
Evaluating Cloud Platform Architecture with the CARE Framework

Liang Zhao, Anna Liu, Jacky Keung
National ICT Australia Ltd.,

School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
{Liang.Zhao, Anna.Liu, Jacky.Keung}@nicta.com.au

Abstract

There is an emergence of cloud application platforms
such as Microsoft’s Azure, Google’s App Engine and
Amazon’s EC2/SimpleDB/S3. Startups and Enterprise
alike, lured by the promise of ‘infinite scalability’, ‘ease
of development’, ‘low infrastructure setup cost’ are
increasingly using these cloud service building blocks to
develop and deploy their web based applications.
However, the precise nature of these cloud platforms and
the resultant cloud application runtime behavior is still
largely an unknown. Given the black box nature of these
platforms, and the novel programming and data models of
cloud, there is a dearth of tools and techniques for
enabling the rigorously evaluation of cloud platforms at
runtime.

This paper introduces the CARE (Cloud Architecture
Runtime Evaluation) approach, a framework for
evaluating cloud application development and runtime
platforms. CARE implements a unified interface with
WSDL and REST in order to evaluate different Cloud
platforms for Cloud application hosting servers and
Cloud databases. With the unified interface, we are able
to perform selective high-stress and low-stress
evaluations corresponding to desired test scenarios.

Result shows the effectiveness of CARE in the
evaluation of cloud variations in terms of scalability,
availability and responsiveness, across both compute and
storage capabilities. Thus placing CARE as an important
tool in the path of cloud computing research.

1. Introduction

Cloud computing [1-3] is the next computing paradigm
that leads to a new generation of platforms, by utilizing
decades of research and technology innovation, to host
business and scientific applications to a completely new
horizon. It offers a pool of virtualized computing
resources to exploit infrastructures, platforms or software
as on-demand services. It also allows a pay-per-use model
allowing a more utility-like computing model for IT and
business users alike. Cloud vendors such as Amazon,
Google and Microsoft also provide various innovative
cloud based building block services that IT professionals
can reuse and incorporate into their own web applications
under development.

The projected benefits offered by Cloud computing are

compelling and attractive in many ways. The large pool of
shared resources such as compute and storage can be
allocated dynamically to the global user base. Coupled
with the measured service and or metered usage capability
at the cloud server end, the cloud service consumers can
simply ‘pay for usage’. Further, the ‘pay as you go’
business model means many companies no longer need to
invest capital expenditure on hardware at start up time,
making cloud computing an attractive proposition for
startup companies. The extreme elasticity in the cloud
infrastructure means that resources can be scaled up and
back down dynamically, and as long as consumers can
give up some degrees of control and simply hand over
their services to be hosted in the cloud, they can tap into
the business benefits of ‘economies of scale’ offered by
cloud computing.

Amazon, Microsoft and Google are investing billions
of dollars in building distributed data centers across
different continents around the world providing Cloud
computing resources to their users. A typical Cloud
platform includes a Cloud application hosting server and a
Cloud storage device as database. Many also offer
additional services such as customizable load balancing,
and relational databases.

This paper focuses on these three Cloud platforms:

1. Amazon offers a collection of services, called Amazon
Web Services (AWS), which includes Amazon Elastic
Compute Cloud (EC2) as Cloud hosting server,
offering Infrastructure-as-a-Service (IaaS), Amazon
SimpleDB and Amazon Simple Storage Service (S3)
as Cloud databases.

2. Google App Engine supports a Platform-as-as-service
model, supporting programming languages including
Python and Java, and Google App Engine Datastore
as a Bigtable-based [4], non-relational and highly
shardable Cloud database.

3. Microsoft Windows Azure is recognized as a
combination of IaaS and PaaS. It features Web Role
and Worker Role for web hosting tasks and computing
tasks, respectively. Also it offers a variety of Azure
Storages including table storage (as the non-relational
option) and Azure SQL (full relational).

There have been a number of research efforts that
specifically evaluate the AWS Cloud platform [5] [6].
However, there has been little in-depth evaluation
research conducted on other Cloud platforms, such as
Google App Engine and Microsoft Azure. More
importantly, these work lack a more generic evaluation
method that enables a fair comparison between various
cloud platforms.

A novel approach called CARE (Cloud Architecture
Runtime Evaluation) has been developed in an attempt to
address the following research questions:
1. What are the performance characteristics of different

Cloud platforms, including Cloud hosting servers and
Cloud databases?

2. What availability and reliability characteristics do
cloud platforms typically exhibit? What sort of faults
and errors may be encountered when services are
running on different Cloud platforms under high
request volume or high stress situations?

3. What are some of the reasons behind the faults and
errors? What are the architecture internal insights we
may deduce from these observations?

4. What are the software engineering challenges that
developers and architects could face when using
Cloud platforms as their production environment for
service delivery?
An empirical experiment has been carried out applying

CARE against three different cloud platforms. Result
provides an in-depth analysis of the major runtime
performance differences under various simulated
conditions, providing useful information for decision
makers on the adoption of different cloud computing
technologies.

