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1 IntroductionVarious cryptographic protocols based on the hardness of lattice problems requires the selectionof a random point from the lattice. An illustrative example is the following. Assume we want togenerate a \solved" instance of the closest vector problem. Let L(B) be a lattice. We can choosea lattice point v 2 L(B) at random and then add a small random error � to it. The error must besu�ciently small to assure that v is the lattice vector closest to v0 = v + �, but large enough tomake recovering v from v0 computationally hard. Since lattices are in�nite sets, sampling a latticepoint uniformly at random is neither computationally possible nor a mathematically well de�nedoperation. Still, the security of the protocol often relies on the \randomness" of the lattice point westart with. In the previous example, if v is chosen from a small set of lattice vectors, then we caneasily recover it from v0 by exhaustive search. This di�culty is usually overcome by starting froma lattice point uniformly chosen from a large region (say a sphere of radius exponentially biggerthan the longest vector in the lattice basis B). If the region is su�ciently large, this is essentiallythe same as starting from a \random" lattice point.We suggest to replace the sampling operation which introduces vectors much larger than thevectors describing the original lattice, by a reduction operation modulo the basis of the lattice.In our example, we choose a random error �, and output v0 = � mod B as the target vector(see �gure 1). Although we always start from the origin, the lattice vector closest to v0 is notin general the origin, and it can be formally proved that �nding the lattice vector closest to v0is as hard as �nding it when we start from a random lattice point chosen from arbitrarily largeregions. This techniques can be applied to various cryptographic protocols based on the complexityof lattice problems. The result is usually a simpler protocol (no need to perform the lattice samplingoperation) with better running time and smaller communication complexity (the output vector canbe exponentially shorter than in the original protocol, resulting in an n2 bits saving per vector).We use our techniques to obtained improved versions of the Goldreich-Goldwasser zero-knowledgeinteractive proof systems for the Closest Vector Problem and the Shortest Vector Problem [6], andthe GGH public key cryptosystem [8]. In the case of the GGH cryptosystem we also show how aclever choice of the public basis may lead to a modi�ed cryptosystem with keys and ciphertextsmore than one order of magnitude shorter than the original scheme.The rest of the paper is organized as follows. In section 2 we recall some basic de�nitions andproperties of lattices and statistical distance. In section 3 we apply our technique to the Goldreich-Goldwasser interactive proof systems for the closest and shortest vector problem. Finally, in section4 we show how the same technique can be applied to the GGH cryptosystem to get faster encryptionalgorithms and shorter ciphertexts and keys. In all cases, we prove that the modi�ed protocols areat least as secure as the original ones.2 PreliminariesIn this section we recall some basic facts about lattices and statistical distance.2.1 LatticesLet B = fb1; : : : ;bng be a set of n linearly independent vectors. The lattice generated by B is theset L(B) = fPi xibi j xi 2 Zg of all integer linear combinations of the vectors in B. The set Bis called a basis for the lattice L(B), and it is usually identi�ed with a matrix having the vectorsbi as columns. In matrix notation L(B) = fBx j x 2 Zng. The basis of a lattice is not unique.2



