
A Flexible Real-Time Locking Protocol for Multiprocessors∗

Aaron Block, Hennadiy Leontyev, Björn B. Brandenburg, and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

Real-time scheduling algorithms for multiprocessor systems
have been the subject of considerable recent interest. For
such an algorithm to be truly useful in practice, support for
semaphore-based locking must be provided. However, for
many global scheduling algorithms, no such mechanisms have
been proposed. Furthermore, in the partitioned case, most
prior semaphore schemes are either inefficient or restrict crit-
ical sections considerably. In this paper, a new flexible mul-
tiprocessor locking scheme is presented that can be applied
under both partitioning and global scheduling. This scheme
allows unrestricted critical-section nesting, but has been de-
signed to deal with the common case of short non-nested ac-
cesses efficiently.

1. Introduction

The advent of multicore technologies is having a dramatic
impact on the computing landscape. Most major chip manufac-
tures currently offer dual-core chips, and in the coming years,
general-purpose chips with 32 or more cores are expected [21].
The shift towards multicore platforms is a watershed event:
the “standard” computing platform will now be a multiproces-
sor in many settings, including settings where real-time con-
straints arise. As examples of the latter, multicore platforms
have been proposed as a basis for implementing home comput-
ing appliances that must multiplex best-effort and real-time ap-
plications [5] and are currently being used in business systems
that must process transactions that have timing constraints [3].

To support such workloads, efficient multiprocessor-based
techniques for scheduling and synchronizing real-time tasks
are needed. The former topic, scheduling, has received signifi-
cant recent attention (see [5] for a recent survey). However, the
issue of synchronization has received much less attention and
adequate synchronization methods currently do not exist for
many of the multiprocessor scheduling approaches that have
been proposed in recent years. In this paper, we take a fresh
look at this issue. Our particular emphasis is lock-based syn-
chronization as provided via semaphores.

∗Work supported by Intel Corp., NSF grants CNS 0408996, CCF 0541056,
and CNS 0615197, and ARO grant W911NF-06-1-0425. The first and third
authors were supported by NSF and Fulbright fellowships, respectively.

Motivation. Our motivation for re-examining lock-based
synchronization is driven by several shortcomings of
previously-proposed real-time multiprocessor locking
schemes. First, in almost all such schemes, partitioned
scheduling is assumed. In contrast, in recent work on multi-
processor scheduling, global approaches, which permit tasks
to migrate across processors, have received considerable
attention. Clearly, to be of practical use, global approaches
must be extended to provide support for locking. Second, as
explained in greater detail later, most prior locking schemes
impose restrictive assumptions. For example, nested accesses
of global critical sections are often forbidden. Third, most
prior schemes are quite inefficient when implementing non-
nested locks. As explained in [12], non-nested lock accesses
are by far the common case in practice. Our goal in this paper
is to devise locking schemes that can be applied under both
partitioning and global scheduling, do not restrict the kinds of
critical sections that can be supported, and are very efficient
when most or all lock accesses are non-nested.

Multiprocessor scheduling. We assume that the workload to
be scheduled is specified as a sporadic task system. Three basic
approaches to scheduling such a system have been considered
in prior work: partitioning, Pfair-based global scheduling, and
non-Pfair-based global scheduling. Due to space constraints,
we do not discuss the various virtues and limitations of these
basic approaches here—such a discussion can be found in [10]
(among other places). Under partitioning, tasks are statically
assigned to processors, and each processor is scheduled using
a uniprocessor scheduling algorithm. Under global scheduling,
a task may execute on any processor and may migrate across
processors. Pfair algorithms schedule each job (i.e., instance)
of a task one quantum at a time. In non-Pfair algorithms, jobs
are considered to be schedulable entities. In this paper, we con-
sider only deadline-based scheduling algorithms. In the parti-
tioned case, we consider partitioned EDF (P-EDF), wherein
the earliest-deadline-first (EDF) algorithm is used on each
processor. In the global case, we consider the non-Pfair global
EDF (G-EDF) algorithm and the Pfair PD2 algorithm [1]. To
the best of our knowledge, no general semaphore locking pro-
tocol has been proposed previously for G-EDF or PD2.

Prior work. In work on uniprocessor synchronization, the
priority ceiling protocol (PCP) [8] and the stack-based re-

source allocation protocol (SRP) [4] have received consid-
erable attention. Both protocols prevent deadlock and limit
the durations of priority inversions (which occur when a job
is blocked by a job of lower priority) to be at most the length
of one outermost critical section.

In prior work on multiprocessor synchronization, Rajkumar
et al. [20, 19] were the first to propose protocols for imple-
menting semaphores. Two multiprocessor variants of the PCP
were presented by them for systems where partitioned, static-
priority scheduling is used. In later work, several related proto-
cols were presented for systems scheduled by P-EDF. The first
such protocol was presented by Chen and Tripathi [9]. How-
ever, their protocol works only for periodic (not sporadic) task
systems. In later work, Lopez et al. [17] presented an imple-
mentation of the SRP for P-EDF. In this work, tasks that
share a common resource must be assigned to the same pro-
cessor. More recently, Gai et al [13] also presented an im-
plementation of the SRP for P-EDF. In this implementation,
when a task waits for a resource to be released that is held by
a task on another processor, it busy-waits, which prevents any
useful work from being done on its processor. Also, accesses
of global critical sections are required to be non-nested. In
work involving global scheduling, approaches for implement-
ing non-nested locks have been presented by Holman and An-
derson [16] for PD2 and by Devi et al. [12] for G-EDF.

Summary of contributions. We present a new multiproces-
sor synchronization protocol, called the flexible multiproces-
sor locking protocol (FMLP), that breaks new ground in three
ways. First, it is the first such protocol that is optimized to ex-
ecute non-nested resource accesses (the common case) more
efficiently. Second, it is the first such protocol that can be
applied in G-EDF (actually, a variant of G-EDF that allows
jobs to suspend and become non-preemptable) and PD2 in ad-
dition to P-EDF. Third, the FMLP supports nested resource
accesses without constraining limitations. The FMLP allows
short critical sections to be implemented using busy-waiting
mechanisms and long critical sections to be implemented by
suspending blocked tasks. In the rest of the paper, we present
needed background (Sec. 2), describe the FMLP for G-EDF
(Sec. 3), describe the FMLP for P-EDF and PD2 (Sec. 4), ex-
perimentally compare the FMLP to prior schemes (Sec. 5), and
conclude (Sec. 6). In our experimental evaluation, the FMLP
(particularly the FMLP for G-EDF) proved to be substantially
better than prior schemes in terms of schedulability.