The next section summarizes related work and how our
approach uniquely makes a contribution. Section 3
presents the CARE evaluation framework. Section 4
discusses the empirical experiment set up and its
execution. Section 5 presents the experimental results.
Section 6 discusses the application experience of CARE
and evaluates the CARE approach. We conclude in
Section 7.

2. Related Work

Being able to provide an independent evaluation into
the architecture and performance of Cloud platform has
been the subject of research in the field of computing.
Evangelinos and Hill [5], Hill and Humphrey[6] evaluated
Amazon EC2 32-bits and 64-bits instances respectively
with MPI and memory bandwidth benchmarks to explore
the feasibility of running High Performance Computing
(HPC) applications on the Cloud. Similarly, data intensive
workload cases are also examined on Amazon Simple
Storage Service (S3) by Hoffa et al. [7] and Deelman et al.
[8]. Nevertheless, these work focus more on analyzing

cases of scientific applications, rather than business
applications.

While in the case of business application benchmarks,
although those traditional benchmarks, namely TPC-W,
RuBiS and PetStore are still being used, the effectiveness
of benchmarking Cloud platforms using these applications
are arguably weak. In particular, Tickoo et al. [9]
recognizes that the single highly parallel performance
model does not fit virtualized environments; and that
virtualization introduces additional resource contentions
and overheads that needs to be represented in new cloud
based performance models. Sobel et al. [10] moves away
from the traditional TPC-W style of benchmark, and
proposes that there needs to be new benchmarking
applications that better characterizes future cloud
application profiles.

From the view of empirical software engineering, there
have been Commercial Off-The-Shelf (COTS)
middleware evaluation approaches, such as the i-Mate
[11-12] and DeBOT processes. The i-Mate selection and
evaluation process is originally used to determine
appropriateness of middleware products based on user
requirements, what-if scenarios and prototype
developments. Some of these ideas have the potential to
be extended into Cloud platform evaluation and selection,
enabling a fit-for-purpose technology assessment.
However, cloud based software engineering presents
some new challenges, including new programming
models and data distribution and replication models,
which calls for the need for revised COTS evaluation
approaches tailored for cloud.

The most recent related work in this area is from
Kossmann’s team [13]. It is the first paper comparing a
list of Cloud database services by using the TPC-W
benchmark. However, their proposed approach
contradicts with their previous work [14], which
presented the limitations of using TPC-W for
benchmarking cloud platforms. Moreover, in order to
make TPC-W workable on NoSQL databases, such as
Amazon SimpleDB, Amazon S3 and Google App Engine
Datastore, additional handcrafted SQL operations are
explicitly coded into the implementation of the test
application. Hence introducing an extra layer of
performance overhead into the benchmark results, that are
heavily dependent on the quality of the handcrafted code.

3. The CARE Framework

The CARE framework is a performance evaluation
approach specifically tailored for evaluating across a
range of cloud platform technologies. The CARE
framework exhibits the following design principles and
features:
- Common and consistent test interfaces across all test

targets, employing web services and RESTful APIs.
This is so that we can keep as much commonality

across the tests against different platforms as
possible, hence resulting in a fairer comparison.

- Minimal business logic code in test harness, in order
to minimize variations in results caused by business
logic code. This is so that performance results can be
better attributed to the performance characteristics of
the underlying cloud platform (as opposed to the test
application itself).

- Use of canonical test operations, such as read, write,
update, delete. We can then simulate a wide range of
cloud application workloads using composites of
these canonical operations. We would also then have
a precise way of describing the application profile.

- Configurable client simulation component for
producing stepped client request volume simulations
for evaluating platform under varying load
conditions.

- Reusable test components including test harness,
result compilation, error logging.

- Consistent measurement terminology and metric that
can be used across all test case scenarios and against
all test cloud platforms.

3.1. Measurement Terminology

CARE employs a set of measurement terminology that
is to be used across all tests, to ensure consistency in the
performance instrumentation, analysis and comparison of
results.

It considers major variables of interest in the
evaluation of Cloud platforms, including response time
timings based on those observed by client side, and from
the cloud host server side. Figure 1 illustrates the time
measurement terminologies in a typical client request and
roundtrip response (See Figure 1).

Figure 1. Time Measurement Terminologies

Figure 1 shows a full round-trip transaction initiated by

a client. From a user’s perspective, a Cloud hosting server
and a Cloud database provides three aspects in time-
relevant terminologies, they are:

client_response_time is the total (network included)
round-trip time as seen by the client, starting from
sending the request, through to receiving the
corresponding response.

processing_time is the amount of time for processing
the request on the server side.

db_processing_time is ideally the amount of time a
cloud database takes to process a database request.
However, it is practically impossible to measure, due to
the absence of a timer process in the Cloud database. The
CARE framework thus equates this measurement to time
taken to process the database request as seen by the cloud
hosting server, measuring processing_time of database
API as db_processing_time, since within the same Cloud
platform, the latency between Cloud hosting servers and
Cloud databases are negligible.

