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Abstract 
 

There is an emergence of cloud application platforms 
such as Microsoft’s Azure, Google’s App Engine and 
Amazon’s EC2/SimpleDB/S3. Startups and Enterprise 
alike, lured by the promise of ‘infinite scalability’, ‘ease 
of development’, ‘low infrastructure setup cost’ are 
increasingly using these cloud service building blocks to 
develop and deploy their web based applications. 
However, the precise nature of these cloud platforms and 
the resultant cloud application runtime behavior is still 
largely an unknown. Given the black box nature of these 
platforms, and the novel programming and data models of 
cloud, there is a dearth of tools and techniques for 
enabling the rigorously evaluation of cloud platforms at 
runtime.   

This paper introduces the CARE (Cloud Architecture 
Runtime Evaluation) approach, a framework for 
evaluating cloud application development and runtime 
platforms. CARE implements a unified interface with 
WSDL and REST in order to evaluate different Cloud 
platforms for Cloud application hosting servers and 
Cloud databases. With the unified interface, we are able 
to perform selective high-stress and low-stress 
evaluations corresponding to desired test scenarios.  

Result shows the effectiveness of CARE in the 
evaluation of cloud variations in terms of scalability, 
availability and responsiveness, across both compute and 
storage capabilities. Thus placing CARE as an important 
tool in the path of cloud computing research. 
 
1. Introduction 
 

Cloud computing [1-3] is the next computing paradigm 
that leads to a new generation of platforms, by utilizing 
decades of research and technology innovation, to host 
business and scientific applications to a completely new 
horizon. It offers a pool of virtualized computing 
resources to exploit infrastructures, platforms or software 
as on-demand services. It also allows a pay-per-use model 
allowing a more utility-like computing model for IT and 
business users alike. Cloud vendors such as Amazon, 
Google and Microsoft also provide various innovative 
cloud based building block services that IT professionals 
can reuse and incorporate into their own web applications 
under development.  

  
The projected benefits offered by Cloud computing are 

compelling and attractive in many ways. The large pool of 
shared resources such as compute and storage can be 
allocated dynamically to the global user base. Coupled 
with the measured service and or metered usage capability 
at the cloud server end, the cloud service consumers can 
simply ‘pay for usage’. Further, the ‘pay as you go’ 
business model means many companies no longer need to 
invest capital expenditure on hardware at start up time, 
making cloud computing an attractive proposition for 
startup companies. The extreme elasticity in the cloud 
infrastructure means that resources can be scaled up and 
back down dynamically, and as long as consumers can 
give up some degrees of control and simply hand over 
their services to be hosted in the cloud, they can tap into 
the business benefits of ‘economies of scale’ offered by 
cloud computing. 

Amazon, Microsoft and Google are investing billions 
of dollars in building distributed data centers across 
different continents around the world providing Cloud 
computing resources to their users. A typical Cloud 
platform includes a Cloud application hosting server and a 
Cloud storage device as database. Many also offer 
additional services such as customizable load balancing, 
and relational databases.  

 
This paper focuses on these three Cloud platforms: 

1. Amazon offers a collection of services, called Amazon 
Web Services (AWS), which includes Amazon Elastic 
Compute Cloud (EC2) as Cloud hosting server, 
offering Infrastructure-as-a-Service (IaaS), Amazon 
SimpleDB and Amazon Simple Storage Service (S3) 
as Cloud databases.  

2. Google App Engine supports a Platform-as-as-service 
model, supporting programming languages including 
Python and Java, and  Google App Engine Datastore 
as a Bigtable-based [4], non-relational and highly 
shardable  Cloud database.  

3. Microsoft Windows Azure is recognized as a 
combination of IaaS and PaaS. It features Web Role 
and Worker Role for web hosting tasks and computing 
tasks, respectively. Also it offers a variety of Azure 
Storages including table storage (as the non-relational 
option) and Azure SQL (full relational). 



There have been a number of research efforts that 
specifically evaluate the AWS Cloud platform [5] [6]. 
However, there has been little in-depth evaluation 
research conducted on other Cloud platforms, such as 
Google App Engine and Microsoft Azure. More 
importantly, these work lack a more generic evaluation 
method that enables a fair comparison between various 
cloud platforms.   

A novel approach called CARE (Cloud Architecture 
Runtime Evaluation) has been developed in an attempt to 
address the following research questions: 
1. What are the performance characteristics of different 

Cloud platforms, including Cloud hosting servers and 
Cloud databases?  

2. What availability and reliability characteristics do 
cloud platforms typically exhibit? What sort of faults 
and errors may be encountered when services are 
running on different Cloud platforms under high 
request volume or high stress situations? 

3. What are some of the reasons behind the faults and 
errors? What are the architecture internal insights we 
may deduce from these observations? 

