 54(2):317-331, April 1997.

Lészlé Babai. On Lovasz’ lattice reduction and the nearest lattice point problem. Combina-
torica, 6, 1986.

Irit Dinur, Guy Kindler, and Shmuel Safra. Approximating CVP to within almost-polynomial
factors is NP-hard. In 39th Annual Symposium on Foundations of Computer Science, Palo
Alto, California, 7-10 November 1998. IEEE.

Oded Goldreich and Shafi Goldwasser. On the limits of non-approximability of lattice problems.
In Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pages 1 9.
Dallas, Texas, 23—-26 May 1998.

Oded Goldreich, Shafi Goldwasser, and Shai Halevi. The GGH cryptosystem, challange page.
http://theory.lcs.mit.edu/"cis/lattice/challenge.html.

Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from lattice
reduction problems. In Burton S. Kaliski Jr., editor, Advances in Cryptology CRYPTO 97,
volume 1294 of Lecture Notes in Computer Science, pages 112-131. Springer-Verlag, 17-21 Au-
gust 1997.

Oded Goldreich, Daniele Micciancio, Shmuel Safra, and Jean-Pierre Seifert. Approximating
shortest lattice vectors is not harder than approximating closest lattice vectors. In FElectronic
Colloguium on Computational Complexity, technical reports. ECCC, 1999.

Ravi Kannan and Achim Bachem. Polynomial algorithms for computing the Smith and Hermite
normal forms of an integer matrix. SIAM Journal on Computing, 8(4):499-507, November
1979.

Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and L&szlé Lovasz. Factoring polynomials with
rational coefficients. Mathematische Ann., 261:513-534, 1982.

Daniele Micciancio. The shortest vector problem is NP-hard to approximate to within some
constant. In 39th Annual Symposium on Foundations of Computer Science, Palo Alto, Cali-
fornia, 7 10 November 1998. IEEE.

Claus P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical
Computer Science, 53(2-3):201-224, 1987.

11