2. Background

We denote the ith task of a task system T as Ti (where tasks
are ordered arbitrarily) and the jth job of Ti as T j

i (where jobs
are ordered by their release times, as defined below). Through-
out the paper, we are only concerned with sporadic tasks. Such
a task Ti is specified by its worst-case execution cost, e(Ti),
and its period, p(Ti), which defines both the relative deadline

of each of its jobs and the minimum separation between such
jobs. A job T j

i becomes available for execution at its release
time, r(T j

i), and should complete execution before its absolute
deadline, d(T j

i) = r(T j
i) + p(Ti). T j

i is pending at time t iff
t ≥ r(T j

i) and T j
i has not completed execution by t. Pend-

ing jobs can be in one of three states: suspended, preemptable,
and non-preemptable. If a job is suspended, then it cannot be
scheduled on any processor. If a job is preemptable, then it
can be scheduled on a processor, but can be preempted by an-
other job with a higher scheduling priority. Finally, if a job
is non-preemptable, then it will execute until it becomes pre-
emptable or is no longer pending. A job can only become non-
preemptable or suspend when it is scheduled on a processor. If
a job is either preemptable or non-preemptable, then it is said
to be runnable. When a job’s state is changed from suspended
to preemptable, it is said to resume.

2.1. Scheduling Algorithms

Due to space constraints, we mainly focus on G-EDF in
this paper; P-EDF and PD2 are dealt with briefly in Sec. 4.
Hereafter, we let m denote the number of processors in the
system. Under P-EDF and G-EDF, pending jobs are priori-
tized by non-decreasing deadlines. Since the FMLP requires
priorities to be unique, we use Y(T j

i) = (d(T j
i), i) to denote

the scheduling priority of T j
i , and define Y(T j

i) > Y(T d
c) to

hold iff d(T j
i) < d(T d

c) or d(T j
i) = d(T d

c) ∧ i < c.
Under P-EDF, each task is permanently assigned to a spe-

cific processor. Each processor independently schedules its
assigned tasks using EDF. Under G-EDF, tasks are EDF-
scheduled using a single priority queue and can freely mi-
grate among processors. Various schedulability conditions for
P-EDF and G-EDF have been given in the literature. (Rele-
vant citations can be found in [10].) All of these conditions
require that overall utilization be capped. Without such caps,
Devi and Anderson [11] have shown that, under G-EDF, dead-
lines can be missed only by bounded amounts. PD2 is optimal,
and thus does not require utilization caps to avoid deadline
misses. PD2 divides tasks into quantum-length subtasks that
are assigned individual deadlines and then schedules them on
an EDF basis. Deadline ties are broken using two tie-breaking
rules (as discussed in [1]).

2.2. Resources

Jobs issue requests for exclusive access to resources. A re-
quest R for a resource ` by a job T j

i is considered to be satisfied
as soon as T j

i holds the resource. Associated with such a re-
source request R is the (worst-case) duration of time that T j

i

requires `, denoted |R|. Once T j
i has executed for the amount

of time it requires `, R is said to be complete and the resource
` is said to be released. If a request R by T j

i for a resource `

cannot be immediately satisfied, then T j
i is said to be blocked

on `. After R has been satisfied, T j
i is said to be unblocked.

A resource request R1 is contained within another resource
request R2 iff R1 is issued after R2 is issued but before R2

completes. We assume requests are “properly” contained: if
R1 is contained within R2, then R1 completes before R2. A
resource ` is non-nestable iff all requests for ` by any task nei-
ther contain nor are contained within any other request, and is
nestable otherwise. A request is an outermost request if it is
contained within no other request. Similarly, a request is an
inner request if it is contained within another request. For sim-
plicity, we assume in this paper that the manner in which re-
source requests are nested is known a priori. This simplifying
assumption can be eliminated at the expense of more cumber-
some notation.

2.3. The GSN-EDF Algorithm

The standard G-EDF scheduling algorithm assumes that
jobs are preemptable at all times. However, as we will shortly
discuss, in the FMLP, jobs can become non-preemptable for
short durations of time. In this section, we present a vari-
ant of G-EDF that guarantees that a job T j

i is only blocked
by another non-preemptable job when T j

i is either released
or resumed, and that such blocking durations are reasonably
constrained. For globally-scheduled systems, we say that a
T j

i is non-preemptively blocked at time t iff T j
i is one of the

m highest-priority runnable jobs and it is not scheduled at t
because a lower-priority non-preemptable job is scheduled in-
stead.

Before continuing, consider the following naı̈ve modifica-
tion to the G-EDF algorithm that allows jobs to have non-
preemptable sections: At time t, if there are q non-preemptable
pending jobs, then these jobs are scheduled at t. If there are
k additional preemptable jobs at t, then the min(k,m − q)
highest-priority such jobs are also scheduled at t.

The problem with the above algorithm is that it is possible
for a job T j

i to be non-preemptively blocked whenever other
jobs are released or resumed. For example, consider the sched-
ule depicted in Fig. 1. Even though T 1

1
is always among the

two highest-priority runnable jobs (while it is pending), it be-
comes non-preemptively blocked whenever a higher-priority
job arrives, because the lowest-priority scheduled jobs, T 1

2
and

T 1
4

, are non-preemptable. As a result, T 1
1

is non-preemptively
blocked for three time units, even though the maximum amount
of time that any job is non-preemptable is 2.5 time units.

In order to avoid this behavior, we introduce the
G-EDF algorithm for suspendable and non-preemptable jobs
(GSN-EDF), given in Fig. 2. Under GSN-EDF, a runnable
job is either linked to a processor or unlinked. A job T j

i is
linked at time t iff G-EDF would schedule T j

i on a processor
at t (under the assumption that all jobs are fully preemptable).
Thus, at any time t, at which there are at least m runnable jobs,
the m highest-priority runnable jobs are linked to processors.

5 7 8 9 10

Re
le

as
e

Non−preemptable

N
P−

Bl
oc

ke
d

6

Scheduled

D
ea

dl
in

e

0 1 2 3 4

T

1

T2

T

T

3

4

T5

Figure 1. An example of repeated preemptions
under G-EDF for a two-processor system.

Intuitively, if a job T j
i is linked to but not scheduled on a pro-

cessor, then T j
i is non-preemptively blocked. Additionally, if

a job T b
a is scheduled on a processor but is unlinked, then T b

a

is not one of the m-highest priority runnable tasks and is only
scheduled at time t because it is non-preemptable.