4. What are the software engineering challenges that 
developers and architects could face when using 
Cloud platforms as their production environment for 
service delivery?  
An empirical experiment has been carried out applying 

CARE against three different cloud platforms. Result 
provides an in-depth analysis of the major runtime 
performance differences under various simulated 
conditions, providing useful information for decision 
makers on the adoption of different cloud computing 
technologies. 

The next section summarizes related work and how our 
approach uniquely makes a contribution. Section 3 
presents the CARE evaluation framework.  Section 4 
discusses the empirical experiment set up and its 
execution. Section 5 presents the experimental results. 
Section 6 discusses the application experience of CARE 
and evaluates the CARE approach. We conclude in 
Section 7.  
 
2. Related Work 
 

Being able to provide an independent evaluation into 
the architecture and performance of Cloud platform has 
been the subject of research in the field of computing. 
Evangelinos and Hill [5], Hill and Humphrey[6] evaluated 
Amazon EC2 32-bits and 64-bits instances respectively  
with MPI and memory bandwidth benchmarks to explore 
the feasibility of running High Performance Computing 
(HPC) applications on the Cloud. Similarly, data intensive 
workload cases are also examined on Amazon Simple 
Storage Service (S3) by Hoffa et al. [7] and Deelman et al. 
[8]. Nevertheless, these work focus more on analyzing 

cases of scientific applications, rather than business 
applications. 

While in the case of business application benchmarks, 
although those traditional benchmarks, namely TPC-W, 
RuBiS and PetStore are still being used, the effectiveness 
of benchmarking Cloud platforms using these applications 
are arguably weak. In particular, Tickoo et al. [9] 
recognizes that the single highly parallel performance 
model does not fit virtualized environments; and that 
virtualization introduces additional resource contentions 
and overheads that needs to be represented in new cloud 
based performance models. Sobel et al. [10] moves away 
from the traditional TPC-W style of benchmark, and 
proposes that there needs to be new benchmarking 
applications that better characterizes future cloud 
application profiles.  

From the view of empirical software engineering, there 
have been Commercial Off-The-Shelf (COTS) 
middleware evaluation approaches, such as the i-Mate 
[11-12] and DeBOT processes. The i-Mate selection and 
evaluation process is originally used to determine 
appropriateness of middleware products based on user 
requirements, what-if scenarios and prototype 
developments. Some of these ideas have the potential to 
be extended into Cloud platform evaluation and selection, 
enabling a fit-for-purpose technology assessment. 
However, cloud based software engineering presents 
some new challenges, including new programming 
models and data distribution and replication models, 
which calls for the need for revised COTS evaluation 
approaches tailored for cloud.  

The most recent related work in this area is from 
Kossmann’s team [13]. It is the first paper comparing a 
list of Cloud database services by using the TPC-W 
benchmark. However, their proposed approach 
contradicts with their previous work [14], which 
presented the limitations of using TPC-W for 
benchmarking cloud platforms. Moreover, in order to 
make TPC-W workable on NoSQL databases, such as 
Amazon SimpleDB, Amazon S3 and Google App Engine 
Datastore, additional handcrafted SQL operations are 
explicitly coded into the implementation of the test 
application. Hence introducing an extra layer of 
performance overhead into the benchmark results, that are 
heavily dependent on the quality of the handcrafted code. 
 
3. The CARE Framework 
 

The CARE framework is a performance evaluation 
approach specifically tailored for evaluating across a 
range of cloud platform technologies. The CARE 
framework exhibits the following design principles and 
features: 
- Common and consistent test interfaces across all test 

targets, employing web services and RESTful APIs. 
This is so that we can keep as much commonality 



across the tests against different platforms as 
possible, hence resulting in a fairer comparison. 

- Minimal business logic code in test harness, in order 
to minimize variations in results caused by business 
logic code. This is so that performance results can be 
better attributed to the performance characteristics of 
the underlying cloud platform (as opposed to the test 
application itself).  

- Use of canonical test operations, such as read, write, 
update, delete. We can then simulate a wide range of 
cloud application workloads using composites of 
these canonical operations. We would also then have 
a precise way of describing the application profile. 

- Configurable client simulation component for 
producing stepped client request volume simulations 
for evaluating platform under varying load 
conditions. 

- Reusable test components including test harness, 
result compilation, error logging. 

- Consistent measurement terminology and metric that 
can be used across all test case scenarios and against 
all test cloud platforms. 

 
3.1. Measurement Terminology 
 

CARE employs a set of measurement terminology that 
is to be used across all tests, to ensure consistency in the 
performance instrumentation, analysis and comparison of 
results.  

It considers major variables of interest in the 
evaluation of Cloud platforms, including response time 
timings based on those observed by client side, and from 
the cloud host server side. Figure 1 illustrates the time 
measurement terminologies in a typical client request and 
roundtrip response (See Figure 1). 