Further, there are terminologies used to refer to
different types of responses based on a request:

incomplete_request is a type of requests when a client
fails to send or receive.

completed_request refers to a request that a client
sends successfully and receives a confirmation response
from the Cloud platform at completion time.

Now, depending on the response, the
completed_request can be further classified as:

failed_request that contains an error message in the
response.

successful_request which completes the transaction
without an error.

3.2. Test Scenarios

The CARE framework provides three key test
scenarios to differentiate candidate Cloud platforms.
While there are other more sophisticated test scenarios
possible, the three test scenarios provided by CARE cover
most of the usage scenarios of typical cloud applications.
Hence, the CARE framework provided test scenarios
strikes a good balance between simplicity and coverage.

Client – Cloud Host represents the scenario that a user
accesses a web service application hosted on the Cloud
platform from an end-user client side application. The
client_response_time would be the user’s primary concern
in terms of the Cloud application performance.

Cloud Host – Cloud Database represents the scenario
that a user operates on a form or an article hosted in the
Cloud database through the Cloud hosting server. We
exclude the time taken to send the request from end user
client end to cloud host server. The db_processing_times
of different data sizes are a main factor taking into
consideration. Especially, it would be interesting to
observe db_processing_time of concurrent requests that
are launched by thousands of users simultaneously. The
database contention due to concurrent requests will be a
key determining factor in the overall scalability of the
cloud platform in this type of scenario. Besides
identifying different performance characteristics across
Cloud databases, a local database (LocalDB) is also
provided by the CARE framework in a Cloud hosting
server as a reference point for comparison to other cloud
databases.

Client – Cloud Database illustrates a large file transfer
scenario. We envisage data-intensive computing to be
increasingly pervasive in the cloud, and also there is a
large variety of new media contents being stored and
retrieved from clouds, e.g. video and music, medical
images, etc. Understanding the characteristics of cloud
(and associated network) behavior in handling ‘big data’
is an important dimension in the new cloud computing
world.

3.3. Load Test Strategies

The CARE framework supports two types of load test
strategies: High Stress Test Strategy and Low Stress Test
Strategy. The different load test strategies are ideally
applied across the various test scenarios listed in section
3.2, in order to provide a more comprehensive evaluation
and comparison.

The Low Stress Test Strategy sends multiple requests
from the client side in a sequential manner. This is
appropriate for simulating systems where there is a small
(or a single) number of users. It also provides a reference
point for comparison to High Stress Test Strategy, and
also for obtaining base network latency benchmarks.

The High Stress Evaluation Strategy provides
simulated concurrent requests to Cloud platforms in order
to obtain cloud architecture internal insights, particularly
for observing performance behavior under load.

Figure 2. The flow chart of evaluation strategies

Figure 2 demonstrates the workflow of High Stress

Test Strategy. The configurable parameter called
‘repeating rounds’ is set to 6 by default, this represents
the ‘warm up’ period, where there is typically large
performance variations due to phenomena such as ‘cloud
connection time’. The performance results arising from
the warm up time stage is discarded by the performance
results compilation framework, in order to produce more
repeatable and stable testing results. Another configurable
parameter ‘concurrent threads’ is set to start at 100 by
default. It is then incremented by another configurable
parameter ‘increment’ after every round of test, the
CARE framework currently sets the default value to 200

for High Stress Test Strategy, and 0 for Low Stress Test
Strategy. For example, for High Stress Test Strategy, after
the initial 6 rounds, the number of concurrent threads
fired by the client would go from 100 to 300, 500, 700,
900 and 1100… in successive rounds.

For the High Stress Test Strategy, a number of
continuous requests are sent within every thread to
maintain its stress on the Cloud platform for a period of
time. If there is only a single request sent to the cloud in
each thread, our observation is that the expected
concurrent stress cannot always be reached, and due to
network latency and variability, arrival time and order of
packets at the cloud platform can also vary. Hence in the
CARE framework, we provide another configurable
parameter ‘continuous request’ (with a default value of 3
– striking a balance between sustaining workload in cloud
and enabling testing across concurrent clients) in order to
provide a more sustained and even workload to the cloud
overtime.

Lastly, as cloud computing is essentially a large scale
shared system, where the typical cloud user would be
using a publicly shared network in order to access cloud
services. We note that there also can be variation in
network capacity, bandwidth and latency issues, with
fluctuations over time, the CARE framework thus
provides a scheduler that support scheduled cron jobs to
be activate automatically and repeated taking testing
samples across different times over a 24 hour period.

The flow chart of Low Stress Test Strategy for requests
is essentially a simplified version of Figure 2, with the
multi-threaded functions deactivated.

3.4. Building a Test Set with CARE

Now, with the CARE framework, we can combine the
various Test Scenarios with the various Load Test
Strategies to produce a comprehensive test set.

While the test set can be designed and created using
the CARE framework depending on the precise test
requirement, the CARE framework also comes with a
reusable Test Set that aims to provide test coverage of a
large number of commonly found cloud application types.
Here we provide an view into this Test Set.

