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Abstract

A point-weighted structure is an incidence structure with each point assigned
an element of some set W ⊂ Z+ as a ‘weight’. A point-weighted structure with
no repeated blocks and the property that the sum of the weights of the points
incident with any one block is a constant k is called a point-weighted design. A
t − (v, k, λ;W) point-weighted design is such a structure with the sum of the
weights of all the points equal to v and the property that every set of t distinct
points is incident with exactly λ blocks. This thesis introduces and examines
this generalisation of block designs.

The first chapter introduces incidence structures and designs.
Chapter 2 introduces and defines point-weighted designs. Three construc-

tions of families of t− (v, k, λ;W) point-weighted designs are given.
Associated with any point-weighted design is the incidence structure on

which it is based - the ‘underlying’ incidence structure (u.i.s.). It is shown
in Chapter 3 that any automorphism of the u.i.s. of a t − (v, k, λ;W) point-
weighted design with more than one block and t > 1 preserves weights in the
point-weighted design. The u.i.s. of such a point-weighted design is shown to
be a block design if and only if every point is assigned the same weight. A
necessary and sufficient condition is obtained for the assignment of weights in
any point-weighted design to be essentially uniquely determined by the u.i.s.

Chapter 4 considers t−(v, k, λ;W) point-weighted designs in which all of the
points apart from a ‘special’ point have the same weight. It is shown that when
v > k the weight of the special point is an integer multiple of the weight assigned
to all the other points. A class of these point-weighted designs is demonstrated
to be equivalent to a class of group-divisible designs with specific parameters.

The final chapter uses the procedure of point-complementing incidence struc-
tures to construct point-weighted designs. Trivial point-weighted designs are
defined and a necessary and sufficient condition for the existence of a member
of a certain class of these is obtained. A correspondence between this class of
point-weighted designs and certain trivial block designs is given using point-
complementing.
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Chapter 1

Introduction

This thesis is concerned with examining incidence structures in which each point
is assigned a positive integer as a ‘weight’. For certain incidence structures it is
possible to assign weights to points so that the sum of the weights of the points
in each block is a constant k. We call a structure with such an assignment of
weights and no repeated blocks a ‘Point-Weighted Design’. We use v to denote
the sum of the weights of all the points in a point-weighted design and W to
denote the set of integers used as weights. A uniform design with every point
assigned a weight of 1 is a point-weighted design and so point-weighted designs
can be viewed as a generalisation of uniform designs. We will be concerned with
those point-weighted designs in which every set of t distinct points is incident
with a fixed number of blocks. These ‘t − (v, k, λ;W) point-weighted designs’
are a generalisation of t− (v, k, λ) designs.

In this chapter we introduce incidence structures and designs, discuss some
of their properties and define some notation. Most of the results in the chapter
are covered by [20], [1] and [2].

We call an incidence structure U with ‘block-sizes’ from some set K, no re-
peated blocks and the property that every set of t distinct points is incident with
exactly λ blocks a t− (v,K, λ) design. Associated with a point-weighted design
is its ‘underlying’ incidence structure, and the underlying incidence structure
of a t − (v, k, λ;W) point-weighted design is a t − (v, K, λ) design. It would
be interesting to ascertain which t− (v,K, λ) designs can have weights assigned
to the points so that the resulting point-weighted structure is a point-weighted
design. This is an equivalent problem to determining when a solution w with
entries from the set of positive rationals exists to,

AT w = 1,

where A is an incidence matrix of a t − (v, K, λ) and 1 is the constant vector
with every entry equal to 1. For a general matrix A, this is a notoriously
difficult problem in linear algebra, and it seems that what is known of the
structure imposed on A by it being the incidence matrix of a t− (v, K, λ) does
not appear to make the problem any more soluble. However, in this thesis we
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make progress in the characterisation of t− (v, k, λ;W) point-weighted designs
in certain directions.

The second chapter introduces point-weighted designs and three construc-
tions of families of t− (v, k, λ;W) point-weighted designs are given.

In the third chapter, we show that the assignment of weights in a point-
weighted design D is uniquely determined up to ‘equivalence’ by its underlying
incidence structure if and only if the rank of the underlying incidence structure
is equal to the number of points. We obtain an expression for the number of
blocks incident with a (t − 1)-set of points in a t − (v, k, λ;W) point-weighted
design. We show that if D is a t − (v, k, λ;W) with t > 1 and v > k then any
automorphism of the underlying incidence structure of D ‘preserves’ weights in
D.

The final two chapters investigate specific classes of t − (v, k, λ; {a1, a2})
point-weighted designs in which exactly one point has weight a1. It is shown
that in any such point-weighted design with v > k, a2 divides a1 and the point-
weighted design is equivalent to a t −

(
v
a2

, k
a2

, λ;
{

1, a1
a2

})
. A class of these is

shown to have a certain type of square group divisible design as a substructure
of its underlying incidence structure. Trivial point-weighted designs are defined
and necessary and sufficient conditions are obtained for the existence of a trivial
t− (v, k, λ;W) in which all but one of the points have weight 1. The procedure
of point-complementing is used to establish a correspondence between the class
of trivial t−(v, k, λ;W) point-weighted designs in which all but one of the points
have weight 1 and a certain class of trivial block designs.

1.1 Incidence Structures and Designs

Definition 1.1 An incidence structure is a triple (V,B,I), where V is a
finite set of points, B is a finite set of blocks, and I ⊆ V × B is a binary
relation between V and B. A point, P ∈ V, and block, x ∈ B, are said to be
incident if the pair (P, x) is contained in I.

A pair (P, x) ∈ I is called a flag. Instead of (P, x) ∈ I we sometimes write
PIx or use language such as ‘P is on x,’ or ‘x is on P ’. Conventionally, the
letter v is used to denote the number of points (i.e., v = |V|) and b to denote
the number of blocks (i.e., b = |B|). An incidence structure in which every
block is incident with exactly the same number of points is said to be uniform,
and the letter k is used to denote the number of points incident with any one
block. If an incidence structure has the property that every point is incident
with exactly the same number of blocks then it is said to be regular, and the
letter r is used to denote the number of blocks incident with any one point.

The above definition of an incidence structure allows for the possibility that
either of V or B are empty. It is also possible that a point P ∈ V is not incident
with any blocks or that a block x ∈ B is not incident with any points. We shall
assume throughout this thesis that none of these possibilities occur.
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If S =(V,B,I) is an incidence structure and if V0 and B0 are subsets of the
point-set and block-set respectively, then the substructure of S defined by V0

and B0 is the incidence structure S0 = (V0,B0, I0) where,

I0 = I ∩ (V0 ×B0) .

Thus a substructure of S is a set of points and blocks of S with incidence
‘inherited’ from S.

For any structure which is both uniform and regular, we obtain the following
well-known result, simply by counting flags.

Result 1.2 Let S =(V,B,I) be a uniform, regular structure with every block
incident with k points and every point incident with r blocks. Let v = |V| and
b = |B|, then the parameters k, r, v and b are related by, bk = vr.

Let b, k, v and r be positive integers with v > k and b ≤ (
v
k

)
satisfying

bk = vr. Then it is possible to construct a uniform, regular structure with v
points b blocks, k points on any one block and r blocks on any one point with
no two blocks incident with exactly the same points (see for example [9] page
105). We say that an incidence structure with two blocks incident with exactly
the same points has repeated blocks and call an incidence structure with no
repeated blocks a design. In a design, we can identify a block with the points
with which it is incident, and it is often convenient to consider the blocks as
subsets of the point-set. When this is the case, we say ‘P ∈ x’ or ‘x contains P ’
if a point P and block x are incident. We also use ‘|x|’ to denote the number of
points incident with a block x.

Definition 1.3 Let S =(V,B,I) be a design with v = |V| points. Let K be a
set of positive integers such that |x| ∈ K for every x ∈ B. For positive integers
t and λ, we say that S is a t− (v, K, λ) design if it has the property that every
set of t distinct points is contained in exactly λ blocks.

For convenience, we often drop the word ‘design’ and refer to S as a t −
(v,K, λ). Clearly, if S is a t − (v, K, λ) then it is also a t − (v, K

′
, λ) for any

K
′ ⊇ K. For simplicity, we shall assume throughout this thesis that in any

t− (v, K, λ), K is ‘minimal’ in the sense that for every element k of K, there is
a block incident with exactly k points. We also assume that minK ≥ t. We say
that a block incident with k points ‘has block-size k’ or ‘is a block of size k’.

An incidence structure which has the property that every set of t distinct
points is incident with a fixed number of blocks is said to be ‘t−balanced’. A
variety of names have been given to t−balanced designs with certain properties.
A 2− (v,K, λ) has been called a ‘λ-linked design’ (see for example [34]), but the
more recent convention is to refer to such a structure as a ‘pairwise balanced
design’ (as in [2]). The t − (v, K, λ) designs which have been studied most
are those which are also uniform, and we turn our attention to these for the
remainder of this section.
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Definition 1.4 Let D =(V,B,I) be a t − (v, {k}, λ) for some k ≥ t. Then we
call D a t−(v, k, λ) design and, for convenience, often refer to D as a t−(v, k, λ).

Given a set V of v points and positive integers k ≤ v and t ≤ k, we can
always construct a t− (v, k, λ), T , for some λ as follows. Viewing the blocks as
sets of points, we define the block-set, B, of T to consist of every possible set
of k distinct points from V. Then |B| = (

v
k

)
, and every set of t distinct points

is contained in exactly
(

v−t
k−t

)
blocks. We say that such a design is trivial. If T

is a trivial t − (v, k, λ) then it clearly has the property that for every s in the
range 1 ≤ s ≤ k, T is a s − (v, k, λs), where λs =

(
v−s
k−s

)
. This leads us to note

a property common to all t− (v, k, λ) designs:

Result 1.5 Let D be a t− (v, k, λt). Then, for every integer s within the range
0 ≤ s < t, D is a s− (v, k, λs), where λs is given by,

λs = λt

(
v−s
t−s

)
(
k−s
t−s

) .

Proof
Let S be a fixed set of some s points of D. We prove the result by calculating the
number of blocks containing S, z say, and showing that this value is independent
of the choice of S. Let T be a set of t points of D containing S, and let x be a
block of D containing T . We count the pairs (T, x) in two ways.

For the fixed set S, there are
(
v−s
t−s

)
ways of choosing a set T of t points

containing S, and each of these sets is contained in exactly λt blocks (since D
is a t− (v, k, λt)). Hence, the number of pairs (T, x) is λt

(
v−s
t−s

)
.

The set S is contained in z blocks, and each of these blocks contains exactly
k− s other points. So, from each block x containing S, there are

(
k−s
t−s

)
ways of

choosing a set T of t points containing S. Hence, the number of pairs (T, x) is
z
(
k−s
t−s

)
.

Equating the two expressions for the number of pairs (T, x) gives,

z = λt

(
v−s
t−s

)
(
k−s
t−s

) .

Clearly z is independent of the choice of S, and so every set of s points is
contained in exactly z blocks. Setting λs = z gives the result.

A 2 − (v, k, λ) is called a block design with parameters v, k and λ.
From the above result we see that the class of block designs is exactly the class
of t− (v, k, λt) designs with t ≥ 2.

Considering the case s = 0 in the above result gives an expression for the
total number of blocks in a t − (v, k, λ). Setting s = 1 gives an expression
for the number of blocks containing any point in a t− (v, k, λ) and shows that
every t − (v, k, λ) is regular. Calculating the expressions for λ0 and λ1 from
Result 1.5 for a block design with parameters v, k and λ gives the following
necessary conditions for the existence of a block design as a corollary.
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Corollary 1.6 Necessary conditions for the existence of a 2− (v, k, λ) are that,

λ(v − 1) ≡ 0 (mod (k − 1))
and

λv(v − 1) ≡ 0 (mod k(k − 1)).

Proof
Let D be a 2− (v, k, λ). Then, by Result 1.5, the number of blocks on any one
point, r = λ1, is given by,

r = λ
(v − 1)
(k − 1)

.

Also, the total number of blocks, b = λ0, is,

b = λ
v(v − 1)
k(k − 1)

.

The values r and b must be integers, and hence the corollary is proved.

The above necessary conditions for the existence of a block design with
parameters v, k and λ are not in general sufficient. Hanani ([13],[14],[15]) has
shown that they are however sufficient when k = 3 or 4 for all λ and, apart from
one exception, when k = 5 (see for example [2]). In [31], [32] and [33], Wilson
proves that for given k and λ, there is a value C dependent on k and λ such
that the conditions in Corollary 1.6 are necessary and sufficient for v ≥ C.

1.2 Related Structures

Given an incidence structure S =(V,B,I), there are a number of incidence
structures related to S and we define four of them here. We first introduce the
concepts of isomorphic structures and automorphisms.

Definition 1.7 Let S and U be incidence structures and let P be a point and x
a block of S. An isomorphism, α, from S to U is a bijection from the point-set
of S to the point-set of U and from the block-set of S to the block-set of U such
that Pα and xα are incident in U if and only if P and x are incident in S (i.e.,
α ‘preserves incidence’). If there exists an isomorphism from S to U then S
and U are said to be isomorphic.

An automorphism of an incidence structure S is an isomorphism of S to
itself. Thus, an automorphism of S is a permutation of the points and a per-
mutation of the blocks which preserves incidence. The set of all automorphisms
of an incidence structure S forms a group whose binary operation is the usual
product of mappings, and this group is denoted by AutS.

Letting S =(V,B,I) be any incidence structure, we now define some struc-
tures related to S.
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The complement of S, C(S) = (V,B, I), has the same point-set and block-
set as S, but a point P is incident with a block x in C(S) if and only if P and
x are not incident in S. So we have,

V = V,

B = B,

I = {(P, x) | P ∈ V, x ∈ B, (P, x) /∈ I}.

The following result (see for example [20] page 24) shows that typically, the
complement of a block design is also a block design.

Result 1.8 Let D = (V1,B1, I1) be a 2 − (v, k, λ) with 2 ≤ k ≤ v − 2. Let
b = |B1| and r be the number of blocks incident with a point of D. Then C(D)
is a 2− (v, v − k, b− 2r + λ).

The dual of S, S ′ = (V
′
,B

′
, I
′
) is obtained by ‘exchanging’ points and

blocks and ‘retaining’ incidence. So we have,

V
′

= B,

B
′

= V,

I
′

= {(x, P ) | x ∈ V
′
, P ∈ B

′
, (P, x) ∈ I}.

The derived structure of S at a point P ∈ V, SP = (VP ,BP , IP ), is the
structure whose points are the points of S distinct from P and on a block of
S with P , and whose blocks are those blocks of S incident with P in S; with
incidence ‘retained’ from S. So we have,

BP = {x | x ∈ B, (P, x) ∈ I},
VP = V \ ({P} ∪ {Q | (Q, x) /∈ I ∩ (V×BP ) , ∀x ∈ BP }) ,

IP = I ∩ (VP ×BP ) .

Finally, the point-residue of S at a point P ∈ V, SP = (VP ,BP , IP ), is
the structure obtained by removing from S the point P , all the blocks incident
with P and any point which is only on blocks of S which are also incident with
P in S. So we have,

BP = B \ {x | x ∈ B, (P, x) ∈ I},
VP = V \

(
{P} ∪

{
Q | (Q, x) /∈ I ∩

(
V×BP

)
, ∀x ∈ BP

})
,

IP = I ∩
(
VP ×BP

)
.

Let P be a point of S, then we note that both the derived structure of S at
P and the point-residue of S at P are substructures of S.
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1.3 Incidence Matrices and Fisher’s Inequality

An incidence structure can be specified by a (0, 1)−matrix called an incidence
matrix, which we define in this section. By considering the rank of the incidence
matrix of a pairwise balanced design we show that such a design has the property
that the number of blocks is greater than or equal to the number of points.
This is a slight generalisation of ‘Fisher’s Inequality’ for block designs. Several
authors have given different methods of proof of this inequality - we follow a
slightly simplified version of Majumdar’s method (see [22]), as in [20].

Definition 1.9 Let S =(V,B,I) be an incidence structure and let v = |V| and
b = |B|. Let the points of S be labelled P1, P2, . . . , Pv and the blocks of S be
labelled x1, x2, . . . , xb. Then the v × b matrix A = (aij) defined by,

aij =
{

1 if (Pi, xj) ∈ I
0 otherwise,

is called the incidence matrix of S with respect to the above labelling of the
points and blocks.

It is clear that different labellings of the points and blocks of an incidence
structure S will give rise to different incidence matrices. However, if A and B
are two different incidence matrices of S then there exist permutation matrices
P and Q such that PAQ = B. Thus, any two incidence matrices of S are
equivalent and so have the same rank (throughout this thesis, the rank of a
matrix will be taken to be its rank over the field of rationals). We define the
rank of an incidence structure to be the rank of one (and hence all) of its
incidence matrices.

Let S =(V,B,I) be a 2 − (v,K, λ). Let P1, P2, . . . , Pv be a labelling of the
points of S and x1, x2, . . . , xb be a labelling of the blocks (with b = |B|). Let
A be the incidence matrix of S with respect to this labelling and denote the
number of blocks on the point Pi by ri, for each i = 1, 2, . . . , v. Then,

Result 1.10 AAT = N + λJv, where Jv is the v × v matrix with every entry
equal to 1, and N is the v × v diagonal matrix, diag(r1 − λ, r2 − λ, . . . , rv − λ).

Proof
The entry in the (i, j)th position of AAT is equal to the number of blocks incident
with both the points Pi and Pj in S. So when i = j this value is the number of
blocks incident with the point Pi, ri = ri − λ + λ. When i 6= j, the value is λ
since S is a 2− (v,K, λ).

An incidence structure is said to be proper if it contains a block which
is incident with more than one point but not all of the points. A sufficient
condition for a 2− (v, K, λ) to be proper is clearly that v > maxK.

Result 1.11 If S is a proper 2−(v,K, λ) then ri−λ > 0 for each i = 1, 2, . . . , v.
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Proof
Clearly ri−λ ≥ 0 for each i. Suppose there exists a point Pi for which ri−λ = 0,
i.e., Pi is incident with exactly λ blocks. Let Pj be any other point of S. Then
since there are λ blocks incident with both Pi and Pj , every block incident with
Pi is also incident with Pj . Hence, every block on Pi is incident with every
other point of S. Now let Pl and Pm be any two points of S distinct from Pi.
Then the λ blocks incident with both Pl and Pm are all also incident with Pi

and hence every other point of S. So, every block incident with at least two
points is incident with every point of S. But this gives a contradiction since S
is proper. Hence, ri − λ > 0 for each i = 1, 2, . . . , v.

Result 1.12 If S is a proper 2 − (v, K, λ) with incidence matrix A defined as
above then,

det(AAT ) =
v∏

i=1

(ri − λ)


1 + λ

v∑

j=1

1
(rj − λ)


 .

Proof
Consider the matrix AAT :




r1 λ λ . . . λ λ
λ r2 λ . . . λ λ
λ λ r3 . . . λ λ
...

...
...

. . .
...

...
λ λ λ . . . rv−1 λ
λ λ λ . . . λ rv




.

To compute det(AAT ) we use row and column operations to reduce AAT to
upper triangular form. The determinant is then the product of the entries in
the leading diagonal (see for example [10]).

Firstly, subtract the first row from every other row. Then for each i =
2, 3, . . . , v, add a multiple of ai of the ith column to the first column, where
ai = r1−λ

ri−λ , for each i = 2, 3, . . . , v. This reduces AAT to the form:




x λ λ . . . λ
r2 − λ

r3 − λ
. . .

rv − λ




,

with all entries off the leading diagonal and first row equal to zero, and x given
by,

x = r1 + λ




v∑

j=2

r1 − λ

rj − λ


 .
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Then det(AAT ) is given by,

det(AAT ) =


r1 + λ




v∑

j=2

r1 − λ

rj − λ







(
v∏

i=2

(ri − λ)

)
,

which simplifies to,

det(AAT ) =
v∏

i=1

(ri − λ)


1 + λ

v∑

j=1

1
(rj − λ)


 .

This expression for the determinant of AAT is clearly non-zero (by Re-
sult 1.11) and so we obtain the corollary:

Corollary 1.13 Let S be a proper 2−(v, K, λ) with incidence matrix A defined
as above. Then rank(A) = v.

