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• We present the design, implementation and analysis of a novel system, called Trusted Execution Environment (TEE), for secure cloud-end.
• TEE can support a spectrum of application needs, ranging from pure cryptographic libraries to full-fledged trustworthy software.
• The novelty of our work is the virtualization of DRTM that can let vTPM determine the origin of TPM commands.
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a b s t r a c t

The Internet of Things (IoT) is the incoming generation of information technology. However, the huge
amount of data collected by wireless sensors in IoT will impose a big challenge that can only be met by
cloud computing. In particular, ensuring security in the cloud-end is necessary. Previous studies have
mainly focused on secure cloud-end storage, whereas secure cloud-end computing is much less inves-
tigated. The current practice is solely based on Virtual Machines (VM), and cannot offer adequate se-
curity because the guest Operating Systems (OS) often can be compromised (e.g., by exploiting their
vulnerabilities). This motivates the need of solutions for more secure cloud-end computing. This paper
presents the design, implementation and analysis of a candidate solution, called Trusted Execution Envi-
ronment (TEE), which takes advantage of both virtualization and trusted computing technologies simul-
taneously. The novelty behind TEE is the virtualization of the Dynamic Root of Trust for Measurement
(DRTM).

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The Internet of Things (IoT) will be the future of the Internet [1].
However, data in IoT are massive, multi-sourced, heterogeneous,
redundant, dynamic and sparse. It is both necessary and sufficient
to utilize cloud computing [2,3] such that IoT moves and processes
the data into a cloud, which must ensure both secure storage
and secure computing because a single attack could cause the

✩ This paper substantially extends the extended abstract published as [54].
∗ Corresponding author.

E-mail addresses: daiweiqi@gmail.com (W. Dai), hjin@hust.edu.cn (H. Jin),
deqingzou@hust.edu.cn (D. Zou), shxu@cs.utsa.edu (S. Xu), zhwade@gmail.com
(W. Zheng), foxshee@yahoo.com.cn (L. Shi), ltyang@stfx.ca (L.T. Yang).

http://dx.doi.org/10.1016/j.future.2014.08.005
0167-739X/© 2014 Elsevier B.V. All rights reserved.
compromise ofmultiple customers’ data. To reduce the cost, Virtual
Machines (VM) have become essential for cloud computing and are
indeed widely utilized in today’s cloud-end computing practice.
As shown in the example scenario of Fig. 1, the cloud provides
the customers the ‘‘illusion’’ of their current self-managed systems
through the so-called Trusted Virtual Domain (TVD) [4–7] (or its
alternative [8]). While much progress has been made in secure
cloud-end storage (e.g., [9–13]), the problem of secure cloud-end
computing has yet to be tackled.

Because homomorphic cryptography (despite recent break-
through [14]) is not efficient enough for most practical uses, sen-
sitive data – even if encrypted for storage – have to be processed
in computer memory in their plaintext form, and therefore can be
attacked by exploiting vulnerabilities in the guest operating sys-
tem (OS). This problemhas been investigatedmainly in the context
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Fig. 1. A scenario of secure cloud computing.

of user-end computer, rather than cloud-end computer, via two
approaches:

• Exploiting virtualization technology alone: Overshadow [15,16]
advocates presenting an application with a normal (i.e., unen-
crypted) view of its resources while presenting the guest OS
with only encrypted view (guest OS is still needed for handling
the complex resource management). A similar approach is also
investigated in [17]. However, these systems are not quite suit-
able for secure cloud-end computing because: (i) they still use
the guest OS for managing resources, meaning that a malicious
OS could unfairly allocate resources to sensitive applications.
(ii) Overshadow’s current implementation does not appear to
authenticate the requests for using it, thus a malicious guest OS
may replay the requests to run an encrypted application mul-
tiple times. (iii) The performance of Overshadow when utilized
bymultiple VMs on a single platform is not clear (because Over-
shadow was not motivated for secure cloud-end computing).

• Exploiting trusted computing technology alone: Flicker and its
descendent [18–20] can guarantee strong security by exploiting
the recently introduced processor feature known as Dynamic
Root of Trust for Measurement (DRTM). These systems are not
suitable for secure cloud-end computing because when a sen-
sitive application is executed in the hardware-protected envi-
ronment, other customers’ VMs running on the same platform
will be frozen.

In summary, the current VM-based cloud computing practice does
not offer adequate security when sensitive applications run on
cloud-end computers. Existing solutions that can resist attacks by
compromised/malicious OS are neither motivated by, nor (quite)
suitable for, secure cloud-end computing.

Our contributions. This paper makes the following contributions.

• We present the design, implementation and analysis of a novel
system, called Trusted Execution Environment (TEE), for secure
cloud-end computing as shown in Fig. 1.1 TEE can support a
spectrumof applicationneeds, ranging frompure cryptographic
libraries to full-fledged trustworthy software. Moreover, TEE
can provide an ‘‘overlay’’ of TEE network that can be deemed
as more trustworthy than the network of VMs within the same
TVD (e.g., for cryptographic multi-party computation).

1 Secure customer-end computing is not addressed in this paper. Nevertheless,
we mention that a system like Flicker [18,19] as well as its descendent [21,20] can
serve for that purpose.
Table 1
Acronyms (in alphabetical order).

D-CRTM Dynamic Core Root of Trust for Measurement
DRTM Dynamic Root of Trust for Measurement
LPC Low Pin Count
NVM TPM’s Non-Volatile Memory
OS Operating System
PCR Platform Configuration Register
SRTM Static Root of Trust (for) Measurement
TCB Trusted Computing Base
TEE Trusted Execution Environment
TPM Trusted Platform Module
TVD Trusted Virtual Domain
vD-CRTM virtual D-CRTM
vDRTM virtual DRTM
VM Virtual Machine
VMM Virtual Machine Monitor (Hypervisor)
vTPM virtual TPM

• From a technical perspective, the novelty of our work is the
virtualization of DRTM. This is a non-trivial task because, in
particular: how should we deal with the problem that vTPM
cannot determine the origin of TPM commands (because in
the Xen hypervisor we experimented with only locality 0
used)?We resolve this issue by extending the locality control
and management of vTPM.