Firstly, there are five contract first Web Service based
test methods, namely High Stress Round-trip, low Stress
Database Read, low stress Database write, High Stress
Database Read and high Stress Database Write. There
are also three RESTful Web Service based methods, low
Stress Large File Read, low Stress Large File Write and
low Stress Large File Delete. The eight key test methods
in the test set are listed in Table 1.

Table 1. Building a Test Set
Test Set Methods Test Scenario Load Test

High Stress Round-trip Client – Cloud
Host

High Stress

Low Stress Database
Read/ Write

Cloud Host –
Cloud Database

Low Stress

High Stress Database
Read/Write

Cloud Host –
Cloud Database

High Stress

Low Stress Large File
Read/Write/Delete

Client – Cloud
Database

Low Stress

High Stress Round-trip: The clients concurrently send

message requests to Cloud hosting servers. For each
request received, the servers immediately echo back to the
clients with the received messages. The
client_response_time is recorded in this test. This is the
base test that provides a good benchmark for a total round
trip cloud application usage experience, response time as
experienced by the average user will include and affected
by the various variable network conditions. This is a
useful test to indicate the likely end user experience, in an
end to end system testing scenario.

Low Stress Database Read and Low Stress Database
Write uses the Cloud Host – Cloud Database scenario.
We start with the Low Stress Test Strategy, which
provides an initial reference result set for subsequent high
stress load tests. This test is performed with varying data
sizes, representing different cloud application data types.
The data types provided by the CARE framework are: a
single character (1 byte), a message (100 bytes), an
article (1 kilobyte) and a small file (1 megabyte). These
data types are sent along with the read or write requests,
one after another to the Cloud Databases via the Cloud
hosting servers. The db_processing_time will be recorded
and then returned to the client within a response.

In terms of request size, CARE framework follows
conventional cloud application design principle, and
stores data no larger than 1 kilobyte in structured data
oriented storage, namely Amazon SimpleDB and
Microsoft Azure Table Storage. While those data larger
than 1 kilobyte will be put into binary data oriented
databases, including Amazon S3 and Microsoft Azure
Blob Storage. In addition, Google App Engine Datastore
supports both structure data and binary data in the same
Cloud database.

High Stress Database Read/Write is based on the High
Stress Test Strategy. It simulates multiple read/write
actions events concurrently. The number of concurrent
requests range is configurable, as described in section 3.3.
Due to some common cloud platform quota limitations
(for example: Google App Engine by default limits
incoming bandwidth at maximum 56 megabytes per
minute) this test’s default test data size is set to 1 kilobyte.
This test data size can be configured to use alternative test
data sizes if the target testing cloud platform does not
have those quota limitations. Lastly, a cron job is

scheduled to perform stress database test repeatedly
sampling different time periods across the 24 hour period,
as per section 3.3 description.

Low Stress Large File Read/Write/Delete is the test
designed to evaluate large data transfer in the Client –
Cloud Database scenario. The throughput measure is as
observed by the client. Once again, this test aims to
characterize the total end to end large data handling
capability by the cloud platform, taking into consideration
the various network variations. The CARE framework
provides some default test data: ranging from 1 megabyte,
5 megabytes 10 megabytes and through to 15 megabytes.
A RESTful Web Service based client is implemented for
a set of target Cloud databases, including Amazon S3 and
Microsoft Azure Blob Storage. Note that the CARE
framework does not provide a test for Google App Engine,
as Datastore does not support an interface for direct
external connection for large file access.

4. Application of CARE to Cloud Platform
Evaluation

Providing a common reusable test framework across a
number of different clouds is a very challenging research
problem. This is primarily due to the large variations in
architecture, service delivery model, functionality
provided across various cloud platforms, including Azure,
App Engine and AWS. Firstly, the service models of
Cloud hosting servers are different: Amazon EC2 uses the
Infrastructure-as-a-Service (IaaS) model; Google App
Engine is Platform-as-a-Service (PaaS); while Microsoft
Windows Azure combines both the IaaS and PaaS models.
Different service models stand for different degrees of
system privileges and different system architectures.
Moreover, the connections among Cloud hosting servers,
Cloud databases and clients are featured with different
protocols, frameworks, design patterns and programming
languages, these all add to the complexities to the task of
providing a common reusable evaluation method and
framework.

As shown in Figure 3, for the purpose of keeping as
much commonality as possible, Contract-First Web
Services and RESTful Web Services are used to ensure a
unified evaluation interface. For the Contract-First Web
Services: a WSDL file is firstly built; then, the Cloud
hosting servers implement to the functions defined in this
WSDL file; lastly, a unified client is created from the
WSDL file which allows communication via the same
protocol, despite of existing variants. While for RESTful
Web Services, direct access is made via HTTP. The
CARE framework currently provides the reusable
common client components, and the cloud server
components for Azure, App Engine and EC2.

Figure 3. Contract-First Web Service based client

On the Cloud side, in order to provide unified web

services, Windows Communication Foundation (WCF)
and C# codes are implemented on Microsoft Windows
Azure; Python-based ZSI and Zope Interface frameworks
are used in Google App Engine; Tomcat 6.0 and Apache
CXF run on an Ubuntu-based small instance in Amazon.
In addition, a PostgreSQL database, acting as LocalDB, is
also installed on the same Amazon instance, accessed via
JPA 1.0.