Figure 1: Sphere centered around a generic lattice point and sphere reduced modulo the latticebasisHowever, not every basis of span(B) = fBx j x 2 Rng (as a vector space) is a basis of the latticeL(B). Every lattice L(B) induces an equivalence relation over span(B) de�ned as follows: v � w(mod L(B)) if and only if v �w 2 L(B).The fundamental parallelepiped spanned by the basis B is de�ned as the set P(B) = fPi xibi j0 � xi < 1g. It is easy to see that for every basis B and every point v 2 span(B), there exists aunique vector w 2 P(B) such that v � w (mod L(B)). Vector w can be easily computed fromv and B as follows. Let x be the solution to the linear system Bx = v (a solution always existsbecause v 2 span(B) and is unique by linear independence of the vectors in B). Let x0 = x� bxcbe the vector obtained by replacing each coordinate of x by its fractional part. Then, it is easy tocheck that w = Bx0 2 P(B) and v � w (mod L(B)). The unique element of P(B) congruentto v modulo L(B) is denoted v mod B. Notice that although the equivalence relation v � w(mod L(B)) does not depend on the particular choice of the basis B for the lattice L(B), thede�nition of the reduced vector (v mod B) is basis dependent.Pictorially, we can think the vector space span(B) as partitioned into parallelepiped fP(B)+w jw 2 L(B)g. Then, the reduced vector v mod B is the relative position of v in the parallelepipedP(B) +w it belongs to. Notice that the reduced vector v mod B can be longer than the originalvector v, but it is never longer than the sum of the lengths of the basis vectors kb1k+ � � �+ kbnk.The technique presented in this paper easily adapts to any norm. However, for concreteness,we will concentrate on the Euclidean norm. The distance between two vectors v and w is de�nedby dist(v;w) = kv �wk =pPi(vi � wi)2. The distance function is extended to set of vectors asusual dist(S1; S2) = inffkv �wk : v 2 S1;w 2 S2g:In particular the distance of a vector from a lattice is given by dist(v;L(B)) = minfkv�wk : w 2L(B)g. For every vector v and real r 2 R, we de�ne the ball B(v; r) = fw : dist(v;w) � rg ofradius r centered in w.Two fundamental computational problems on lattices and the Shortest Vector Problem (SVP)and the Closest Vector Problem (CVP). In SVP, one is given a basis B and must �nd the shortest3



non-zero vector in L(B). In CVP, one is given a basis B and a target vector v (not necessarilyin the lattice) and must �nd the lattice vector in L(B) closest to v. Approximation versions ofthe above problems are easily de�ned. In the 
-approximate SVP one must �nd a non-zero latticevector of length at most 
 the shortest, and in the approximate CVP one must �nd a lattice vectorat distance at most 
 � dist(v;L(B)).To date, the best polynomial time algorithms to approximate SVP and CVP achieve only aworst case approximation factor 
 exponential in the dimension of the lattice [11, 4, 13]. Onthe other hand, CVP is NP-hard to approximate within a factor 
 = 2ln1�� n [3, 5], and SVP isNP-hard (for randomized reductions) to approximate within any factor less than p2 [12]. Therelation between the two problems has also been investigated, and in [9] it is proved that CVP isat least as hard as SVP. In general, �nding good approximations to SVP and CVP seems to becomputationally hard problems and have been used as the basis of various cryptographic protocols(e.g., [1, 2, 8]).The approximation problems associated to the shortest vector problem and the closest vectorproblem are usually formalized in terms of the following promise problems [6].De�nition 1 (Approximate SVP) The promise problem GapSVP
, where 
 (the gap function)is a function of the dimension, is de�ned as follows:� yes instances are pairs (B; d) where B 2 Zn�k, d 2 R and kBzk � d for some z 2 Zk n f0g.� no instances are pairs (B; d) where B 2 Zn�k, d 2 R and kBzk > 
d for all z 2 Zn n f0g.De�nition 2 (Approximate CVP) The promise problem GapCVP
 , where 
 (the gap function)is a function of the dimension, is de�ned as follows:� yes instances are triples (B;y; d) where B 2 Zn�k, y 2 Zn, d 2 R and kBz � yk � d forsome z 2 Zn.� no instances are triples (B;y; d) where B 2 Zn�k, y 2 Zn, d 2 R and kBz� yk > 
d for allz 2 Zk.2.2 Statistical DistanceLet X0, X1 be two random variables over the same set X . The statistical distance between X0 andX1 is de�ned by �(X0;X1) = maxS�X jPrfX0 2 Sg � PrfX1 2 Sgj:In the rest of the paper we will make extensive use of the following simple facts about the statisticaldistance.� When X is countable, �(X0;X1) = 12Px2X jPrfX0 = xg � PrfX1 = xgj.� If each Xi is uniformly distributed over some set Xi � X , then �(X0;X1) = 1� jX0\X1jmax(jX0j;jX1j) .� For any (possibly randomized) function f with domain X , �(f(X0); f(X1)) � �(X0;X1).