• We have implemented the design reported in the paper, by
using Xen paravirtualization. We argue for the security of
TEE. Benchmark-based performance evaluation suggests that
TEE-enabled cloud computing does not impose any significant
performance penalty. We will make the source code of the
system publicly available so that other researchers can adopt
or adapt it for further research.

Limitations of TEE. TEE is limited in dealing with privileged insider
attacks and side-channel attacks. The former can be launched by
privileged administrators of cloud computers. The latter can even
be launched by malicious cloud computing customers because
VMs and TEEs on a single computer are likely rented to multiple
customers [22]. The two limitations are inherent to the design
choice that in order to accommodate simultaneous execution of
multiple VMs and/or TEEs on a platform, there must be a trusted
layer beneath them (no matter it is implemented in hardware
or software). As such, the current VM-based cloud computing
practice, Overshadow-like solutions, and TEE are equally subject
to these attacks.
Paper organization. We discuss related prior work in Section 2,
briefly review some background knowledge about Xen and trusted
computing in Section 3, present the problemdefinition in Section 4,
and describe the design, implementation, and analysis of TEE in
Section 5. We conclude the paper in Section 6 with future research
directions. We summarize major acronyms used in the paper in
Table 1.

2. Related work

There are investigations that exploit VMMs for secure execution
environment (e.g., [23–25,15,17,26–28]). Proxos [23] implements
a safe execution environmentwhile differentiating the systemcalls
from an untrusted OS and those from a trusted OS. Terra [24]
providesmechanisms for running applications in separateVMs and
for VMMs to attest the software executing inside a VM. Chaos [25],
which is implemented with Xen, encrypts process memory
pages and uses trusted system calls to protect applications.
Overshadow [15], which is implemented with VMWare, moves a
step further by transparently ensuring that sensitive applications
cannot be compromised by the malicious guest OS. A similar
system [17] is implemented with Xen. On the other hand, there
are efforts that exploit DRTM for secure execution environment.
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Flicker [18,19] exploits DRTM to launch a secure execution
environment that assumes a TCB as small as 250 lines of code. It
arguably provides the highest security possible because it remains
secure even if the BIOS, OS and DMA-enabled devices are all
malicious. This is achieved (in part) by ensuring that when Flicker
executes, everything else is frozen.

In comparison to the aforementioned investigations that
exploit either virtualization or trusted computing, TEE takes
advantage of both in a non-trivial fashion because of the following.
First, unlike Flicker, TEE does not directly use DRTM; instead, it is
based on vDRTM,which is introduced in the present paper. Second,
execution environment solely based on vTPM is not sufficient for
our purpose because (1) vTPM is fundamentally based on SRTM
and thus cannot provide a secure system environment without
rebooting the VM, and (2) vTPM cannot tell whether a command
is from an untrusted guest OS or from a trusted execution
environment. These are actually the reasons DRTMwas introduced
and explain why we should utilize DRTM. Third, integration of
vTPM and Terra [24] is also not sufficient for our purpose because
of the following. (1) TEE can be invoked on demand but Terra was
not designed to operate in this fashion. (2) TEE can implement fine-
grained protection and attestation but Terra cannot achieve this
without paying the price because of the following dilemma. If one
runsmultiple sensitive applications in a single VM, then one cannot
achieve fine-grained protection and attestation; if one runs a single
sensitive application in a single VM, then it is difficult to share data
between the VMs that are associated with their own vTPM (e.g.,
how should one vTPM unseal the data sealed by another vTPM?
This causes a flexible or scalable key management problem, which
TEE does not suffer from).

While there have been some initial efforts at exploring secure
cloud computing [22,29], to our knowledge, no system like TEE (or
vDRTM) has been reported in the public literature. For example,
Santos et al. [30] briefly discussed a trusted cloud computing
platform, whereby service providers offer a closed box execution
of guest VMs while allowing the customers to determine whether
the service is secure before the launch of their VMs. Their platform
does not consider DRTM, and they present neither the design
details nor any implementation. Sadeghi [31] envisioned a security
architecture in which multiple VMs on a single platform can
have access to an isolated ‘‘security critical application’’ execution
environment, but did not explore a concrete system design and
implementation. In particular, nothing is said about how the
environment serves multiple VMs on a VMM.

3. Background

The Xen architecture. The Xen hypervisor, or simply Xen, is
a popular VMM. It has a privileged domain, called Domain 0,
that can access the physical I/O resources and manages the user
domain VMs [32]. We use paravirtualized Xen and the following
communication mechanisms (cf. [33] for details).

• Hypercalls. Hypercall allows a user domain (i.e., a guest OS
or TEE in this paper) to trap into Xen to execute privileged
operations (in Ring 0).

• Split device drivers. To provide virtual devices for domains, Xen
adopts the so-called split driver model, which, roughly speaking,
splits a physical device driver into two parts: a backend driver
and multiple frontend drivers. The backend driver is a channel
between the physical device andmultiple frontend drivers, and
the frontend drivers are associated with respective domains.

TPM. TPM is a chip embedded into a platform motherboard. Its
main purpose is to establish a chain of trust during the bootstrap-
ping of the OS through the 24 Platform Configuration Registers
(PCRs), which store the platform integrity measurements in the
formof 160-bit SHA-1 digests. The following TPM functions are rel-
evant to our system.

• PCR extend operation. This operation allows the storage of an
unlimited number of measurements in a specific PCR.

PCRnew = SHA-1(PCRold|measurement).

• Sealed storage. TPM sealing uses a non-migratable public key
to encrypt the data, and bind the corresponding private key
to the relevant PCRs. Security is ensured by that if the current
platform state does not match the PCR values computed at
the sealing time, the unsealing operation will fail and the data
cannot be decrypted. An application running in TEE can use this
mechanism to protect its confidential data from the guest OS.