The CARE framework cloud server components
follow the design principle of ‘always using the
native/primary supported language by the cloud’ in order
to build the most optimal and efficient test components
for reuse.

On the client side, a Contract-First Web Service based
client is prepared for communicating Cloud hosting
servers via WSDL. Whereas a RESTful Web Service
based client is used to manipulate Cloud databases
directly without passing the Cloud hosting servers.

5. Results

In this section, results of eight evaluation methods is
going to be examined, including Stress Round-trip,
Stressfree Database Read/Write, Stress Database
Read/Write and Stressfree Large File Read/Write/Delete.
We also note some environmental information for the
tests conducted here:

- the client environment executing the CARE
evaluation strategy is a Debian machine with Linux kernel
2.6.21.6-ati, with 3 hardware evaluation platform being a

Dell Optiplex GX620, Intel Pentium D CPU 3.00GHz,
2GB memory and 10/100/1000 Base-T Ethernet.

- The sample test results listed here were conducted
during the period of April – June 2009.

5.1. High Stress Round-trip

Figure 4 indicates the Cumulative Distribution
Function (CDF) of client_response_time under varying
amount of concurrent stress requests, which range from
300, 900, 1500, 2100, 2700 through to 3300 requests
respectively.

The observation of three CDFs confirms that the larger
the requests are, the longer the client_response_time will
be. But the incremental step of client_response_time
varies from one group of requests to another, depending
on the Cloud hosting servers. For 80% of CDFs, the
client_response_time of Amazon EC2 and Microsoft
Windows Azure are dramatically increased at 1500
requests and 900 requests respectively. For Google App
Engine, although the client_response_time shows an
increasing trend, there is no significant leap between
neighboring groups of requests.

The reason for these observations could be explained
from the scalability aspect. If client_response_time
increases steadily and linearly under stress in Google App
Engine, there is certainly some good scalability capability
as its Cloud hosting server is thread based, allowing more
threads to be created for additional requests. Nevertheless,
the Cloud hosting servers of Amazon EC2 and Microsoft
Windows Azure are instance based. The computing
resources for one instance are pre-configured. More
resources for additional requests cannot be obtained
unless extra instances are deployed.

5.2. Low Stress Database Read/Write

In Figure 5(a), the average db_processing_time of
reading 1byte, 100 bytes and 1 kilobyte are within 50
milliseconds, while the db_processing_time of writing
small size data in Figure 6(a) varies from 10 milliseconds
to 120 milliseconds. From this, we can see that for each
Cloud database, the reading performance is deemed faster
than the writing performance for the same amount of data.
The two figures also state that LocalDB in Amazon EC2

(a) Amazon EC2 (b) Google App Engine (c) Microsoft Windows Azure

Figure 4. CDF of High Stress Round-trip between the clients and the Cloud hosting servers

instance shows its strength from 1 byte to 1 kilobyte. As
the evaluation environment is low stress, and as such, the
cloud host is not under load, so it is consistent to see the
LocalDB (without any optimizations) can handle requests
effectively. The latency from the Cloud hosting server to
the LocalDB is also smaller, since they are in the same
Amazon EC2 instance.

When the size of request goes to 1 megabyte, Amazon
S3 almost has the same write performance as Google App
Engine Datastore, but the former is almost three times
slower than the latter in reading. Azure Blog Storage
takes less time than others in both reading and writing.

The CDFs of read and write throughput in Cloud
databases demonstrated similar behavior as in Figure 5(a)
and Figure 6(a). Moreover, as for the 1 megabyte

database reading and writing, CDFs also show that
approximately 80% of requests are processed at 10
megabytes per second.

5.3. High Stress Database Read/Write

In this method, the number of concurrent requests in
the evaluation varies from 300 to 3300 with the step being
300. The db_processing_times of each Cloud database
under 2100 concurrent requests are collected in Figure 7.
From 2100 concurrent requests onwards, Cloud host
servers start producing errors, these are listed in detail in
Table 5 and Table 6 in Section 5.5.3.

(a) Average read time in Cloud databases (b) CDF of read throughput in Cloud databases

Figure 5. Low Stress Database Read (1B, 100B, 1KB and 1MB data)

(a) Average read time in Cloud databases (b) CDF of read throughput in Cloud databases

Figure 6. Stressfree Database Read (1B, 100B, 1KB and 1MB data)

Figure 7. CDF of Stress Database Read/Write throughput on Cloud databases (1KB data)

Instead of being the best performer as in Low Stress
Database Read/Write, Amazon LocalDB now performs
the worst among all platforms. It implies the poor
capability of handling concurrent requests within the
same instance as the compute capability. Moreover,
Google App Engine Datastore, Amazon SimpleDB and
Azure Storage all still show faster speed in read
operations than write operations.

5.4. Low Stress Large File Read/Write/Delete

 Figure 8(a), 8(b) and 8(c) show the average
db_processing_time of reading, writing and deleting
binary files in the Cloud databases directly.