 

 
Figure 1. Time Measurement Terminologies 

 
Figure 1 shows a full round-trip transaction initiated by 

a client. From a user’s perspective, a Cloud hosting server 
and a Cloud database provides three aspects in time-
relevant terminologies, they are: 

client_response_time is the total (network included) 
round-trip time as seen by the client, starting from 
sending the request, through to receiving the 
corresponding response.  

processing_time is the amount of time for processing 
the request on the server side. 

db_processing_time is ideally the amount of time a 
cloud database takes to process a database request. 
However, it is practically impossible to measure, due to 
the absence of a timer process in the Cloud database. The 
CARE framework thus equates this measurement to time 
taken to process the database request as seen by the cloud 
hosting server, measuring processing_time of database 
API as db_processing_time, since within the same Cloud 
platform, the latency between Cloud hosting servers and 
Cloud databases are negligible.  

Further, there are terminologies used to refer to 
different types of responses based on a request: 

incomplete_request is a type of requests when a client 
fails to send or receive. 

completed_request refers to a request that a client 
sends successfully and receives a confirmation response 
from the Cloud platform at completion time. 

Now, depending on the response, the 
completed_request can be further classified as: 

failed_request that contains an error message in the 
response. 

successful_request which completes the transaction 
without an error. 
 
3.2. Test Scenarios 
 

The CARE framework provides three key test 
scenarios to differentiate candidate Cloud platforms. 
While there are other more sophisticated test scenarios 
possible, the three test scenarios provided by CARE cover 
most of the usage scenarios of typical cloud applications. 
Hence, the CARE framework provided test scenarios 
strikes a good balance between simplicity and coverage.  

Client – Cloud Host represents the scenario that a user 
accesses a web service application hosted on the Cloud 
platform from an end-user client side application. The 
client_response_time would be the user’s primary concern 
in terms of the Cloud application performance. 

Cloud Host – Cloud Database represents the scenario 
that a user operates on a form or an article hosted in the 
Cloud database through the Cloud hosting server. We 
exclude the time taken to send the request from end user 
client end to cloud host server. The db_processing_times 
of different data sizes are a main factor taking into 
consideration. Especially, it would be interesting to 
observe db_processing_time of concurrent requests that 
are launched by thousands of users simultaneously. The 
database contention due to concurrent requests will be a 
key determining factor in the overall scalability of the 
cloud platform in this type of scenario. Besides 
identifying different performance characteristics across 
Cloud databases, a local database (LocalDB) is also 
provided by the CARE framework in a Cloud hosting 
server as a reference point for comparison to other cloud 
databases. 



Client – Cloud Database illustrates a large file transfer 
scenario. We envisage data-intensive computing to be 
increasingly pervasive in the cloud, and also there is a 
large variety of new media contents being stored and 
retrieved from clouds, e.g. video and music, medical 
images, etc. Understanding the characteristics of cloud 
(and associated network) behavior in handling ‘big data’ 
is an important dimension in the new cloud computing 
world.  
 
3.3. Load Test Strategies 
 

The CARE framework supports two types of load test 
strategies: High Stress Test Strategy and Low Stress Test 
Strategy.  The different load test strategies are ideally 
applied across the various test scenarios listed in section 
3.2, in order to provide a more comprehensive evaluation 
and comparison. 

The Low Stress Test Strategy sends multiple requests 
from the client side in a sequential manner. This is 
appropriate for simulating systems where there is a small 
(or a single) number of users. It also provides a reference 
point for comparison to High Stress Test Strategy, and 
also for obtaining base network latency benchmarks. 

The High Stress Evaluation Strategy provides 
simulated concurrent requests to Cloud platforms in order 
to obtain cloud architecture internal insights, particularly 
for observing performance behavior under load.  

 

 
Figure 2. The flow chart of evaluation strategies 

 
Figure 2 demonstrates the workflow of High Stress 

Test Strategy. The configurable parameter called 
‘repeating rounds’ is set to 6 by default, this represents 
the ‘warm up’ period, where there is typically large 
performance variations due to phenomena such as ‘cloud 
connection time’. The performance results arising from 
the warm up time stage is discarded by the performance 
results compilation framework, in order to produce more 
repeatable and stable testing results. Another configurable 
parameter ‘concurrent threads’ is set to start at 100 by 
default. It is then incremented by another configurable 
parameter ‘increment’ after every round of test, the 
CARE framework currently sets the default value to 200 

for High Stress Test Strategy, and 0 for Low Stress Test 
Strategy. For example, for High Stress Test Strategy, after 
the initial 6 rounds, the number of concurrent threads 
fired by the client would go from 100 to 300, 500, 700, 
900 and 1100… in successive rounds. 

For the High Stress Test Strategy, a number of 
continuous requests are sent within every thread to 
maintain its stress on the Cloud platform for a period of 
time. If there is only a single request sent to the cloud in 
each thread, our observation is that the expected 
concurrent stress cannot always be reached, and due to 
network latency and variability, arrival time and order of 
packets at the cloud platform can also vary. Hence in the 
CARE framework, we provide another configurable 
parameter ‘continuous request’ (with a default value of 3 
– striking a balance between sustaining workload in cloud 
and enabling testing across concurrent clients) in order to 
provide a more sustained and even workload to the cloud 
overtime.  