• Attestation. The attestation function uses the private Attesta-
tion Identity Key (AIK) to sign the PCRs when attesting to a
remote verifier, who can use the corresponding public key to
verify the digital signature.

vTPM. vTPM [34] provides each VM on a single TPM-enabled plat-
form with the functions offered by TPM. vTPM supports suspend
and resume operations, as well as migration of a virtual TPM in-
stance with its respective VM across platforms.
DRTM. Useful, secure bootstrapping ensured by TPM has had
limited success (cf., e.g., [35–37]). The industry then introduced
new CPU-based security technology to support DRTM. Unlike
SRTM which forces the power-off before rebooting an (initially)
trusted OS environment, DRTM can be launched at any moment
in time and as often as needed, and can alleviate attacks such as
TPM reset and BIOS attacks mentioned above. CPU vendors have
implemented their hardware-based DRTM; Intel calls it Trusted
Execution Technology (TXT) [38,39] while AMD calls it Secure
Virtual Machine (SVM) [40]. The security guarantee offered by
DRTM solely depends on the hardware, not even on the BIOS or
bootloader. DRTM is invoked using a newCPU instruction (SENTER
for Intel and SKINIT for AMD), which is the Dynamic Core of Root
of Trust forMeasurement (D-CRTM) for establishing a chain of trust
during a late launch. Note that there are some differences between
the implementations. When the SKINIT instruction is invoked,
the only argument delivered is a physical memory address, which
points to the region of protected code called Secure Loader Block
(SLB). When the SENTER instruction is invoked, an Intel-signed
code module, Authenticated Code Module (ACMod) [41], and an
equivalent of AMDs SLB, Measured Launched Environment (MLE),
are executed. Specifically, when the privileged instruction SKINIT
(AMD) or SENTER (Intel) is executed, the following happens.

(i) CPU requests TPM to reset PCRs 17–23 to zero.
(ii) CPU measures SLB (AMD) or AC Module (Intel) and extends

the measurement into PCR17.
(iii) Intel CPU measures MLE and extends the measurement into

PCR18. AMD CPU skips this step.
(iv) CPU hands the control to SLB (AMD) or MLE (Intel).
(v) SLB or MLE creates the hardware-guaranteed trusted execu-

tion environment.

When the program running in the trusted execution environment
exits, CPU returns the control to thenext instruction in theprogram
that invoked SENTER/SKINIT.
Locality. The introduction of DRTM has also brought the notion
of locality in TPM specification version 1.2, in which memory
mapped I/O is used. It reserves a range of physical memory that
the host OS can map into its virtual address range. TPM memory
map consists of five 4 kB pages, where each page corresponds
to a locality. The purpose is to differentiate the sources of TPM-
related requests: the trusted OS, the security domain the trusted
OS created, the application running in that domain, or the CPU
SKINIT or SENTER instruction. The specification assigns locality
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0 for the legacy environment of SRTM (TPM specification version
1.1b), localities 1–3 for the trusted OS, the security domain, and
the application, respectively, locality 4 for CPU’s SKINIT [42].
Moreover, each locality is associated to a specific PCR; for example,
PCR 17 is associated to locality 4 (the SKINIT instruction) and PCR
20 is associated to locality 1.

4. Problem definition

Why dowe have to virtualize DRTM? Our solution to the problem
of secure cloud-end computing aims to allow multiple customers
or VMs on a commodity cloud-end platform to simultaneously en-
joy DRTM-like secure execution environments, without requiring
expensive extra hardware. Moreover, we want that the secure ex-
ecution environments can be launched as needed and at any point
in time for running sensitive applications while supporting attes-
tations to remote parties. This immediately leads to the exploita-
tion of both virtualization and trusted computing at the same time.
In particular, this means that we have to virtualize DRTM because
customers may need to concurrently invoke the secure execution
environments without powering-off the computer.
Security assumptions. We assume:

• Attackers cannot launch sophisticated hardware attacks to
break TPMs. This is a reasonable assumption because non-
hardware attacks would be more relevant in cloud computing.
Given that TPM is secure, it is also reasonable to assume that
vTPM is secure as long as sufficient care is taken. Note that
SRTM-based TPM (and thus vTPM) are vulnerable to TPM-
reset and BIOS attacks (which may be caused by inappropriate
implementation [43]), but these attacks can be defeated
precisely using DRTM [37,44,45]. In the context of the present
paper, these attacks are relevant to the bootstrapping of VMM
but are defeated using DRTM (which is given in our system
setting).

• VMM is secure. This assumption is made in most prior studies
but is avoided in Flicker [18,19] (which however is not quite
suitable for cloud computing). Nevertheless, VMM security is
an active research area (e.g., [46]).

• The cryptosystems we use for authentication, digital signature,
and encryption are secure in the standard sense [47]. We treat
them as black-boxes.

Threat model. To accommodate the worst-case scenario, we con-
sider the following attacks launched by an adversary who has cor-
rupted some cloud customers and guest OS.

(1) Attack the cloud-end secure execution environment so as to
compromise the honest customers’ sensitive data.

(2) Attack the attestation of anhonest customer’s secure execution
environment so as to cheat an honest remote verifier (e.g., the
customer itself or a third party).

(3) Attack fairness so that honest customers’ requests to launch se-
cure execution environment are not faithfully accommodated,
and that when an application runs in the secure execution en-
vironment, there is no or minimum side-effect on the other
VMs on the same VMM.

(4) Abuse the secure execution environment to hide malicious
activities (e.g., running malware) in the hope of evading from
detection.

Functional requirements. The secure execution environment
should satisfy the following functional requirements.

(5) Legacy code compatibility: It is desired that applications (as
well as their underlying support software, if any) can run in the
secure execution environment without forcing the developers
to make modifications.
Fig. 2. TEE architecture has two parts: vDRTM (consisting of vDRTM-based vTPM
Manager, Virtual LPC, and vD-CRTM) and TEE (consisting of TEE Manager, TEE Core,
and TEE Domain). Arrows represent control flows.

(6) Fine-grained protection: This is useful because a whole appli-
cation, or only a portion of it, may need to run in the secure
execution environment. In the latter case, of course, the appli-
cation needs to be modified to become aware of the secure ex-
ecution environment.

(7) Low extra cost: The secure execution environment should only
impose very low extra cost when compared with not using
them (i.e. applications run in VMs). This makes TPM attractive
(whereas co-processors are expensive).

5. TEE: design, implementation and analysis

5.1. TEE architecture

Overview. In order for a customer to run (on demand) a sensitive
application in a secure execution environment that mimics the
one enabled by DRTM, we virtualize DRTM. The resulting system
architecture consists of two parts: vDRTM and TEE.

• vDRTM. It mimics the functions and services of DRTM while
allowing multiple invocations, and has the following three
components (which are highlighted in Fig. 2 and elaborated in
Section 5.2).
– vDRTM-enabled vTPM Manager (in vTPM Domain). It sup-

ports the control of locality, and is obtained by modifying the
Xen vTPMManager.