As an example, consider the two-processor system in Fig. 3,
which depicts the same system as in Fig. 1 except that it is
scheduled by GSN-EDF. When T 1

3
is released at time 1, it be-

comes linked to Processor 2 since its previously linked job, T 1
2

,
had the lowest priority of any linked job. However, since T 1

2

is non-preemptable at time 1, T 1
3

is not scheduled until T 1
2

be-
comes preemptable, at time 2.5. Thus, over the range [1, 2.5),
T 1

2
is non-preemptively blocked. Notice that, in Fig. 3, the only

time a job is non-preemptively blocked is when it is released,
and that the amount of time a job is non-preemptively blocked
is upper-bounded by the maximum duration of time any job can
be non-preemptable. Comparatively, a job in the naı̈ve modifi-
cation of G-EDF, considered earlier, can be non-preemptively
blocked whenever other jobs are released (e.g., T 1

1
, in Fig. 1,

is non-preemptively blocked over the time ranges [1, 2.5) and
[4, 5.5)) and a job can incur non-preemptive blocking larger
than the maximum duration of time a job is non-preemptable.
Although it is not depicted, under GSN-EDF, a job may be
non-preemptively blocked when it is resumed for a duration
of time that is upper-bounded by the longest time any job is
non-preemptable.

We now state two theorems concerning GSN-EDF that can
be used to bound non-preemptive blocking times. The proofs
of these theorems are straightforward, and have been omitted
due to space constraints.

Theorem 1. Under GSN-EDF, if a pending job T j
i is linked

but not scheduled at time t, then it has been linked but not
scheduled continuously over the interval [tR, t), where tR de-
notes the last time when T j

i was resumed or released.

T
j
i is released or resumed at time t:

1: T b
a := lowest-priority linked job (if it exists);

2: if fewer than m jobs are linked then
3: k := index of any unlinked processor;
4: T

j
i is linked to and scheduled on Proc. k

5: else if Y(T j
i) > Y(T b

a) then
6: k := processor T b

a is linked to;
7: T b

a becomes unlinked;
8: T

j
i becomes linked to Proc. k;

9: if T b
a is scheduled and preemptable then

10: T b
a stops being scheduled;

11: T
j
i is scheduled on Proc. k

12: fi
13: fi

T
j
i changes from non-preemptable to preemptable at time t:

14: k := processor T
j
i is scheduled on;

15: T b
a := job linked to Proc. k;

16: if T b
a exists ∧T b

a 6= T
j
i then

17: T
j
i stops being scheduled;

18: T b
a is scheduled on Proc. k

19: fi

T
j
i becomes suspended or completes at time t:

20: k := processor T
j
i is scheduled on;

21: T
j
i stops being scheduled;

22: T b
a := job linked to Proc. k;

23: if T b
a exists ∧T b

a 6= T
j
i then

24: T b
a is scheduled on Proc. k

25: else
26: T

y
x := highest-priority runnable unlinked job;

27: T
j
i becomes unlinked;

28: if T
y
x exists ∧T

y
x is not scheduled then

29: T
y
x is linked to and scheduled on Proc. k

30: else if T
y
x exists then

31: q := processor T
y
x is scheduled on;

32: T e
r := job linked to Proc. q;

33: if T e
r exists then

34: T e
r ’s link changes from Proc. q to k;

35: T e
r is scheduled on Proc. k

36: fi;
37: T

y
x becomes linked to Proc. q

38: fi
39: fi

Figure 2. Pseudo-code defining GSN-EDF.

Theorem 2. Let T j
i be the job linked to Processor k at time t

and assume T j
i is not scheduled at time t. Let tD be the max-

imal amount of time a job T b
a , where Y(T b

a) < Y(T j
i), that is

scheduled at time t on Processor k executes non-preemptively.
Under GSN-EDF, T j

i is either scheduled by time t + tD or
becomes unlinked by time t + tD.

3. The FMLP

In this section, we describe the flexible multiprocessor lock-
ing protocol (FMLP). We call it “flexible” because it can be
adapted for use under both partitioning and global scheduling.

Sc
he

d.
 o

n
Pr

oc
 n

.
D

ea
dl

in
e

Re
le

as
e

0 1 2 3 4 5 6 7 8 9 10

N
on

−P
re

m
p

on
 P

ro
c.

 n

U
nl

in
k

or
 n

ot
 sc

he
d.

Li
nk

ed
 t

o
Pr

oc
 n

.

T1

T

T

T

T

2

3

4

5

S 2

L
S

2
2

n n

2

n

S
L

1
1

1
1

L
S

S

2

L

L

2

Figure 3. An example of GSN-EDF for a two-
processor system. The processor(s) that each
task is either linked to or scheduled on are de-
noted in each block.

One design choice that must be addressed when implement-
ing a multiprocessor locking protocol is how to respond to re-
source requests that cannot be satisfied immediately. If jobs
are suspended when a resource request cannot be satisfied, then
worst-case blocking times are impacted negatively. If instead
jobs non-preemptively busy-wait, then no more than m−1 jobs
may be blocked on the same resource at any time (which im-
proves blocking times), but the amount of useful work done by
the system can be reduced significantly. On multiprocessors,
the method for ensuring deadlock freedom also has a major
impact on system utilization, as an overly pessimistic mecha-
nism may unnecessarily idle a processor.

We seek to ensure a high degree of parallelism and to strike
a balance between busy-waiting and suspensions in three ways.
First, we differentiate between resources that can be held for a
short or long duration and employ busy-waiting only for short
resources. Whether a resource should be considered long or
short is specified by the user. The only constraint is that re-
quests for long resources may not be contained within requests
for short resources. Second, by executing short requests non-
preemptively, we minimize the time jobs spend busy-waiting.
Third, resources are grouped in such a way that the common
case of short, non-nestable resources is dealt with efficiently.
This also helps to reduce the overhead of avoiding deadlock.
In the description of the FMLP, we focus on its implementa-
tion under GSN-EDF. We consider P-EDF and PD2 in Sec. 4.

3.1. Request Rules

Resource groups are the fundamental unit of locking in
the FMLP. Each group contains either only long or only
short resources, and is protected by a group lock, which is
either a non-preemptive queue lock (short) or a semaphore
(long). (Queue locks [18, 2] have been used previously to sup-
port non-nestable resource accesses in real-time multiproces-
sor systems [12, 13].) Two resources `1 and `2 are in the same
group iff there exists a job that issues a request for `1 that is
contained within a request for `2 and `1 and `2 are either both
short or both long. For example, in Fig. 4 (discussed shortly),
A and B are in the same group because a request for A is con-
tained within a request for B; however, C is in a group by itself
because it is non-nestable.

The FMLP handles the common case of non-nested re-
source accesses efficiently because non-nestable resources are
grouped individually, which improves parallelism. Note that,
in the FMLP, the terms outermost request and non-nestable re-
source are defined with respect to the type of the requested re-
source, i.e., requests for non-nestable long resources may con-
tain requests for short resources, and short requests only con-
tained within long requests are considered to be outermost. To
avoid confusion, we henceforth refer to long (short) outermost
and inner requests as l-outermost (s-outermost) and l-inner (s-
inner), respectively.