Lastly, as cloud computing is essentially a large scale 
shared system, where the typical cloud user would be 
using a publicly shared network in order to access cloud 
services. We note that there also can be variation in 
network capacity, bandwidth and latency issues, with 
fluctuations over time, the CARE framework thus 
provides a scheduler that support scheduled cron jobs to 
be activate automatically and repeated taking testing 
samples across different times over a 24 hour period.   

The flow chart of Low Stress Test Strategy for requests 
is essentially a simplified version of Figure 2, with the 
multi-threaded functions deactivated. 
 
3.4. Building a Test Set with CARE 
 

Now, with the CARE framework, we can combine the 
various Test Scenarios with the various Load Test 
Strategies to produce a comprehensive test set.   

While the test set can be designed and created using 
the CARE framework depending on the precise test 
requirement, the CARE framework also comes with a 
reusable Test Set that aims to provide test coverage of a 
large number of commonly found cloud application types. 
Here we provide an view into this Test Set.  

Firstly, there are five contract first Web Service based 
test methods, namely High Stress Round-trip, low Stress 
Database Read, low stress Database write, High Stress 
Database Read and high Stress Database Write. There 
are also three RESTful Web Service based methods, low 
Stress Large File Read, low Stress Large File Write and 
low Stress Large File Delete. The eight key test methods 
in the test set are listed in Table 1. 

 
 
 
 



Table 1. Building a Test Set 
Test Set Methods Test Scenario Load Test 

High Stress Round-trip  Client – Cloud 
Host 

High Stress  

Low Stress Database 
Read/ Write 

Cloud Host – 
Cloud Database 

Low Stress  

High Stress Database 
Read/Write 

Cloud Host – 
Cloud Database 

High Stress  

Low Stress Large File 
Read/Write/Delete 

Client – Cloud 
Database 

Low Stress  

 
High Stress Round-trip: The clients concurrently send 

message requests to Cloud hosting servers. For each 
request received, the servers immediately echo back to the 
clients with the received messages. The 
client_response_time is recorded in this test. This is the 
base test that provides a good benchmark for a total round 
trip cloud application usage experience, response time as 
experienced by the average user will include and affected 
by the various variable network conditions. This is a 
useful test to indicate the likely end user experience, in an 
end to end system testing scenario. 

Low Stress Database Read and Low Stress Database 
Write uses the Cloud Host – Cloud Database scenario. 
We start with the Low Stress Test Strategy, which 
provides an initial reference result set for subsequent high 
stress load tests. This test is performed with varying data 
sizes, representing different cloud application data types. 
The data types provided by the CARE framework are: a 
single character (1 byte), a message (100 bytes), an 
article (1 kilobyte) and a small file (1 megabyte). These 
data types are sent along with the read or write requests, 
one after another to the Cloud Databases via the Cloud 
hosting servers. The db_processing_time will be recorded 
and then returned to the client within a response. 

In terms of request size, CARE framework follows 
conventional cloud application design principle, and 
stores data no larger than 1 kilobyte in structured data 
oriented storage, namely Amazon SimpleDB and 
Microsoft Azure Table Storage. While those data larger 
than 1 kilobyte will be put into binary data oriented 
databases, including Amazon S3 and Microsoft Azure 
Blob Storage. In addition, Google App Engine Datastore 
supports both structure data and binary data in the same 
Cloud database. 

High Stress Database Read/Write is based on the High 
Stress Test Strategy. It simulates multiple read/write 
actions events concurrently. The number of concurrent 
requests range is configurable, as described in section 3.3.  
Due to some common cloud platform quota limitations 
(for example: Google App Engine by default limits 
incoming bandwidth at maximum 56 megabytes per 
minute) this test’s default test data size is set to 1 kilobyte. 
This test data size can be configured to use alternative test 
data sizes if the target testing cloud platform does not 
have those quota limitations. Lastly, a cron job is 

scheduled to perform stress database test repeatedly 
sampling different time periods across the 24 hour period, 
as per section 3.3 description.  

Low Stress Large File Read/Write/Delete is the test 
designed to evaluate large data transfer in the Client – 
Cloud Database scenario. The throughput measure is as 
observed by the client. Once again, this test aims to 
characterize the total end to end large data handling 
capability by the cloud platform, taking into consideration 
the various network variations. The CARE framework 
provides some default test data: ranging from 1 megabyte, 
5 megabytes 10 megabytes and through to 15 megabytes. 
A RESTful Web Service based client is implemented for 
a set of target Cloud databases, including Amazon S3 and 
Microsoft Azure Blob Storage. Note that the CARE 
framework does not provide a test for Google App Engine, 
as Datastore does not support an interface for direct 
external connection for large file access. 
 