– vD-CRTM (in VMM). It authenticates the hypercall for
launching TEE, resets the corresponding vTPM’s PCR 17–19
to zero, and extends the measurement of the TEE Kernel and
the sensitive application into the PCR 17.

– Virtual LPC. It is the virtual bus for communication between
vD-CRTM and vTPMManager. It mimics the LPC bus between
CPU and TPM in a non-virtual system, which explains the
term.

• TEE. It further consists of the following three components (see
also Fig. 2).
– TEEDomain. It is the trusted execution environment inwhich

a sensitive application runs on top of TEEKernel,which canbe
obtained by extending a desired or needed software system
(ranging from pure cryptographic libraries to full-fledged
OS as long as the system is deemed as trustworthy). The
extension is to incorporate three modules:
∗ TPM Frontend Driver. It allows TEE to have access to a

vTPM. It is obtained by modifying the Xen TPM Frontend
Driver.

∗ TEE FrontendDriver. Through TEE BackendDriver (in vTPM
domain), it allows TEE to send exit request to TEE Core (in
Xen VMM) so as to destroy the TEE Domain and unpause
the paused guest OS.
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Table 2
Locality in DRTM and in vDRTM.

Localities Used by (in DRTM) Used by (in vDRTM)

Locality 4 Trusted hardware (DRTM) vDRTM
Locality 3 Auxiliary components Auxiliary components
Locality 2 ‘‘Runtime’’ environment for Trusted OS TEE Kernel during launch
Locality 1 Trusted OS TEE Domain after launch
Locality 0 Legacy environment for SRTM and its chain of trust Untrusted guest OS
Fig. 3. High-level control flow for launching TEE: a running example (somedetailed
components are not shown for a better visual effect).

∗ Application Loader. It loads (and decrypts, if needed) the
sensitive application, and encrypts the output of the sensi-
tive application (if any).

– TEE Manager (in guest OS). It is the interface between a
customer and TEE, and consists of the following twomodules
(elaborated in Section 5.3).
∗ TEE Initialization. This initializes the cryptographicmecha-

nisms for authenticating the customers and the associated
cryptographic keys.

∗ TEE Frontend Driver. It loads both the TEE Kernel and the
sensitive application into the guest OS memory space, and
forwards to the vD-CRTM the request for launching TEE as
well as the relevant parameters.

– TEE Core (in VMM). It uses Xen’s pause command to pause
the guest OS in which the TEE Manager initiated the request
for launching TEE, launches the TEE Domain (TEE Kernel,
which then loads the sensitive application), destroys the TEE
Domain after the sensitive application exits, and uses Xen’s
unpause command to unpause the guest OS.

Running example. Before getting into the details, let us look at a
running example (see also Fig. 3). A more detailed description of
TEE life-cycle will be presented in Section 5.4.

(i) A customer sends TEE Manager in a VM (or guest OS) a
request as well as parameters about the (encrypted) sensitive
application.

(ii) TEE Manager allocates memory for the sensitive application
and TEE Kernel, and requests the TEE Backend Driver (in vTPM
Domain) to launch the TEE Kernel.

(iii) TEE Backend Driver (in vTPM Domain) uses a hypercall to
request TEE Core to launch TEE.

(iv) TEE Core pauses the VM that issued the request; vD-CRTM
authenticates the request and measures TEE Kernel and
sends the measurement to vTPMManager, which extends the
measurement into PCR 17 in the VM’s associated vTPM; TEE
Core launches TEE Kernel, which loads the application. TEE
Domain is then scheduled by Xen (as a replacement of the
paused VM).

Exiting TEE Domain basically corresponds to the inversion of the
above process. The major events caused by entering and exiting
TEE are high-lighted in Fig. 4.

We note that the above process corresponds to the case that a
customer runs a whole sensitive application in TEE Domain. It can
(Execution unaffected)

(VM paused)

Fig. 4. Major events caused by TEE (the VM requesting TEE is paused when TEE
runs; execution of the other VMs on the platform is unaffected).

be easily extended to accommodate the fine-grained protection
that a portion of an application needs to run in TEE Domain. In
this case, we can let the application contact the customer-end
trusted execution environment, which then invokes TEE Domain
in the cloud computer in the same fashion as illustrated above. The
involvement of customer-end trusted execution environment is
actually important because the calling application is not protected
from the guest OS, which makes it possible that a malicious guest
OS runs the sensitive portion of the application many times.

Inwhat followswe elaborate vDRTMand TEE, and describe how
they work together.

5.2. vDRTM

vDRTM Localities. Recall that TPM 1.2 uses five localities to dis-
tinguish the origin of a TPM command so as to determine whether
it is trusted. As high-lighted in Table 2, we define five localities in
vDRTM that are in parallel to their counterparts in DRTM. This is
primarily implemented by vDRTM-enabled vTPMManager, which
ensures that only vD-CRTM is able to reset vTPMs PCRs 17–19. In
particular, locality 4 is the only origin of command that can reset
PCRs 17–19. This means that guest OS and TEE cannot reset these
PCRs because they cannot use locality 4 (they can only use locality
0 and locality 1, respectively). Note that during the launch of TEE
Kernel, it can use locality 2 and thus can release keys anddata in the
corresponding vTPM. TEE Kernel and sensitive application can use
locality 1, and thus cannot release the keys and data associated to
locality 2. Guest OS (locality 0) cannot release cryptographic keys
associated to locality 1.