Proof
Since det(AAT ) 6= 0, the rank of (AAT ) is v. But rank(AAT ) ≤ rank(A) and
so rank(A) ≥ v. But A has v rows and so we have rank(A) = v.

Corollary 1.14 Let S be a proper 2− (v, K, λ) with b blocks. Then b ≥ v.

Proof
Let A be an incidence matrix of S. Then rank(A) = v by Corollary 1.13. But
A has b columns and so rank(A) ≤ b. Hence, b ≥ v.

This result is known as ‘Fisher’s Inequality’ in the case when S is a proper
2−(v, k, λ). A 2−(v, K, λ) with b = v is said to be ‘square’, and these structures
have been the subject of much work (see for example [11],[26],[27],[34]). A square
2 − (v, k, λ) is called a ‘symmetric’ block design. It is to some of these and a
few other classes of incidence structures to which we now turn our attention.

1.4 Some Special Structures

In this section we define some incidence structures and designs with special
properties and mention some results relating to them.

1.4.1 Projective and Affine Planes

Incidence structures with the property that there is at most one block incident
with any pair of distinct points can be viewed geometrically with the blocks
viewed as lines. In such a case we say that ‘the point P lies on the line x,’ or
‘the line x lies on the point P ,’ if P and x are incident. Two points are ‘collinear’
if they lie on a line together, and two lines x and y are said to ‘intersect’ at the
point P if P lies on both x and y.
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Definition 1.15 A projective plane is an incidence structure with points and
lines satisfying:

(i) any two distinct points lie on a unique line;

(ii) any two lines intersect in a unique point;

(iii) there exist at least four points no three of which are collinear.

An incidence structure satisfying the first two of the above conditions but
not the third is called a degenerate projective plane. For any k ≥ 2 there
is exactly one degenerate projective plane up to isomorphism with k + 1 points
and more than one line.

Any finite projective plane P has an associated parameter q called the order
of P. Counting arguments can be used to show that a projective plane of order q
has q2+q+1 points and q2+q+1 lines, with every line on q+1 points and every
point on q + 1 lines. A projective plane of order q is then clearly a symmetric
2− (q2 + q + 1, q + 1, 1), and the class of projective planes is in fact exactly the
class of symmetric 2 − (v, k, 1) designs. A projective plane of order q can be
constructed for every prime-power q, with the points co-ordinatised by the finite
field of order q, GF (q). Such planes are said to be ‘Desarguesian’. There are
examples of projective planes of prime-power order which are not isomorphic
to the Desarguesian plane of that order, but there are no known examples of
projective planes of non-prime-power order (see [19] for further details).

It is known that any projective plane of order 2 is isomorphic to the Desar-
guesian plane of that order. Such a structure is called a Fano plane. Similarly,
any plane of order 4 = 22 is isomorphic to the Desarguesian plane of order 4.

Let P be a projective plane. A substructure P0 of P which is itself a pro-
jective plane is said to be a subplane of P and is called proper if P0 6= P.
The possible orders for subplanes of any projective plane are restricted by the
following result due to Bruck ([7]):

Result 1.16 Let P be a finite projective plane of order n with a proper subplane
P0 of order m. Then either n = m2 or n ≥ m2 + m.

If n = m2 then P0 is called a Baer subplane of P. Every line of P is incident
with either 1 point of P0 or every point on some line of P0 (m+1 points). Since
GF (q) is contained in GF (q2) for any prime-power q, the Desarguesian plane
of order q is a Baer subplane of the Desarguesian plane of order q2.

An affine planeA can be constructed from a projective plane P by removing
a fixed line l∞ of P and all the points on l∞. The line l∞ is called the ‘line
at infinity’. An affine plane constructed from a projective plane of order q is a
2− (q2, q, 1). The lines of such an affine plane can be partitioned into ‘parallel
classes’ of non-intersecting lines. Two lines are in the same parallel class of A
if and only if they intersect at a point on l∞ in P. Every point of A is incident
with exactly one line of each parallel class.
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1.4.2 Projective and Affine Spaces

We now define projective and affine spaces and state how they can be used to
obtain families of 2 − (v, k, λ) designs for certain values of v, k and λ. Further
details can be found in [17], [20] and [2].

Let V be the vector space of dimension n + 1 over the field GF (q), for
some q > 1. The set of subspaces of V together with the incidence relation of
subspace containment is called the projective space, PG(n, q), and n is called
the dimension of PG(n, q). If W is a subspace of V of dimension m+1, where
0 ≤ m ≤ n, then the set of subspaces of W together with the incidence relation
of subspace containment is called an m-dimensional subspace of PG(n, q). The
subspaces of PG(n, q) of dimension 0 are called the points of PG(n, q), and
subspaces of dimension 1,2 and n−1 are called lines, planes and hyperplanes
respectively.

Given a projective space PG(n, q) we define an incidence structure whose
points are the points of PG(n, q) and blocks are the m-dimensional subspaces
of PG(n, q), for some 1 ≤ m ≤ n, with incidence ‘inherited’ from PG(n, q).
We denote such a structure by PGm(n, q), and note that it has the following
property,

Result 1.17 PGm(n, q) is a 2−
(

qn+1−1
q−1 , qm+1−1

q−1 , λ
)
, where λ is given by,

λ =

(
qn−1 − 1

) (
qn−2 − 1

)
. . .

(
qn−m+1 − 1

)

(qm−1 − 1) (qm−2 − 1) . . . (q − 1)
.

An affine space, AG(n, q), of dimension n is obtained by removing from
PG(n, q) a fixed hyperplane (a (n − 1)-dimensional subspace) and all the sub-
spaces incident with it. The removed hyperplane of PG(n, q) is called the hy-
perplane at infinity, and we denote it by Π∞. We define the subspaces of
dimension m of AG(n, q), for some 0 ≤ m ≤ n, to be the subspaces of dimension
m of PG(n, q) but with the points of Π∞ deleted.

Given an affine space AG(n, q), we obtain an incidence structure AGm(n, q)
whose points are the points of AG(n, q) and whose blocks are the m-dimensional
subspaces of AG(n, q), for some 1 ≤ m ≤ n, with incidence ‘inherited’ from
AG(n, q).

Result 1.18 AGm(n, q) is a 2− (qn, qm, λ), where λ is given by,

λ =

(
qn−1 − 1

) (
qn−2 − 1

)
. . .

(
qn−m+1 − 1

)

(qm−1 − 1) (qm−2 − 1) . . . (q − 1)
.

1.4.3 Resolvable Designs

Let D be a t − (v, k, λ). A resolution of D is a partition of the blocks of
D into classes, called resolution classes, such that the points of D and the
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blocks of any given resolution class form a 1 − (v, k, σ), for some σ dependent
on the resolution class. A t − (v, k, λ) which admits a resolution is said to be
resolvable. If a resolvable design D has the property that the blocks of any
resolution class and the points of D form a 1 − (v, k, σ) for some fixed σ then
the resolution is said to be a σ-resolution.

A 1-resolution is more commonly called a parallelism, and in such a case,
the resolution classes are called parallel classes. We have already seen that
an affine plane is an example of a 2 − (q2, q, 1) which admits a parallelism. In
fact, for some q ≥ 2, n > 1 and 1 ≤ m ≤ n, the incidence structure AGm(n, q)
defined in Section 1.4.2 admits a parallelism.

Let D be a t− (v, k, λ) which admits a σ-resolution. Then, every point of D
is on r blocks of D, for some integer r, and on exactly σ blocks of each resolution
class. Hence, if c is the number of resolution classes, then r = cσ and so we
have,

Result 1.19 Let D be a t− (v, k, λ) which admits a σ-resolution. Let r be the
number of blocks on any point of D, and c the number of resolution classes.
Then c = r

σ .

1.4.4 Biplanes and Nets

Since there is at least one projective plane of order q for every prime-power q,
there are an infinite number of symmetric 2 − (v, k, 1) designs. However, it is
conjectured (see for example [8]) that there are only finitely many symmetric
2 − (v, k, λ) designs for any given λ > 1. A symmetric 2 − (v, k, 2) is called a
biplane, and the only values of k for which examples of biplanes are known
are k = 3, 4, 5, 6, 9, 11 and 13 (see for example [1] and [8]). Furthermore, it is
known that there is only one biplane (up to isomorphism) with block-size k for
each k = 3, 4, 5 (in the case k = 3, the biplane is the trivial design with four
points and block-size three), and there are three non-isomorphic biplanes with
block-size 6. For given k, a necessary condition for the existence of a symmetric
2− (v, k, 2) is that v = 1

2

(
k2 − k + 2

)
.

A net N is an incidence structure of points and blocks such that:

(i) there exist points and blocks, and for every point (block) there exist two
blocks (points) not incident with it;

(ii) for any two distinct points P and Q there exists at most one block incident
with both P and Q;

(iii) if a point P is not incident with a block x then there exists a unique block
y incident with P such that x and y do not intersect.

The third condition defines a parallelism in N (see for example [12] page 141
and [24] page 190), and a net with i parallel classes is often called an i−net.
An i−net with s lines in each parallel class has s2 points, si blocks, with each
block incident with s points and each point incident with i blocks (one from
each parallel class). Possible values for the parameter s are bounded below by
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s ≥ i − 1. An affine plane is an example of a net; a finite i−net N is an affine
plane if and only if the blocks of N are partitioned into parallel classes of size
i−1 (see [12]). Nets have been the subject of much investigation, and the reader
is referred to [20], [12] and [24] for a more detailed summary of these incidence
structures and their properties.

1.4.5 Group Divisible Designs

Group divisible designs were introduced by Bose and others (see for example [4],
[3]) as a generalisation of block designs. The following definition is consistent
with that of Bose and of Raghavarao ([24]).

Definition 1.20 Let G =(V,B,I) be a uniform, regular design with a partition
of the point-set into n point-classes, µ1, µ2, . . . , µn, each of size m. Let v = mn
be the number of points and let k be the number of points incident with any one
block. Then G is said to be a group divisible 2− (v, k, (λ1, λ2)) design if the
number of blocks incident with a pair of points is equal to λ1 if they are in the
same point-class and λ2 if they are in different point-classes, for some integers
λ1 and λ2.

We denote a group divisible 2−(v, k, (λ1, λ2)) design by GD 2−(v, k, (λ1, λ2)).
A block design can be viewed as a group divisible design with point-classes con-
taining only one point (i.e., with m = 1). Thus the above definition generalises
that of block designs.

The above is a slightly more general definition than that given by Hanani
in [16], who considers group divisible 2 − (v, k, (0, λ2)) designs. Bose and
Connor ([3]) obtain the following relation between the parameters of a GD
2− (v, k, (λ1, λ2)) with n point-classes each of size m,

(m− 1) λ1 + m (n− 1)λ2 = r (k − 1) ,

where r is the number of blocks incident with any one point. In the case λ1 = 0,
this yields the necessary condition for the existence of a GD 2− (v, k, (0, λ2)),

λ2 (v −m) ≡ 0 (mod (k − 1)). (1.1)

Using counting arguments, a further necessary condition for the existence of a
GD 2− (v, k, (0, λ2)) can be obtained,

λ2v (v −m) ≡ 0 (mod k(k − 1)). (1.2)

In [6] it is shown that (1.1) and (1.2) are sufficient conditions for k = 3 and
k = 4 with the two exceptions that there is no GD 2− (8, 4, (0, 1)) with m = 2,
and there is no 2− (24, 4, (0, 1)) with m = 6 (see also [2]).

A transversal design is a GD 2− (v, k, (0, 1)) with v > k and the property
that each block is incident with exactly one point from each point-class (see for
example [1]). With this defintion, a transversal design is precisely the dual of a
net, and vice versa. Recall from Section 1.4.4 that for an i−net with s blocks
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in each parallel class, the value of s is at least i − 1. Then, since a transversal
design is the dual of a net and the number of points on any one block of a
transversal design is equal to the number of point-classes, we have the following
result.

Result 1.21 Let T be a transversal design with block-size k and point-classes
each of size m. Then, m ≥ k − 1.

We conclude this subsection by observing that the dual of a 2 − (v, k, 1)
which admits a parallelism is a GD 2− (v, k, (0, 1)).

1.5 Balanced Orthogonal Designs

Let v, b, k, r and λ be positive integers and let W be a v× b matrix with entries
from {0, 1,−1}. Define the underlying matrix N of W to be the (0, 1)−matrix
obtained by replacing every entry of W equal to −1 by 1. Then W is a balanced
orthogonal design with parameters v, b, k, r and λ if:

(i) the underlying matrix, N , of W is the incidence matrix of a 2 − (v, k, λ)
with r blocks on any one point;

(ii) the inner (dot) product of any two distinct rows of W is zero.

We denote a balanced orthogonal design with parameters v, b, k, r and λ by
BOD (v, b, k, r, λ).

Balanced orthogonal designs were introduced by Bhaskar Rao in [25], and
can be used to construct group divisible designs. Let W be a BOD (v, b, k, r, λ)
for some v, b, r, k and even λ. The incidence matrix of a group divisible design G
can be constructed by viewing the rows of W as point-classes and the columns
of W as block-classes. For each i = 1, 2, . . . v and j = 1, 2, . . . , b, denote the
entry of W in the (i, j)th position by wij . If wij = 0 then replace wij by the
2× 2 matrix with every entry equal to zero. If wij = 1, then replace wij by the
2× 2 identity matrix. If wij = −1, then replace wij by the matrix,

(
0 1
1 0

)
.

The resulting (0, 1)−matrix with 2v rows and 2b columns is the incidence matrix
of a GD 2− (

2v, k,
(
0, λ

2

))
with point-classes of size two.
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Chapter 2

Point-weighted Designs -
Introduction and Some
Constructions

In this chapter we define point-weighted designs and the notation we will be
using when discussing them. We also give some constructions of families of
point-weighted designs.

2.1 Basic Definitions

Definition 2.1 A point-weighted structure, (V,B,I,w) is an incidence struc-
ture with point-set V, block-set B and incidence relation I, together with a
‘weight function’, w : V → Z+, assigning a ‘weight’ to every point.

Definition 2.2 For any point-weighted structure, S =(V,B,I,w), we define the
weight-set, W, to be the image of the weight function w.

Since any point-weighted structure is an incidence structure together with
a weight function, it is natural to define the underlying incidence structure of a
point-weighted structure to be that on which it is based, i.e.,

Definition 2.3 The underlying incidence structure of a point-weighted
structure S =(V,B,I,w) is the incidence structure U =(V,B,I).

We can now define a point-weighted design and a t − (v, k, λ;W) point-
weighted design:

Definition 2.4 A point-weighted design with parameters v and k is a finite
point-weighted structure with no repeated blocks, the sum of the weights of all
the points in the point-set equal to v, and the sum of the weights of the points
incident with any one block equal to a constant k.
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As with incidence structures, we say that a point-weighted structure is
proper if it contains a block incident with more than one point but not all
of the points. Also, as with designs, since no two blocks are incident with ex-
actly the same points, we can identify a block with the points with which it
is incident. It is often convenient to consider the blocks to be subsets of the
point-set, in which case a point P is said to be ‘contained in’ a block x if P and
x are incident.

Definition 2.5 A t− (v, k, λ;W) point-weighted design is a point-weighted
design with parameters v and k and weight-set W, and the property that every
set of t distinct points is contained in exactly λ blocks, for positive integers t
and λ.

As with t − (v,K, λ) designs we shall assume throughout this thesis that
in a t − (v, k, λ;W) point-weighted design each block is incident with at least
t points. For ease of expression, we shall often write t − (v, k, λ;W) to mean
t − (v, k, λ;W) point-weighted design. We write u for the number of points
in the point-set of a point-weighted design, i.e. u = |V|. Then, denoting the
point-set by,

V = {Pi | i = 1, 2, . . . , u},
we have,

v =
u∑

i=1

w(Pi).

We note that a point-weighted structure in which all points have weight 1
has the property that the number of points on any one block is equal to the
sum of the weights of those points, and the number of points in the point-set
is equal to the sum of their weights (i.e., v = |V| = u). Hence, the underlying
incidence structure of a t− (v, k, λ; {1}) is a t− (v, k, λ). We also note that the
underlying incidence structure of any t− (v, k, λ;W) is a t− (v,K, λ), for some
set of positive integers K, since every set of t distinct points is incident with
exactly λ blocks.

Example 2.6 Consider the simple incidence structure in Figure 2.6, a degen-
erate projective plane, with point-set V = {P1, P2, P3, P4, P5} and block-set
B = {x1, x2, x3, x4, x5}. Considering the blocks as subsets of the point-set we
have,

x1 = {P1, P2},
x2 = {P1, P3},
x3 = {P1, P4},
x4 = {P1, P5},
x5 = {P2, P3, P4, P5}.

Define the weight function w : V → {1, 3} by,

w(P1) = 3,
w(P2) = w(P3) = w(P4) = w(P5) = 1.
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Figure 2.1: A degenerate projective plane

Then, the sum of the weights of the points in every block is equal to 4 and
every pair of points occurs in exactly one block. Hence, since the sum of the
weights of all the points in V is 7, we have constructed a 2− (7, 4, 1; {1, 3}).

We have already noted that the underlying incidence structure of a t −
(v, k, λ; {1}) is a t− (v, k, λ), but in fact we can say slightly more:

Lemma 2.7 Let D be a t− (v, k, λ; {a}) for some positive integer a. Then the
underlying incidence structure of D is a t− (

v
a , k

a , λ
)
.

Proof
Since W = {a}, every point of D must have weight a. Thus the sum of the
weights of the points of D, v, must equal ua, where u is the number of points.
Similarly, for any block of D, the sum of the weights of the points incident with
the block must equal k1a, where k1 is the number of points on the block. But the
sum of the weights of the points on each block is k, and so each block must be
incident with the same number of points, k1 = k

a . So, the underlying incidence
structure of D is a t− (u, k1, λ) or, substituting for u and k1, a t− (

v
a , k

a , λ
)
.

Clearly, given any t − (v, k, λ;W1), D1 say, and any positive integer a, we
can construct D2 - a t − (va, ka, λ;W2) - by setting the underlying incidence
structure of D2 to be the same as that of D1 and then setting the weight of
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every point in D2 to be its weight in D1 multiplied by a. This leads us to define
a notion of equivalence of point-weighted structures:

Definition 2.8 Let S1 = (V1,B1, I1, w1) and S2 = (V2,B2, I2, w2) be two
point-weighted structures and let U1 = (V1,B1, I1) and U2 = (V2,B2, I2) be
their respective underlying incidence structures. Then S1 and S2 are said to be
equivalent if there exists an isomorphism φ : U1 → U2 satisfying,

w2(φ(P )) = aw1(P ),

for every point P ∈ V1 and for some positive rational a.

So, S1 and S2 are equivalent if their underlying incidence structures are iso-
morphic and one weight function is a ‘multiple’ of the other. We note that this
definition of equivalence does indeed give an equivalence relation as the name
suggests. In the case where a is equal to one we say that the two point-weighted
structures are isomorphic, or more formally:

Definition 2.9 Let S1 = (V1,B1, I1, w1) and S2 = (V2,B2, I2, w2) be two
point-weighted structures and let U1 = (V1,B1, I1) and U2 = (V2,B2, I2) be
their respective underlying incidence structures. An isomorphism from S1 to
S2 is an isomorphism, φ, from U1 to U2 satisfying,

w2(φ(P )) = w1(P ),

for every point P ∈ V1. Two point-weighted structures are isomorphic if there
exists an isomorphism from one to the other.

Definition 2.10 An automorphism of a point-weighted structure S is an iso-
morphism of S onto itself (i.e., an automorphism of the underlying incidence
structure which ‘preserves weights’).

It is easily verified that the set of all automorphisms of a point-weighted
structure S forms a group whose binary operation is the usual product of map-
pings, and we denote this group by AutS. We note that any automorphism of
S is also an automorphism of its underlying incidence structure U . Hence AutS
is a subgroup of AutU .