4. Application of CARE to Cloud Platform 
Evaluation 
 

Providing a common reusable test framework across a 
number of different clouds is a very challenging research 
problem. This is primarily due to the large variations in 
architecture, service delivery model, functionality 
provided across various cloud platforms, including Azure, 
App Engine and AWS. Firstly, the service models of 
Cloud hosting servers are different: Amazon EC2 uses the 
Infrastructure-as-a-Service (IaaS) model; Google App 
Engine is Platform-as-a-Service (PaaS); while Microsoft 
Windows Azure combines both the IaaS and PaaS models. 
Different service models stand for different degrees of 
system privileges and different system architectures. 
Moreover, the connections among Cloud hosting servers, 
Cloud databases and clients are featured with different 
protocols, frameworks, design patterns and programming 
languages, these all add to the complexities to the task of 
providing a common reusable evaluation method and 
framework.  

As shown in Figure 3, for the purpose of keeping as 
much commonality as possible, Contract-First Web 
Services and RESTful Web Services are used to ensure a 
unified evaluation interface. For the Contract-First Web 
Services: a WSDL file is firstly built; then, the Cloud 
hosting servers implement to the functions defined in this 
WSDL file; lastly, a unified client is created from the 
WSDL file which allows communication via the same 
protocol, despite of existing variants. While for RESTful 
Web Services, direct access is made via HTTP. The 
CARE framework currently provides the reusable 
common client components, and the cloud server 
components for Azure, App Engine and EC2.  

 



 
Figure 3. Contract-First Web Service based client 

 
On the Cloud side, in order to provide unified web 

services, Windows Communication Foundation (WCF) 
and C# codes are implemented on Microsoft Windows 
Azure; Python-based ZSI and Zope Interface frameworks 
are used in Google App Engine; Tomcat 6.0 and Apache 
CXF run on an Ubuntu-based small instance in Amazon. 
In addition, a PostgreSQL database, acting as LocalDB, is 
also installed on the same Amazon instance, accessed via 
JPA 1.0.  

The CARE framework cloud server components 
follow the design principle of ‘always using the 
native/primary supported language by the cloud’ in order 
to build the most optimal and efficient test components 
for reuse. 

On the client side, a Contract-First Web Service based 
client is prepared for communicating Cloud hosting 
servers via WSDL. Whereas a RESTful Web Service 
based client is used to manipulate Cloud databases 
directly without passing the Cloud hosting servers. 
 
5. Results 
 

In this section, results of eight evaluation methods is 
going to be examined, including Stress Round-trip, 
Stressfree Database Read/Write, Stress Database 
Read/Write and Stressfree Large File Read/Write/Delete. 
We also note some environmental information for the 
tests conducted here: 

- the client environment executing the CARE 
evaluation strategy is a Debian machine with Linux kernel 
2.6.21.6-ati, with 3 hardware evaluation platform being a 

Dell Optiplex GX620, Intel Pentium D CPU 3.00GHz, 
2GB memory and 10/100/1000 Base-T Ethernet.  

- The sample test results listed here were conducted 
during the period of April – June 2009. 
 
5.1. High Stress Round-trip 
 

Figure 4 indicates the Cumulative Distribution 
Function (CDF) of client_response_time under varying 
amount of concurrent stress requests, which range from 
300, 900, 1500, 2100, 2700 through to 3300 requests 
respectively. 

The observation of three CDFs confirms that the larger 
the requests are, the longer the client_response_time will 
be. But the incremental step of client_response_time 
varies from one group of requests to another, depending 
on the Cloud hosting servers. For 80% of CDFs, the 
client_response_time of Amazon EC2 and Microsoft 
Windows Azure are dramatically increased at 1500 
requests and 900 requests respectively. For Google App 
Engine, although the client_response_time shows an 
increasing trend, there is no significant leap between 
neighboring groups of requests. 

The reason for these observations could be explained 
from the scalability aspect. If client_response_time 
increases steadily and linearly under stress in Google App 
Engine, there is certainly some good scalability capability 
as its Cloud hosting server is thread based, allowing more 
threads to be created for additional requests. Nevertheless, 
the Cloud hosting servers of Amazon EC2 and Microsoft 
Windows Azure are instance based. The computing 
resources for one instance are pre-configured. More 
resources for additional requests cannot be obtained 
unless extra instances are deployed. 
 
5.2. Low Stress Database Read/Write 
 

In Figure 5(a), the average db_processing_time of 
reading 1byte, 100 bytes and 1 kilobyte are within 50 
milliseconds, while the db_processing_time of writing 
small size data in Figure 6(a) varies from 10 milliseconds 
to 120 milliseconds. From this, we can see that for each 
Cloud database, the reading performance is deemed faster 
than the writing performance for the same amount of data. 
The two figures also state that LocalDB in Amazon EC2 

 
(a) Amazon EC2   (b) Google App Engine  (c) Microsoft Windows Azure 

Figure 4. CDF of High Stress Round-trip between the clients and the Cloud hosting servers 



instance shows its strength from 1 byte to 1 kilobyte. As 
the evaluation environment is low stress, and as such, the 
cloud host is not under load, so it is consistent to see the 
LocalDB (without any optimizations) can handle requests 
effectively. The latency from the Cloud hosting server to 
the LocalDB is also smaller, since they are in the same 
Amazon EC2 instance. 