In our vDRTM implementation, we use flag
localityModifier to indicate the currently active locality that
can be used, and TOSPresent, which is inherited from TPM’s
specification version 1.2, to indicate the present TEE. As a result,
when vDRTM serves a customer’s request for launching TEE, it
sets the TOSPresent flag to TRUE, which corresponds to the
beginning of the chain of dynamic trust. The TOSPresent flag is
very important because it can be used to defeat abnormal TPM
reset (if reset by DRTM or vDRTM, PCRs 17–23 are set to 0 . . . 0;
otherwise, they are set to 1 . . . 1).
vDRTM-enabled vTPMManager. Recall that in the vTPM architec-
ture [34], a vTPM instance is bound to a VM, and a vTPM Man-
ager uses the vTPM instance number to communicate with the
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MESSAGE 1

MESSAGE 2

Fig. 5. Transferring locality.

corresponding vTPM instance (vtpmd). Unfortunately, for Xen Do-
main 0 running Linux-2.6.18-xen.hg we experimented with, the
vTPM Frontend Driver and Backend Driver do not allow guest OS
or VM to use any locality other than locality 0 because the flag
localityModifier is always 0 and the flag TOSPresent is al-
ways FALSE. (Indeed, during the initialization of vtpmd, the two
flags are set and never changed.) We found a patch [48] that can
transfer vTPM locality information but only from TPM Frontend
Driver to TPM Backend Driver. Unfortunately, it does not prevent
TPM Frontend Driver from claiming an arbitrary locality to cheat
the responding vTPM.

We solve the above problem by using the TOSPresent and
localityModifier flags, andmodifying and extending the TPM
Backend Driver, vTPMManager, and Xen vTPM. As shown in Fig. 5,
for the first byte of message1 received by vTPM Manager, the least
significant bit is 0 means TOSPresent = False and 1 means
TOSPresent = True, whereas the second least significant bit is
0 indicates that the message comes from TPM Frontend Driver and
1 indicates that the message comes from vD-CRTM. Moreover, the
least significant three bits of the second byte indicate the locality
(with 101–111 not used). vTPM Manager reformats the received
message message1 as shown in Fig. 5, and sends the reformatted
messagemessage2 to vtpmd. Thismessage reformatting operation
is necessary because we want to avoid any change to the message
format of vtpmd processes. Fortunately, this is made possible be-
cause vTPM Manager already needs to copy the 4 byte Instance
number, butwith themost significant five bits almost certainly un-
used (unless there are >227 vTPM instances on a single computer,
which is almost certainly unlikely). Upon receivingmessage2 from
vTPMManager, vtpmd extracts the relevant information as shown
in Fig. 5 and executes Algorithm 1. Upon finishing the execution of
Algorithm 1, vtpmd writes the response to vTPM Manager via the
pipe:

/var/vtpm/fifos/tpm_rsp_from_all.fifo. Then, vTPM
Manager gets the response, writes it to the shared memory, and
uses a hypercall to notify vD-CRTM to get the response.

Algorithm 1 vtpmd locality processing
1: if received command origin == 1 then
2: if received TOSPresent == 0 then
3: set localityModifier = 000
4: end if
5: set TOSPresent as the received value
6: end if
7: if TOSPresent = 1 then
8: set localityModifier as the received locality bits
9: end if

vD-CRTM. In parallel to D-CRTM’s function reviewed in Section 3
(i.e., receiving the privileged instruction SKINIT or SENTER and
measuring ACM or SLB and resetting the TPM, and extending the
measurement into PCR 17), vD-CRTM is responsible for receiving
and authenticating the hypercalls for launching TEE,measuring the
TEE Kernel and application (possibly input as well) that will run
Fig. 6. Virtual LPC.

in TEE Domain, commanding vTPM to reset PCRs 17–19, extending
the aforementionedmeasurement into PCR 17, and finally handing
over the control to TEE Core.
Virtual LPC. vDRTM must facilitate the communication between
the vDRTM-enabled vTPM (in vTPM Domain) and vD-CRTM (in
VMM), in a fashion similar to the communication between TPM
and DRTM. A straightforward method is to establish a channel
between vD-CRTM and each vTPM instance, which however will
waste a significant amount of resource. Because vTPM Manager
can already communicate with the vTPM instances, we build a
virtual LPC between vD-CRTM and vTPM Manager, which is then
multiplexed by all the vTPM instances.

Our Virtual LPC is implemented via shared memory between
Xen andvTPMManager. Virtual LPC is initialized by vTPMManager,
which uses the following hypercall to ask Xen to share one page of
memory with it:

void share_xen_page_with_guest(struct page_info
*page, struct domain *d, int readonly) Upon its cre-
ation, virtual LPC works as follows (see also Fig. 6).

(i) vD-CRTMwrites a TPM commandwith TOSPresent= true,
command origin, locality and Instance number (cf. Fig. 5) to
the shared memory page, and then sends a virtual IRQ to TPM
Backend Driver.

(ii) TPM Backend Driver wakes up vTPM Manager to read the
message.

(iii) vTPM Manager determines if the command origin is TPM
Frontend Driver or vD-CRTM Core. If it is vD-CRTM, vTPM
Manager extracts the TOSPresent, locality, Instance number
and TPM command, and translates message1 into message2
as shown in Fig. 5. If the command origin is incorrect (e.g.,
TPM FrontendDriver in the untrusted guest OS but outside the
TEE Manager is compromised), vTPM Manager automatically
corrects it.

(iv) vTPM Manager sends the received TPM command to vtpmd
through pipe
/var/vtpm/fifos/tpm_cmd_to_%d.fifo

(v) After vtpmd receives the command from the pipe, it extracts
the locality information, TOSPresent, and command origin
as shown in Fig. 5, and then executes Algorithm 1. Upon
finishing the algorithm, vtpmd writes the response to vTPM
Manager via pipe
/var/vtpm/fifos/tpm_rsp_from_all.fifo

(vi) vTPMManager gets the response,writes it to the sharedmem-
ory, and uses our hypercall vTPMManagerNotification to
notify vD-CRTM to get the response.