Finally, for any finite point-weighted structure, we define a weighted inci-
dence matrix as follows:

Definition 2.11 Let S =(V,B,I,w) be a finite point-weighted structure and set
u = |V| and b = |B|. Let the points of S be labelled P1, P2, . . . , Pu and let the
blocks be labelled x1, x2, . . . , xb. Then the u× b matrix AW = (aij) defined by,

aij =
{

w(Pi) if Pi is incident with xj

0 otherwise,

is called the weighted incidence matrix of S with respect to the above labelling
of the points and blocks.
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Let S =(V,B,I,w) be a finite point-weighted structure with underlying inci-
dence structure U =(V,B,I), and label the points and blocks of S (and hence U)
as in the above definition. Let A be the incidence matrix of U with respect to
such a labelling of the points and blocks. We note that the weighted incidence
matrix, AW , of S with respect to the same labelling of points and blocks is then
given by,

AW = WA,

where W is the diagonal matrix, W = diag(w(P1), w(P2), . . . , w(Pu)).
The most convenient way to completely specify a point-weighted structure

on paper is often by giving a weighted incidence matrix of it, and all the specific
examples of point-weighted structures given in this thesis will be represented in
such a way.

Example 2.12 The point-weighted design constructed in Example 2.6 can be
represented by the weighted incidence matrix,

AW =




3 3 3 3 0
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1




.

Example 2.13 A 2− (17, 5, 1; {1, 2, 3}) is specified completely by the weighted
incidence matrix given in Figure 2.2.




3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 2 2 2 0 0 0 2 0 0 0
0 2 0 0 0 0 0 2 0 0 2 2 0 0 2 0 0
0 0 2 0 0 0 0 0 2 0 2 0 2 0 0 2 0
0 0 0 2 0 0 0 0 0 2 0 2 2 0 0 0 2
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1




Figure 2.2: A weighted incidence matrix of a 2− (17, 5, 1; {1, 2, 3}).

2.2 Some Constructions

We now exhibit three constructions of families of point-weighted designs. We
start with a construction of point-weighted designs with one point of weight
greater than 1 and all other points of weight 1.
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2.2.1 Imbedding a Block Design

Let D =(V,B,I) be a t− (u, k, λ). Label the points of D as P1, P2, . . . , Pu and
the blocks x1, x2, . . . , xb (where b = |B|) and let A be the incidence matrix of
D with respect to this labelling. Let T = (V,BT , IT ) be the trivial design with
block-size t−1 on the u points P1, P2, . . . , Pu, and let T be the incidence matrix
of T with respect to the above labelling of the points and some labelling of the
blocks z1, z2, . . . , z( u

t−1).

We define a point-weighted structure D′
, by adjoining to D a new point,

Pu+1, distinct from P1, P2, . . . , Pu, and new blocks y1, y2, . . . , y( u
t−1), distinct

from the blocks of D and T . Put D′
= (V

′
,B

′
, I
′
, w) by setting,

• V
′
= V ∪ {Pu+1},

• B
′
= B ∪ {yj | j = 1, 2, . . . ,

(
u

t−1

)},

• I
′
= I ∪ I1,

where I1 is defined by,

(Pu+1, yj) ∈ I1, j = 1, 2, . . .
(

u
t−1

)
(Pi, yj) ∈ I1 ⇐⇒ (Pi, zj) ∈ IT , j = 1, 2, . . .

(
u

t−1

)
and i = 1, 2, . . . , u.

So, considering the blocks as sets of points, each new block contains the
point Pu+1 together with a set of t− 1 points from V, and every possible set of
t− 1 points from V determines such a block.

Define the weight function w on the points of D′
by,

w(Pi) =
{

1 if i ∈ {1, 2, ..., u}
k − t + 1 if i = u + 1.

Then D′
is a point-weighted structure. Order the blocks of D′

with the new
blocks first, i.e. as y1, y2, . . . , y( u

t−1), x1, x2, . . . , xb, and the points P1, P2, . . . , Pu, Pu+1.

Then the weighted incidence matrix of D′
with respect to this ordering is,

A′W =
(

T A
(k − t + 1) (k − t + 1) . . . (k − t + 1) 0 0 . . . 0

)
.

Lemma 2.14 If D is a t− (u, k, 1) then D′
is a t− (u + k− t + 1, k, 1; {1, (k−

t + 1)}).

Proof
Each block of D′

is incident with either k points of weight 1 or one point of
weight k − t + 1 and t− 1 points of weight 1. Thus, for every block x ∈ B

′
,

∑

PIx

w(P ) = k.
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Each of the new blocks yj , j = 1, 2, . . . ,
(

u
t−1

)
, is incident with the new

point, Pu+1, and so the new blocks are all distinct from the blocks of D. Thus,
since D and T have no repeated blocks, D′

has no repeated blocks and is a
point-weighted design.

The sum of the weights of all the points in D′
is,

u+1∑

i=1

w(Pi) =
u∑

i=1

w(Pi) + w(Pu+1)

= u + (k − t + 1).

Since D is a t− (u, k, 1), every t-set of points of D is incident with exactly one
block in D, and hence exactly one block in D′

. To check that D′
is the required

point-weighted design we need to show that every t-set of points of the form
{Pu+1, Pi1 , Pi2 , . . . , Pit−1} , Pi1 , Pi2 , . . . , Pit−1 ∈ V, is incident with exactly one
block. But every (t−1)-set of points, {Pi1 , Pi2 , . . . , Pit−1} , Pi1 , Pi2 , . . . , Pit−1 ∈
V, is incident with exactly one block in T and so by construction is incident
with exactly one block in D′

together with the point Pu+1.

This construction is a generalisation of the case when t = 2, which was
proved as joint work with T.Powlesland.

2.2.2 Imbedding a Resolvable Block Design

LetA = (V1,B1, I1) be a 2−(u, k, λ) for some λ ≥ 1 which admits a λ-resolution.
Let c = u−1

k−1 be the number of resolution classes and label the resolution classes
β1, β2, . . . , βc. Suppose there exists a 2 − (

c, k
a + 1, λ

)
, R = (V2,B2, I2), for

some positive integer a. Set b1 = |B1| and b2 = |B2|, and label the points and
blocks of A and R as:

V1 = {Pi | i = 1, 2, . . . , u},
B1 = {xj | j = 1, 2, . . . , b1},
V2 = {Bi | i = 1, 2, . . . , c},
B2 = {yj | j = 1, 2, . . . , b2}.

We construct a point-weighted structure D =(V,B,I,w), by setting:

• V = V1 ∪V2,

• B = B1 ∪B2,

• I = I1 ∪ I2 ∪ I3, where I3 is a subset of V2 ×B1 and is defined by,

(Bi, xj) ∈ I3 ⇐⇒ xj ∈ βi i = 1, 2, . . . , c and j = 1, 2, . . . , b1,

• w to be the function defined by:

w(Pi) = 1 i = 1, 2, . . . , u,
w(Bi) = a i = 1, 2, . . . , c.
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Lemma 2.15 The point-weighted structure D =(V,B,I,w) constructed above is
a 2− (u + ca, k + a, λ; {1, a}).

Proof
D has u points of weight 1 and c points of weight a and so, labelling the points
of V as Q1, Q2, . . . , Qu+c,

u+c∑

i=1

w(Qi) = u + ca.

There are two types of blocks in D - those from B1 and those from B2. The
λ-resolution is a partition of B1 and so each block from B1 is in exactly one
resolution class. Hence, every block from B1 is incident in D with exactly k
points from V1, all of weight 1, and one point from V2, of weight a. So, the
sum of the weights of the points incident with a block from B1 is k + a. Every
block from B2 is incident with k

a + 1 points from V2, all of weight a, and no
points from V1. Hence, the sum of the weights of the points incident with a
block from B2 is a

(
k
a + 1

)
= k + a. Clearly, no two blocks of D are incident

with exactly the same points, thus D is a point-weighted design.
Since A is a 2−(u, k, λ), every pair of points from V1 is incident with exactly

λ blocks from B1 in D. Each block from B2 is incident with points only from
V2 and so every pair of points from V1 is incident with exactly λ blocks of
D. Since R is a 2− (

c, k
a + 1, λ

)
, every pair of points from V2 is incident with

exactly λ blocks from B2 in D. Each block from B1 is incident with only one
point from V2 and so every pair of points from V2 is incident with exactly λ
blocks of D.

Let P be a point from V1 and Bi a point from V2, for some i ∈ {1, 2, . . . , c}.
We need to show that there are exactly λ blocks of D incident with both P and
Bi. Clearly, no block from B2 is incident with both P and Bi, since P is from
V1. Then, by the definition of a λ-resolution, there are exactly λ blocks in the
resolution class βi incident with P , and each of these is also incident with Bi in
D. Hence, there are exactly λ blocks of D incident with both P and Bi. Thus,
D is a 2− (u + ca, k + a, λ; {1, a}).

If A is a 2 − (u, k, 1) admitting a parallelism, then setting a = k and R
to be the trivial block design with c = u−1

k−1 points and block-size 2, we can

construct a 2 −
(

2uk−(u+k)
k−1 , 2k, 1; {1, k}

)
. A specific example of this is given

in Example 2.16. Also, if A is an affine plane of order n (a 2 − (n2, n, 1)),
then setting a = 1 and R to be the trivial 2 − (n + 1, n + 1, 1) with just one
block incident with all the points of R yields a point-weighted design in which
all points have weight 1 and the underlying incidence structure is a projective
plane of order n.

The case when A is an affine plane, a = k and R is a trivial design with
block-size 2 was developed jointly with T. Powlesland.
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Example 2.16 Letting A be the affine plane of order 3 in the above construc-
tion; setting x = 3, and letting R be the trivial block design with four points
and block-size two yields a 2− (21, 6, 1; {1, 3}). A weighted incidence matrix for
such a point-weighted design is given in Figure 2.3.




0 0 0 3 3 3 0 0 0 0 0 0 3 3 3 0 0 0
0 0 0 0 0 0 3 3 3 0 0 0 3 0 0 3 3 0
3 3 3 0 0 0 0 0 0 0 0 0 0 3 0 3 0 3
0 0 0 0 0 0 0 0 0 3 3 3 0 0 3 0 3 3
1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0




Figure 2.3: A 2− (21, 6, 1; {1, 3}) constructed from the affine plane of order 3

2.2.3 Construction from a Block Design with
a Parallelism

Let R = (V0,B0, I0) be a proper 2 − (u, k, 1) which admits a parallelism. Let
c = u−1

k−1 be the number of parallel classes and set b = |B0|. Label the points
of R as P1, P2, . . . , Pu, the blocks x0,1, x0,2, . . . , x0,b, and the parallel classes
β1, β2, . . . βc.

Let λ be an integer in the range 0 ≤ λ < c, and let a be a positive inte-
ger. Suppose S = (Vλ,Bλ, Iλ) is a 2 − (c, a + 1, λ). Label the points of S as
B1, B2, . . . , Bc, and setting bλ = |Bλ|, label the blocks of S as y1, y2, . . . , ybλ

.
Let σ be a permutation of the set of indices, C = {1, 2, . . . , c}, such that, for
each i ∈ C, iσj 6= i for each j = 1, 2, . . . , λ − 1 (where iσj denotes the image
of i under j applications of σ). Then we construct a point-weighted structure
D =(V,B,I,w) as follows:

Set V = V0 ∪Vλ.
For each l = 1, 2, . . . , λ − 1, define a block-set, Bl, to consist of b blocks

labelled as,
Bl = {xl,1, xl,2, . . . , xl,b}.

Then set,
B = B0 ∪B1 ∪B2 ∪ . . . ∪Bλ−1 ∪Bλ.

Define the set I
′ ⊂ (Vλ ×B0) by,

(Bi, x0,j) ∈ I
′ ⇐⇒ x0,j ∈ βi i = 1, 2, . . . , c and j = 1, 2, . . . , b,
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and set I
′
0 = I0 ∪ I

′
. For each l = 1, 2, . . . , λ− 1, define the set Il ⊂ (V×Bl) by,

(Pi, xl,j) ∈ Il ⇐⇒ (Pi, x0,j) ∈ I0 i = 1, 2, . . . , c and j = 1, 2, . . . , b,
and,

(Bi, xl,j) ∈ Il ⇐⇒ x0,j ∈ βiσl i = 1, 2, . . . , c and j = 1, 2, . . . , b.

Then define incidence in D by,

I = I
′
0 ∪ I1 ∪ I2 ∪ . . . ∪ Iλ−1 ∪ Iλ.

So essentially, we are using the elements of Vλ to assign a labelling to the
parallel classes of R, and then permuting the labels.

Finally, we define the weight function w by,

w(Pi) = a i = 1, 2, . . . , u,
w(Bi) = k i = 1, 2, . . . , c.

Lemma 2.17 The point-weighted structure D =(V,B,I,w) constructed above is
a 2− (ua + ck, k (a + 1) , λ; {a, k}).

Proof
D has exactly u points of weight a and c points of weight k, so the sum of the
weights of all the points of D is ua + ck.

Each block of R is in exactly one parallel class of R. Hence, each block from
B0 is incident with exactly one point from Vλ in D, the point corresponding
to the parallel class of R containing that block. Each block from B0 is also
incident with exactly k points from V0. Hence, the sum of the weights of the
points incident with a block from B0 is k + ak. By definition, each block from
Bl, for each l ∈ {1, 2, . . . , λ − 1}, is also incident with exactly one point from
Vλ and k points from V0. Hence, the sum of the weights of the points incident
with a block from Bl, for some l ∈ {1, 2, . . . , λ− 1}, is also k + ak.

Each block from Bλ is incident with exactly a + 1 points from Vλ and no
points from V0, and so the sum of the weights of the points incident with a
block from Bλ is (a + 1)k. So, for D to be a point-weighted design we need to
show that no two blocks of D are incident with exactly the same points.

Clearly, no two blocks from the same block-set Bl, l ∈ {0, 1, . . . , λ}, are
incident with exactly the same points since R and S are designs. Also, a block
from Bλ cannot be incident with exactly the same points as a block from Bl,
for any l ∈ {1, 2, . . . , λ − 1}, since the blocks from Bλ are incident with points
only from Vλ.

For some l, m ∈ {0, 1, . . . , λ−1} with l 6= m, let xl,i and xm,j be blocks from
Bl and Bm respectively, . Then, if i 6= j, xl,i and xm,j are not both incident
with the same points from V0. If i = j, xl,i and xm,i are incident with the same
points from V0 but, by the definition of σ, each with a different point from Vλ.
Thus, D is a point-weighted design.

We now show that every pair of points of D is on exactly λ blocks of D.
Clearly, any pair of points from Vλ is on exactly λ blocks from Bλ and no other
blocks of D. Also, since R is a 2− (u, k, 1), every pair of points from V0 is on
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exactly one block from B0. Thus, every pair of points from V0 is on exactly
one block from Bi for each i = 1, 2, . . . , λ− 1. The blocks from Bλ are incident
with points only from Vλ, hence every pair of points from V0 is on exactly λ
blocks of D.

Let P be a point from V0. Then P is on exactly one block in each parallel
class of R. Thus, if Bi (i ∈ {1, 2, . . . , c}) is a point from Vλ, P is on exactly
one block from B0 together with Bi - the block in the parallel class βi which is
incident with P . Also, for some l ∈ {1, 2, . . . , λ− 1}, P is on exactly one block
of Bl together with Bi - the block corresponding with the block of R in the
parallel class βiσl which is incident with P . Finally, there are no blocks of Bλ

incident with P . Hence there are exactly λ blocks of D incident with both P
and Bi.

Thus, D is a 2− (ua + ck, k (a + 1) , λ; {a, k}).

Given a proper 2 − (u, k, 1), R, which admits a parallelism with c parallel
classes, it is possible to construct a certain point-weighted design, D, as de-
scribed above. Setting a = λ = 1, and S to be the trivial block design with c
points and block-size two yields a 2− (u + ck, 2k, 1; {1, k}).

Example 2.18 Let R be the trivial block design with six points and block-size
two. Then R admits a parallelism with c = 5 parallel classes, and we label
these β1, β2, β3, β4, β5. Let σ be the cyclic permutation (1, 2, 3, 4, 5) and set
λ = 3 and a = 3. Let S be the trivial block design with five points and block-
size two. Then, using the above construction with these parameters, we obtain
a 2 − (28, 8, 3; {2, 3}).The transpose of a weighted incidence matrix of such a
point-weighted design is given in Figure 2.4.
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


3 3 0 0 0 0 2 0 0 0 0
3 0 3 0 0 0 0 2 0 0 0
3 0 0 3 0 0 0 0 2 0 0
3 0 0 0 3 0 0 0 0 2 0
3 0 0 0 0 3 0 0 0 0 2
0 3 3 0 0 0 0 0 0 0 2
0 3 0 3 0 0 0 2 0 0 0
0 3 0 0 3 0 0 0 2 0 0
0 3 0 0 0 3 0 0 0 2 0
0 0 3 3 0 0 0 0 0 2 0
0 0 3 0 3 0 2 0 0 0 0
0 0 3 0 0 3 0 0 2 0 0
0 0 0 3 3 0 0 0 0 0 2
0 0 0 3 0 3 2 0 0 0 0
0 0 0 0 3 3 0 2 0 0 0
3 3 0 0 0 0 0 0 0 0 2
3 0 3 0 0 0 2 0 0 0 0
3 0 0 3 0 0 0 2 0 0 0
3 0 0 0 3 0 0 0 2 0 0
3 0 0 0 0 3 0 0 0 2 0
0 3 3 0 0 0 0 0 0 2 0
0 3 0 3 0 0 2 0 0 0 0
0 3 0 0 3 0 0 2 0 0 0
0 3 0 0 0 3 0 0 2 0 0
0 0 3 3 0 0 0 0 2 0 0
0 0 3 0 3 0 0 0 0 0 2
0 0 3 0 0 3 0 2 0 0 0
0 0 0 3 3 0 0 0 0 2 0
0 0 0 3 0 3 0 0 0 0 2
0 0 0 0 3 3 2 0 0 0 0
3 3 0 0 0 0 0 0 0 2 0
3 0 3 0 0 0 0 0 0 0 2
3 0 0 3 0 0 2 0 0 0 0
3 0 0 0 3 0 0 2 0 0 0
3 0 0 0 0 3 0 0 2 0 0
0 3 3 0 0 0 0 0 2 0 0
0 3 0 3 0 0 0 0 0 0 2
0 3 0 0 3 0 2 0 0 0 0
0 3 0 0 0 3 0 2 0 0 0
0 0 3 3 0 0 0 2 0 0 0
0 0 3 0 3 0 0 0 0 2 0
0 0 3 0 0 3 2 0 0 0 0
0 0 0 3 3 0 0 0 2 0 0
0 0 0 3 0 3 0 0 0 2 0
0 0 0 0 3 3 0 0 0 0 2
0 0 0 0 0 0 2 2 2 2 0
0 0 0 0 0 0 2 2 2 0 2
0 0 0 0 0 0 2 2 0 2 2
0 0 0 0 0 0 2 0 2 2 2
0 0 0 0 0 0 0 2 2 2 2




Figure 2.4: A transposed weighted incidence matrix of a 2− (28, 8, 3; {2, 3}).
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Chapter 3

Some Combinatorial
Analysis of Point-Weighted
Designs

In this chapter we consider some properties of t − (v, k, λ;W) point-weighted
designs and their underlying incidence structures. Let D be a t − (v, k, λ;W)
with v > k and t > 1, and let U be the underlying incidence structure of D.
We obtain a necessary and sufficient condition for U to be a block design, and
show that any automorphism of U is also an automorphism of D. We show
that a point-weighted design is uniquely determined by its underlying incidence
structure up to equivalence if and only if the rank of its underlying incidence
structure is equal to the number of points. The chapter concludes by considering
some properties of 2−(v, k, λ;W) point-weighted designs. We start by obtaining
a result for 1− (v, k, r;W) point-weighted designs which will be required later.

Lemma 3.1 Let D =(V,B,I,w) be a 1 − (v, k, r;W) and define b = |B| to be
the number of blocks. Then,

bk = vr.

Proof
A flag in a structure is a pair (P, x), where P is a point and x is a block on P .
Let the flag-weight of (P, x) be the value of the weight of the point P in a flag.
We sum all flag-weights in D in two ways. Any point P is on exactly r blocks,
since D is a 1 − (v, k, r;W), and so the sum

∑

P∈V
w(P )r simply sums all the

flag-weights. But,
∑

P∈V
w(P )r = r

∑

P∈V
w(P )

= vr.
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Also, the weights of the points in any block, x, sum to k and there are b blocks,
so the sum of all flag-weights equals bk. Hence, bk = vr.