Short resource requests. When a job T j
i issues an s-

outermost request R for a short resource `, it must acquire `’s
group lock. In a queue lock, blocked processes busy-wait in
FIFO order. Before attempting to acquire such a lock, a job
must first become non-preemptable, and must remain in that
state until it relinquishes the lock. Any request R′ contained
within R is satisfied immediately as the requested resource is
by definition in `’s group. (Recall, that long requests cannot be
contained within short requests.) The queue lock for `’s group
is only relinquished when R completes.

Long resource requests. When a job T j
i issues an l-

outermost request R for a long resource `, it must acquire `’s
group lock. Under a semaphore lock, blocked jobs are added to
a FIFO queue and suspended. While T j

i holds `’s group lock,
it will inherit the maximum priority of any higher-priority job
blocked on a resource in `’s group and will be scheduled pre-
emptively. If a request R′ contained within R is long, then it
is satisfied immediately, as the requested resource is by defi-
nition in `’s group. If R′ is a short request, then it is either
an s-outermost request or is contained within such a request
and therefore T j

i must perform the short resource request pro-
tocol. When R completes, T j

i relinquishes `’s group lock, at
which point its priority is restored and the first job (if any) in
the group lock’s FIFO queue is dequeued and resumed.

There is one subtle issue that arises with priority inheritance
under GSN-EDF. If at time t, a job T j

i that is scheduled on
Processor k inherits the priority of T b

a , then T b
a must have been

scheduled on some Processor q only to become suspended at
time t. Furthermore, if there exists some job T y

x 6= T j
i that

is linked to Processor k, then the FMLP causes T y
x to become

linked and scheduled on Processor q, and T j
i continues to be

scheduled on Processor k and becomes linked to Processor k.
This prevents T j

i from needlessly switching processors.

Theorem 3. The FMLP is deadlock-free.

Proof. By contradiction. Deadlock can occur only if there
exists a circular chain of jobs where each job in the chain is
blocked on a resource in a group held by the next job in the
chain. To derive a contradiction, assume that an arbitrary job,
T j

i , which is part of a circular chain of blocked jobs, became
blocked by issuing a request R. R cannot be an s- or l-inner
request, since s- and l-inner requests can never cause a job to
block. In order for T j

i to be part of the circular chain, it must
already hold some resource. Thus, R must be contained within
an outermost request. Moreover, since long resource requests
cannot be contained within short resource requests and we have
already established that R is an s- or l-outermost request, it fol-
lows that R must be an s-outermost request. Thus, T j

i holds
no short resources (otherwise R would be an s-inner request)
and is blocked on a short resource. As we have made no as-
sumption concerning the identity of T j

i , we can conclude with-
out loss of generality that under the FMLP, in a circular chain
of blocked jobs, no job holds short resources and that all jobs
block on short resources, which is a contradiction.

Example. An example schedule for the FMLP under
GSN-EDF is depicted in Fig. 4. In this example, resources A
and B, are in Group 1, resources Z and X are in Group 2, and
resources C and Y are in Groups 3 and 4, respectively. There
are several important things to notice about this example:

• When T 1
2

issues a request for the short resource B at
time 1, it busy waits until time 2.5, when T 1

1
releases the

group lock for Group 1.

• When T 1
3

is released at time 1.5, it becomes linked to but
not scheduled on Processor 1. (It cannot be scheduled at
time 1.5 because T 1

1
is non-preemptable.) When T 1

1
be-

comes preemptable at time 2.5, T 1
3

is scheduled on Pro-
cessor 1. Thus, T 1

3
is non-preemptively blocked over the

range [1.5, 2.5).

• When T 1
4

issues a request for the long resource Z at
time 5, it becomes suspended because T 1

2
holds Z. As

a result, T 1
2

inherits T 1
4

’s priority and T 1
2

is scheduled un-
til T 1

2
releases Z at time 6.

• When T 1
3

issues a request for the long resource Z at
time 7.5, it becomes suspended because T 1

4
holds Z. This

allows T 1
2

to be scheduled at time 7.5, at which time it
issues a request that is immediately satisfied for the short

13

D
ea

dl
in

e

0 1 2 3 4 5 6 7 8 9 1110 12 1415Pr
ee

m
pt

iv
el

y
Sc

he
d

T n

0 1 2 3 4 5 6 7 8 9 1110 12131415

Li
nk

ed
 to

 T

NP Blocked Busy Waiting

0 1 2 3 4 5 6 7 8 9 1110 12131415

N
on

−
Pr

ee
m

pt
iv

el
y

Sc
he

d
T n

Re

qu
es

t C
om

pl
et

es
Re

le
as

e
Re

qu
es

t I
ss

ue
d

Scheduled Non−Preemptable

n

Suspended

5

431

2

3 4

(a)

3

n

2

(b)

2

2

1

2

1

2

1

233 2

n

42

1

n

3

(c)

2

4

5

Y Y

Z

Z C

Z

C

Z

W

N N

T

T

T

2

4

3

N W

X X

S

S

1

P2

S

P

P1

P2

T

5T

1
A

Z B

BBA

B

Z

Figure 4. A schedule for a two-processor
GSN-EDF-scheduled system that uses the
FMLP. A, B, and C are short resources. X,
Y , and Z are long resources. The schedule
is depicted from a per-task viewpoint in inset
(a) and from a per-processor viewpoint in in-
set (b). Inset (c) shows which task is linked to
each processor at each instant. For example,
over the range [7.5, 9.5), in inset (a), T2 is non-
preemptively scheduled, and in inset (b), it is
shown that T2 is scheduled on Processor 2. In
inset (c), it is shown that T2 is linked to Proces-
sor 2 over the range [7.5, 8.5), and T3 is linked to
Processor 2 over the range [8.5, 10).

resource C. Since T 1
2

holds C, it is non-preemptable un-
til it releases C. Thus, when T 1

3
is resumed at time 8.5,

it becomes linked to but not scheduled on Processor 2,
since the job that was previously linked to Processor 2
(T 1

2
) had the lowest priority of any linked job. Thus, T 1

3

is non-preemptively blocked from time 8.5 until T 1
2

be-
comes preemptable at time 9.5.

3.2. Blocking under GSN-EDF

The term blocking refers to delays experienced by a job T j
i

due to busy-waiting and also to suspensions that are not the
result of preemptions caused by higher-priority jobs. Because,
under GSN-EDF, up to the m highest-priority runnable jobs
are linked at any given instant in time, a job T j

i is considered
to be blocked at time t if T j

i is both one of the m highest-
priority pending jobs and either it cannot be scheduled or it
busy-waits. Note that a job may be blocked by jobs of lower or
higher priorities. (In contrast, in uniprocessor schemes, only
lower-priority jobs cause blocking.) There are three sources of
blocking under GSN-EDF, as listed below. Upper bounds for
these values are derived in the appendix.