(vii) vD-CRTM reads the response from the shared memory.
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5.3. TEE Manager

TEE Initialization. Each customer has two pairs of public–private
keys; one for digital signatures and one for encryption. Let pksign
denote the public key for verifying the customer’s digital signa-
tures, and pkenc denote the public key by which the cloud com-
puter can securely send information to the customer. We use two
pairs of cryptographic keys for different purposes for the sake of
prudent engineering. The measurement (hash) of these keys is se-
curely stored by the cloud computing service provider. On the
other hand, the cloud computing service provider generates a pub-
lic key pkserver for the customer, which will be used for encrypting
the sensitive application (as well as its input, if any) that needs to
execute in a TEE environment. Note that the pkserver is unique to
each customer for a security reason that will become clear later.
Both themeasurements (hash) of pksign aswell as pkenc, and the pri-
vate key skserver corresponding to pkserver are securely stored in the
vTPM’s non-volatile memory (NVM) associated with a VMwhen it
is set up for the customer. Because the current Xen vTPM does not
provide the NVM function, we utilized the implementation in the
latest software-based TPMemulator’s TPM_nv_storage.c [49]. The
above design is specific to our prototype implementation, and can
be adapted to accommodate any other desired designs. It is nat-
ural to assume that the above initialization operations, which are
needed once per customer, are secure; in practice the initialization
process would be vendor-specific.
TEE Frontend Driver. We need a mechanism for a customer to
launch TEE through the relevant VM. Because we need to pause
the VM before launching the TEE Domain, but Xen does not allow a
domain to request to pause itself, we use Xen’s backend–frontend
mechanism to achieve this. Specifically, TEE Frontend Driver first
allocates a piece ofmemory, loads the customer’s public keys pksign
and pkenc, the TEE kernel and sensitive application and client_nonce
(which is chosen by the customer for preventing the replay of past
attestation) into this memory region, and then sends a request
to TEE Backend Driver that will invoke a hypercall (which we
named TEELaunch) to request vD-CRTM to launch TEE for the
application and to share this memory region to TEE; this hypercall
is the counterpart of AMD’sSKINIT and Intel’sSENTER. In the next
subsection we will show how vDRTM interacts with TEE.

5.4. Putting the pieces together

Nowwe describe the detailed life-cycle of TEE by showing how
vDRTM and TEE work together to authenticate a request, launch
TEE, execute a sensitive application in TEE, exit TEE, and how the
guest OS conducts remote attestation to prove that the request has
been faithfully accommodated.
Step 1: Authenticating TEE launch request. Suppose we are
about to authenticate the request for launching TEE (the request
is delivered into vD-CRTM through the TEELaunch hypercall). To
defeat replay attack, a fresh nonce is used as the challenge to the
customer, which is a portion of the request that is digitally signed
by the customer using the private key corresponding to pksign.

1. TEE Core uses Xen’s pause to pause the VM that requested the
TEE launch.

2. vD-CRTM verifies pksign and pkenc against the measurement
stored in the corresponding vTPM’s NVM.

3. vD-CRTM checks the integrity of the TEE Kernel and the
application in the shared memory against their certified hash.

4. If the verifications succeed, vD-CRTM uses virtual LPC to set
TOSPresent = true, set localityModifier = 4, reset
PCRs 17–19, and extend the hash of pksign and pkenc to PCR 17.
Step 2: Preparing for launching TEE.

1. vD-CRTM lets the TEE Core take over the control. Because TEE
inherits/reuses the vTPM associatedwith the VM, TEE Core asks
the vTPM Manager to forward TEE’s TPM commands to the
guest OS’ vTPM instance so as to allow TEE to use the instance.

2. vD-CRTM measures the TEE Kernel and extends the measure-
ment into PCR 17.

3. TEE Core executes Xen’s create domain to create a domain
for the TEE Kernel and application.

Step 3: Execute sensitive application and exit.

1. Now TEE Kernel takes over the control and loads TEE Frontend
Driver, TPM Frontend Driver, and Application Loader, which
takes over the control, then reads skserver from vTPM’s NVM
to decrypt the encrypted sensitive application, measures the
application code (and its input), extends the measurement into
PCR 19, resets PCR 20–22, then TPM Frontend Driver changes
localityModifier to 1, which automatically modifies the
current locality from 2 to 1, and finally transfers the control to
the application.

2. When the application is finished and exits, the Application
Loader takes over the control by letting TPM Frontend Driver
changes localityModifier to 2, measuring the outputs
and extends the measurement into PCR 19, copying the
output (if any) and stored measurement log to the shared
memory granted by TEE Frontend Driver (cf. Section 5.3). If
the application has output, the Application Loader encrypts
the output using pkenc (so that the customer can obtain the
output), erases the sensitive data in TEE, and sends through TEE
Frontend Driver the request to TEE Backend Driver for exiting
TEE.

Step 4: Resume guest OS.

1. TEE Backend Driver uses our TEEExit hypercall to inform vD-
CRTM.

2. vD-CRTM extends client_nonce to PCR 17 so that the resumed
guest OS cannot get any sensitive data that are sealed under PCR
17.

3. vD-CRTM sets localityModifier = 0 and TOSPresent =

false.
4. TEE Core destroys the TEE, and uses unpause to unpause the

guest OS, which regains the control.

Step 5: Conduct remote attestation. To show that it has faith-
fully forwarded the TEE launch request, TEE Core sends command
TPMquote to the vTPM, which then uses the attestation crypto-
graphic key to sign PCRs 17 and 19. The verifier (the customer or a
third party) can verify the signature using the corresponding key.

5.5. Security analysis of TEE

Assume that a customer has a secure execution environment
in its local computer so that the private keys corresponding to
pksign and pkenc are never compromised, that TPMs and vTPMs
are secure (this can be achieved using DRTM so that TPM reset
and BIOS attacks are prevented), that VMMs are secure, and that
the cryptosystems are secure. Note that we do not assume the
TEE Manager is secure because it resides in guest OS, which could
be malicious and thus compromise it. We show that the attacks
specified in Section 4 can be defeated.
Attack against TEE so as to compromise the sensitive data.
Because a successful attack at any stage of the life-cycle (relevant
to TEE) of sensitive data can cause the compromise of the data,
we show that the life-cycle is secure, including authentication of
request, TEE launch, TEE runtime, and TEE teardown.
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Authentication security. We argue that the authentication of
requests (for launching TEE to execute sensitive applications) is
secure, by showing that integrity of the customer authentication
data is ensured and that integrity of the authentication procedure
is assured.

• Integrity of customer authentication data. We claim that
integrity of the customer authentication data, namely pksign
and pkenc, is ensured. Since we assumed that TEE Initialization
is conducted in a secure environment, the hash of pksign and
pkenc is securely stored by cloud computing service provider.
When loading them into vTPM’s NVM (on demand), our TEE
Initialization uses the TPM_NV_DefineSpace operation to set

pcrInfoWrite → localityAtRelease
= pcrInfoRead → localityAtRelease = 11110,

which means that the corresponding area of NVM can be
read/written by commands that use locality 1–4 (therefore, vD-
CRTM and TEE which can use locality 4, 2 or 1), but cannot be
read/written by commands that use locality 0 (i.e., the guest
OS). As mentioned above, our vDRTM-enabled vTPM Manager
can detect and fix lies about locality, and thus the guest OS can
never tamper the integrity of pksign and pkenc in vTPM’s NVM.