Clearly, in the case where D is a t − (v, k, λ; {1}), the underlying incidence
structure is a t − (v, k, λ), and thus a 1 − (v, k, r) for some r. Then the above
lemma yields the well-known Result 1.2 for block designs.

3.1 Properties of a t− (v, k, λ;W)

Recall from Chapter 1 that if D is a t − (v, k, λ) then for every integer s, such
that 1 ≤ s < t, there exists a positive integer λs such that D is a s− (v, k, λs).
In this section we will show that if D is a t − (v, k, λ;W) then there exists an
integer λt−1 such that D is a (t − 1) − (v, k, λt−1;W) if and only if |W| = 1.
We first require some preliminary definitions and lemmas.

Lemma 3.2 Let A = {a1, a2, . . . , au} be a finite multiset of some u > 1 inte-
gers, not all equal. Then, for all 1 ≤ t < u, there exists a subset T1 ⊂ A, of
size t, with σ1 =

∑

ai∈T1

ai, and a subset T2 ⊂ A, of size t, with σ2 =
∑

ai∈T2

ai,

satisfying,
σ1 > σ2.

Proof
Since the elements of A are not all equal, there exist l, m ∈ {1, 2, . . . , u} such
that al > am. Then we note that since u > t, |A \ {al, am}| ≥ t − 1. Hence, it
is possible to choose a set S of size t− 1 from A \ {al, am}. Let T1 = S ∪ {al}
and T2 = S ∪ {am}, and define σ1 =

∑

ai∈T1

ai and σ2 =
∑

ai∈T2

ai. Then clearly

σ1 > σ2.

We now extend the concept of a derived incidence structure at a point P
mentioned in Section 1.2, to that of a derived structure at a set of points:

Definition 3.3 Let D =(V,B,I,w) be a point-weighted structure and let S ⊂ V
be a set of some s points of D, which we label as S = {P1, P2, . . . , Ps}. The
derived structure at S, DS = (VS ,BS , IS , wS), is defined by,

BS = {x ∈ B | (Pi, x) ∈ I , ∀i = 1, 2, . . . , s},
VS = V \ (S ∪ {Q | (Q, x) /∈ I ∩ (V×BS) ,∀x ∈ BS}) ,

IS = I ∩ (VS ×BS) ,

with wS being the restriction of w to VS.

Definition 3.4 Let D =(V,B,I,w) be a point-weighted structure and let S ⊂ V
be a set of points of D. The weight-sum of S, denoted by σ(S), is the sum of
the weights of the points contained in S. So,

σ(S) =
∑

P∈S

w(P ).
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Lemma 3.5 Let D =(V,B,I,w) be a t − (v, k, λ;W) for some λ ≥ 1, t > 1,
k, v ≥ k, and weight-set W. Let S ⊂ V be a set of t − 1 points of D with
weight-sum σ(S). Then the derived structure at S, DS = (VS ,BS , IS , wS), is a
1− (v − σ(S), k − σ(S), λ;WS), where WS is the image of wS.

Proof
It is useful to consider the blocks as sets of points and incidence as containment.
Then, since D is a t− (v, k, λ;W), every point of VS is contained in exactly λ
blocks of D together with the set S, and hence in exactly λ blocks of DS . The
point-set of DS is exactly the point-set of D with the points of S removed, and
so the sum of the weights of all the points in DS is v − σ(S). Similarly, every
block of DS is a block of D with the points of S removed. Thus, the sum of the
weights of the points in any block of DS is k − σ(S).

We are now in a position to obtain an expression for the number of blocks
on a set of t− 1 points in a t− (v, k, λ;W) for some t > 1, and show that it is
dependent on the weight-sum of the set.

Theorem 3.6 Let D =(V,B,I,w) be a t− (v, k, λ;W), for some t > 1, and let
S be a set of t−1 distinct points of D, with weight-sum σ(S). Then the number
of blocks on S, which we denote by λS, is given by,

λS = λ
(v − σ(S))
(k − σ(S))

.

Proof
Consider the derived structure at the set S, DS . By Lemma 3.5, DS is a
1− (v − σ(S), k − σ(S), λ;WS), where WS is the image of the restriction of w
to V \ S. The total number of blocks in DS is just the number of blocks of D
on the set S, λS . We apply Lemma 3.1 to DS to obtain the equality,

λS(k − σ(S)) = λ(v − σ(S)). (3.1)

Since D is a t − (v, k, λ;W), there is at least one block on the set S which is
also on at least one other point, and the sum of the weights of the points in this
block is k. Hence, k > σ(S), and so we divide through by (k− σ(S)) in (3.1) to
obtain the expression for λS in the statement of the theorem.

Corollary 3.7 Let D =(V,B,I,w) be a t − (v, k, λ;W) with v > k. Let S1

and S2 be two sets each of t− 1 points of D with weight-sums σ(S1) and σ(S2)
respectively. Then, if σ(S1) > σ(S2), the number of blocks on S1 is greater than
the number of blocks on S2.

Proof
We need to show that for σ(S1) > σ(S2), the inequality,

v − σ(S1)
k − σ(S1)

>
v − σ(S2)
k − σ(S2)

,
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holds, and then the result follows from Theorem 3.6. From the statement of the
corollary we have,

v > k.

Now, σ(S1) > σ(S2), and so we multiply through by (σ(S1)− σ(S2)),

σ(S1)v − σ(S2)v > σ(S1)k − σ(S2)k.

Subtracting (σ(S1)v + σ(S1)k) from both sides gives,

−σ(S1)k − σ(S2)v > −σ(S1)v − σ(S2)k,

and adding (vk + σ(S1)σ(S2)) to both sides gives,

vk − σ(S1)k − σ(S2)v + σ(S1)σ(S2) > vk − σ(S2)k − σ(S1)v + σ(S1)σ(S2),

i.e.,
(v − σ(S1))(k − σ(S2)) > (v − σ(S2))(k − σ(S1)).

Recall from the proof of Theorem 3.6 that k > σ(S1), and so we divide through
by (k − σ(S1))(k − σ(S2)) to obtain the required inequality.

The following example demonstrates that the condition that v is greater
than k in the above corollary is necessary.

Example 3.8 Let D =(V,B,I,w) be the point-weighted design defined by:

• V = {P1, P2, P3, P4},
• B = {x},
• I = {(P1, x), (P2, x), (P3, x), (P4, x)},
• w(P1) = 1, w(P2) = 2, w(P3) = 3, w(P4) = 4.

Then D is a 4 − (10, 10, 1; {1, 2, 3, 4}) and is an example of a point-weighted
design with parameters v and k, with just one block and v = k. Set S1 =
{P2, P3, P4} and S2 = {P1, P2, P3}. Clearly, σ(S1) > σ(S2) but there is exactly
one block on S1 and exactly one block on S2. So the above corollary does not
hold for v = k.

Corollary 3.9 Let D =(V,B,I,w) be a t − (v, k, λ;W) with v > k, t > 1,
and |W| ≥ 2. Then there does not exist a constant λt−1 such that D is a
(t− 1)− (v, k, λt−1;W).

Proof
We need to show that there exist two sets of t − 1 points of D, S1 and S2 say,
such that the number of blocks on S1 is greater than the number of blocks on
S2. We achieve this by exhibiting two sets of t− 1 points of D, S1 and S2, such
that the weight-sum of S1 is greater than the weight-sum of S2. The number of
blocks on S1 is then greater than the number of blocks on S2 by Corollary 3.7.
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Let u = |V| and label the points of D as,

V = {Pi | i = 1, 2, . . . , u}.

Define the multiset Ω to be,

Ω = {w(Pi) | i = 1, 2, . . . , u}.

Then Ω is a multiset of u positive integers and, since |W| ≥ 2, not all the
elements of Ω are equal. Also, since v > k, it is clear that u > t. By Lemma 3.2,
we can then find two subsets of Ω of size t− 1, C and D say, such that, defining
σC to be the sum of the elements of C and σD to be the sum of the elements of
D,

σC > σD.

Setting S1 and S2 to be the sets of points such that,

C = {w(P ) | P ∈ S1},
D = {w(P ) | P ∈ S2},

gives σ(S1) > σ(S2) as required. Hence, the number of blocks on S1 is greater
than the number of blocks on S2.

Corollary 3.10 Let D =(V,B,I,w) be a t− (v, k, λ;W) with v > k, t > 1, and
|W| ≥ 2. Let U =(V,B,I) be the underlying incidence structure of D. Then U
is not a block design.

Proof
Suppose U is a block design. Then there is a constant k

′
such that every

block of U is on exactly k
′

points. Since D is a t − (v, k, λ;W), U has the
property that every set of t distinct points is incident with exactly λ blocks.
Hence, U is a t − (u, k

′
, λ), and so there exists a constant λt−1 such that U is

a (t− 1)− (u, k
′
, λt−1). But then D is a (t− 1)− (v, k, λt−1;W), contradicting

Corollary 3.9. Thus U is not a block design.

Combining this corollary with Lemma 2.7 and noting that, by definition,
|W| ≥ 1, we have proved the following theorem:

Theorem 3.11 Let D =(V,B,I,w) be a t− (v, k, λ;W) with v > k, t > 1, and
let U =(V,B,I) be the underlying incidence structure of D. Then there exists a
constant k

′
such that U is a t− (u, k

′
, λ) if and only if |W| = 1.

In Example 3.8 we exhibit a 4 − (10, 10, 1; {1, 2, 3, 4}) whose underlying in-
cidence structure is a 4− (4, 4, 1). Hence the above theorem is clearly not true
when v = k. In the following example we exhibit a 1 − (6, 3, 2; {1, 2}) whose
underlying incidence structure is a 1− (4, 2, 2), thus showing that the condition
t > 1 in the above theorem is necessary.
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Example 3.12 Let U =(V,B,I) be the incidence structure with point-set V =
{P1, P2, P3, P4}, block-set B = {x1, x2, x3, x4} and incidence matrix,

A =




1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1


 .

Then U is a 1− (4, 2, 2). Define a weight function, w, on V by,

w(P1) = w(P2) = 2,
w(P3) = w(P4) = 1,

and set D =(V,B,I,w). Then D is a 1−(6, 3, 2; {1, 2}) with underlying incidence
structure U - a 1− (4, 2, 2).

3.2 Automorphisms of a t− (v, k, λ;W)

We now use the results of Section 3.1 to show that the automorphism group of
a proper t − (v, k, λ;W) with t > 1 is the same as the automorphism group of
its underlying incidence structure.

Let S be a point-weighted structure with underlying incidence structure U .
Let P be any point of S and let α be an automorphism of U . We denote the
image of P under i applications of α by Pαi

, for i ≥ 1, and set Pα1
= Pα

and Pα0
= P . Similarly, letting S be a set of some s points (s ≥ 1) we let

Sα denote the image of S under α. So, if S = {Pj | j = 1, 2, . . . , s} then
Sα = {Pα

j | j = 1, 2, . . . , s}.

Lemma 3.13 Let D =(V,B,I,w) be a t− (v, k, λ;W) with v > k, t > 2, and let
α be an automorphism of the underlying incidence structure of D, U =(V,B,I).
Suppose Q is a point of D satisfying w(Q) > w(Qα). Then w(Qα) > w(Qα2

).

Proof
Since D is a t − (v, k, λ;W) with v > k we have that u > t. Let S be a set
of some t − 2 distinct points not containing Q or Qα. Then S ∪ {Q} is a set
of t − 1 distinct points. Since α preserves incidence, the number of blocks on
(S ∪ {Q})α must equal the number of blocks on S∪{Q}. Thus, by Theorem 3.6
we have,

σ(S ∪ {Q}) = σ ((S ∪ {Q})α)
= σ (Sα ∪Qα)
= σ (Sα) + w (Qα) .

But σ(S∪{Q}) = σ(S)+w(Q), and w(Q) > w(Qα). Hence, we have established
that σ(S) < σ(Sα).
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Now consider the set of t− 1 distinct points, S ∪ {Qα}, and its image under
α. The number of blocks on (S ∪ {Qα})α must equal the number of blocks on
S ∪ {Qα} and so again, by Theorem 3.6 we have,

σ (S ∪ {Qα}) = σ ((S ∪ {Qα})α) .

Simplifying this gives,

σ(S) + w(Qα) = σ(Sα) + w(Qα2
).

But, σ (S) < σ (Sα) and so, w(Qα) > w(Qα2
).

Theorem 3.14 Let D =(V,B,I,w) be a t− (v, k, λ;W) with v > k, t > 1 and
let U =(V,B,I) be the underlying incidence structure of D. Then AutD ∼= AutU .

Proof
It is clear that an automorphism of any point-weighted structure is an automor-
phism of its underlying incidence structure. We need to show that with D as
above, any automorphism, α say, of its underlying incidence structure U is also
an automorphism of D. So we need to show that w(P ) = w(Pα) for any point
P of D. This is clearly true when |W| = 1 and U is a block design and so we
consider the case |W| > 1.

The theorem follows as a direct corollary of Theorem 3.6 when t = 2, since
the number of blocks incident with a point in a 2− (v, k, λ;W) depends directly
on the weight of the point. So, if D is a 2− (v, k, λ;W) and α an automorphism
of its underlying incidence structure then α preserves incidence and so satisfies
w(P ) = w(Pα) for every point P of D.

Now let D be a t − (v, k, λ;W) with v > k and t > 2, and let α be an
automorphism of the underlying incidence structure U . Suppose there is a
point P of D such that w(P ) > w(Pα). Consider the set of t points, T =
{Pαi | i = 0, 1, . . . , t − 1}. For each pair of points of the form (Pαi

, Pαi+1
),

i = 0, 1, . . . , t − 2, it is possible to find a set, Si, of t − 2 distinct points of D
not containing Pαi

or Pαi+1
. We then apply Lemma 3.13 recursively, to each

element of T in turn. At the first step set Q to be P , and S to be S0. At the
second step set Q to be Pα and S to be S1, and so on, so that at the ith step
we set Q to be Pαi−1

and S to be Si−1. Then, given that w(P ) > w(Pα), we
have,

w(P ) > w(Pα) > w(Pα2
) > . . . > w(Pαt−2

) > w(Pαt−1
).

Hence, T is a set of t distinct points. Set T1 to be the set of t−1 distinct points,

T1 = {Pαi | i = 0, 1, . . . , t− 2},

then clearly the image of T1 under α is,

Tα
1 = {Pαi | i = 1, 2, . . . , t− 1}.
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Now α preserves incidence and so by Theorem 3.6,

σ (T1) = σ (Tα
1 )

= σ(T1)− w(P ) + w(Pαt−1
).

Hence,
w(P ) = w(Pαt−1

),

giving a contradiction. Hence, it is not possible that w (P ) > w (Pα).
Now suppose there is a point P of D such that under some automorphism, α,

of U , w (P ) < w (Pα). Then, since the automorphisms of U form a group under
composition, there is an automorphism, α−1, of U such that (Pα)α−1

= P .
Then, setting Q = Pα, we have that w(Q) > w(Qα−1

). But we have shown
that this cannot happen, giving a contradiction. Hence, it is not possible that
w(P ) < w(Pα).

So we have shown that any automorphism of U cannot map a point to
another point of different weight in D. Hence, any automorphism of U is also
an automorphism of D and the theorem is proved.

The following two examples demonstrate that the conditions v > k and t > 1
are necessary for the above theorem to hold.

Example 3.15 Let D =(V,B,I,w) be the point-weighted design exhibited in
Example 3.8, with V = {P1, P2, P3, P4} and B = {x}. Let U =(V,B,I) be the
underlying incidence structure of D and let α be the automorphism of U defined
by,

α(P1) = P2,

α(P2) = P1,

α(P3) = P3,

α(P4) = P4,

α(x) = x.

Then, w (α (P1)) = 2 and w (P1) = 1. Hence α is not an automorphism of D,
despite being an automorphism of U .

Example 3.16 Let D =(V,B,I,w) be the point-weighted design exhibited in
Example 3.12 with underlying incidence structure U =(V,B,I). Let α be the
automorphism of U defined by,

α(P1) = P3, α(P3) = P1,
α(P2) = P4, α(P4) = P2,
α(x1) = x1, α(x2) = x3,
α(x3) = x2, α(x4) = x4.

Then w (α (P1)) = 1 and w (P1) = 2. Hence, α is an example of an automor-
phism of U which is not an automorphism of D.
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3.3 Point-Weighted Designs with the same
Underlying Incidence Structure

Let U =(V,B,I) be an incidence structure. In this section we consider whether
it is possible to find two weight functions w1 and w2 such that, if we set D1 =
(V,B, I, w1) and D2 = (V,B, I, w2), then D1 and D2 are both point-weighted
designs but are not equivalent. So, we examine whether the weight function
of a point-weighted design is uniquely determined (up to equivalence) by the
underlying incidence structure.

Theorem 3.17 Let D1 = (V,B, I, w1) be a point-weighted design with param-
eters v1 and k1, with underlying incidence structure U =(V,B,I). Let A be an
incidence matrix of U and let u = |V|. Then every point-weighted design with
underlying incidence structure U is equivalent to D1 if and only if rank(A) = u.

Proof
We first show that if rank(A) = u then any point-weighted design with un-
derlying incidence structure U is equivalent to D1. Suppose rank(A) = u, let
U and D1 be as above, and set b = |B|. Let w2 be a weight function on V
such that setting D2 = (V,B, I, w2) gives a point-weighted design with some
parameters v2 and k2. Label the points of U as P1, P2, . . . , Pu and the blocks
as x1, x2, . . . , xb, such that A is the incidence matrix of U with respect to such

a labelling. Let w1 and w2 be the vectors
(

w1(P1)
k1

, w1(P2)
k1

, . . . , w1(Pu)
k1

)T

and
(

w2(P1)
k2

, w2(P2)
k2

, . . . , w2(Pu)
k2

)T

respectively. Then, D1 is a point-weighted design
with parameters v1 and k1 and so,

AT w1 = 1, (3.2)

where 1 is the constant vector of size u with every entry equal to 1. Similarly,
since D2 is a point-weighted design with parameters v2 and k2,

AT w2 = 1. (3.3)

Then, subtracting (3.3) from (3.2) gives,

AT (w1 −w2) = 0, (3.4)

where 0 is the constant vector of size u with every entry equal to zero. Thus,
either (w1 − w2) = 0, or otherwise rank(AT ) < u (with some of the columns
of AT linearly dependent - see for example [10]). But rank(A) = u and so
rank(AT ) = u. Hence, w1 = w2 and so w1(Pi) = k1

k2
w2(Pi) for each i =

1, 2, . . . , u. Thus, D1 and D2 are equivalent.
Now let D1 = (V,B, I, w1) be as above, with underlying incidence structure

U =(V,B,I). Label the points and blocks of U as above, and let A be the
incidence matrix of U with respect to this labelling. Suppose rank(A) < u.
We exhibit a weight function w2 on V such that, setting D2 = (V,B, I, w2)
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gives a point-weighted design with underlying incidence structure U which is
not equivalent to D1.

Label the columns of AT as c1, c2, . . . , cu. Then rank(AT ) < u, so the u
columns are linearly dependent and there exist integers a1, a2, . . . , au, not all
zero, such that,

a1c1 + a2c2 + . . . + aucu = 0.

Let a be the vector (a1, a2, . . . , au)T and let a(1) = max{ai | i = 1, 2, . . . , u}.

Define the vector a
′

by, a
′

=
(

a1

(a(1)+1)k1
, a2

(a(1)+1)k1
, . . . , au

(a(1)+1)k1

)T

. Then

AT a = 0 and so AT a
′

= 0. Let w1 be defined as above, i.e, the vector(
w1(P1)

k1
, w1(P2)

k1
, . . . , w1(Pu)

k1

)T

, and recall that AT w1 = 1. We note that, for

each i = 1, 2, . . . , u, the entry in the ith position of a
′

is less than the entry in
the ith position of w1, i.e. for each i = 1, 2, . . . , u,

ai(
a(1) + 1

)
k1

<
w1(Pi)

k1
.

Define the vector w2 by,
w2 = w1 − a

′
.

Clearly, every entry of w2 is a positive rational number, and furthermore,

AT w2 = AT (w1 − a
′
)

= 1.