• Busy-wait blocking occurs when a job must busy-wait in
order to acquire a short resource. For example, in Fig. 4,
T 1

2
busy-waits over the range [1, 2.5). We denote the max-

imum total amount of time for which any job of a task Ti

can busy-wait as BW(Ti).

• Non-preemptive blocking (as discussed earlier) occurs
when a preemptable pending job T j

i is one of the m
highest-priority pending jobs, but is not scheduled be-
cause a lower-priority non-preemptable job is scheduled
instead (i.e., T j

i is linked but not scheduled). For exam-
ple, in Fig. 4, T 1

3
is non-preemptively blocked over the

ranges [1.5, 2.5) and [7.5, 8.5). We denote the maximum
total amount of non-preemptive blocking any job of a task
Ti can incur as NPB(Ti).

• Direct blocking occurs when a preemptable pending job
T j

i is one of the m highest-priority jobs and it issues a
request for an outermost long resource ` from Group g,
but is suspended because some other job holds a resource
from Group g. For example, in Fig. 4, T 1

4
is direct-

blocked over the range [5, 6). We denote the maximum
total length of time any job of task Ti can be directly
blocked as DB(Ti).

The maximal blocking time for any job of task Ti, B(Ti), is the
simply the sum of these terms:

B(Ti) = BW(Ti) + NPB(Ti) + DB(Ti). (1)

4. FMLP Extensions

In this section, we briefly describe how the FMLP can be
used in conjunction with P-EDF and PD2. Blocking terms for
both of these variants can be derived in a similar way as for
GSN-EDF. Due to space constraints, these calculations are
omitted.

4.1. The FMLP under P-EDF

As was the case with G-EDF, we must consider a modified
version of P-EDF that allows jobs to become non-preemptable
and suspend at arbitrary points in time. The resulting al-
gorithm, which we call PSN-EDF, is a simple extension of
P-EDF, and is defined as follows.

(PSN-EDF) At time t, if there is a non-preemptable pending
job T b

a assigned to Processor k, then T b
a is scheduled at t

on Processor k; otherwise, the job scheduled at time t on
Processor k is the highest-priority runnable job (if any)
assigned to Processor k at time t.

We say that the task Ta is local to Ti if Ta and Ti are as-
signed to the same processor; otherwise, Ta is said to be remote
to Ti. We say that a resource ` in Group g is local if all jobs
that issue requests for any resource in Group g are assigned to
the same processor; otherwise, ` is global. The classification
of resources as short or long and the notion of groups is applied
only to global resources. Under the FMLP, it is possible for all
local resources to be governed by the uniprocessor SRP.

The biggest difference between the FMLP under PSN-EDF
and GSN-EDF is the distinction between local and global re-
sources. One complication with allowing global resources is
that it is possible for a job to hold a resource even though
it is not the highest-priority job on its assigned processor.
For example, consider the three-processor system depicted in
Fig. 5. In this example, T 1

5
holds the resource B over the range

[2.5, 7). However, T 1
5

is not the highest-priority job on Proces-
sor 3. As a result, T 1

3
is directly blocked by T 1

5
over the range

[2.5, 7).
There is no clear way to resolve this issue, because com-

paring the priority of two jobs on two different processors is
meaningless. (For example, if Processor 1 is lightly loaded
and Processor 2 is heavily loaded, then a job with a very large
deadline may have the highest priority on Processor 1, but a
very low priority on Processor 2.) In addition, we found that
the usage of priority inheritance in such situations did not re-
sult in lower blocking-time estimates. In order to minimize
these effects, resource requests in the PSN-EDF variant of the
FMLP are handled as follows. Whenever a job is scheduled
while it holds a resource, it becomes non-preemptable until the
resource is released. This holds regardless of whether the re-
source is long or short. Moreover, similar to the GSN-EDF

Proc5

B

BB

Scheduled Direct Blocking

B B

B

B B

0 1 2 3 4 6 7 8 9 10 11

Proc. 2

Proc. 3

Proc. 3

Proc. 3

1 Proc. 1

T2 Proc. 2

T

Proc. 2

T

T

T

T

T

3

4

5

6

7

Figure 5. Remote jobs affect blocking times.

variant, all resource requests are processed in FIFO order. Fi-
nally, if a T j

i is directly blocked by a local job T b
a , then T b

a can
inherit the priority of T j

i if Y(T j
i) > Y(T b

a).

4.2. FMLP under PD2

As mentioned earlier, under PD2, jobs are scheduled one
quantum at a time. In order to adapt the FMLP for use under
PD2, two changes to the GSN-EDF variant of the FMLP are
required. First, if a short resource request R cannot be com-
plete by the end of the scheduling quantum, then R cannot be
issued until the next scheduling quantum; this is a technique
first suggested by Holman and Anderson in [16]. Second, if
T j

i is directly blocked by T b
a , then T j

i does not suspend, but
rather, whenever T j

i is scheduled, T b
a can execute instead (thus

allowing T b
a to “inherit” T j

i ’s scheduling allocations). A more
thorough discussion of these two techniques (in systems with-
out nesting) can be found in [15].

5. Experiments

In this section, we present a simulation-based evaluation
of the FMLP. In our experiments, we compared the perfor-
mance of the FMLP under both PSN-EDF and GSN-EDF
with the performance of the multiprocessor SRP (MSRP) by
Gai et al. [13] under P-EDF in terms of schedulability. (In
the global case, there is no prior scheme that allows nesting to
compare against.) We chose the MSRP because it uses non-
preemptive FIFO queue locks to protect global resources, and
in that regard, it is similar to the FMLP. Furthermore, since the
MSRP allows sporadic tasks to share global resources (though
non-nested), it improves upon prior multiprocessor SRP ap-
proaches, which require that all tasks that access a common

resource be assigned to the same processor [17]. For con-
ciseness, we henceforth use FMLP-P (FMLP-G) to denote the
FMLP under PSN-EDF (GSN-EDF).

The MSRP uses the SRP to handle local resources and em-
ploys busy-waiting to block on global resources. Under the
MSRP, if any request for the resource ` ever contains another
request, then all tasks that access ` must be assigned to the
same processor. The FMLP-P, on the other hand, does not
require that any task be assigned to a particular processor, al-
though doing so may improve its performance with respect to
schedulability.

In our experiments, we computed the percentage of schedu-
lable task sets for the assessed algorithms and determined how
they are affected by different nesting levels. Throughout this
section, we use the terms heavy and light to refer to tasks with
“high” and “low” utilizations, respectively. When assessing
schedulability, we assumed scheduling overheads to be negli-
gible. In practice, such overheads can be accounted for using
standard methods [10]. Since the MSRP and the FMLP pre-
empt jobs to a similar extent, taking overheads into account
should not significantly change the observed results.