• Integrity of the authentication procedure. Before vD-CRTM
verifies the digital signature (which certifies the request) using
pksign, TEE Core pauses the guest OS. Since vD-CRTM resides
in VMM and is thus secure, the integrity of the authentication
procedure is assured.

Security of TEE launch.Wewant to assure the integrity of TEEwhen
it is launched. After vD-CRTM verifies the integrity of the request
(including TEE Kernel, the sensitive application aswell as its input),
it sets TOSPresent = true, enters locality 4, and extends the
measurement of the request into PCR 17 so that it can be used for
remote attestation later.We observe that the above process cannot
be performed by the guest OS because it can only use locality 0,
locality 4 is required for writing to PCR 17, and the guest OS cannot
use locality 4 without being detected (and fixed) by our vDRTM-
enabled vTPM Manager. Since the guest OS has been paused, it
cannot tamper the execution of TEE Kernel as well as the sensitive
application.
Security of TEE Runtime. Since the guest OS has been paused, it
cannot attack the newly launched TEE Domain. Other VM cannot
attack the launched TEE Domain because they are isolated from
the newly launched TEE by VMM. As such, the following operations
will be done in a secure fashion. The TEE Kernel (more specifically
the Application Loader) measures the sensitive application as well
as its input and extends the measurement into PCR 19 for remote
attestation later. If the application has output, secrecy of the output
is ensured by encrypting it with a symmetric key k and AES-256
encryption (as an example), which means that the guest OS can
only see the ciphertext. The k is encryptedusingpkenc, which allows
the customer’s local trusted execution environment to decrypt it
using the corresponding private key. The ciphertext corresponding
to the output is measured (hashed) so that the measurement is
extended to PCR 19.
Security of TEE teardown. This has two aspects.

• Secure teardown of TEE Domain. Because the sensitive appli-
cation, its input, its output, and k are erased before unpausing
the paused guest OS, the guest OS is unable to get any useful
information about these sensitive data after being unpaused.

• Secure switch of the vTPM used by TEE. We argue that the
unpaused guest OS cannot attack the vTPM used by the just-
destroyed TEE. After the Application Loader erases the applica-
tion as well as its input and output, the TEE Frontend Driver
(in TEE Kernel) uses a hypercall to request the TEE Backend
Driver (in vTPM Domain) to exit TEE. Note that vD-CRTM ex-
tends client_nonce into PCR 17, which prevents future replay
attack against remote attestation and simultaneously protects
the information that has been sealed under PCR 17. After vD-
CRTM sets TOSPresent = false, vTPM executes Algorithm
1 to set locality = 0. Since TOSPresent = false, vTPM
will not accept any commands that attempt to set or modify
localityModifier (until TOSPresent is set to true again
by vD-CRTM for launching TEE). As a result, the guest OS always
can only use locality 0, and thus cannot release any sensitive in-
formation associated to other localities.

Attack against attestation. We want to assure that if a vTPM
attests that an application has been executed in TEE and an
output was produced by the application, then that must have
been the case. To break this assurance, there are three possible
strategies. First, the attacker attempts to fake an attestation. This
is infeasible because the vTPM’s attestation key stays within the
vTPM’s security boundary. Second, the attacker attempts to cheat
the vTPM into generating an attestation that is valid with respect
to the client_nonce′ provided by the verifier. Because the guest
OS can only use locality 0, it cannot extend the measurement of
client_nonce′ into PCR 17. As such, the guest OS can obtain an
attestation that is valid with respect to client_nonce′ only when
client_nonce′

= client_nonce, where client_nonce is the last nonce
whose measurement was extended into PCR 17 by vD-CRTM. This
however happens with only a negligible probability. Therefore,
the attack cannot succeed. Third, the attacker reuses or replays
some past attestation. This is defeated by the use of a customer
(or verifier) selected fresh client_nonce, which effectively prevents
the attacker from reusing or replaying a past attestation.
Attack against fairness. We want to assure that a honest cus-
tomer’s request to run sensitive application in TEE is faithfully ac-
commodated, and that the fact that one customer running TEE has
little performance impact on the other customers’ programs exe-
cuting in their respective VMs or TEEs on the same platform.

• Unfaithful execution of sensitive application in TEE. A malicious
guest OS may block an honest customer’s request for executing
sensitive application in TEE, while attempting to convince the
customer that the application has been successfully executed.
Note that the above attestation security assures that if vTPM
attests the execution of a sensitive application, then that
must have been the case (in part due to the use of fresh
nonce client_nonce that is selected by the customer and must
be included in the attestation). Since TEEs are scheduled by
VMM, the request should be accommodated according to the
VMM’s policy. Therefore, the customer can always detect that
unfaithful execution of his sensitive application.
Note that it is possible that a malicious guest OS delays the
forwarding of the request for executing sensitive application in
TEE. However, this can be detected if the delay is significant.
Moreover, this can be avoided by moving the TEE Manager
from the user domain to, for example, a trusted domain
(bootstrapped whenever VMM is up), which serves as the
interface of all such requests (originated from customer’s local
trusted execution environment).

• Impact of TEE on other customers’ VMs/TEEs. As we will report
in the performance evaluation, the use of TEE does not have a
significant performance impact on other customers. Intuitively,
this is because in order to run an application in TEE, the
corresponding VM is paused and then replaced by the TEE.

Abusing TEE. It would not be acceptable if a malicious party can
abuse TEE to conduct malicious activities without being detected
(e.g., running malware in TEE while evading from being detected).
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There are two possibilities.

• Unauthorized use of TEE. If an unauthorized party can abuse TEE
to conduct malicious activities, the problem is severe because
we might not know who should be held accountable for the
abuse. This can happen if a party can, using whatever means
(e.g., compromising a guest OS as a stepping stone), successfully
launch TEE without passing the authentication mechanism. For
example, this is infeasible because in order to launch TEE, one
must pass the authentication enforced by vD-CRTM, which is
in VMM and secure. The ‘‘authentication security’’ discussed
above assures that only authorized customers can launch TEE.
As such, this type of attacks is prevented.