Label the entries of w2 as w2 = (w2,1, w2,2, . . . , w2,u)T and let k2 be the lowest
common multiple of the denominators of w2,1, w2,2, . . . , w2,u. Then the value
k2w2,i is a positive integer for each i = 1, 2, . . . , u and so we define the weight
function w2 on V by,

w2(Pi) = k2w2,i for each i = 1, 2, . . . , u.

Let D2 be the point-weighted structure (V,B, I, w2) and set v2 =
u∑

i=1

k2w2,i.

Then D2 is a point-weighted design with parameters v2 and k2 and underlying
incidence structure U . We now show that D2 is not equivalent to D1.

Suppose D1 and D2 are equivalent. The entry in the ith position of w2 is
w2(Pi)

k2
for each i = 1, 2, . . . , u, and so w2 = xw1 for some positive rational x.

The value x cannot be equal to one since a
′
= w1 −w2, and a

′
does not have

every entry equal to zero by definition. Then, w1 −w2 = (1− x)w1 and so,

AT (w1 −w2) = (1− x)1.

But w1−w2 = a
′
and AT a

′
= 0, giving a contradiction. Hence, D1 and D2 are

not equivalent and the theorem is proved.

41



Recall from Corollary 1.13 that if U is a proper 2 − (u,K, λ) and A is an
incidence matrix of U , then rank(A) = u. Hence, we have the immediate corol-
lary,

Corollary 3.18 Let D =(V,B,I,w) be a 2− (v, k, λ;W) with v > k and under-
lying incidence structure U =(V,B,I). Then every point-weighted design with
underlying incidence structure U is equivalent to D.

In the following example we demonstrate that the condition that v > k in
the above corollary is necessary.

Example 3.19 Let U =(V,B,I) be the incidence structure defined by:

• V = {P1, P2, P3, P4, P5, P6, P7},
• B = {x},
• I = V×B.

Define a weight function w on V by,

w(P1) = 4,
w(P2) = w(P3) = w(P4) = w(P5) = 2,
w(P6) = w(P7) = 1.

Set D =(V,B,I,w), then D is a 2−(14, 14, 1; {1, 2, 4}) with underlying incidence
structure U . Define a weight function w1 by,

w(P1) = w(P2) = 4,
w(P3) = 2,
w(P4) = w(P5) = w(P6) = w(P7) = 1.

Set D1 = (V,B, I, w1), then D1 is also a 2− (14, 14, 1; {1, 2, 4}) with underlying
incidence structure U . However, D1 is not equivalent to D.

3.4 Properties of a 2− (v, k, λ;W)

We turn now to consider 2 − (v, k, λ;W) point-weighted designs and establish
some properties of these structures. The results of this section were obtained
as joint work with T. Powlesland. Theorem 3.6 gives us an expression for the
number of blocks on a set of t − 1 distinct points of given weight-sum in a
t− (v, k, λ;W). In the case t = 2 this expression tells us the number of blocks
on a single point of given weight in a 2−(v, k, λ;W). Let D be a 2−(v, k, λ;W)
and let P(i) be a point of D of weight i. Let r(i) denote the number of blocks
on P(i), then,

r(i) = λ
(v − i)
(k − i)

. (3.5)
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So, a point of some weight i is on exactly the same number of blocks as
any other point of the same weight, but two points of different weights are each
incident with a different number of blocks.

A necessary condition for the existence of a t−(v, k, λ;W) is clearly that the
expression in Theorem 3.6 is an integer for every possible (t− 1)-set of points.
In the case t = 2 this simplifies to:

Corollary 3.20 A necessary condition for the existence of a 2− (v, k, λ;W) is,

λ(v − i) ≡ 0 (mod (k − i)) ∀i ∈ W.

With an expression for the number of blocks on a (t − 1)-set of points of
given weight-sum in a t− (v, k, λ;W) for some t ≥ 2, it is possible to obtain an
expression for the number of blocks on a (t − 2)-set of points of given weight-
sum. In the case t = 2, this gives us an expression for the total number of blocks
in a 2− (v, k, λ;W):

Lemma 3.21 Let D =(V,B,I,w) be a 2 − (v, k, λ;W) and let b = |B| be the
number of blocks of D. For each weight i ∈ W, let u(i) be the number of points
of D of weight i. Then,

b =
λ

k

∑

i∈W
iu(i)

(v − i)
(k − i)

. (3.6)

Proof
As in the proof of Lemma 3.1 we sum all flag-weights in D in two ways. For any
i ∈ W, the total number of flags containing a point of weight i is u(i)r(i), where
u(i) is the number of points of weight i in D and r(i) is the number of blocks on
each point of weight i. Thus, the summation

∑

i∈W
u(i)r(i) counts all flags, and

the summation
∑

i∈W
iu(i)r(i) sums all flag-weights. But, in any point-weighted

design the flag-weights sum to bk, and so we have,

bk =
∑

i∈W
iu(i)r(i),

and substituting for r(i) from (3.5),

bk =
∑

i∈W
iu(i)λ

(v − i)
(k − i)

.

Dividing through by k gives the expression for the total number of blocks.

Noting that the number of blocks in a point-weighted design is an integer
gives us the following immediate corollary:
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Corollary 3.22 A necessary condition for the existence of a 2− (v, k, λ;W) is
that,

λ

k

∑

i∈W
iu(i)

(v − i)
(k − i)

,

is an integer.

Given any 2− (v, k, λ), we can construct a 2− (v, k, λ; {1}), D, by assigning
each point a weight of 1. But then the number of points of weight 1, u(1), is
equal to the total number of points which is also equal to the sum of the weights
of all the points in D. Then, applying Corollaries 3.20 and 3.22 to D gives us
the following well-known result for block designs (Corollary 1.6) as a further
corollary:

Corollary 3.23 Two necessary conditions for the existence of a 2 − (v, k, λ)
are,

λ(v − 1) ≡ 0 (mod (k − 1))
λv(v − 1) ≡ 0 (mod k(k − 1)).
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Chapter 4

Point-Weighted Designs
with One ‘Special’ Point

Let a1 and a2 be positive integers with a1 6= a2. In this chapter we consider
t − (v, k, λ; {a1, a2}) point-weighted designs in which one point has weight a1

and all other points have weight a2. We begin by showing that any such point-
weighted design with more than one block (i.e., with v > k) is equivalent to
a t − (v, k, λ; {1, a}) in which one point has weight a > 1 and all other points
have weight 1. We then consider 2− (v, k, λ; {1, a}) point-weighted designs with
exactly one point of weight a > 1. We find a necessary condition on v for their
existence, and demonstrate that the class of these point-weighted designs with
λ = 1 is exactly those point-weighted designs produced by a given construction
from a certain class of group divisible designs.

For given k, a lower bound for v in a 2 − (v, k, 1; {1, k − 2}) with just one
point of weight k − 2 is obtained. It is shown that any such point-weighted
design in which v attains this bound has a certain type of square group divisible
design as a substructure of its underlying incidence structure. Such a square
group divisible design is shown to exist if and only if there exists a balanced
orthogonal design with underlying matrix equal to an incidence matrix of a
biplane with block-size k.

4.1 A Specific Class of Point-Weighted Designs

Let a1 and a2 be non-equal positive integers. We now consider the class of
t−(v, k, λ; {a1, a2}) point-weighted designs in which exactly one point has weight
a1 and all other points have weight a2.

Lemma 4.1 Let a1 and a2 be positive integers greater than one such that a2

does not divide a1. Let D =(V,B,I,w) be a t − (v, k, λ; {a1, a2}) with exactly
one point of weight a1, all other points having weight a2. Then v = k.
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Proof
Let P be the point of weight a1. We show that P is on every block of D. Since
D is a t − (v, k, λ; {a1, a2}), P is on at least one block and the weights of the
points incident with any one block of D sum to k. Hence, since every other
point of D has weight a2,

k = a2c + a1, for some c ≥ 0.

Now suppose there is a block x1 ∈ B, not on P . Then x1 is incident with points
only of weight a2. But D is a point-weighted design and so the sum of the
weights of the points incident with x1 is k. Hence, a2 | k. But k = a2c + a1

and so a2 | a1, giving a contradiction since a2 does not divide a1. Thus P is on
every block of D.

In the case t = 1 the lemma is proved since every point is on the same
number of blocks as the point P . Thus, every point is on every block of D,
giving v = k. So we consider the case t > 1.

Let S be a set of t − 1 distinct points of D, all of weight a2, and set T =
S∪{P}. Then T is a set of t distinct points of D and so is incident with exactly
λ blocks. Since the point P is on every block of D, the set S is also incident
with exactly λ blocks. The weight-sum of S is clearly (t − 1)a2, and so by
Theorem 3.6, the number of blocks on S, λS , is,

λS = λ
(v − (t− 1) a2)
(k − (t− 1) a2)

.

But there are exactly λ blocks on S and so we require λS = λ. Hence, v = k.

Hence we have the following theorem:

Theorem 4.2 Let D =(V,B,I,w) be a t−(v, k, λ; {a1, a2}) with v > k, a1 6= a2,
and exactly one point of weight a1 (all other points having weight a2). Then
a2 | a1 and D is equivalent to a t −

(
v
a2

, k
a2

, λ;
{

a1
a2

, 1
})

with exactly one point
of weight a1

a2
(all other points having weight 1).

Proof
By Lemma 4.1, we have that a2 | a1, and since a1 6= a2, we see that a1 > a2.
Then by Lemma 2.7, D is equivalent to a t−

(
v
a2

, k
a2

, λ;
{

a1
a2

, 1
})

with exactly
one point of weight a1

a2
, all other points having weight 1.

Before discussing t− (v, k, λ; {1, a}) point-weighted designs with exactly one
point of weight a > 1 and t = 2, we briefly consider the case t = 1. Recall
from Chapter 1 that for any positive integers b, k, v and r with v > k and
b ≤ (

v
k

)
, a necessary and sufficient condition for the existence of a 1 − (v, k, r)

is that bk = vr. By Lemma 3.1 the condition that bk = vr is necessary for
the existence of a 1 − (v, k, λ;W) with b blocks and any weight-set W. This
condition is clearly sufficient when W = {1} since assigning every point of a
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1 − (v, k, r) the weight 1 will always give a 1 − (v, k, r; {1}). We now give an
example to show that the condition bk = vr is not in general sufficient for the
existence of a 1− (v, k, λ; {1, a}) with b blocks and exactly one point of specified
weight a.

Consider the parameters v = 7, b = 7, k = 5, r = 5. Then bk = vr
and so there exists a 1 − (7, 5, 5) with seven blocks. Therefore there exists a
1 − (7, 5, 5; {1}) with seven blocks. Suppose there exists a 1 − (7, 5, 5; {1, 3})
with seven blocks and exactly one point, P say, of weight 3. Then there are four
points of weight 1 and so the point P is on every block. Hence, r = b and we
have a contradiction. Thus, there does not exist a 1− (7, 5, 5; {1, 3}) with seven
blocks and exactly one point, P say, of weight 3.

4.2 The Case t = 2

In this section we consider 2−(v, k, λ; {1, a}) point-weighted designs with exactly
one point of weight a > 1. Corollaries 3.20 and 3.22 give us necessary conditions
for the existence of such a point-weighted design, although these are not in
general sufficient. From Corollary 3.20 we obtain the condition on v in the
following lemma, for any 2 − (v, k, λ; {1, a}). Using standard notation, we use
(a1, a2) to denote the greatest common divisor of positive integers a1 and a2,
and [a1, a2] to denote the lowest common multiple of a1 and a2.

Lemma 4.3 Let D be a 2− (v, k, λ; {1, a}) for some a > 1. Then v satisfies,

v = k + c

[
k − a

(k − a, λ)
,

k − 1
(k − 1, λ)

]
,

for some integer c ≥ 0.

Proof
Corollary 3.20 gives,

λv ≡ λa (mod (k − a)), (4.1)
and also,

λv ≡ λ (mod (k − 1)). (4.2)

Then (4.1) and (4.2) hold if and only if (see [23], page 49),

v ≡ a

(
mod

k − a

(k − a, λ)

)
, (4.3)

and,

v ≡ 1
(

mod
k − 1

(k − 1, λ)

)
. (4.4)

Clearly, v = k is a solution to (4.3) and (4.4) and is the smallest possible
solution for v (since v ≥ k). Then, by the Chinese Remainder Theorem, every
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solution for v to (4.3) and (4.4) is of the form,

v = k + c

[
k − a

(k − a, λ)
,

k − 1
(k − 1, λ)

]
,

for some integer c ≥ 0.

The expression for v in the above corollary with c = 0 obviously corresponds
to a point-weighted design with v = k with one block incident with all the
points. Observing that if the point-weighted design in the above corollary is
proper then v > k gives us a lower bound for the sum of the weights of the
points in a proper 2− (v, k, λ; {1, a}):

Corollary 4.4 Let D be a proper 2− (v, k, λ; {1, a}), for some a > 1. Then,

v = k +
[

k − a

(k − a, λ)
,

k − 1
(k − 1, λ)

]
,

This bound applies to the sum of the weights of the points in any proper
2 − (v, k, λ; {1, a}) with a > 1. In this chapter we are considering those point-
weighted designs in which exactly one point has weight a. In the following
example we give a construction of such a point-weighted design for λ = 1 and
any k > 2, with a specific value of a, in which v attains the bound.

Example 4.5 We generalise here the construction of a point-weighted design
given in Example 2.6 to give a 2 − (2k − 1, k, 1; {1, k − 1}) for any k > 2. Let
U =(V,B,I) be the degenerate projective plane with k+1 points, for some k > 2.
Label the points of U as P1, P2, . . . , Pk+1, and the blocks of U as x1, x2, . . . , xk+1,
such that, considering the blocks as subsets of the point-set,

xi = {Pi, Pk+1} for each i = 1, 2, . . . , k,

xk+1 = {Pi | i = 1, 2, . . . , k}.

Define a weight function w on the points of U by,

w(Pi) = 1, for each i = 1, 2, . . . , k,

w(Pk+1) = k − 1.

Set D =(V,B,I,w) to be the point-weighted structure with U as its underlying
incidence structure and weight function w defined as above. Then clearly D is
a point-weighted design since the sum of the weights of the points in any block
is k. Furthermore, since U is a degenerate projective plane, each pair of points
is contained in exactly one block and so D is a 2 − (v, k, 1; {1, k − 1}), with
v = 2k − 1. It is easy to verify that this value of v attains the bound given in
Corollary 4.4.
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4.3 The Case t = 2 with λ = 1

In this section we give a construction of 2−(v, k, 1; {1, a}) point-weighted designs
with exactly one point of weight a, for some a > 1, from a specific class of group
divisible designs. We show that every proper 2 − (v, k, 1; {1, a}) with exactly
one point of weight a > 1 can be constructed in such a way.

Let G =(V,B,I) be a GD 2−(u, k, (0, 1)) for some u and k, with point-classes
of size m, for some m ≤ k − 2. Let n = u

m be the number of point-classes, and
label the point-classes µ1, µ2, . . . , µn. Label the points of G as P1, P2, . . . , Pu

and, setting b = |B|, label the blocks of G as x1, x2, . . . , xb. We define a point-
weighted structure D = (V1,B1, I1, w) by firstly adjoining to G a new point,
Pu+1, and n new blocks, y1, y2, . . . , yn, distinct from the blocks of G. So we put,

• V1 = V ∪ {Pu+1},
• B1 = B ∪ {y1, y2, . . . , yn}.

We define incidence in D by,

• I1 = I ∪ I
′
,

where I
′
is defined by,

(Pu+1, yj) ∈ I
′
, j = 1, 2, . . . n

(Pi, yj) ∈ I
′ ⇐⇒ Pi ∈ µj , j = 1, 2, . . . n and i = 1, 2, . . . , u.

So each new block is incident with exactly the point Pu+1 together with all the
points in one point-class of G, and each point-class of G defines such a block.
Finally, we define the weight function w by,

w(Pi) =
{

1 if i ∈ {1, 2, ..., u}
k −m if i = u + 1.

Lemma 4.6 The point-weighted structure D =(V,B,I,w) constructed above is
a 2− (u + k −m, k, 1; {1, k −m}).

Proof
Since k−2 ≥ m we note that k−m > 1 and so the two elements of the weight-set
of D are distinct.

The points P1, P2, . . . , Pu all have weight 1 in D and the point Pu+1 has
weight k −m, and so,

u+1∑

i=1

w(Pi) = u + k −m.

Each block of D is incident with either k points of weight 1, or m points of
weight 1 together with the one point of weight k − m. Thus, the sum of the
weights of the points incident with any one block of D is k.

We now need to show that there is exactly one block incident with each pair
of points of D. We first note that the point-classes of G partition the point-
set V = {P1, P2, . . . , Pu}. Hence, each point Pi, i = 1, 2, . . . , u, is in exactly
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one point-class of G, µj , for some j ∈ {1, 2, . . . , n}, and thus incident with
exactly one block of D together with the point Pu+1, namely yj . So, for each
i = 1, 2, . . . , u there is exactly one block of D incident with both Pi and Pu+1.

Now let i, l ∈ {1, 2, . . . , u} with i 6= l. We consider the points Pi and Pl.
Either Pi and Pl are in the same point-class of G, µj , for some j ∈ {1, 2, . . . , n},
or they are in different point-classes. In the case where they are both in the
point-class µj , there is no block of G incident with both Pi and Pl. The remaining
blocks of D are all incident with Pu+1 and exactly one of these blocks is incident
with both Pi and Pl, namely the block yj . Thus, there is exactly one block of
D incident with both Pi and Pl.

In the case where Pi and Pl are in distinct point-classes of G, there is no
block of D incident with Pu+1 which is also incident with Pi and Pl. Then,
there is exactly one block of G incident with both Pi and Pl, and thus exactly
one block of D incident with both Pi and Pl.

We note that in the case m = 1, with G a 2−(v, k, 1), the construction above
is the same as the construction given in Section 2.2.1 with t = 2.

We now show that any proper 2 − (v, k, 1; {1, a}) with exactly one point of
weight a has a group divisible design as a substructure of its underlying incidence
structure.

Lemma 4.7 Let D =(V,B,I,w) be a proper 2− (v, k, 1; {1, a}) with exactly one
point P of weight a > 1, and let U be the underlying incidence structure of D.
Let G be the point-residue of U at P . Then, G is a GD 2− (v − a, k, (0, 1)) with
point-classes of size k − a defined by the blocks on P in U .

Proof
The points of G are precisely those points of U which are assigned weight 1 in D.
By Theorem 3.6, every point of weight 1 is incident with exactly r(1) = (v−1)

(k−1)

blocks of D (and thus U). D is a 2− (v, k, 1; {1, a}) and so there is exactly one
block of D (and thus U) incident with both P and a given point of weight 1.
Hence, every point of G is incident with exactly r(1)− 1 blocks of G, and so G is
regular. The blocks of G are those blocks of D which are not incident with P ,
and so are those blocks of D which are only incident with points of weight 1.
Thus, every block of G is incident with exactly k points, and so G is uniform.
The number of points of G is equal to the sum of their weights in D (since they
all have weight 1 in D) and so is v − a.

Let Q and R be distinct points of G. We define point-classes in G by setting
Q and R to be in the same point-class if and only if there is a block of D incident
with P ,Q and R. Since every point of weight 1 is incident with exactly one block
of D together with P , the point-classes partition the points of G. Each block of
D which is incident with P is also incident with exactly k − a points of weight
1. Thus, the point-classes partition the points of G into sets of size m = k − a.

Since Q and R are distinct points of weight 1 in D, there is exactly one block
of D, x say, incident with both Q and R. This block x is either incident with P
or not. If x is incident with P , then Q and R are in the same point-class and
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there is no block of G incident with both Q and R. If x is not incident with P ,
then x is a block of G and so there is exactly one block of G incident with both
Q and R. There is then no block of D incident with P , Q and R, and so Q and
R are in different point-classes.

Thus, G is a uniform, regular design with v − a points, block-size k, and a
partition of the point-set into point-classes of size m = k − a. The number of
blocks incident with two given points is zero if they are in the same point-class
and one otherwise. Therefore, G is a GD 2− (v − a, k, (0, 1)).

Combining this lemma with the construction immediately preceding it gives
the following result:

Lemma 4.8 Let D =(V,B,I,w) be a point-weighted structure with exactly one
point, P , of some weight a > 1, all other points having weight 1. Let U be the
underlying incidence structure of D and let G be the point-residue of U at P .
Then D is a proper 2−(v, k, 1; {1, a}) if and only if G is a GD 2−(v − a, k, (0, 1))
with point-classes of size k − a.