Experimental setup. In our experiments, we employed the
same task-set generation procedure and parameters that were
previously used in [12]. Simulations were conducted for m =
4 and m = 8 processors. To reasonably constrain the experi-
ments, task parameters were restricted as follows. The maxi-
mum number of tasks, N , in each task set was restricted to 20
when m = 4, and to 40 when m = 8. The maximum utiliza-
tion of any task, umax, was chosen from the set {0.1, 0.3}. The
utilization of each task was uniformly distributed in the range
(0.0, umax]. Tasks were added to each task set until either the
limit on the number of tasks was reached or the total system
utilization exceeded m/2.

The execution cost of each task, including that due to op-
erations on shared resources, was uniformly distributed in the
range [50.0, 500.0] µs. There is not much guidance on how to
assign execution costs. Our choice is based on costs reported
in [12].

Resource requests for tasks were determined as follows.
First, we created short resource requests for all tasks. Sec-
ond, we generated long resource requests. Finally, we created
nested resource requests.

For each task set, the number of short resources was set
to 6·N

m
. Each task was randomly assigned one to three short

resource requests. The duration of each short resource request
in the absence of contention was chosen uniformly from 1.3µs
to 6.5µs. On average, each short resource was shared among
m/2 tasks.

After the short resource requests were created, a small num-
ber of long resource requests was generated. Each task set had
exactly two long resources. For each long resource, we chose
the number of distinct tasks accessing this resource randomly
from two to four. Each of these tasks issues one request for

the long resource. The duration of a long resource request
was chosen randomly to lie within 20µs to 30µs. Thus, in
our experiments, accesses to long resources were uncommon,
reflecting our belief that accesses to short resources are more
common in real systems.

Nested resource requests were generated as follows. For
each task and each resource request R, we generated at most
two nested requests Rn of duration |Rn| = |R|/3, if R is
a short request, and |Rn| = 3, otherwise. Any given (long
or short) outermost request contains one nested request with
probability 2 · f(1 − f) and two nested requests with proba-
bility f2. The value of f ∈ [0, 0.1) is further referred to as
the nesting factor. In our experiments, we explored the case
wherein nesting is less common.

Recall that, under the MSRP, tasks must be partitioned so
that if two tasks Ti and Tj request a resource ` and some re-
quest for ` has another resource request contained within it,
then Ti and Tj must be assigned to the same processor. For the
FMLP-P, it is desirable (but not required) to have tasks with
long requests for resources in the same group be assigned to the
same processor in order to minimize inter-processor blocking
on long resources.

Taking into account the observations made above, we par-
titioned task sets for experiments under PSN-EDF using the
worst-fit descending algorithm with the added constraints that,
under the MSRP, tasks accessing a nestable resource ` were
assigned to the same processor, and, under the FMLP-P, tasks
requesting the same long resource were assigned to the same
processor. If the partitioning procedure violated the MSRP
constraints, the generated task set was considered to be not
schedulable. If the FMLP-P constraint was violated, we re-
partitioned the task system without the constraint. If the
FMLP-P could not be partitioned after removing the con-
straint, then the system was not considered to be schedulable.

For each pair of m and umax and systematically chosen val-
ues of the nesting factor f in the range 0 to 0.09, 500 task sets
were generated. For these task sets, we computed blocking
terms for the MSRP, the FMLP-P, and the FMLP-G and then
used these blocking terms to check schedulability conditions.

We used the uniprocessor EDF schedulability test given
in [13] to check the schedulability of the system for the FMLP-
P and the MSRP after computing the applicable blocking
terms. For each Processor k, let τk = {Tk,1, . . . , Tk,nk

}
be the set of assigned tasks sorted by non-decreasing peri-
ods. The task set is schedulable if, for each Processor k,
B(Tk,i) − BW(Tk,i)

p(Tk,i)
+

i
∑

j=1

e(Tk,j) + BW(Tk,j)

p(Tk,j)
≤ 1 holds

for each i ≤ nk. For the FMLP-G, we inflated the execution
costs of tasks by their respective blocking terms and used the
G-EDF schedulability test given in [14, 22]. The task set was
accepted after consideration of the computed blocking terms

if
N

∑

i=1

e(Ti) + B(Ti)

p(Ti)
≤ m − (m − 1)max

(

e(Ti) + B(Ti)

p(Ti)

)

0 0.02 0.04 0.06 0.08 0.1
0

50

100

Nesting factor

%
 o

f
s
c
h

e
d

u
la

b
le

.
ta

s
k
 s

e
ts

Schedulability vs. nesting factor m=4 u
max

=0.1

FMLP−G

FMLP−P

MSRP

(a)

0 0.02 0.04 0.06 0.08 0.1
0

50

100

Nesting factor

%
 o

f
s
c
h

e
d

u
la

b
le

.
ta

s
k
 s

e
ts

Schedulability vs. nesting factor m=4 u
max

=0.3

FMLP−G

FMLP−P

MSRP

(b)

Figure 6. Schedulability under the MSRP, the FMLP-P, and the FMLP-G for (a) m = 4, umax = 0.1, and (b)
m = 4, umax = 0.3.

holds, where N is the number of tasks in the task set.

Performance analysis. Insets (a) and (b) of Fig. 6 depict
schedulability versus nesting factor for m = 4 and umax = 0.1
and umax = 0.3, respectively. In these graphs, we see that
for task systems with light tasks (inset (a)), the percentage of
schedulable task sets for all three protocols is approximately
100% until the nesting factor becomes high, at which point the
percentage of schedulable task sets for the MSRP slightly de-
cays. Additionally, for systems with heavier tasks (inset (b)),
the percentage of schedulable task sets decays as the nesting
factor increases for all three protocols; however, the MSRP
decays at a much faster rate than either of the FMLP variants.
The reason for this behavior is because, as the nesting factor
increases, more tasks must be assigned to the same processor
under the MSRP, which increases the probability that a pro-
cessor will be over-utilized.

Insets (a) and (b) of Fig. 7 depict schedulability versus nest-
ing factor for m = 8 and umax = 0.1 and umax = 0.3,
respectively. In these graphs, we see that even for task sys-
tems with light tasks (inset (a)), the percentage of schedulable
task sets decays quickly for the MSRP. On the other hand,
for both of the FMLP variants, schedulability is always ap-
proximately 100% even for a high nesting factor. The reason
why the MSRP’s performance degrades faster in Fig. 7(a) than
in Fig. 6(a) is because there are more tasks in Fig. 7(a) that
access the same set of resources. Hence, in Fig. 7(a), more
tasks must be assigned to the same processor under MSRP
than in Fig. 6(a), which increases the probability that a single-
processor is over-utilized. In inset (b), we see that, for heavier
tasks, the percentage of schedulable tasks decays quickly for
the FMLP-P as the nesting factor increases. The reason for
this behavior is that, as the nesting factor increases, blocking
terms increase. This increases the probability that at least one
processor is assigned a set of tasks that is not schedulable.