When the size of request goes to 1 megabyte, Amazon 
S3 almost has the same write performance as Google App 
Engine Datastore, but the former is almost three times 
slower than the latter in reading. Azure Blog Storage 
takes less time than others in both reading and writing. 

The CDFs of read and write throughput in Cloud 
databases demonstrated similar behavior as in Figure 5(a) 
and Figure 6(a). Moreover, as for the 1 megabyte 

database reading and writing, CDFs also show that 
approximately 80% of requests are processed at 10 
megabytes per second. 
 
5.3. High Stress Database Read/Write 
 

In this method, the number of concurrent requests in 
the evaluation varies from 300 to 3300 with the step being 
300. The db_processing_times of each Cloud database 
under 2100 concurrent requests are collected in Figure 7. 
From 2100 concurrent requests onwards, Cloud host 
servers start producing errors, these are listed in detail in 
Table 5 and Table 6 in Section 5.5.3. 

 
(a) Average read time in Cloud databases    (b) CDF of read throughput in Cloud databases 

Figure 5. Low Stress Database Read (1B, 100B, 1KB and 1MB data) 
 

 
(a) Average read time in Cloud databases    (b) CDF of read throughput in Cloud databases 

Figure 6. Stressfree Database Read (1B, 100B, 1KB and 1MB data) 

 
Figure 7. CDF of Stress Database Read/Write throughput on Cloud databases (1KB data) 



Instead of being the best performer as in Low Stress  
Database Read/Write, Amazon LocalDB now performs 
the worst among all platforms. It implies the poor 
capability of handling concurrent requests within the 
same instance as the compute capability. Moreover, 
Google App Engine Datastore, Amazon SimpleDB and 
Azure Storage all still show faster speed in read 
operations than write operations. 
 
5.4. Low Stress Large File Read/Write/Delete 

 Figure 8(a), 8(b) and 8(c) show the average 
db_processing_time of reading, writing and deleting 
binary files in the Cloud databases directly. 

It can be seen that reading is faster in general. Both 
read and write db_processing_times of Amazon S3 and 
Azure Blob Storage are fairly close to each other, 
especially in Figure 8(b) when data size is larger than 5 
megabytes. It is likely due to the limitation of the local 
network environment, the evaluation reaches the 
threshold of the local network before getting insights of 
the Cloud databases. This the why the CARE framework 
provides a range of scenarios (eg. Client – cloud host 
server – cloud db, as well as cloud host server – cloud db) 
so that we can evaluate the performance characteristics 
with and without the network variations and effects in 
place. 

Figure 8(c) indicates the average db_processing_time 
of the delete operation. The interesting observation here is 
that the delete db_processing_time is constant regardless 
of data sizes. It is confirmed that neither Amazon S3 nor 

Azure Blob Storage will delete data entries on the fly. 
Both of them mark the entity and reply with 
successful_request message at the first instant. The actual 
delete operation will be completed afterwards. 
 
5.5. Exception Analysis and Error Details 
 
5.5.1. Overall Error Details. All error messages and 
exceptions were logged and captured by the CARE 
framework. This is a useful feature for carrying out 
offline analysis. We observe that all errors occurred 
during the High Stress Database Read/Write tests. The 
CARE framework also logs the errors/exceptions 
accordingly to various categories:  

database_error happens during the period of 
processing in Cloud databases. 

server_error occurs within Cloud hosting servers, for 
instance, not able to allocate resources. 

connection_error is encountered if a request does not 
reach Cloud hosting servers due to network connection 
problems, such as package loss, proxy being unavailable. 

In general, a response with connection_error falls into 
incomplete_request; and a request to server_error or 
database_error is recognized as failed_request. The error 
details of each category are listed in Table 4. 
 
5.5.2. Average Errors over Different Time Periods 
 

 The CARE framework is also able to produce 
unavailability information based on error and exceptions 

 
(a) Read    (b) Write    (c) Delete 

Figure 8. Low Stress Large File Read/Write/Delete (1MB, 5MB, 10MB and 15 MB data) 

Table 2. Average Error Rates of High Stress Database Read over different time periods 
Cloud Database 

Category 
Google App Engine 

Datastore 
Microsoft Windows 
Azure Table Storage Amazon LocalDB Amazon SimpleDB 

database_error 2.25 (0.007%) 0.00 (0.000%) 0.00 (0.000%) 0.00 (0.000%) 
server_error 4.75 (0.015%) 0.00 (0.000%) 16.40 (0.051%) 0.00 (0.000%) 
connection_error 5462.75 (16.860%) 11593.80 (35.783%) 6368.40 (19.656%) 41.00 (0.127%) 
successful_request 26930.25 (83.118%) 20806.20 (64.217%) 26015.20 (80.294%) 32359.00 (99.873%) 