It can be seen that reading is faster in general. Both
read and write db_processing_times of Amazon S3 and
Azure Blob Storage are fairly close to each other,
especially in Figure 8(b) when data size is larger than 5
megabytes. It is likely due to the limitation of the local
network environment, the evaluation reaches the
threshold of the local network before getting insights of
the Cloud databases. This the why the CARE framework
provides a range of scenarios (eg. Client – cloud host
server – cloud db, as well as cloud host server – cloud db)
so that we can evaluate the performance characteristics
with and without the network variations and effects in
place.

Figure 8(c) indicates the average db_processing_time
of the delete operation. The interesting observation here is
that the delete db_processing_time is constant regardless
of data sizes. It is confirmed that neither Amazon S3 nor

Azure Blob Storage will delete data entries on the fly.
Both of them mark the entity and reply with
successful_request message at the first instant. The actual
delete operation will be completed afterwards.

5.5. Exception Analysis and Error Details

5.5.1. Overall Error Details. All error messages and
exceptions were logged and captured by the CARE
framework. This is a useful feature for carrying out
offline analysis. We observe that all errors occurred
during the High Stress Database Read/Write tests. The
CARE framework also logs the errors/exceptions
accordingly to various categories:

database_error happens during the period of
processing in Cloud databases.

server_error occurs within Cloud hosting servers, for
instance, not able to allocate resources.

connection_error is encountered if a request does not
reach Cloud hosting servers due to network connection
problems, such as package loss, proxy being unavailable.

In general, a response with connection_error falls into
incomplete_request; and a request to server_error or
database_error is recognized as failed_request. The error
details of each category are listed in Table 4.

5.5.2. Average Errors over Different Time Periods

 The CARE framework is also able to produce
unavailability information based on error and exceptions

(a) Read (b) Write (c) Delete

Figure 8. Low Stress Large File Read/Write/Delete (1MB, 5MB, 10MB and 15 MB data)

Table 2. Average Error Rates of High Stress Database Read over different time periods
Cloud Database

Category
Google App Engine

Datastore
Microsoft Windows
Azure Table Storage Amazon LocalDB Amazon SimpleDB

database_error 2.25 (0.007%) 0.00 (0.000%) 0.00 (0.000%) 0.00 (0.000%)
server_error 4.75 (0.015%) 0.00 (0.000%) 16.40 (0.051%) 0.00 (0.000%)
connection_error 5462.75 (16.860%) 11593.80 (35.783%) 6368.40 (19.656%) 41.00 (0.127%)
successful_request 26930.25 (83.118%) 20806.20 (64.217%) 26015.20 (80.294%) 32359.00 (99.873%)

Table 3. Average errors of High Stress Database Write over different time periods
Cloud Database

Category
Google App Engine

Datastore
Microsoft Windows
Azure Table Storage Amazon LocalDB Amazon SimpleDB

database_error 31.67 (0.098%) 0.00 (0.000%) 0.00 (0.000%) 111.17 (0.343%)
server_error 3037.37 (9.374%) 0.17 (0.001%) 25.20 (0.075%) 9.50 (0.029%)
connection_error 4787.50 (14.776%) 4810.33 (14.847%) 5262.60 (16.243%) 2470.83 (7.626%)
successful_request 24543.66 (75.752%) 27589.50 (85.153%) 27112.20 (83.680%) 29808.50 (92.002%)

logs over a long period of time. Table 2 and Table 3 show
different average error rates of Stress Database
Read/Write methods over different time periods. As
shown in table, both read and write connection_error
rates of Amazon LocalDB and Google App Engine
Database vary in a range from 15% to 20%. We note that
this figure is highly variable depending on the 24 hour
period, and also is highly subjected to the network
conditions, as well as the health status of the cloud server.
Amazon SimpleDB takes the minimum rates of reading
and writing for less than 10%, especially the reading,
which approaches to 0%. On the contrary, Azure Table
Storage occupies the largest rate in reading, more than
30%.

In spite of read and write connection_error rates,
average read successful_request rates are high, almost
99.99% of completed_request. Although Google App
Engine Datastore and Amazon SimpleDB responded write
database_error for 31.67 and 111.17 times respectively,
the write successful_request rates are generally high, with
the worst one logging at more than 99.67% of
completed_request.

Among all Cloud hosting servers, Google App Engine
exhibits the most number of server errors, containing
“500 Server Error” messages. Meanwhile, the largest
server_error rate happened after May 20 23:30:00 PST
2009. This incident can be tracked in Google App Engine
overall system status. There were some significant latency
started appearing around one or half an hour earlier than
the given time.

5.5.3. Average connection_error Rates Under different
Loads

In High Stress Database Read/Write tests, as expected,
we see that the trend of the average connection_error
rates rise as the number of concurrent requests increases.
Google App Engine and Amazon EC2 (SimpleDB) have a
smaller percentage trend in reading than writing, while
Microsoft Windows Azure and Amazon EC2 (LocalDB)
in the contrary, display higher rates in read operatons than
write operations.