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3 Interactive ProtocolsIn [6], Goldreich and Goldwasser describe interactive protocols to prove in zero-knowledge that apoint is far from a lattice, or that the shortest vector in a lattice is long. More formally, they givehonest veri�er perfect zero-knowledge constant round one-sided error interactive proof systems forthe complement of the promise problems GapCVP
 and GapSVP
 where 
 =q nO(lnn) .The protocols essentially work as follows. Let (B;v) be an instance of GapCVP
 . The veri�erselect a lattice point r uniformly at random from a large subset of the lattice, a bit � 2 f0; 1g andan error vector � uniformly from a sphere of radius 
d=2. The vector r + � + �y is sent to theprover, who must guess the value of �.The protocol for GapSVP
 is similar. A lattice point is chosen at random from a su�ciently largeregion of the lattice. A small error is added to it and the prover is left with the task of recoveringthe original lattice point.In the next subsections we describe our modi�ed protocols for CVP and SVP, obtained applyingthe technique outlined in the introduction to the original Goldreich-Goldwasser protocols.3.1 Closest Vector ProblemOur modi�ed interactive proof system for the closest vector problem works as follows. Let (B;v; d)be an instance of GapCVP
 , where 
(n) =q nO(lnn) .1. The veri�er uniformly selects a bit � 2 f0; 1g and an error vector � uniformly distributed ina sphere of radius 
d=2. The veri�er sends w = (� + �v) mod B to the prover.2. The prover responds with the value � 2 f0; 1g such that dist(�v;w + L(B)) is minimized.3. The veri�er accepts if and only if � = �.Proposition 1 When 
 = q nO(lnn) , the above protocol is a honest-veri�er zero-knowledge inter-active proof system for the complement of GapCVP
, with perfect completeness and soundness errorbounded away from 1.In the rest of this subsection we prove the above Proposition.Zero-Knowledge: The simulator simply executes the honest veri�er protocol and return � asthe prover's answer.Completeness: Assume dist(y;L(B)) > 
d. We want to prove thatdist(�v;w + L(B)) < dist((1 � �)v;w) + L(B):Notice that w+ L(B) = (� + �v) mod B + L(B) = � + �v + L(B) and thereforedist(�v;w + L(B)) = dist(�v; �v + � + L(B)) � k�k � 
d=2:On the other handdist((1 � �)v;w + L(B)) = dist((1 � �)v; �v + � + L(B))= dist((1 � 2�)v; � + L(B)� dist(�v;L(B))� k�k> 
d� 
d2 = 
d2 :5



Therefore the prover always output the correct value � = �.Soundness: Assume dist(v;L(B)) � d and let x be an integer vector such that kv�Bxk � d. Let�0 and �1 be two random variables uniformly distributed on spheres B(0; 
d=2) and B(v�Bx; 
d=2)respectively. Notice that when � is chosen uniformly at random, ((� + �v) mod B) = ((� + �v �Bx) mod B) is distributed identically to (�� mod B) for � = 0; 1. Therefore the protocol followedby the veri�er is equivalent to choosing � 2 f0; 1g at random and sending (�� mod B) to theprover. We use the bound on the size of the relative intersection of two spheres from [6] to boundthe statistical distance between �0 and �1:�(�0; �1) � 1� vol(B(0; 
d=2);B(v �Bx; 
d=2))vol(B(0; 
d=2))� 1� 1poly(n)We can now bound the soundness error as follows:PrfP �(�� mod B) = �g = 12(PrfP �(�0 mod B) = 0g+ PrfP �(�1 mod B) = 1g)= 12(1 + PrfP �(�1 mod B) = 1g � PrfP �(�0 mod B) = 1g)= 12(1 + �(�0 mod B; �1 mod B))� 12(1 + �(�0; �1))� 12(2� 1poly(n))= 1� 1poly(n)This concludes the proof of Proposition 1.3.2 Shortest Vector ProblemThe proof system for the Shortest Vector Problem uses a similar idea, but the reduction is mademodulo 2B, the basis of 2L(B) obtained by doubling each vector in B. Let (B; d) an instance ofGapSVP
 , where 
 =q nO(lnn) .1. The veri�er uniformly selects a bit string s 2 f0; 1gn and an error vector � uniformly dis-tributed in a sphere of radius 