It is worth noting that the inability to handle large num-
bers of interacting tasks casts doubts on the applicability of
the MSRP on multicore platforms that are expected to exceed
eight computing cores per chip within the coming years [21].

The FMLP-P’s ability to handle global resources in a gen-

eral way without imposing restrictions on how the task set
is partitioned clearly sets it apart from the MSRP. Gener-
ally speaking, since the FMLP allows for arbitrarily nested re-
source requests, task sets with some nesting are much more
likely to be schedulable under the FMLP than under the
MSRP. The performance of the FMLP-G is especially com-
pelling, as the percentage of schedulable tasks is not substan-
tially impacted by the nesting factor.

6. Conclusion and Future Work

In this paper, we presented the flexible multiprocessor lock-
ing protocol (FMLP), which is capable of being implemented
on systems scheduled by P-EDF, G-EDF, or PD2. The FMLP
is the first multiprocessor locking scheme that can be adapted
for use under both partitioning and global scheduling algo-
rithms. It is also the first such scheme to be optimized for the
common case of short non-nestable resource requests, while
still allowing for other types of resource access (i.e., long and
nestable resource requests). While further experimental re-
search is certainly warranted, the experiments reported herein
suggest that the FMLP, particularly the G-EDF variant of the
FMLP, has superior performance with respect to schedulability
than prior multiprocessor locking schemes. As a side contribu-
tion, we proposed the GSN-EDF scheduling algorithm, which
can be used to bound the impact of non-preemptive blocking
in globally-scheduled systems with tasks that can become non-
preemptable and suspend at arbitrary points in time, even if
that system does not require synchronization. In future work,
we hope to implement the FMLP on an actual testbed (specif-
ically, UNC’s LITMUSRT testbed [6]), then compare the per-
formance difference between classifying a resource as short
or long, and compare the FMLP’s performance to other non-
semaphore based synchronization mechanisms, such as lock-
free and wait-free approaches.

0 0.02 0.04 0.06 0.08 0.1
0

50

100

Nesting factor

%
 o

f
s
c
h

e
d

u
la

b
le

.
ta

s
k
 s

e
ts

Schedulability vs. nesting factor m=8 u
max

=0.1

FMLP−G

FMLP−P

MSRP

(a)

0 0.02 0.04 0.06 0.08 0.1
0

50

100

Nesting factor

%
 o

f
s
c
h

e
d

u
la

b
le

.
ta

s
k
 s

e
ts

Schedulability vs. nesting factor m=8 u
max

=0.3

FMLP−G

FMLP−P

MSRP

(b)

Figure 7. Schedulability under the MSRP, the FMLP-P, and the FMLP-G for (a) m = 8, umax = 0.1, and (b)
m = 8, umax = 0.3.

References

[1] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling
of asynchronous periodic tasks. Journal of Computer and System
Sciences, 68(1):157–204, Feb., 2004.

[2] T. Anderson. The performance of spin lock alternatives for
shared-memory multiprocessors. IEEE Transactions on Parallel
and Distributed Systems, 1(1):6–16, Jan. 1990.

[3] Azul Systems. Azul Compute Appliances. http://www.
azul.systems.com/products/compute-appliance.htm, Dec. 2006.

[4] T. Baker. Stack-Based Scheduling of Realtime Process. In Jour-
nal of Real-Time Systems, 3:67-99, 1991.

[5] J. Calandrino, D. Baumberger, T. Li, S. Hahn, and J. Anderson.
Soft real-time scheduling on performance asymmetric multicore
platforms. In Proc. of the 13th IEEE Real-Time and Embedded
Technology and Applications Symp., pages 101-110, Apr. 2006.

[6] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson.
LITMUSRT: A Testbed for Empirically Comparing Real-Time
Multiprocessor Schedulers. In Proc. of the 27th IEEE Real-Time
Systems Symp., pages 111-123, Dec. 2006.

[7] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor schedul-
ing problems and algorithms. In Joseph Y. Leung, editor, Hand-
book on Scheduling Algorithms, Methods, and Models, pages
30.1–30.19. Chapman Hall/CRC, Boca Raton, Florida, 2004.

[8] M. Chen and K. Lin. Dynamic Priority Ceiling: A Concurrency
Control Protocol for Real-Time Systems. In The Journal of Real-
Time Systems, 2:325-346, 1990.

[9] C. Chen and S. Tripathi. Multiprocessor priority ceiling based
protocols. Tech. Report CS-TR-3252, Univ. of Maryland, 1994.

[10] U. Devi. Soft Real-Time Scheduling on Multiproces-
sors. PhD thesis, Oct. 2006, http://www.cs.unc.edu/
˜anderson/diss/devidiss.pdf.

[11] U. Devi and J. Anderson. Tardiness Bounds for Global EDF
Scheduling on a Multiprocessor. In Proc. of the 26th IEEE Real-
Time Systems Symp., pages 330-341, Dec. 2005.

[12] U. Devi, H. Leontyev, and J. Anderson. Efficient Synchroniza-
tion under Global EDF Scheduling on Multiprocessors. In Proc.
of the 18th Euromicro Conf. on Real-Time Systems, pages 75-84,
July 2006.

[13] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and
P. Marceca. A comparison of MPCP and MSRP when sharing
resources in the Janus Multiple Processor on a chip platform. In
Proc. of the 9th IEEE Real-Time And Embedded Technology Ap-
plication Symp., pages 189-198, May 2003.

[14] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling
of periodic task systems on multiprocessors. Real-Time Systems,
25(2-3):187–205, 2003.

[15] P. Holman. On the Implementation of Pfair-Scheduled Multipro-
cessors Systems. PhD thesis, Aug. 2004, http: //www.cs.unc.edu/
˜anderson/diss/holmandiss.pdf.

[16] P. Holman and J. Anderson. Locking under Pfair Scheduling.
In ACM Transactions on Computer Systems, 24(2):140-170, May
2006.

[17] J. Lopez, J. Diaz, and D. Garcia. Utilization bounds for edf
scheduling on real-time multiprocessor systems. Real-Time Sys-
tems, 28(1):39–68, Oct. 2004.

[18] J. Mellor-Crummey and M. Scott. Algorithms for scalable syn-
chronization on shared-memory multiprocessors. ACM Trans. on
Computer Systems, 9(1):21–65, Feb. 1991.

[19] R. Rajkumar. Synchronization in Real-Time Systems: A Priority
Inheritance Approach. Kluwer Academic Publishers, Norwell,
MA, USA, 1991.