In Chapter 1 we noted that a block design is a group divisible design with
point-classes of size one. So we have as a corollary,

Corollary 4.9 Let D =(V,B,I,w) be a point-weighted structure with exactly
one point, P , of weight k−1 (for some k > 2), all other points having weight 1.
Let U be the underlying incidence structure of D and let G be the point-residue
of U at P . Then the point-weighted structure D is a proper 2−(v, k, 1; {1, k−1})
if and only if G is a 2− (v − k + 1, k, 1).

To construct an example of a proper 2 − (v, k, 1; {1, a}) with exactly one
point of weight a, for some a in the range 1 < a < k−1, we look for an example
of a GD 2 − (u, k, (0, 1)) with point-classes of size m, for some m in the range
1 < m < k−1. Perhaps the best known examples of GD 2−(u, k, (0, 1)) designs
are transversal designs. However, we recall from Result 1.21 that a transversal
design with k points on a block and point-classes of size m has m ≥ k − 1,
with m = k − 1 if and only if the design is the dual of an affine plane. So, a
transversal design cannot be used in the above construction to obtain a proper
2 − (v, k, 1; {1, a}) with exactly one point of weight a > 1. Examples of group
divisible 2 − (u, k, (0, 1)) designs with point-classes of size m, for some m in
the range 1 < m < k − 1, do exist (see for example [24]) and we now give a
construction of a family of such group divisible designs due to Sprott ([28]).

4.3.1 Sprott’s Construction

Let P1 be a projective plane of order q2 which contains a Baer subplane P0

of order q. Recall from Section 1.4.1 that P1 has the same number of lines as
points, b1 = v1 = q4 + q2 +1, and has k1 = q2 +1 points on a line. Similarly, P0

has the same number of lines as points, b0 = v0 = q2 + q +1, and has k0 = q +1
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points on a line. Also, every line of P1 is incident with either 1 or q +1 collinear
points of P0.

Define an incidence structure G to be that whose points are the points of
P1 which are not also points of P0 and whose blocks are the lines of P1 which
are incident with only one point of P0 (i.e., those lines of P1 which are not also
lines of P0). A point and block of G are incident if and only if the point and
corresponding line are incident in P1.

Result 4.10 (Sprott) The incidence structure G constructed above is a square
GD 2− (

q4 − q, q2, (0, 1)
)

with point-classes of size m = q2 − q.

Proof
The number of points of G, u, is equal to the number of blocks and is given by,

u = q4 + q2 + 1− (
q2 + q + 1

)

= q4 − q.

Each block of G is a line of P1 with one point ‘removed’, and so is incident with
q2 points. Thus G is uniform.

Label the set of lines of P1 which are also lines of P0 as B0. We now show
that every point of G is on exactly one line of B0. Since P0 is a projective plane,
any two lines of B0 intersect in a point of P0. Thus, no two lines of B0 intersect
in a point of G. Therefore, there are in total (k1 − k0)b0 distinct points of G
incident with a line of B0 and each of these points is incident with exactly one
line of B0. But,

(k1 − k0) b0 =
(
q2 − q

) (
q2 + q + 1

)

= q4 − q,

which is the total number of points in G. Hence, every point of G is on exactly
one line of B0. Thus, the lines of B0 define a partition of the points of G into
point- classes, with two points in the same point-class if and only if they are
incident with a common line of B0. The number of points in a point-class is
given by the number of points of G on any one line of B0, i.e.,

m = k1 − k0

=
(
q2 + 1

)− (q + 1)

= q2 − q.

Every point of P1 is on q2 +1 lines. Then, since the blocks of G are the lines
of P1 which are not in B0, every point of G is incident with exactly q2 blocks
of G. Therefore G is regular.

Let Q and R be any two points of G. Then they are incident with exactly one
common line, l say, in P1. If l ∈ B0 then Q and R are in the same point-class
and there is no block of G incident with both Q and R. If l /∈ B0 then Q and
R are not in the same point-class and l is a block of G. So there is exactly one
block of G incident with both Q and R.
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Hence, G is a square GD 2 − (
q4 − q, q2, (0, 1)

)
with point-classes of size

q2 − q.

In [12], Dembowski proves what is effectively the converse to the above result:

Result 4.11 Let G be a square GD 2− (
q4 − q, q2, (0, 1)

)
with point-classes of

size m = q2 − q, then G is isomorphic to a projective plane of order q2 from
which the points and lines of a subplane of order q are removed.

Example 4.12 Let P1 be the Desarguesian projective plane of order four, and
let P0 be the Desarguesian projective plane of order two. Then P0 is a Baer
subplane of P1. Using these in Sprott’s construction gives a GD 2−(14, 4, (0, 1))
with point-classes of size m = 2. By adjoining to this group divisible design a
point of weight 4 − 2 = 2 and some new blocks, a 2 − (16, 4, 1; {1, 2}) point-
weighted design can be constructed using the method described at the beginning
of this section. A weighted incidence matrix of this point-weighted design is
given in Figure 4.1.




2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1
0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1




Figure 4.1: A weighted incidence matrix of a 2-(16,4,1;{1,2})

Recall from Chapter 1 that any projective plane of order four is isomorphic
to the Desarguesian plane of that order, and any projective plane of order two is
isomorphic to the Desarguesian plane of order two. An immediate consequence
of this together with Lemma 4.8 and Result 4.11 is:

Lemma 4.13 Let D be a 2 − (16, 4, 1; {1, 2}) with exactly one point of weight
2. Then D is isomorphic to the point-weighted design whose weighted incidence
matrix is given in Figure 4.1.
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4.3.2 The Case k − a = 2

Proper 2 − (v, k, 1; {1, k − 1}) point-weighted designs with just one point of
weight k− 1 are classified in Corollary 4.9. We now consider the class of proper
2−(v, k, 1; {1, k − 2}) point-weighted designs with one point of weight k−2. We
obtain a lower bound on v for given k which improves that given in Corollary 4.4
and show that the example of a point-weighted design whose weighted incidence
matrix is given in Figure 4.1 attains this bound.

We note that for k − 2 > 1 we require k ≥ 4, and we shall assume that
this is so. Suppose D is a proper 2− (v, k, 1; {1, k − 2}) with exactly one point
P of weight k − 2. Let U be the underlying incidence structure of D and
let G be the point-residue of U at P . Lemma 4.8 states that D is a proper
2 − (v, k, 1; {1, k − 2}) if and only if G is a GD 2 − (v − k + 2, k, (0, 1)) with
point-classes of size two. So we consider the incidence structure G and suppose
it is a GD 2− (v − k + 2, k, (0, 1)) with point-classes of size two. The condition
that D is proper specifies that G must have at least four points.

To define some notation, let Q be an arbitrary point of G. Then there is
a unique point denoted Q

′
, in the same point-class as Q and distinct from Q

(since the point-classes are of size 2) We call Q
′
the partner point of Q.

Lemma 4.14 Let G be a GD 2 − (v − k + 2, k, (0, 1)) with k ≥ 4 and point-
classes of size two. Let Q be a point of G, with partner point Q

′
, then there is

a block of G not incident with either Q or Q
′
.

Proof
Since G has at least four points, there is at least one block on Q and at least one
block on Q

′
. Let x be a block on Q and let y be a block on Q

′
. Now two points

of G are on at most one block, thus there can be at most one point incident
with both x and y. Since k ≥ 4 there are at least two points on x which are
not also on y or equal to Q. Label one of these points as R1. There are also at
least two points on y which are not also on x or equal to Q

′
and at least one of

these is not the partner point of R1 (i.e., R
′
1). Label this point R2. Then R1

and R2 are not in the same point-class and so there is a block z incident with
both R1 and R2. But the block x is incident with both Q and R1; the block
y is incident with both Q

′
and R2, and so the block z cannot be incident with

either Q or Q
′
.

We use this result to obtain a lower bound on the number of points of G,
u(1) say, for given k ≥ 4.

Lemma 4.15 Let G be a GD 2 − (
u(1), k, (0, 1)

)
with k ≥ 4 and point-classes

of size two. Then u(1) ≥ k2 − k + 2.

Proof
For any point Q and its partner point Q

′
, there is a block z not incident with

Q or Q
′
. This block is incident with exactly k points, none of which are in the

same point-class as Q or Q
′
, and we label these points R1, R2, . . . , Rk. For each

54



i = 1, 2, . . . , k, there is exactly one block incident with both Ri and Q and we
label this block xi. Any two blocks xi, xj (i, j ∈ {1, 2, . . . , k}, i 6= j) are both
incident with Q and so there is no other point of G incident with both xi and
xj . For each i = 1, 2, . . . , k, the block xi is incident with k points and so the
total number of points incident with the blocks x1, x2, . . . , xk is k(k − 1) + 1.
Since each of these blocks is incident with Q, none of them are incident with Q

′

and so there are at least k2 − k + 2 points.

Corollary 4.16 Let D be a proper 2−(v, k, 1; {1, k − 2}) with k ≥ 4 and exactly
one point P of weight k − 2. Then v ≥ k2.

Proof
Let U be the underlying incidence structure of D. Since D has exactly one
point P of weight k − 2 the number of points of weight 1 in D is given by the
number of points in the point-residue of U at P , G say. By Lemma 4.8, G is
a GD 2 − (

u(1), k, (0, 1)
)

with k ≥ 4 and point-classes of size two, and so by
Lemma 4.15, u(1) ≥ k2 − k + 2. Then v = u(1) + k − 2, and so v ≥ k2.

We note that the point-weighted design whose weighted incidence matrix is
given in Figure 4.1 attains this bound for k = 4. We now show that any proper
2− (v, k, 1; {1, k − 2}) with exactly one point of weight k− 2 in which v attains
the above bound has a square group divisible design as a substructure of its
underlying incidence structure.

Lemma 4.17 Let D be a proper 2 − (
k2, k, 1; {1, k − 2}) with k ≥ 4 and ex-

actly one point P of weight k − 2. Let U be the underlying incidence struc-
ture of D and let G be the point-residue of U at P . Then G is a square GD
2− (

k2 − k + 2, k, (0, 1)
)
.

Proof
By Lemma 4.8 G is a GD 2−(

k2 − k + 2, k, (0, 1)
)

with point-classes of size two.
The number of blocks in G, bG say, is simply the number of blocks of D which
are not incident with P . We show that this is equal to the number of points in
G, k2 − k + 2.

Applying Lemma 3.21 gives the total number of blocks in D, bD say, to be,

bD =
1
k

(
(k − 2)

(
k2 − k + 2

)

k − (k − 2)
+

(
k2 − k + 2

) (
k2 − 1

)

k − 1

)

=

(
k2 − k + 2

)

k

(
k − 2

2
+ k + 1

)

=
3
2

(
k2 − k + 2

)
.

The number of blocks of D which are incident with P , rP say, is given by
Equation (3.5) on page 42 to be,

rP =
k2 − k + 2
k − (k − 2)
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=
1
2

(
k2 − k + 2

)
.

Thus, the number of blocks of D which are not incident with P is k2−k +2,
and this is the number of blocks in G. So we have shown that G is square.

Combining this lemma with Lemma 4.8 gives the corollary,

Corollary 4.18 A proper 2 − (k2, k, 1; {1, k − 2}) with k ≥ 4 and exactly
one point of weight k − 2 exists if and only if there exists a square GD 2 −(
k2 − k + 2, k, (0, 1)

)
with point-classes of size two.

To obtain conditions for the existence of a square GD 2−(
k2 − k + 2, k, (0, 1)

)
with point-classes of size two, we establish a property of such a design:

Lemma 4.19 Let G be a square GD 2−(
k2 − k + 2, k, (0, 1)

)
with point-classes

of size two. Then every point of G is incident with k blocks, and the dual of G
is also a square GD 2− (

k2 − k + 2, k, (0, 1)
)

with point-classes of size two.

Proof
Since G is a group divisible design it is both uniform and regular. Result 1.2
and the fact that G is square then gives that the number of blocks on any one
point is equal to the number of points on any one block. Hence, every point of
G is incident with exactly k blocks.

Since G is square, the dual of G is also square. To show that the dual of
G is a GD 2 − (

k2 − k + 2, k, (0, 1)
)

with point-classes of size two we need to
show that the blocks of G can be partitioned into classes of size two so that any
two blocks in the same class do not intersect, and any two blocks from different
classes intersect in exactly one point. Since any two blocks of G intersect in
at most one point, it is sufficient to show that for any block x of G, there is a
unique block x

′
which does not intersect x.

Consider a block x of G. There are k points incident with x, and each of
these points is incident with a further k − 1 blocks. Given any two points on
x, P and Q say, the blocks other than x which are incident with P are distinct
from the blocks other than x which are incident with Q (since there is only
one block, x, incident with both P and Q). Thus, there are in total k(k − 1)
blocks of G which intersect x and so there is exactly one block x

′
which does

not intersect x.

For any block x of a square GD 2− (
k2 − k + 2, k, (0, 1)

)
with point-classes

of size two we call the unique block x
′

which does not intersect x the partner
block of x. We define block-classes in G by setting distinct blocks x and y to be
in the same block-class if and only if y is the partner block of x.

Lemma 4.20 Let G be a square GD 2−(
k2 − k + 2, k, (0, 1)

)
with point-classes

of size two. Let P be a point of G with partner point P
′
, and let x be a block of

G with partner block x
′
. Then P is incident with x if and only if P

′
is incident

with x
′
.
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Proof
Let x be any block of G and let Q be an arbitrary point incident with x. Label
the remaining points on x as P1, P2, . . . , Pk−1. Then, for each i = 1, 2, . . . , k− 1
there is exactly one block, xi say, incident with both Pi and the partner point
of Q, Q

′
. The blocks x1, x2, . . . , xk−1 are distinct since the only block of G

incident with any two points from {P1, P2, . . . , Pk−1} is x. Now Q
′

is incident
with k blocks in total and so there is one further block, y say, on Q

′
which is

not incident with any of P1, P2, . . . , Pk−1. Furthermore, y is not incident with
Q since there is no block on both Q and Q

′
. Thus, y does not intersect x and so

is the partner block of x. Now x is an arbitrary block of G and Q is an arbitrary
point on x. So we have shown that for any block x of G with partner block x

′
,

and any point P of G with partner point P
′
, P is on x if and only if P

′
is on

x
′
.

Hence, given a square GD 2−(
k2 − k + 2, k, (0, 1)

)
with point-classes of size

two we may define a new structure C(G) whose points are the point-classes of
G and whose blocks are the block-classes of G. A point-class µ is incident with
a block-class β if and only if the points of µ are each incident with a block of
β. In [29], Wild gives a similar construction of symmetric designs from GD
2− (v, k, (0, 1)) designs with λ ≥ 2.

Lemma 4.21 Let G be a square GD 2−(
k2 − k + 2, k, (0, 1)

)
with point-classes

of size two. Then the structure C(G) is a symmetric 2− (
1
2

(
k2 − k + 2

)
, k, 2

)
.

Proof
Each block of C(G) is incident with k points of C(G); the k classes containing
the k points on a block of the block-class. G has k2 − k + 2 points with point-
classes of size two, and so G has 1

2

(
k2 − k + 2

)
points. Similarly, C(G) has

1
2

(
k2 − k + 2

)
blocks and so is square.

Consider two point-classes µ1 and µ2, and let P be a point of µ1. P is
on exactly one block with each of the points of µ2 and these two blocks are
distinct. Furthermore, the two blocks represent two block-classes incident with
µ1 and µ2 and there are no other block-classes incident with both µ1 and µ2

(since any such block-class contains a block on P ). Thus, C(G) is a symmetric
2− (

1
2

(
k2 − k + 2

)
, k, 2

)
.

So we have established that a necessary condition for the existence of a GD
2 − (

k2 − k + 2, k, (0, 1)
)

with point-classes of size two is that there exists a
biplane with block-size k. Furthermore, let G be a GD 2− (

k2 − k + 2, k, (0, 1)
)

with point-classes of size two and label the points of G as P1, P2, . . . , Pk2−k+2 so
that, for each i = 1, 2, . . . , 1

2

(
k2 − k + 2

)
, the point P2i is in the same point-class

as the point P2i−1. Label the blocks of G as x1, x2, . . . , xk2−k+2 so that, for each
i = 1, 2, . . . , 1

2

(
k2 − k + 2

)
, the block x2i is in the same block-class as the block

x2i−1. Let A = (aij) be the incidence matrix of G with respect to this labelling.
Then, for each i = 1, 2, . . . , 1

2

(
k2 − k + 2

)
and each j = 1, 2, . . . , 1

2

(
k2 − k + 2

)
,

57



every 2× 2 submatrix of A of the form,

Aij =
(

a2i−1,2j−1 a2i−1,2j

a2i,2j−1 a2i,2j

)
,

must be one of,
(

0 0
0 0

)
,

(
1 0
0 1

)
,

(
0 1
1 0

)
.

We define a square matrix W = (wij) of size 1
2

(
k2 − k + 2

)
by,

wij =





0 if Aij =
(

0 0
0 0

)

1 if Aij =
(

1 0
0 1

)

−1 if Aij =
(

0 1
1 0

)
,

for each i = 1, 2, . . . , 1
2

(
k2 − k + 2

)
and each j = 1, 2, . . . , 1

2

(
k2 − k + 2

)
. Re-

placing every negative entry of W by 1 gives an incidence matrix of C(G), the
structure constructed above. Now C(G) is a biplane and so the dot product of
any two distinct rows of an incidence matrix of C(G) is equal to two. However,
the dot product of any two rows of the matrix A is at most 1 and so it follows
that W is a BOD

(
1
2

(
k2 − k + 2

)
, 1

2

(
k2 − k + 2

)
, k, k, 2

)
(using the notation

defined in Section 1.5). Hence we have proved,

Lemma 4.22 A necessary condition for the existence of a group divisible 2 −(
k2 − k + 2, k, (0, 1)

)
design with point-classes of size two is that there exists a

BOD
(

1
2

(
k2 − k + 2

)
, 1

2

(
k2 − k + 2

)
, k, k, 2

)
.

Suppose we are given a BOD
(

1
2

(
k2 − k + 2

)
, 1

2

(
k2 − k + 2

)
, k, k, 2

)
, which

necessarily has underlying matrix equal to an incidence matrix of a biplane with
block-size k. Recall from Section 1.5 that it is then possible to construct a GD
2 − (

k2 − k + 2, k, (0, 1)
)

with point-classes of size two. Combining this with
Lemma 4.22 and Corollary 4.18 gives:

Theorem 4.23 A necessary and sufficient condition for the existence of a proper
2− (k2, k, 1; {1, k − 2}) with k ≥ 4 and exactly one point of weight k − 2 is that
there exists a BOD

(
1
2

(
k2 − k + 2

)
, 1

2

(
k2 − k + 2

)
, k, k, 2

)
.

Recall from Section 1.4.4 that examples of biplanes with block-size k are only
known for k = 3, 4, 5, 6, 9, 11 and 13. Although the number of known biplanes is
small, it is difficult in general to ascertain which biplanes have an incidence ma-
trix which is the underlying matrix of a BOD

(
1
2

(
k2 − k + 2

)
, 1

2

(
k2 − k + 2

)
, k, k, 2

)
.

Example 4.12 exhibits a proper 2 − (16, 4, 1; {1, 2}) and so there exists a BOD
(7, 7, 4, 4, 2) whose underlying matrix is an incidence matrix of the symmetric
2 − (7, 4, 2). The following result due to Bhaskar Rao (in [25]) demonstrates
that there does not exist a BOD (11, 11, 5, 5, 1), nor does there exist a BOD
(79, 79, 13, 13, 2).
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Result 4.24 (Rao) When v is odd, a necessary condition for the existence of
a BOD (v, v, k, k, λ) is that k is a perfect square.

We now prove directly that there does not exist a BOD (16, 16, 6, 6, 2).

Lemma 4.25 There does not exist a BOD (16, 16, 6, 6, 2).

Proof
The underlying matrix of a BOD (v, v, k, k, 2) is a biplane with block-size k, and
so we show that it is not possible to replace the non-zero entries of an incidence
matrix of a symmetric 2− (16, 6, 2) with ±1 such that the resulting matrix is a
BOD (16, 16, 6, 6, 2).