• Authorized customer abusing TEE. In the design of TEE we did
not specify which applications can run in TEE because it is
vendor-specific and orthogonal to the focus of the present pa-
per. It would be ideal that only those certified (as trusted or
trustworthy) applications are allowed to execute in TEE, which
however may be over restrictive. As such, an authorized cus-
tomer may be able to execute in TEE whatever he likes. Even
though a TEE is isolated from other TEEs and VMs by VMM, it
would be desired to at least mitigate such activities (e.g., the
attacker can launch more stealthy side-channel attacks). To re-
lieve this problem, there are two countermeasures depending
on who provides the TEE Kernel. If the TEE Kernel is provided
by the cloud computing service provider, we can extend the TEE
Kernel to implement functions such as virus scanner or intru-
sion detection. If the TEE Kernel is provided by the customer
(which is accommodated in our solution and advocated prac-
tice [50]), then we may need to run a monitoring program in,
for example, Domain 0 so as to detect the execution of mali-
cious program in TEE. This is in spirit parallel to the effort at
monitoring the behavior within VMs because TEE actually re-
sides outside any VMs. Monitoring cloud VMs is important and
probablymore difficult than in previously studied settings (e.g.,
VM introspection [51,52]) because the assumption – the VM
and the VMM are owned by the same party – does not hold
any more [53]. Thus, fully tackling this problem is left as future
work.

5.6. Performance evaluation of TEE

To be useful, TEE should be efficient while having a low impact
on the other VMs. We observe that TEE performance relies on
the (size of) the TEE Kernel. To evaluate TEE’s performance and
impact on the other VMs, we use as a cloud computer an HP
Compaq nc6400 with Intel Core Duo T2400 processor running at
1.82877 GHz, 2 GB RAM, and a v1.2 Infineon TPM. The VMM is
vDRTM-enabled Xen v3.3.1 with Domain 0 running Ubuntu 8.04
(Linux 2.6.18.8-xen.hg kernel) as its guest OS, and vTPM Domain
running Ubuntu 8.04 as its guest OS (the same kernel as Domain 0)
allocated with one vCPU and 256 MB memory.

Performance of TEE. To evaluate the performance of TEE, we use
a Domain U running Ubuntu 8.04 (Linux 2.6.18.8-xen.hg kernel) as
Alice’s VM, allocated with one vCPU and 256 MB memory. We use
the TEE Manager to create a TEE Domain mini-OS (Linux 2.6.18.8-
xen.hg kernel as the TEE kernel, which includes the TEE Frontend
Driver, the TPM Frontend Driver and the Application Loader). The
application is a standard AES-256 encryption program to encrypt a
bitstring of 16 bytes for 256 ∗ 1024 times. The results reported in
Table 3 are based on the average of 50 measurement runs, where
time is measured by using the RDTSC instruction to count CPU
cycles, which are then converted tomilliseconds (ms) based on the
machine’s CPU speed (obtained by reading /proc/cpuinfo). We
Table 3
Time between launching TEE and resuming guest OS.

Operation Time (ms)

TEE Frontend Driver sends the request 6.399
Check integrity of TEE Kernel and the application 7.806
Create TEE Domain 137
TEE executes application 18
Resume guest OS 7

Total 176
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Fig. 7. Benchmark results.

draw the following observations.

• The time between TEE Frontend Driver sending the request and
the creation of the TEE Domain is 14.205 ms. The TEE kernel is
of 1,300,420 bytes and the AES encryption program is 22,605
bytes.

• It takes 173 ms to create the TEE Domain with one vCPU and
64 MB memory.

• The application running in TEE (mini-OS, one vCPU and 64 MB
of memory) is a standard 256-bit AES encryption program. On
average, the time consumed for encryption is 436.9 ms. To
compare the application performance, we also performed the
encryption test in Alice’s DomU (Ubuntu 8.04, one vCPU and
256 MB of memory). The average encryption time is 452.6 ms.
The application performances in TEE and DomA are almost the
same. The application in TEE even runs a little faster because
mini-OS is lighter than Ubuntu.

• Resuming guest OS takes 7 ms, which is much shorter than that
of TEE creation because no authentication is needed.

Impact of TEE on the performance of the other VMs on the same
platform. For this, we compare two cases.

• Case 1: Within Alice’s VM we execute open source AES-256
encryption algorithm for encrypting 400 MB of data. Within
Bob’s VM we run 12 benchmarks from SPEC CINT 2006 (http:
//www.spec.org/cpu2006/CINT2006/) on top of Ubuntu 8.04
(guest OS) with 1 vcpu, 1024 MB of memory.

• Case 2: Alice uses TEE to execute the same encryption task, and
we run the same benchmark program in Bob’s VM.

As shown in Fig. 7, the only observable slow-downs caused by
TEE are on libquantum, at the magnitude of about 4%, and on
omnetpp, at the magnitude of 2%. The reason that TEE does not
have significant impact on most benchmarks is that the VMM
treats TEE as if it were a VM (in replacement of Alice’s VM).

http://www.spec.org/cpu2006/CINT2006/
http://www.spec.org/cpu2006/CINT2006/
http://www.spec.org/cpu2006/CINT2006/
http://www.spec.org/cpu2006/CINT2006/
http://www.spec.org/cpu2006/CINT2006/
http://www.spec.org/cpu2006/CINT2006/
http://www.spec.org/cpu2006/CINT2006/
http://www.spec.org/cpu2006/CINT2006/
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6. Conclusion and future work

We presented the design and implementation of TEE, a
trusted execution environment for secure cloud(-end) computing
because multiple users can simultaneously run their sensitive
applications in their respective TEE’s on a single computer
platform. We presented a security argument about the security
of TEE. Benchmark-based performance evaluation indicates that
TEE does not have any impact on the performance of other VMs
that do not use TEE, and that TEE does not have any significant
performance side-effect when compared with running the same
application in traditional VMs.

There are several interesting future research problems. First,
how canwe eliminate, or at least significantly mitigate, the threats
of privileged insiders (cloud computer administrators) and the
threats of side-channel attacks? Second, our argument for the
security of TEE is informal. It is interesting to conceive some
formal model that can be used to rigorously analyze security while
accommodating the implementation details (e.g., locality control
which has played an important role in our security argument).
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