Amazon EC2 (SimpleDB) maintains the lowest error
rates in both reading and writing, almost approaching 0%
in read tests. While Amazon EC2 (LocalDB), which
shares the same instance with the web application of
Amazon EC2 (SimpleDB), started receiving high
percentage of connection_error from 1500 concurrent
requests. The reason of this phenomenon could be
explained by that the local database of LocalDB causes
additional resource contention by virtually being inside
the same instance as the host server instance. Hence
leading to a lass scalable architecture (as a tradeoff to
smaller latency from host server to cloud db).

For Microsoft Windows Azure, the connection_error
percentage begins to leap, from less than 1% at 1500
requests, to more than 50% and 30% in reading and
writing separately at 3300 concurrent requests. This
indicates that we have hit a limit in terms of what this
Azure server instance can handle.

For Google App Engine, we observe a large number of
connection error under high load. Most connection_errors
from Google App Engine contain “Access Denied”

Table 4. Total Error Detail Analysis
Category Error Messages Reasons Locations

datastore_errors: Timeout

Multiple action perform at the same entry, one
will be processed others will fail due to
contention
Request takes too much time to process

Google App Engine Datastore

datastore_errors:
TransactionFailedError

An error occurred for the API request
datastore_v3.RunQuery() Google App Engine Datastore

apiproxy_errors: Error Too much contention on datastore entities Google App Engine Datastore

database
_error

Amazon SimpleDB is
currently unavailable Too many concurrent requests Amazon SimpleDB

Unable to read data from the
transport connection WCF failed to open connection Microsoft Windows Azure

500 Server Error HTTP 500 ERROR : Internal Error Google App Engine
server
_error

Zero Sized Reply Amazon EC2

Read timed out HTTP time out Microsoft Windows Azure
Amazon EC2

Access Denied HTTP 401 ERROR
Microsoft Windows Azure
Google App Engine
Amazon EC2

Unknown Host Exception Microsoft Windows Azure

connection
_error

Network Error (tcp_error) Local proxy connection error Microsoft Windows Azure
Google App Engine

message, which is a standard HTTP 401 error message.
Through cross checking the server side, there is no record
of HTTP 401 at all in Google App Engine Dashboard. It
means these requests are blocked before getting into the
web application. The presumption can be made that the
access is restricted due to a firewall in Google App
Engine. When thousands of requests go into Google App
Engine concurrently from the same IP, the firewall may
be triggered. Upon some analysis of how App Engine
manages incoming requests (ie. Via HTTP traffic), it is
reasonable to conclude that this may be a Security feature
around ‘Denial of Service Attacks’.

6. Discussion

An empirical experiment was carried out to examine
the effectiveness of CARE when applied to testing
different Cloud platforms. Results indicate CARE is a
feasible approach by directly comparing three major
Cloud platforms, including Cloud hosting servers and
Cloud databases.

Analysis revealed the importance of acknowledging
different service models, and that the scalability of Cloud
hosting servers is achieved in different ways. The
horizontal scalability is available to some extent in
Google App Engine, but is always restricted by the quota
limitation. While Amazon EC2 and Microsoft Windows
Azure can only scale through manual work on the
developer’s part, in specifying rules and conditions for
when instances should be added. This leads the classic
trading off issue of complexity against scalability.
Vertical scalability is not possible in Google App Engine
since every process has to be finished within 30 seconds,
and that we do not have control over the type of machines
used for our application in the Google cloud. Where on
the other hand, Amazon EC2 and Microsoft Windows
Azure allows you to choose and deploy instances with
varying sizes of memory and CPUs.

The unpredictable unavailability of Cloud is of a
greater issue, particularly for enterprise organization with
mission critical application requirements. Whilst in our

test, we have noted bursts of unavailability, due to a range
of environmental factors, including variable network
conditions, we also make the observations that the cloud
providers sometimes experience challenges in providing
available service. Despite sophisticated replication
strategies, there is still a potential risk of datacenter
breakdown even in the Cloud, which may in turn affect
the performance and availability of hosted applications.
We note that at the time of writing, most cloud vendors
provide an SLA availability of 99.9%, which is still some
way away from the typical enterprise requirement of
99.999%.

The network condition makes a significant impact on
the total performance and end user experience for Cloud
computing. The performance of the end to end Cloud
experience highly relies on the network condition. If a
user access cloud services through a poor network
environment, it is not possible to take full advantage of
the Cloud platforms.

7. Conclusion

This paper introduced a novel architecture runtime
evaluation approach for Cloud platforms called CARE.
The CARE approach also comes with a framework that
include a number of pre-build, pre-configured and
reconfigurable components for conducting cloud
performance evaluations across a number of example
target platforms. The CARE framework is tailored for
evaluating various aspects of a Cloud platform at runtime.
Given different characteristics of different Cloud
platforms, CARE’s unified interface allows direct
comparison of different Cloud platforms where it was
simply not possible.

Empirical result shows CARE is a feasible approach
and can be used to identify areas that significantly affect
runtime performance and performance bottlenecks. It is
considered a significant step forward in Cloud computing
research.