Let I denote the 2× 2 identity matrix, and denote by K the matrix,
(

0 1
1 0

)
.

There are three non-isomorphic biplanes with block-size six (see [21]), which we
call B1, B2 and B3. Let N be an incidence matrix of one of B1, B2 or B3. Then
the rows of N can be permuted, and the columns of N permuted to give the
matrix (see for example [30] page 181):




0 1
1 0

1 0
0 1

1 0
0 1

1 0
0 1

1 1
1 1

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 1
1 0

1 0
0 1

1 0
0 1

0 0
0 0

1 1
1 1

0 0
0 0

0 0
0 0

1 0
0 1

1 0
0 1

0 1
1 0

1 0
0 1

0 0
0 0

0 0
0 0

1 1
1 1

0 0
0 0

1 0
0 1

1 0
0 1

1 0
0 1

0 1
1 0

0 0
0 0

0 0
0 0

0 0
0 0

1 1
1 1

1 1
1 1

0 0
0 0

0 0
0 0

0 0
0 0

0 1
1 0

1 0
0 1

1 0
0 1

1 0
0 1

0 0
0 0

1 1
1 1

0 0
0 0

0 0
0 0

1 0
0 1 A B C

0 0
0 0

0 0
0 0

1 1
1 1

0 0
0 0

1 0
0 1 D E F

0 0
0 0

0 0
0 0

0 0
0 0

1 1
1 1

1 0
0 1 G H L




,

where each of the 2× 2 matrices A,B,C, D,E, F, G, H and L is equal to either
K or I. There are three possibilities corresponding to the three known biplanes:

(i) if N is an incidence matrix of B1 then,

A = E = L = K,
B = C = D = F = G = H = I;

(ii) if N is an incidence matrix of B2 then,

B = F = G = K,
A = C = D = E = H = L = I;
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(iii) if N is an incidence matrix of B3 then,

C = D = H = K,
A = B = E = F = G = L = I.

Consider the matrix N above. We consider all possible ways of replacing the
non-zero entries of the first ten rows and the first ten columns of N with ±1 so
that the dot product of any (distinct) two of the first ten rows is zero. We show
that when N is an incidence matrix of either B1, B2 or B3 it is not possible to
then replace the remaining non-zero entries of the eleventh row with ±1 so that
the dot product of any two distinct rows of N is zero.

Given a balanced orthogonal design W , it is possible to multiply any row
or column by −1 and the resulting matrix is a balanced orthogonal design.
Suppose W is a balanced orthogonal design with underlying matrix N . Then
we may assume without loss of generality that the first entry in each column
and the first entry in each row is 1.

We follow the usual convention of denoting the (i, j)th entry of a matrix
labelled with an upper-case letter by the corresponding lower-case letter with
subscript ij (i.e., we set A = (aij), B = (bij), etc.). For clarity, we now use the
symbol α for −1 and the symbol − for 0.

Assuming that the first entry in each row and the first entry in each column
of W is 1 determines that W is of the form,

W =




− 1 1 − 1 − 1 − 1 1 − − − − − −
1 − − 1 − 1 − 1 q − − − − − −
1 − − α p − − − − 1 1 − − − −
− 1 α − − − − − − − − −
1 − − − α − − − − − 1 1 − −
− 1 − α − − − − − − − −
1 − − − − α − − − − − − 1 1
− 1 − − α − − − − − − −
1 − − − − − − − α − α − α −
1 − − − − − − − − α − α − α
− − 1 − − − − α − a11 a12 b11 b12 c11 c12− − 1 − − − − − α a21 a22 b21 b22 c21 c22− − − − 1 − − α − d11 d12 e11 e12 f11 f12− − − − 1 − − − α d21 d22 e21 e22 f21 f22− − − − − − 1 α − g11 g12 h11 h12 l11 l12− − − − − − 1 − α g21 g22 h21 h22 l21 l22




,

where a blank entry denotes an entry which is either 1 or α, but is as yet unde-
termined. Similarly, each of p and q is either 1 or α, but is as yet undetermined.
The values of p and q determine the values of all the remaining non-zero entries
in the first ten columns and the first ten rows. There are four cases to consider:

(i) p = q = 1;

(ii) p = 1, q = α;

(iii) p = α, q = 1;

(iv) p = q = α.
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We consider each case in turn. Label the rows of W in order from the top as
r1, r2, . . . , r16. For some i, j ∈ {1, 2, . . . , 16}, we say that ri and rj ‘pass’ if the
dot product of ri and rj is zero.

Case (i) : p = q = 1 In this case, W is determined to be of the form:

W =




− 1 1 − 1 − 1 − 1 1 − − − − − −
1 − − 1 − 1 − 1 1 α − − − − − −
1 − − α 1 − α − − − 1 1 − − − −
− 1 α − − 1 − α − − α 1 − − − −
1 − α − − α 1 − − − − − 1 1 − −
− 1 − α α − − 1 − − − − α 1 − −
1 − 1 − α − − α − − − − − − 1 1
− 1 − 1 − α α − − − − − − − α 1
1 α − − − − − − − 1 α − α − α −
1 1 − − − − − − α − − α − α − α
− − 1 1 − − − − α − a11 a12 b11 b12 c11 c12− − 1 α − − − − − α a21 a22 b21 b22 c21 c22− − − − 1 1 − − α − d11 d12 e11 e12 f11 f12− − − − 1 α − − − α d21 d22 e21 e22 f21 f22− − − − − − 1 1 α − g11 g12 h11 h12 l11 l12− − − − − − 1 α − α g21 g22 h21 h22 l21 l22




.

If N (the underlying matrix of W ) is an incidence matrix of B1 then b11 is
non-zero. For r5 and r11 to pass we require b11 = 1. However, for r6 and r11 to
pass we require b11 = α, giving a contradiction. Thus, W cannot be a balanced
orthogonal design.

If N is an incidence matrix of either B2 or B3 then a11 is non-zero. For r3

and r11 to pass we require a11 = 1. However, for r4 and r11 to pass we require
a11 = α, giving a contradiction. Thus, W cannot be a balanced orthogonal
design.

Case (ii) : p = 1, q = α In this case, W is determined to be of the form:

W =




− 1 1 − 1 − 1 − 1 1 − − − − − −
1 − − 1 − 1 − 1 α 1 − − − − − −
1 − − α 1 − α − − − 1 1 − − − −
− 1 α − − 1 − α − − 1 α − − − −
1 − α − − α 1 − − − − − 1 1 − −
− 1 − α α − − 1 − − − − 1 α − −
1 − 1 − α − − α − − − − − − 1 1
− 1 − 1 − α α − − − − − − − 1 α
1 1 − − − − − − − α α − α − α −
1 α − − − − − − 1 − − α − α − α
− − 1 α − − − − α − a11 a12 b11 b12 c11 c12− − 1 1 − − − − − α a21 a22 b21 b22 c21 c22− − − − 1 α − − α − d11 d12 e11 e12 f11 f12− − − − 1 1 − − − α d21 d22 e21 e22 f21 f22− − − − − − 1 α α − g11 g12 h11 h12 l11 l12− − − − − − 1 1 − α g21 g22 h21 h22 l21 l22




.

If N is an incidence matrix of B1 then b11 is non-zero. For r5 and r11 to pass
we require b11 = 1. However, for r6 and r11 to pass we require b11 = α, giving
a contradiction. Thus, W cannot be a balanced orthogonal design.

If N is an incidence matrix of either B2 or B3 then a11 is non-zero. For r3

and r11 to pass we require a11 = α. However, for r4 and r11 to pass we require
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a11 = 1, giving a contradiction. Thus, W cannot be a balanced orthogonal
design.

Case (iii) : p = α, q = 1 In this case, W is determined to be of the form:

W =




− 1 1 − 1 − 1 − 1 1 − − − − − −
1 − − 1 − 1 − 1 1 α − − − − − −
1 − − α α − 1 − − − 1 1 − − − −
− 1 α − − α − 1 − − α 1 − − − −
1 − 1 − − α α − − − − − 1 1 − −
− 1 − 1 α − − α − − − − α 1 − −
1 − α − 1 − − α − − − − − − 1 1
− 1 − α − 1 α − − − − − − − α 1
1 α − − − − − − − 1 α − α − α −
1 1 − − − − − − α − − α − α − α
− − 1 1 − − − − α − a11 a12 b11 b12 c11 c12− − 1 α − − − − − α a21 a22 b21 b22 c21 c22− − − − 1 1 − − α − d11 d12 e11 e12 f11 f12− − − − 1 α − − − α d21 d22 e21 e22 f21 f22− − − − − − 1 1 α − g11 g12 h11 h12 l11 l12− − − − − − 1 α − α g21 g22 h21 h22 l21 l22




.

If N is an incidence matrix of B1 then b11 is non-zero. For r5 and r11 to pass
we require b11 = α. However, for r6 and r11 to pass we require b11 = 1, giving
a contradiction. Thus, W cannot be a balanced orthogonal design.

If N is an incidence matrix of either B2 or B3 then a11 is non-zero. For r3

and r11 to pass we require a11 = 1. However, for r4 and r11 to pass we require
a11 = α, giving a contradiction. Thus, W cannot be a balanced orthogonal
design.

Case (iv) : p = q = α In this case, W is determined to be of the form:

W =




− 1 1 − 1 − 1 − 1 1 − − − − − −
1 − − 1 − 1 − 1 α 1 − − − − − −
1 − − α α − 1 − − − 1 1 − − − −
− 1 α − − α − 1 − − 1 α − − − −
1 − 1 − − α α − − − − − 1 1 − −
− 1 − 1 α − − α − − − − 1 α − −
1 − α − 1 − − α − − − − − − 1 1
− 1 − α − 1 α − − − − − − − 1 α
1 1 − − − − − − − α α − α − α −
1 α − − − − − − 1 − − α − α − α
− − 1 α − − − − α − a11 a12 b11 b12 c11 c12− − 1 1 − − − − − α a21 a22 b21 b22 c21 c22− − − − 1 α − − α − d11 d12 e11 e12 f11 f12− − − − 1 1 − − − α d21 d22 e21 e22 f21 f22− − − − − − 1 α α − g11 g12 h11 h12 l11 l12− − − − − − 1 1 − α g21 g22 h21 h22 l21 l22




.

If N is an incidence matrix of B1 then b11 is non-zero. For r5 and r11 to pass
we require b11 = α. However, for r6 and r11 to pass we require b11 = 1, giving
a contradiction. Thus, W cannot be a balanced orthogonal design.

If N is an incidence matrix of either B2 or B3 then a11 is non-zero. For r3

and r11 to pass we require a11 = α. However, for r4 and r11 to pass we require
a11 = 1, giving a contradiction. Thus, W cannot be a balanced orthogonal
design.
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So, we have shown that it is not possible to replace the non-zero entries of an
incidence matrix of a biplane with block-size six with ±1 so that the resulting
matrix is a balanced orthogonal design. Thus, we have shown that there does
not exist a BOD (16, 16, 6, 6, 2).

We have shown that a proper 2− (k2, k, 1; {1, k−2}) with k ≥ 4 and exactly
one point of weight k−2 exists if and only if there exists a biplane with block-size
k and a BOD

(
1
2

(
k2 − k + 2

)
, 1

2

(
k2 − k + 2

)
, k, k, 2

)
with underlying matrix

equal to an incidence matrix of the biplane. We have demonstrated the existence
of a proper 2 − (16, 4, 1; {1, 2}) with exactly one point of weight 2. However,
the required balanced orthogonal design does not exist when k = 5, 6 or 13,
despite the existence of biplanes with block-size five, six and thirteen. Hence,
the existence of a biplane with block-size k ≥ 4 alone is necessary but not
sufficient for the existence of a proper 2− (k2, k, 1; {1, k − 2}) with exactly one
point of weight k−2. It remains an open problem whether a BOD (37, 37, 9, 9, 2)
or a BOD (56, 56, 11, 11, 2) exists.
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Chapter 5

Point-Complementing and
Trivial Point-Weighted
Designs

We begin this chapter by introducing the procedure of point-complementing in-
cidence structures and use it to construct point-weighted designs from certain
block designs. We define trivial point-weighted designs and consider some spe-
cific families of such structures. When considering these it is convenient to view
the blocks of a design as subsets of the point-set, with incidence as containment,
and we shall do so throughout this chapter.

Definition 5.1 A trivial point-weighted design with parameters v and k
is a point-weighted design with those parameters, where the block-set consists of
every possible subset of the point-set which has weight-sum k.

With this definition, a trivial t − (v, k, λ; {1}) clearly has as its underlying
incidence structure a trivial t − (v, k, λ) - a trivial block design, as defined in
Chapter 1. We conclude the chapter by using point-complementing to establish
a correspondence between the underlying incidence structures of certain trivial
point-weighted designs and a class of trivial block designs.

5.1 Point-Complementing

Let D be a 2 − (v,K, λ) with v > maxK. In 1970, Woodall ([34]) and Bridges
([5]) introduced a method of obtaining from such a design another (possibly
isomorphic) 2−(v, K

′
, λ

′
) for some K

′
and λ

′
. We refer to this method as point-

complementing (Woodall referred to this method as ‘point-complementation,
point un-changed’ and Bridges referred to the resulting 2 − (v, K

′
, λ

′
) as a

‘type-I λ-design’). Following the notation of [2], we denote by S = (V,B,∈)
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an incidence structure with point-set V and block-set B whose blocks are to be
viewed as sets of points with incidence in S given by containment.

Let S = (V,B,∈) be an incidence structure. For a given point P , define a
block-set B(P ) by,

B(P ) = {x | x ∈ B with P /∈ x} ∪ {(V \ y) ∪ {P} | y ∈ B with P ∈ y}.

Then we call the incidence structure (V,B(P ),∈) the point-complement of S
at P , and denote this structure by S(P ).

Result 5.2 (Woodall, Bridges) Let D = (V,B,∈) be a 2 − (v, K, λ) with
v > maxK. Let P be a point of D and denote the number of blocks containing P
by rP . Then the point-complement of D, D(P ) = (V,B(P ),∈), defined as above,
is a 2− (v,K

′
, rP − λ) for some set K

′
.

Proof
It is clear that since D is a design, no two blocks of D(P ) contain exactly the
same points, and so D(P ) is also a design. We show that any pair of points of
D(P ) is contained in exactly rP −λ blocks. Firstly, let Q be a point not equal to
P . There are λ blocks of D containing both P and Q, and hence rP − λ blocks
of D containing P and not Q, and hence rP − λ blocks of D(P ) containing both
P and Q.

Secondly, let Q and R be distinct points, not equal to P . The number of
blocks of D(P ) containing both Q and R is equal to the number of blocks of D
containing both Q and R but not P plus the number of blocks of D containing
P but neither Q or R. Let λPQR denote the number of blocks of D containing
all of P, Q and R. Then the number of blocks of D containing both Q and R but
not P is λ− λPQR. The number of blocks of D containing P but neither Q or
R is given by rP − 2λ + λPQR. Hence, the number of blocks of D(P ) containing
both Q and R is rP − λ.

Thus, D(P ) is a 2− (v, K
′
, rP − λ) for some set K

′
.

As remarked upon by Woodall, it is easily seen that for any incidence struc-
ture S,

(S(P )

)
(P )

= S for any point P of S. Also, for any other point Q of S,(S(P )

)
(Q)

is the same as S(Q) but with the points P and Q interchanged.
We now show a method of using the technique of point-complementing to

construct certain point-weighted designs from block designs.

5.1.1 Constructing Point-Weighted Designs

Let D = (V,B,∈) be a proper 2− (u, k, λ) (i.e., a block design) with k > u+1
2

and let r be the number of blocks containing any one point of D. Let P be
a point of D and let D(P ) = (V,B(P ),∈) be the point-complement of D at P .
We construct a point-weighted structure, S = (V,B(P ),∈, w), with underlying
incidence structure D(P ), by defining the weight function w on V as follows.
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Let Q be any element of V, then,

w(Q) =
{

2k − u if Q = P
1 otherwise.

Lemma 5.3 Let D be a proper 2−(u, k, λ) with k > u+1
2 and r blocks containing

any one point, and let P be a point of D. Then the structure S, constructed
from D as above, is a 2− (2k − 1, k, r − λ; {1, 2k − u}).

Proof
By Result 5.2, for any point P of D, the point-complement of D at P is a
2− (u,K, r− λ), for some set K. Since the underlying incidence structure of S
is the point-complement of D at some point P , every pair of points of S is thus
contained in exactly r − λ blocks.

Since k > u+1
2 , the weight of the point P in S is greater than 1. Thus, all

the points of S have weight 1, apart from P which has weight 2k − u. So the
weight-set of S is {1, 2k − u} and the sum of the weights of all the points of S
is 2k − 1.

We now need to show that the sum of the weights of the points in any block
of S is k. There are two types of blocks in S. The first type does not contain
the point P , but contains exactly k other points, all with weight 1. The second
type contains the point P plus exactly u − k points of weight 1. Since P has
weight 2k − u, it is clear that the sum of the weights of the points in any block
of S is k.

Thus, S is a 2− (2k − 1, k, r − λ; {1, 2k − u}).

Example 5.4 Let D = (V,B,∈) be the 2− (9, 6, 5) whose incidence matrix is




1 1 1 1 1 1 1 1 0 0 0 0
1 1 0 1 0 1 1 0 0 1 1 1
1 1 1 0 1 0 0 1 0 1 1 1
0 1 1 1 1 0 1 0 1 0 1 1
0 1 0 1 1 1 0 1 1 1 0 1
0 1 1 0 0 1 1 1 1 1 1 0
1 0 1 1 0 1 0 1 1 0 1 1
1 0 0 1 1 0 1 1 1 1 1 0
1 0 1 0 1 1 1 0 1 1 0 1




Figure 5.1: A 2− (9, 6, 5).

given in Figure 5.1. Label the points P1, P2, . . . , P9 and the blocks x1, x2, . . . , x12

so that the matrix in Figure 5.1 is the incidence matrix of D with respect to
such a labelling. By taking the point-complement of D at the point P1 and
assigning weights to points as specified in the above construction, we construct
a 2− (11, 6, 3; {1, 3}) whose weighted incidence matrix is given in Figure 5.2.
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


3 3 3 3 3 3 3 3 0 0 0 0
0 0 1 0 1 0 0 1 0 1 1 1
0 0 0 1 0 1 1 0 0 1 1 1
1 0 0 0 0 1 0 1 1 0 1 1
1 0 1 0 0 0 1 0 1 1 0 1
1 0 0 1 1 0 0 0 1 1 1 0
0 1 0 0 1 0 1 0 1 0 1 1
0 1 1 0 0 1 0 0 1 1 1 0
0 1 0 1 0 0 0 1 1 1 0 1




Figure 5.2: A 2− (11, 6, 3; {1, 3}).

Consider a block design with parameters u, k and λ such that k > u+1
2 . We

show as a corollary to Lemma 5.3 that the point-complement of such a block
design at any point cannot be 3−balanced (that is, cannot have the property
that every set of three distinct points is contained in the same number of blocks).

Corollary 5.5 Let D = (V,B,∈) be a 2− (u, k, λ) with k > u+1
2 and let P be a

point of D. Let D(P ) = (V,B(P ),∈) be the point-complement of D at P . Then
D(P ) is not 3−balanced.

Proof
Suppose D(P ) does have the property that every set of three distinct points is
contained in the same number of blocks. Then, letting K be the set of block-sizes
in D(P ), there exists a value λ3 such that D(P ) is a 3− (u,K, λ3).

We construct the point-weighted structure S = (V,B(P ),∈, w) with D(P )

as its underlying incidence structure as above, by setting the weight of P to be
2k − u and setting the weight of all other points to be 1. Then, by Lemma 5.3,
S is a 2 − (2k − 1, k, r − λ; {1, 2k − u}), where r is the number of blocks of D
containing any one point. But since D(P ) - the underlying incidence structure
of S - has the property that every set of three points is contained in exactly λ3

blocks, S is also a 3− (2k − 1, k, λ3; {1, 2k − u}). But this directly contradicts
Corollary 3.9. Hence, D(P ) does not have the property that every set of three
distinct points is contained in the same number of blocks.