d=2. The veri�er sends w = (�+Bs) mod (2B) to the prover.2. The prover �nds t 2 f0; 1gn such that dist(Bt;w + L(2B)) is minimized and sends it to theveri�er.3. The veri�er accepts if and only if t = s.Proposition 2 The above protocol is a honest-veri�er zero-knowledge interactive proof system forthe complement of GapSVP
, with perfect completeness and soundness error bounded away from 1.In the rest of this subsection we prove the above Proposition.6



Zero-Knowledge: The simulator simply executes the honest veri�er protocol and return s asthe prover's answer.Completeness: Assume dist(y;L(B)) > 
d. We want to prove that dist(Bs;w + L(2B)) <dist(Bt;w+ L(2B)) for any t 6= s. First of all notice thatdist(Bs;w+ L(2B)) = dist(Bs; � +Bs+ L(2B)) � k�k � 
d=2:We now prove that dist(Bt;w+ L(2B) > 
d=2 for all t 6= s. Notice thatdist(Bt;w+ L(2B)) = dist(Bt; � +Bs+ L(2B))� dist(B(t� s);L(2B)) � k�k> 
d� 
d2 = 
d2because for any vector v 2 L(2B) and for any t 2 f0; 1gn n fsg, B(t� s) � v is a non-zero vectorin L(B), and therefore dist(B(t� s);L(2B)) > 
d (here we are using the fact that s 6= t and s� tmust have some odd component). This proves the prover always outputs the correct value t = s.Soundness: Let P � be an arbitrary prover and let p be the probability of success p = PrfP �((�+Bs) mod 2B) = sg (probability computed with respect to the choice of s 2 f0; 1gn and � 2B(0; 
d=2)). Consider the following mental experiment. Let Bx be a shortest non-zero vector inL(B) and assume kBxk � d. Notice that x 6= 0 (mod 2) because otherwise B(x=2) is a shorternon-zero vector in L(B). Choose s 2 f0; 1gn at random and let s� = (s0 + �x) mod 2 for � = 0; 1.Choose � 2 f0; 1g at random and sends Bs� mod (2B) to the prover. Since s0 and s1 are uniformlydistributed on 2n, this is equivalent to the protocol followed by the honest veri�er. It follows by asimple averaging argument that there exists an s such that the prover succeed with probabilityps = PrfP �((� +Bs�) mod 2B) = s�g � p:We now prove that ps is bounded away from 1. Let �0 and �1 be two random variables uniformlydistributed on spheres B(s; 
d=2) and B(B(s + x); 
d=2) respectively. Notice that (� + B(s +�x)) mod (2B) = (� +Bs�) mod (2B) is distributed identically to �� mod 2B for � = 0; 1. As forthe CVP proof system, the statistical distance between �0 and �1 is at most�(�0; �1) � 1� vol(B(Bs; 
d=2);B(B(s + x); 
d=2))vol(B(Bs; 
d=2))� 1� 1poly(n)Let P � a prover that tries to guess the value of �. We can bound the soundness error as follows:PrfP �(�� mod B) = s�g = 12(PrfP �(�0 mod B) = s0g+PrfP �(�1 mod B) = s1g)� 12(1 + �(�0 mod B; �1 mod B))� 12(1 + �(�0; �1))� 12(2� 1poly(n))= 1� 1poly(n) :7



This prover that ps is bounded away from 1, and therefore also the soundness error p � ps isbounded away from 1.This concludes the proof of Proposition 2.Interestingly, the proof systems we just described for SVP and CVP are reminiscent of theconnection between the two problems discovered in [9]. In that work, an SVP instance B isreduced to a CVP problem by removing some basis vector bi from the lattice L(B) by doublingthe corresponding basis element, and then looking for a lattice vector (in the doubled sub-lattice)closest to bi. Our protocols for SVP, doubles the basis vectors 2B removing all vectors in B fromthe lattice and then executes a protocols which can be thought as a multidimensional extension ofthe CVP protocol with lattice 2B and \targets" B. In a certain sense, the SVP protocol correspondsto �rst reducing SVP to CVP as in [9] and then running the interactive protocol for CVP.4 The GGH encryption schemeIn [8] Goldreich, Goldwasser and Halevi propose a trapdoor permutation based on the hardnessof the closest vector problem, and use it to construct encryption schemes. The trapdoor functionand the corresponding trapdoor are described by two bases B;R of the same lattice L(B) = L(R)(called the public and private basis