We are currently extending the CARE framework to
include capabilities of investigating the round-trip time of

Table 5. Average connection_error percentage of read requests over different request numbers
Concurrent Requests
Cloud Hosting Server 300 900 1500 2100 2700 3300

Google App Engine 2.11% 11.08% 9.83% 10.74% 23.17% 21.75%
Microsoft Windows Azure 0.00% 0.00% 0.03% 30.24% 48.65% 52.53%
Amazon EC2 (LocalDB) 0.00% 0.08% 0.00% 0.05% 0.32% 0.20%
Amazon EC2 (SimpleDB) 0.00% 0.48% 9.44% 17.09% 23.57% 29.97%

Table 6. Average connection_error percentage of write requests over different request numbers
Concurrent Requests
Cloud Hosting Server 300 900 1500 2100 2700 3300

Google App Engine 4.61% 11.83% 23.46% 22.30% 26.67% 28.72%
Microsoft Windows Azure 0.00% 0.00% 0.21% 2.98% 19.62% 30.54%
Amazon EC2 (LocalDB) 1.15% 0.12% 0.97% 6.81% 11.01% 11.13%
Amazon EC2 (SimpleDB) 0.00% 0.53% 6.35% 16.02% 19.88% 23.93%

the Cloud hosting servers from locations over the world
using PlanetLab. The resultant extended framework will
then be useful to simulate cloud applications used by a
global user base.

We are also extending the CARE framework in the
dimension of being able to evaluate data consistency
characteristics in Cloud DBs. Early results in this area is
promising, and we look forward to present this in a future
discussion paper.

The future of cloud is limitless and we hope that this
study can serve as a starting point for discussing issues
relating to Cloud platform runtime performance
evaluation.

8. Acknowledgement

NICTA (National ICT Australia Ltd.) is funded
through the Australian Government’s Backing Australia’s
Ability Initiative, in part through the Australian Research
Council.

9. References

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R.

Katz, A. Konwinski, G. Lee, D. Patterson, A.
Rabkin, and I. Stoica, "Above the clouds: A berkeley
view of cloud computing," EECS Department,
University of California, Berkeley, Tech. Rep.
UCB/EECS-2009-28, 2009.

[2] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I.
Brandic, "Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering
computing as the 5th utility," Future Generation
Computer Systems, vol. 25, pp. 599-616, 2009.

[3] L. Vaquero, L. Rodero-Merino, J. Caceres, and M.
Lindner, "A break in the clouds: towards a cloud
definition," ACM SIGCOMM Computer
Communication Review, vol. 39, pp. 50-55, 2008.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R.
E. Gruber, "Bigtable: A distributed storage system
for structured data," in OSDI '06, 2006, pp. 205-218.

[5] C. Evangelinos and C. Hill, "Cloud Computing for
parallel Scientific HPC Applications: Feasibility of
running Coupled Atmosphere-Ocean Climate
Models on Amazon’s EC2," in Proc. Cloud
Computing and Its Applications, Chicago, IL, 2008.

[6] Z. Hill and M. Humphrey, "A quantitative analysis
of high performance computing with Amazon's EC2
infrastructure: The death of the local cluster?," in
Grid Computing, 2009 10th IEEE/ACM
International Conference on, 2009, pp. 26-33.

[7] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K.
Keahey, B. Berriman, and J. Good, "On the Use of
Cloud Computing for Scientific Workflows," in

eScience, 2008. eScience '08. IEEE Fourth
International Conference on, 2008, pp. 640-645.

[8] E. Deelman, G. Singh, M. Livny, B. Berriman, and
J. Good, "The cost of doing science on the cloud:
The Montage example," in High Performance
Computing, Networking, Storage and Analysis,
2008. SC 2008. International Conference for, 2008,
pp. 1-12.

[9] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell,
"Modeling virtual machine performance: challenges
and approaches," ACM SIGMETRICS Performance
Evaluation Review, vol. 37, pp. 55-60, 2010.

[10] W. Sobel, S. Subramanyam, A. Sucharitakul, J.
Nguyen, H. Wong, S. Patil, A. Fox, and D.
Patterson, "Cloudstone: Multi-platform, multi-
language benchmark and measurement tools for web
2.0," in Proc. Cloud Computing and Its
Applications, Chicago, IL, 2008.

[11] A. Liu and I. Gorton, "Accelerating COTS
middleware acquisition: the i-Mate process,"
Software, IEEE, vol. 20, pp. 72-79, 2003.

[12] I. Gorton, A. Liu, and P. Brebner, "Rigorous
evaluation of COTS middleware technology,"
Computer, vol. 36, pp. 50-55, 2003.

[13] D. Kossmann, T. Kraska, and S. Loesing, "An
Evaluation of Alternative Architectures for
Transaction Processing in the Cloud," in ACM
SIGMOD/PODS Indianapolis, IN, 2010.

[14] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing,
"How is the weather tomorrow?: towards a
benchmark for the cloud," in Proceedings of the
Second International Workshop on Testing Database
Systems Providence, Rhode Island: ACM, 2009, pp.
1-6.