5.2 Trivial t−(v, k, λ;W) Point-Weighted Designs

In this section we consider trivial point-weighted designs and examine when a
trivial point-weighted design is a t− (v, k, λ;W) for some parameters t, v, k and
λ and weight-set W (i.e., when it has the property that every set of t distinct
points is contained in a fixed number of blocks). It is generally a hard problem
to establish explicit conditions on the parameters so that this is the case but in
Section 5.2.3 we do so for trivial point-weighted designs in which all but one of
the points have the same weight.
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5.2.1 Improper Trivial Designs

Let V be a set of u points, w a weight function on V, and set W = image(w)
and v =

∑

P∈V
w(P ). Clearly, for any such V and w, we can construct a trivial

point-weighted design, D, which is a t − (v, v, 1;W) for any 1 ≤ t ≤ u, by
defining the block-set of D to consist of exactly one block containing all the
points of V. This type of point-weighted structure is clearly not proper and so
we call such an object an improper point-weighted design.

5.2.2 Proper Trivial Designs

Let D = (V,B,∈) be a trivial point-weighted design with parameters v and k,
weight-set W and u = |V|. We have already seen that D is a t − (v, k, 1;W)
for any 1 ≤ t ≤ u if v = k and D is improper. So we assume that v > k and
D is proper. Let T = {Ti | i = 1, 2, . . . ,

(
u
t

)} be the set of all unordered sets of
t distinct points from V for some t ≥ 1. For each Ti (i = 1, 2, . . . ,

(
u
t

)
) let λTi

denote the number of blocks of D containing the set of t points, Ti. Then D is a
t− (v, k, λ;W) for some λ > 0 if and only if λTi = λ for every i = 1, 2, . . . ,

(
u
t

)
.

Suppose there exist j, l ∈ {1, 2, . . . ,
(
u
t

)} such that the points of Tj and Tl can
be labelled P1, P2, . . . , Pt and Q1, Q2, . . . , Qt respectively, with w(Pi) = w(Qi)
for each i = 1, 2, . . . , t. Then, since D is a trivial point-weighted design, the
number of blocks containing Tj is the same as the number of blocks containing
Tl, and is equal to the number of subsets of points from V \ Tj whose weights
sum to k − σ(Tj).

To establish whether a given trivial point-weighted design D has the property
that every set of t distinct points is contained in a fixed number of blocks for
some t, it is necessary to count the number of blocks containing a set of t points
of given weights for every possible multiset of weights of t distinct points of D.
In general this is prohibitively complicated, but in the following section we do
so for trivial point-weighted designs in which all but one of the points have the
same weight.

5.2.3 Trivial Designs with One ‘Special’ Point

Let D =(V,B,I,w) be a trivial point-weighted design with weight-set W =
{1, a}, where a is a positive integer greater than 1, such that exactly one point
has weight a and all other points have weight 1. The block-set B of D is deter-
mined by a and its parameters v and k. In this section we establish necessary
and sufficient conditions for D to be a t− (v, k, λ; {1, a}) for some t, and deter-
mine an expression for the corresponding value of λ.

One necessary condition for D to be a t− (v, k, λ; {1, a}) for some t is that,

k ≥ a + t− 1, (5.1)

since every set of t distinct points of D must be contained in λ blocks. Before
considering the case when D is proper, we obtain a necessary and sufficient
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condition for D to be improper.

Lemma 5.6 Let a be an integer greater than 1 and let D be a t−(v, k, λ; {1, a})
with exactly one point of weight a, all other points having weight 1. Then D is
improper if and only if v − a < k.

Proof
Suppose D is improper. Then v = k and it immediately follows that v − a < k.

We note that the value v − a is precisely the number of points of weight 1
in D, which we denote by u(1). We show that if u(1) < k then v = k and so D
is improper.

Let u(1) < k. There is only one point, P say, not of weight 1, and the sum of
the weights of the points in any one block is k. So it follows that the point P is
contained in every block of D. As in the proof of Lemma 4.1 we show that this
gives v = k. In the case t = 1 this is clearly true since every point is contained
in the same number of blocks as the point P . Thus, every point is in every block
of D and so v = k. We now consider the case t > 1.

Let S be a set of t − 1 points of D, all of weight 1, and set T = S ∪ {P}.
Then T is a set of t distinct points of D and so is contained in exactly λ blocks.
Since the point P is contained in every block of D, the set S is also contained
in exactly λ blocks. The weight-sum of S is t− 1, and so by Theorem 3.6, the
number of blocks containing S, λS , is,

λS = λ
(v − t + 1)
(k − t + 1)

.

But there are exactly λ blocks containing S and so we require λS = λ. Hence,
v = k and D is improper.

Now letD =(V,B,I,w) be a proper trivial point-weighted design with weight-
set W = {1, a}, where a is a positive integer greater than 1, such that exactly
one point has weight a and all other points have weight 1. Since all but one
of the points of D have weight 1, any set of t distinct points of D will either
contain t points of weight 1 or t− 1 points of weight 1 together with the point
of weight a. Let λa,1 denote the number of blocks of D containing a set of t
distinct points of which exactly one has weight a and all the others have weight
1, and let λ1,1 denote the number of blocks of D containing a set of t distinct
points which all have weight 1. Then a set of t distinct points of D will be
contained in either λ1,1 blocks or λa,1 blocks. D is a t − (v, k, λ; {1, a}) if and
only if every set of t distinct points is contained in exactly λ blocks, i.e., if and
only if,

λ1,1 = λa,1 = λ. (5.2)

We now obtain expressions for λ1,1 and λa,1. As before, denote the number
of points of weight 1 by u(1). Then v = a+u(1), and the total number of points,
u = |V|, is equal to u(1) +1. The number of blocks containing a set of t distinct
points, one of which has weight a with all the others having weight 1, is then
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equal to the number of ways of choosing an unordered set of k − (a + t − 1)
points from the remaining u(1) − (t − 1) points of weight 1 (recall from (5.1)
that k ≥ a + t− 1). So,

λa,1 =
(

u(1) − (t− 1)
k − (a + t− 1)

)
. (5.3)

We note that if k = a + t − 1 then the number of blocks containing a set of
t distinct points, one of which has weight a with all the others having weight
1, must be one, since D is a point-weighted design and does not therefore have
repeated blocks. Then the expression for λa,1 in (5.3) is valid if k = a + t − 1
since the combination is by definition equal to 1.

If k ≥ a + t, the number of blocks containing a set of t distinct points, all of
weight 1, is equal to the number of ways of choosing an unordered set of k − t
points from the u(1) − t remaining points of weight 1 plus the number of ways
of choosing an unordered set of k − (a + t) points from the u(1) − t remaining
points of weight 1 (recall from Lemma 5.6 that u(1) ≥ k since D is proper). So,

λ1,1 =
(

u(1) − t

k − t

)
+

(
u(1) − t

k − (a + t)

)
. (5.4)

We note that this expression for λ1,1 is also valid if k = a + t − 1 since the
second term would then by definition be zero. This corresponds to the fact that
if k = a + t− 1 there could be no block containing a set of t points of weight 1
together with the point of weight a. Similarly, the expression is valid if k = a+t,
since then the second term would by definition be equal to 1. This corresponds
to the fact that for a given set of t distinct points of weight 1, T say, there must
be exactly one block containing both T and the point of weight a, since D is a
trivial point-weighted design.

Before equating the expressions for λa,1 and λ1,1 in (5.3) and (5.4) respec-
tively, to determine t for which λa,1 = λ1,1, we require the following result
concerning combinations:

Lemma 5.7 Let a, b and c be positive integers satisfying
(
a
c

)
=

(
b
c

)
. Then either,

(i) a < c in which case b < c,
or,

(ii) a ≥ c in which case b ≥ c and a = b.

Proof

(i) Let a < c. Then, by definition,
(
a
c

)
= 0 and so

(
b
c

)
= 0. But b and c are

both positive and so b < c.

(ii) Let a ≥ c. Then
(
a
c

)
> 0 and so

(
b
c

)
> 0. Hence, b ≥ c.

Now suppose a 6= b and, without loss of generality let a < b (if a > b we
re-label a as b and b as a). From the statement of the lemma,

(
a
c

)
=

(
b
c

)
,
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and we express the combinations in this equality as quotients of factorials:

a!
c! (a− c)!

=
b!

c! (b− c)!
.

Multiplying through by c! and simplifying gives,

a(a− 1)(a− 2) . . . (a− c + 1) = b(b− 1)(b− 2) . . . (b− c + 1),

or, (a

b

) (
a− 1
b− 1

)(
a− 2
b− 2

)
. . .

(
a− c + 1
b− c + 1

)
= 1.

But a < b and so each bracketed term in the product on the left hand side
of the equation is less than 1. Hence, the entire product on the left hand
side is less than 1 - giving a contradiction. Thus, a = b.

We use this lemma and Lemma 5.6 to obtain a necessary and sufficient
condition for the existence of trivial t − (v, k, λ; {1, a}) point-weighted designs
with exactly one point having weight a.

Theorem 5.8 Let a be a positive integer greater than 1 and let D =(V,B,I,w)
be a trivial point-weighted design with parameters v and k, in which exactly one
point has weight a and all other points have weight 1. Let u = |V| and let t be
an integer in the range,

1 ≤ t ≤ k − a + 1.

Then a necessary and sufficient condition for D to be a t − (v, k, λ; {1, a}) for
some value of λ is that either,

(i) v = k and D is improper,
or,

(ii) u = 2k − (a + t− 2), in which case v = 2k − t + 1.

If D is a t− (v, k, λ; {1, a}) for some t then either λ = 1 if D is improper or,

λ =
(

v − a− t + 1
k − a− t + 1

)
,

if D is proper.

Proof
Recall from Section 5.2.1 that if v = k (i.e., if D is improper) then D is a
t− (v, v, 1; {1, a}) for every t in the range 1 ≤ t ≤ u. Furthermore, if v = k then
we see that u = k − a + 1, and so D is a t − (v, v, 1; {1, a}) for every t in the
range 1 ≤ t ≤ k − a + 1. So we now consider the case when D is proper.

Let λa,1 and λ1,1 be defined as above, and let u(1) be the number of points
of D of weight 1. D is proper and so we recall from Lemma 5.6 that u(1) ≥ k.
Clearly, given t in the desired range, D will be a t − (v, k, λ; {1, a}) for some

71



value of λ if and only if λa,1 = λ1,1. Equating the expressions for λa,1 and λ1,1

in (5.3) and (5.4) respectively gives,
(

u(1) − (t− 1)
k − (a + t− 1)

)
=

(
u(1) − t

k − t

)
+

(
u(1) − t

k − (a + t)

)
.

Expressing each term as a quotient of factorials (with 0! defined to be 1), we
get,

(
u(1) − (t− 1)

)
!(

u(1) − k + a
)
! (k − (a + t− 1))!

=

(
u(1) − t

)
!(

u(1) − k
)
! (k − t)!

+

(
u(1) − t

)
!(

u(1) − k + a
)
! (k − (a + t))!

,

and we look to solve this expression for u(1). Since t < k, we have u(1) > t and

so we multiply through by (u(1)−k+a−1)!

(u(1)−t)! to give,
(
u(1) − t + 1

)
(
u(1) − k + a

)
(k − a− t + 1)!

=

(
u(1) − k + a− 1

)
!(

u(1) − k
)
! (k − t)!

+

(
u(1) − k + a− 1

)
!(

u(1) − k + a
)
! (k − a− t)!

.

Subtracting 1

(u(1)−k+a)(k−a−t)!
from both sides gives,

(
u(1) − k + a

)
(
u(1) − k + a

)
(k − a− t + 1)!

=

(
u(1) − k + a− 1

)
!(

u(1) − k
)
! (k − t)!

.

Multiplying through by (k − t)! gives,
(k − t)!

(k − t− a + 1)!
=

(
u(1) − k + a− 1

)
!(

u(1) − k
)
!

.

Or, expressing as combinations,

(a− 1)!
(

k − t

a− 1

)
= (a− 1)!

(
u(1) − k + a− 1

a− 1

)
(5.5)

Recall from (5.1) that k − t ≥ a − 1. Hence, by Lemma 5.7, (5.5) holds if and
only if,

k − t = u(1) − k + a− 1,

i.e.,
u(1) = 2k − (a + t− 1).

Hence, D will be a t − (v, k, λ; {1, a}) for some value of λ if and only if D is
improper or u(1) = 2k− (a + t− 1). Then, u = u(1) + 1 and v = u(1) + a, giving
the values for u and v in the statement of the theorem.

If D is a proper t− (v, k, λ; {1, a}) for some t in the range 1 ≤ t ≤ k− a + 1,
then the value of λ is given in (5.3) to be:

λ =
(

u(1) − (t− 1)
k − (a + t− 1)

)
.
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Observing that u(1) = v − a then gives the expression for λ in the statement of
the theorem.

Corollary 5.9 For any t > 0 and a > 1 there does not exist a proper trivial
t− (v, k, λ; {1, a}) with v > 2k in which exactly one point has weight a.

Proof
Let D be a proper trivial t− (v, k, λ; {1, a}) for some t > 0 and a > 1 in which
exactly one point has weight a. Suppose v > 2k. Then by Theorem 5.8, t, v
and k are related by v = 2k − t + 1. But t > 0 and so v < 2k + 1, giving a
contradiction. Hence, it is not possible that v > 2k.

Noting that the condition on v, k and t in Theorem 5.8 is independent of the
value of a gives one further corollary,

Corollary 5.10 Let t, v and k be positive integers satisfying v > k > t, such
that v = 2k − t + 1. Then for any a in the range 1 < a ≤ k − t + 1 there exists
a t− (v, k, λ; {1, a}) in which exactly one point has weight a.

Example 5.11 Suppose we wish to find a proper trivial 3 − (v, 5, λ; {1, 2})
for some values of v and λ in which exactly one point has weight 2 and all
other points have weight 1. Then, by Theorem 5.8, the only example of such a
structure has six points of weight 1 and v = 8. The value of λ is given by either
of the expressions (5.3) or (5.4) to be four. A weighted incidence matrix of this
trivial 3− (8, 5, 4; {1, 2}) is given in Figure 5.3.




2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 1
1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 1 1 0 1 1
0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1
0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1
0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1




Figure 5.3: The trivial 3− (8, 5, 4; {1, 2}) with exactly one point of weight 2.

Example 5.12 Another small example of a trivial point-weighted design which
in this case is the only proper trivial 2− (v, 5, λ; {1, 3}) with exactly one point
of weight 3 is given in Figure 5.4.
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5.3 Trivial Point-Weighted Designs and
Point-Complementing

We now use the preceding results in this chapter and consider the class of
proper 2− (v, k, λ; {1, a}) trivial point-weighted designs with exactly one point
of weight a > 1 and all other points of weight 1. We demonstrate that point-
complementing the underlying incidence structures of these trivial point-weighted
designs at the point of weight a gives a correspondence between these structures
and trivial block designs with certain parameters. For ease of expression, we
shall use the title type I trivial point-weighted design with parameters k
and a to refer to a proper 2− (v, k, λ; {1, a}) trivial point-weighted design with
exactly one point of weight a > 1 and all other points of weight 1. Recall from
Theorem 5.8 that for given k and a, there is exactly one value of v for which there
exists a type I trivial point-weighted design with parameters k and a, namely
v = 2k − 1. The corresponding value of λ is then given by

(
v−a−1
k−a−1

)
(putting

t = 2 and u(1) = v − a in (5.3)). We first show that the point-complement of
the underlying incidence structure of a type I trivial point-weighted design at
the point of weight a is a block design.

Lemma 5.13 Let D be a type I trivial point-weighted design with parameters
k and a and underlying incidence structure U . Let P be the point of weight
a in D and denote by U(P ) the point-complement of U at P . Then U(P ) is a
2− (2k − a, k, λ), for some value of λ.

Proof
Since D is a type I trivial point-weighted design with parameters k and a, its
underlying incidence structure U is a 2− (u,K, λ

′
) for some values of u and λ

′

and set K. The value of u - the number of points in D (and therefore in U) -
is given in Theorem 5.8 to be 2k − a. Hence, the number of points in U(P ), the
point- complement of U at P , is also 2k − a.

Let rP denote the number of blocks of U containing the point P . Then, by
Result 5.2, the point-complement of U at P is a 2 − (u,K

′
, rP − λ

′
). We need

to show that every block of U(P ) contains exactly k points.




3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1
0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 1
0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1
0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1
0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1




Figure 5.4: The trivial 2− (9, 5, 5; {1, 3}) with exactly one point of weight 3.
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There are two ‘classes’ of blocks of U . A block of the first class does not
contain the point P and contains exactly k other points, all of which have
weight 1 in D. A block of the second class does contain the point P together
with exactly k − a other points, which have weight 1 in D. The first class is
‘un-changed’ by point-complementing at P - i.e., the blocks of U(P ) which do not
contain P are exactly the blocks of U which do not contain P . The remaining
blocks of U(P ) correspond exactly with the second class of blocks of U . For each
block x of U containing P , there is a unique block y of U(P ) containing exactly
the points not contained in x plus the point P . Conversely, for each block y of
U(P ) containing P , there is a unique block x of U containing exactly the points
not contained in y, plus the point P . Thus, the blocks of U(P ) containing P
each contain a total of (2k − a)− (k − a) = k points.

So, we have shown that every block of U(P ) which does not contain P contains
exactly k points and that every block of U(P ) which does contain P contains
exactly k points. Hence, every block of U(P ) contains exactly k points, and so
U(P ) is a 2− (2k− a, k, rP − λ

′
). Setting λ = rP − λ

′
gives the statement of the

lemma.

We now show that the point-complement of the underlying incidence struc-
ture of a type I trivial point-weighted design with parameters k and a at the
point of weight a is in fact a trivial block design.

Lemma 5.14 Let D be a type I trivial point-weighted design with parameters k
and a and underlying incidence structure U . Let P be the point of weight a in
D and denote by U(P ) the point-complement of U at P . Then U(P ) is the trivial
block design with 2k − a points and block-size k.

Proof
Recall from Lemma 5.13 that U(P ) is a block design with block-size k and 2k−a
points. Hence we need to show that the block-set of U(P ) consists of every
possible set of k points chosen from the 2k − a points in total. We note that
this will be the case if and only if two conditions are satisfied. Firstly, the set
of blocks of U(P ) which do not contain P must be the set of all possible sets of
size k of points chosen from the 2k − a − 1 points of U(P ) which have weight
1 in D. Secondly, the derived structure of U(P ) at P must be the trivial block
design with 2k − a− 1 points and block-size k − 1.

The first of the above two conditions is clearly satisfied since D is a type I
trivial point-weighted design. The blocks of D (and hence blocks of U) which
do not contain P form the block-set of the trivial block design with 2k − a− 1
points and block-size k. These blocks are also precisely the blocks of U(P ) which
do not contain P .

For the second condition, we consider the derived structure, R say, of U at
P . Because D is a type I trivial point-weighted design, R is just the trivial
block design with 2k−a− 1 points and block-size k−a. Then, the complement
of R is the trivial block design with 2k − a− 1 points and block-size,

(2k − a− 1)− (k − a) = k − 1.
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But, by definition, the complement of R is the derived structure of U(P ) at P .
Hence, the second condition is also satisfied and U(P ) is the trivial block design
with block size k and 2k − a points.

As we have already noted,
(U(P )

)
(P )

= U , and so the point-complement of
the above trivial block design, U(P ), at P is the underlying incidence structure
of the type I trivial point-weighted design, D with parameters k and a. But,
since U(P ) is a trivial block design, the point-complement of U(P ) at any other
point, Q say, will be isomorphic to the point-complement of U(P ) at P . Hence
we have shown:

Lemma 5.15 Let T be a trivial block design with block-size k > 2 and u = 2k−a
points, for some 1 < a < k. Then the point-complement of T at any point is
the underlying incidence structure of a type I trivial point-weighted design with
parameters k and a.

Combining Lemmas 5.14 and 5.15 gives the following theorem:

Theorem 5.16 Let T be a trivial block design with block-size k > 2 and u =
2k−a points, for some 1 < a < k. Then the point-complement of T at any point
is the underlying incidence structure of a type I trivial point-weighted design with
parameters k and a. Conversely, let U be the underlying incidence structure of
a type I trivial point-weighted design with parameters k and a, D say. Then the
point-complement of U at the point of weight a in D is the trivial block design
with block-size k and 2k − a points.
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