Table 3. Average errors of High Stress Database Write over different time periods 
Cloud Database 

Category 
Google App Engine 

Datastore 
Microsoft Windows 
Azure Table Storage Amazon LocalDB Amazon SimpleDB 

database_error 31.67 (0.098%) 0.00 (0.000%) 0.00 (0.000%) 111.17 (0.343%) 
server_error 3037.37 (9.374%) 0.17 (0.001%) 25.20 (0.075%) 9.50 (0.029%) 
connection_error 4787.50 (14.776%) 4810.33 (14.847%) 5262.60 (16.243%) 2470.83 (7.626%) 
successful_request 24543.66 (75.752%) 27589.50 (85.153%) 27112.20 (83.680%) 29808.50 (92.002%) 

 



logs over a long period of time. Table 2 and Table 3 show 
different average error rates of Stress Database 
Read/Write methods over different time periods. As 
shown in table, both read and write connection_error 
rates of Amazon LocalDB and Google App Engine 
Database vary in a range from 15% to 20%. We note that 
this figure is highly variable depending on the 24 hour 
period, and also is highly subjected to the network 
conditions, as well as the health status of the cloud server. 
Amazon SimpleDB takes the minimum rates of reading 
and writing for less than 10%, especially the reading, 
which approaches to 0%. On the contrary, Azure Table 
Storage occupies the largest rate in reading, more than 
30%. 

In spite of read and write connection_error rates, 
average read successful_request rates are high, almost 
99.99% of completed_request. Although Google App 
Engine Datastore and Amazon SimpleDB responded write 
database_error for 31.67 and 111.17 times respectively, 
the write successful_request rates are generally high, with 
the worst one logging at more than 99.67% of 
completed_request. 

Among all Cloud hosting servers, Google App Engine 
exhibits the most number of server errors, containing 
“500 Server Error” messages. Meanwhile, the largest 
server_error rate happened after May 20 23:30:00 PST 
2009. This incident can be tracked in Google App Engine 
overall system status. There were some significant latency 
started appearing around one or half an hour earlier than 
the given time.  
 

5.5.3. Average connection_error Rates Under different 
Loads 
 

In High Stress Database Read/Write tests, as expected, 
we see that the trend of the average connection_error 
rates rise as the number of concurrent requests increases. 
Google App Engine and Amazon EC2 (SimpleDB) have a 
smaller percentage trend in reading than writing, while 
Microsoft Windows Azure and Amazon EC2 (LocalDB) 
in the contrary, display higher rates in read operatons than 
write operations. 

Amazon EC2 (SimpleDB) maintains the lowest error 
rates in both reading and writing, almost approaching 0% 
in read tests. While Amazon EC2 (LocalDB), which 
shares the same instance with the web application of 
Amazon EC2 (SimpleDB), started receiving high 
percentage of connection_error from 1500 concurrent 
requests. The reason of this phenomenon could be 
explained by that the local database of LocalDB causes  
additional resource contention by virtually being inside 
the same instance as the host server instance. Hence 
leading to a lass scalable architecture (as a tradeoff to 
smaller latency from host server to cloud db).  

For Microsoft Windows Azure, the connection_error 
percentage begins to leap, from less than 1% at 1500 
requests, to more than 50% and 30% in reading and 
writing separately at 3300 concurrent requests. This 
indicates that we have hit a limit in terms of what this 
Azure server instance can handle.  

For Google App Engine, we observe a large number of 
connection error under high load. Most connection_errors 
from Google App Engine contain “Access Denied” 

Table 4. Total Error Detail Analysis 
Category Error Messages Reasons Locations 

datastore_errors: Timeout 

Multiple action perform at the same entry, one 
will be processed others will fail due to 
contention 
Request takes too much time to process 

Google App Engine Datastore 

datastore_errors: 
TransactionFailedError 

An error occurred for the API request 
datastore_v3.RunQuery() Google App Engine Datastore 

apiproxy_errors: Error Too much contention on datastore entities Google App Engine Datastore 

database 
_error 

Amazon SimpleDB is 
currently unavailable Too many concurrent requests Amazon SimpleDB 

Unable to read data from the 
transport connection WCF failed to open connection Microsoft Windows Azure 

500 Server Error HTTP 500 ERROR : Internal Error Google App Engine 
server 
_error 

Zero Sized Reply  Amazon EC2 

Read timed out HTTP time out Microsoft Windows Azure 
Amazon EC2 

Access Denied HTTP 401 ERROR 
Microsoft Windows Azure 
Google App Engine 
Amazon EC2 

Unknown Host Exception  Microsoft Windows Azure 

connection 
_error 

Network Error (tcp_error) Local proxy connection error Microsoft Windows Azure 
Google App Engine 

 



message, which is a standard HTTP 401 error message. 
Through cross checking the server side, there is no record 
of HTTP 401 at all in Google App Engine Dashboard. It 
means these requests are blocked before getting into the 
web application. The presumption can be made that the 
access is restricted due to a firewall in Google App 
Engine. When thousands of requests go into Google App 
Engine concurrently from the same IP, the firewall may 
be triggered. Upon some analysis of how App Engine 
manages incoming requests (ie. Via HTTP traffic), it is 
reasonable to conclude that this may be a Security feature 
around ‘Denial of Service Attacks’. 
 