respectively). The private key R is a particularly good basisthat allows to solve the Closest Vector Problem in the lattice, when the distance of the target pointfrom the lattice is su�ciently small. The function takes in input an integer vector v and a smallerror vector r, and returns Bv+ r, i.e. the lattice vector with public coe�cients v perturbed by r.The error vector r must be su�ciently small to allow to recover Bv using the private basis R. OnceBv is recovered, one can easily compute v and r using simple linear algebra, therefore invertingthe trapdoor function.The above function is used to build two public key encryption schemes, depending on how themessage is embedded into the input (v; r). In particular, one can either encode the message in theerror vector r, and choose v completely at random from a su�ciently large cube, or alternatively,choose r completely at random (from a su�ciently small sphere) and encode the message bits asthe lowest order bit of the entries in v.In both cases the vector v must be chosen from a su�ciently large cube. The exact e�ect ofthe size of the cube on the security of the system is not clear, so for e�ciency reasons [8] sets thesize of the cube to a relatively small value (polynomial in n) which seems in practice su�cient towithstand known attacks. Using our technique, we can achieve the same e�ect of using an arbitrarylarge cube, and make the scheme more e�cient at the same time.The speci�c way we apply our technique to the trapdoor function depends on the encryptionmethod we want to use, and is described in the next two subsections.4.1 Embedding the message in the error vectorIf the message is encoded in the error vector r, then we don't need to consider v at all: we can justtake the error vector r and output E(m) = r mod B:The reader can easily check that the same decryption procedure of the original scheme stillworks. Moreover the new scheme is at least as secure as the original one. That is, given a decryptionoracle for our scheme, we can easily decrypt the original GGH cryptosystem as follows: let v be theciphertext of the GGH cryptosystem. Compute w = v mod B and call the decryption oracle forour scheme. It is easy to verify that the ciphertext is decrypted correctly if and only if the oracle8



returns the right answer. Therefore the attack to the GGH encryption function will succeed withthe same probability as the original attack.4.2 Embedding the message in the lattice vectorIf we want to embed the message in the coe�cient vector v we proceed as follows. Let v be themessage itself. Compute Bv and add a random error r (chosen as in the original protocol). Finally,reduce the result modulo 2B: E(m) = (Bm+ r) mod 2BAgain, the same decryption algorithm will work, and the modi�ed scheme is at least as secureas the original one. The proof is essentially the same as in the previous cryptosystem.4.3 On the choice of the public basisIn the GGH cryptosystem the public basisB is obtained from the private basis by applying a randomunimodular transformation (or alternatively, performing a su�ciently long sequence of elementarycolumn operations). This results in a public basis B much bigger than the private basis. As aconsequence, the public basis is fairly large even for moderate sizes of the parameters. We suggesta modi�cation to the public key generation process analogous to the encryption function. Insteadof choosing some \random" basis generating the same lattice as R, we always output some standardbasis that depends only on the lattice generated by R (and not on the speci�c private basis westarted from). A natural choice is to let B be the Hermite Normal Form (HNF) of B. Matrix B isthe HNF of R1 if1. they generate the same lattice2. B is upper triangular, i.e., bi;j = 0 for all i > j3. For all i < j, 0 � bi;j < bi;i.The HNF is unique and can be computed in polynomial time