[20] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE
Transactions on Computers, 39(9):1175-1185, 1990.

[21] S. Shankland and M. Kanellos. Intel to elaborate
on new multicore processor. http://news.zdnet.co.uk/hard-
ware/chips/0,39020354,39116043,00.htm, 2003.

[22] A. Srinivasan and S. Baruah. Deadline-based scheduling of pe-
riodic task systems on multiprocessors. Information Processing
Letters, 84(2):93–98, 2002.

A Blocking Times under GSN-EDF

In this appendix, we derive upper bounds on BW(Ti),
NPB(Ti), and DB(Ti), which are used in the calculation of

B(Ti). Since we have assumed that all jobs of a given task is-
sue the same resource requests in the same order, without loss
of generality, we can calculate the blocking-time bounds that
hold for any job of a task. We use the function Msum(n, S) to
denote the sum of the min(|S|, n) largest elements in the set S,
where |S| is the size of S.

Busy-wait blocking, BW(Ti). We denote the maximal time
a job T j

i can busy-wait between issuing and satisfying a short
resource request R as spin(T j

i , R). Assume that R is in
Group g. Note that, since T j

i is non-preemptable from the time
when R is issued until R completes, only jobs that are sched-
uled on the remaining m−1 processors can issue requests over
this duration of time. Furthermore, since all short resource re-
quests in Group g are enqueued in FIFO order, at most m outer-
most requests for short resources in Group g can be completed
between when R is issued and is satisfied. Thus, in this case,
spin(T j

i , R) = Msum(m − 1, S), where S = {|R′| : R′ is
the longest request for a resource in Group g issued by a job of
a task other than Ti}. Additionally, recall that s-inner resource
requests are immediately satisfied. Thus, spin(T j

i , R) = 0 for
such requests.

Summing the values above, we have

BW(Ti) ≤
∑

R∈Q

spin(T j
i , R), (2)

where T j
i is an arbitrary job of Ti and Q is the set of short

resource requests issued by T j
i .

Non-preemptive blocking, NPB(Ti). By Thm. 1, a job T j
i

can only incur non-preemptive blocking (i.e., be linked but not
scheduled) under two conditions: when T j

i is released (e.g.,
the first time T 1

3
is blocked in Fig. 4), and when T j

i is resumed
after being suspended as the result of a blocked long request
(e.g., the third time T 1

3
is blocked in Fig. 4). Suppose that T j

i

is released or resumed at time t, and as a result, T j
i becomes

linked to but not scheduled on Processor k, and T b
a is the job

scheduled on Processor k at time t. By Thm. 2, T j
i will either

become unlinked or become scheduled on some processor by
time t+tD, where tD is the maximal duration of time that T b

a is
non-preemptable. As we established above, under the FMLP,
the maximal duration of time that T b

a can be non-preemptable
is given by np(T b

a) = max{spin(T b
a , R) + |R| : R is a short

resource request by T b
a}. Also, by Thm. 2, Y(T j

i) > Y(T b
a).

If T j
i is released at time t, then it is possible to limit the

set of jobs that can be scheduled at t and have lower priority.
Specifically, if a job T b

a is scheduled at time t and Y(T b
a) <

Y(T j
i), then it follows that d(T j

i) ≤ d(T b
a) and r(T j

i) > r(T b
a).

Thus, p(Ta) > p(Ti). Thus, when a job of a task Ti is released,
the only non-preemptive blocking it will experience is from
jobs of tasks with a larger period than Ti. Finally, recall that a
job can only be suspended as a result of an l-outermost request.

Hence, a job T j
i can incur non-preemptive blocking every time

it issues an l-outermost request. Thus, we have

NPB(Ti) ≤ max{np(T b
a) : T b

a ∈ B(Ti)} +

L(Ti) · max{np(T b
a) : T b

a ∈ A(Ti)}, (3)

where B(Ti) is the set of jobs of tasks other than Ti with a pe-
riod larger than p(Ti), A(Ti) is the set of jobs of tasks other
than Ti, and L(Ti) is the number of l-outermost resource re-
quests issued by any job of Ti.

Direct blocking, DB(Ti). Before discussing direct blocking,
we first define the notion of “holding time.” The holding time
for a job of task Ta that issues a long resource request Ra

for a resource in Group g, denoted ht(Ta, Ra), is the maxi-
mal length of time that some job T b

a can both be scheduled and
hold the group lock for Group g between issuing and complet-
ing Ra. Since short resource requests can be contained within
long resource requests, it is possible for T b

a to busy-wait while
holding the group lock for Group g. Thus, the holding time for
Ta is defined as ht(Ta, Ra) = |Ra|+

∑

R′∈I

(

spin(T b
a , R′)

)

,
where I is the set of s-outermost resource requests contained
within Ra. For example, in Fig. 4, let RZ denote the re-
quest for the resource Z by T 1

2
, and let RB denote the request

that is contained within RZ for the resource B. Notice that
spin(T2, RB) = 2, since the longest request (not issued by a
job of T2) for any resource in the group that contains B is T 1

1
’s

request for the resource A, which lasts for 2 time units. Thus,
ht(T2, RZ) = |RZ | + spin(T2, RB) = 3 + 2 = 5.

A job T j
i is directly blocked after issuing an l-outermost re-

source request R for a resource from Group g as long as T j
i

is both one of the m highest-priority jobs and some other job
holds a resource from Group g. Because the FMLP employs
priority inheritance, if at time t, T j

i is one of the m highest-
priority jobs, then any job T b

a that currently holds a resource
from Group g will be scheduled at t unless T b

a has resumed af-
ter having been suspended and T b

a is non-preemptively blocked
(in which case T b

a may wait up to max{np(T y
x) : T y

x ∈ A(Ta)}
time before being scheduled, where max{np(T y

x) : T y
x ∈

A(Ta)} is as defined above). Additionally, since it is possible
for any job that requests a resource from Group g to be en-
queued before T j

i , it is possible for T j
i to be directly blocked

by every job that requests a resource from Group g. Thus, the
amount of direct blocking for T j

i on request R, db(T j
i , R), is

db(T j
i , R) =

∑

Ta∈Z

(max{np(T y
x) : T y

x ∈ A(Ta)} +

max{ht(Ta, Ra) : Ra ∈ G(Ta)}),

where Z denotes the set of tasks (other than Ti) that have a
job that issues a request for a resource in Group g, and G(Ta)
denotes the set of l-outermost resource requests by a job of Ta

for a resource from Group g.
Because Ti may experience direct blocking each time it per-

forms an l-outermost resource request, the direct blocking for

a task Ti is
DB(Ti) ≤

∑

R∈L

db(T j
i , R), (4)

where L is the set of l-outermost resource requests issued by
an arbitrary job, T j

i , of Ti.