6. Discussion 
 

An empirical experiment was carried out to examine 
the effectiveness of CARE when applied to testing 
different Cloud platforms. Results indicate CARE is a 
feasible approach by directly comparing three major 
Cloud platforms, including Cloud hosting servers and 
Cloud databases.  

Analysis revealed the importance of acknowledging 
different service models, and that the scalability of Cloud 
hosting servers is achieved in different ways. The 
horizontal scalability is available to some extent in 
Google App Engine, but is always restricted by the quota 
limitation. While Amazon EC2 and Microsoft Windows 
Azure can only scale through manual work on the 
developer’s part, in specifying rules and conditions for 
when instances should be added. This leads the classic 
trading off issue of complexity against scalability. 
Vertical scalability is not possible in Google App Engine 
since every process has to be finished within 30 seconds, 
and that we do not have control over the type of machines 
used for our application in the Google cloud. Where on 
the other hand, Amazon EC2 and Microsoft Windows 
Azure allows you to choose and deploy instances with 
varying sizes of memory and CPUs. 

The unpredictable unavailability of Cloud is of a 
greater issue, particularly for enterprise organization with 
mission critical application requirements. Whilst in our 

test, we have noted bursts of unavailability, due to a range 
of environmental factors, including variable network 
conditions, we also make the observations that the cloud 
providers sometimes experience challenges in providing 
available service. Despite sophisticated replication 
strategies, there is still a potential risk of datacenter 
breakdown even in the Cloud, which may in turn affect 
the performance and availability of hosted applications.  
We note that at the time of writing, most cloud vendors 
provide an SLA availability of 99.9%, which is still some 
way away from the typical enterprise requirement of 
99.999%. 

The network condition makes a significant impact on 
the total performance and end user experience for Cloud 
computing. The performance of the end to end Cloud 
experience highly relies on the network condition. If a 
user access cloud services through a poor network 
environment, it is not possible to take full advantage of 
the Cloud platforms. 
 
7. Conclusion 
 

This paper introduced a novel architecture runtime 
evaluation approach for Cloud platforms called CARE. 
The CARE approach also comes with a framework that 
include a number of pre-build, pre-configured and 
reconfigurable components for conducting cloud 
performance evaluations across a number of example 
target platforms. The CARE framework is tailored for 
evaluating various aspects of a Cloud platform at runtime. 
Given different characteristics of different Cloud 
platforms, CARE’s unified interface allows direct 
comparison of different Cloud platforms where it was 
simply not possible. 

Empirical result shows CARE is a feasible approach 
and can be used to identify areas that significantly affect 
runtime performance and performance bottlenecks. It is 
considered a significant step forward in Cloud computing 
research.    

We are currently extending the CARE framework to 
include capabilities of investigating the round-trip time of 

Table 5. Average connection_error percentage of read requests over different request numbers 
Concurrent Requests 
Cloud Hosting Server 300 900 1500 2100 2700 3300 

Google App Engine 2.11% 11.08% 9.83% 10.74% 23.17% 21.75% 
Microsoft Windows Azure 0.00% 0.00% 0.03% 30.24% 48.65% 52.53% 
Amazon EC2 (LocalDB) 0.00% 0.08% 0.00% 0.05% 0.32% 0.20% 
Amazon EC2 (SimpleDB) 0.00% 0.48% 9.44% 17.09% 23.57% 29.97% 

Table 6. Average connection_error percentage of write requests over different request numbers 
Concurrent Requests 
Cloud Hosting Server 300 900 1500 2100 2700 3300 

Google App Engine 4.61% 11.83% 23.46% 22.30% 26.67% 28.72% 
Microsoft Windows Azure 0.00% 0.00% 0.21% 2.98% 19.62% 30.54% 
Amazon EC2 (LocalDB) 1.15% 0.12% 0.97% 6.81% 11.01% 11.13% 
Amazon EC2 (SimpleDB) 0.00% 0.53% 6.35% 16.02% 19.88% 23.93% 

 



the Cloud hosting servers from locations over the world 
using PlanetLab. The resultant extended framework will 
then be useful to simulate cloud applications used by a 
global user base. 

We are also extending the CARE framework in the 
dimension of being able to evaluate data consistency 
characteristics in Cloud DBs.  Early results in this area is 
promising, and we look forward to present this in a future 
discussion paper. 

The future of cloud is limitless and we hope that this 
study can serve as a starting point for discussing issues 
relating to Cloud platform runtime performance 
evaluation.  
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