from any basis of the lattice (e.g.,using the algorithm in [10]). Since the HNF of R can be computed in polynomial time from anyother public basis B0 generating the same lattice as R, choosing B = HNF (R) as a public basisis the best possible choice from the security point of view: one can easily prove that any attack tothe modi�ed scheme using B = HNF (R) as a public basis easily translates to an attack (with atleast the same success probability) to the original scheme where B is chosen at random applyingan arbitrarily long sequence of elementary column operations.The triangular form of B also makes the encryption algorithm (i.e., the reduction modulo Bor 2B) extremely simple. Given r, the reduced vector r mod B can be easily determined as follow.Compute the integer vector x one coordinate at a time (starting from xn) using the formulaxi = �ri �Pj>i bi;jxjbi;i � :The output of the encryption algorithm is y = r�Bx � r mod B. The reader can easily check thatfor every i, 0 � yi < bi;i, i.e., the result is the unique point in the parallelepiped fw j 0 � wi < bi;igwhich is congruent to r modulo L(B). Notice that this is slightly di�erent, but equivalent, to thereduction operation modulo the basis described in the introduction.1We are assuming R generate a full rank lattice. 9



Basis Size Ciphertextdimension GGH New scheme GGH New scheme200 250 KB 32 KB 2 KB 160 B250 500 KB 50 KB 3 KB 200 B300 750 KB 75 KB 4 KB 250 B350 1250 KB 100 KB 5 KB 300 B400 1850 KB 140 KB 6 KB 350 BFigure 2: Comparison of the key and ciphertext sizes in the GGH scheme and the modi�ed scheme.Sizes in kilobytes (KB) and bytes (B).We now analyze the size of the public key and the ciphertext of the new encryption algorithm.First of all notice that the product of the elements on the diagonal of B equals the determinant ofthe lattice det(B) = det(R). Therefore we can bound the bit-size of the ciphertexts and the basisvectors by X lg bi;i = lgY bi;i = lg det(R):A n lg det(R) bound on the bit-size of the public basis immediately follows. The saving with respectto the original GGH encryption algorithm can be substantial. Estimates of the key and ciphertextsizes for the GGH and the modi�ed scheme are shown in Figure 2. The estimates are based onthe GGH challenges published at [7]. One can easily see that the modi�ed scheme results in keysand ciphertexts more than an order of magnitude smaller than the original scheme. We remarkthat the sizes relative to the modi�ed scheme are only upper bounds obtained using the Hadamardinequality to estimate the determinant of the lattice, and the actual sizes of the keys and ciphertextsof the modi�ed cryptosystem can be even smaller than shown in the table.5 DiscussionWe presented a general technique that can be used to simplify and improve various cryptographicprotocols based on the hardness of lattice problems. The improvement can be quite signi�cantin practice, as demonstrated for the GGH encryption scheme. Moreover, the modi�ed protocolsperform better than the original ones from essentially all points of view: they are faster, moresecure, require less storage, use less bandwidth and need less random bits. Finally, they are alsosimpler than the original protocols. This is clearly a signi�cant advantage both in practice and intheory, because the simpli�ed protocols are easier to implement, and their security can be betterunderstood and analyzed.References[1] Mikl�os Ajtai. Generating hard instances of lattice problems (extended abstract). In Proceedingsof the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, pages 99{108,Philadelphia, Pennsylvania, 22{24 May 1996.[2] Mikl�os Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-caseequivalence. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Com-puting, pages 284{293, El Paso, Texas, 4{6 May 1997.10
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