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Abstract

Two difficulties have long troubled the field theory of dielectric solids. First, when two electric charges are placed inside a

dielectric solid, the force between them is not a measurable quantity. Second, when a dielectric solid deforms, the true

electric field and true electric displacement are not work conjugates. These difficulties are circumvented in a new

formulation of the theory in this paper. Imagine that each material particle in a dielectric is attached with a weight and a

battery, and prescribe a field of virtual displacement and a field of virtual voltage. Associated with the virtual work done by

the weights and inertia, define the nominal stress as the conjugate to the gradient of the virtual displacement. Associated

with the virtual work done by the batteries, define the nominal electric displacement as the conjugate to the gradient of

virtual voltage. The approach does not start with Newton’s laws of mechanics and Maxwell–Faraday theory of

electrostatics, but produces them as consequences. The definitions lead to familiar and decoupled field equations.

Electromechanical coupling enters the theory through material laws. In the limiting case of a fluid dielectric, the theory

recovers the Maxwell stress. The approach is developed for finite deformation, and is applicable to both elastic and

inelastic dielectrics. As applications of the theory, we discuss material laws for elastic dielectrics, and study infinitesimal

fields superimposed upon a given field, including phenomena such as vibration, wave propagation, and bifurcation.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

All materials contain electrons and protons. In a solid dielectric, these charged particles form bonds, and
move relative to one another by short distances in response to a voltage or a force. That is, all dielectrics are
deformable. The notion of a rigid dielectric is as fictitious as that of a rigid body: they are idealizations useful
for some purposes, but misleading for others.

Deformable dielectrics are essential components in diverse technologies (Newnham, 2005; Uchino, 1997;
Sessler, 1987; Campbell, 1998). Our own interest is renewed by recent innovations in materials, principally
organics capable of large deformation, including electrostrictive polymers (Zhang et al., 1998; Chu et al.,
2006), cellular electrets (Graz et al., 2006), liquid crystal elastomers (Warner and Terentjev, 2003), and
e front matter r 2007 Elsevier Ltd. All rights reserved.

ps.2007.05.021

ing author.

ess: suo@seas.harvard.edu (Z. Suo).

www.elsevier.com/locate/jmps
dx.doi.org/10.1016/j.jmps.2007.05.021
mailto:suo@seas.harvard.edu


ARTICLE IN PRESS
Z. Suo et al. / J. Mech. Phys. Solids 56 (2008) 467–486468
elastomers capable of large deformation under electric field (e.g., Pelrine et al., 2000). Also emerging are
technologies to make electrically charged patterns of small features (Jacobs and Whitesides, 2001; McCarty
et al., 2006). Potential applications of these materials and technologies include transducers in large-area,
flexible electronics (e.g., displays, artificial muscles, and sensitive skins), as well as in devices at small length
scales. Phenomena of electric-field induced motion and instability have also been actively studied (e.g., Li and
Aluru, 2002; Gao and Suo, 2003; Suo and Hong, 2004; Huang, 2005; Lu and Salac, 2006; Zhu et al., 2006).

Although the atomic origin of dielectric deformation has long been understood, how to formulate a field
theory remains controversial. Many theories have been formulated (e.g., Becker, 1982; Landau et al., 1984;
Toupin, 1956; Eringen, 1963; Pao, 1978; Eringen and Maugin, 1989; Maugin et al., 1992; Kuang, 2002),
invoking different postulates. On these theories, Pao (1978) remarked, ‘‘That there are so many coexisting
theories and results for a subject so fundamental in nature may sound very surprising to experimentalists, for
theories can usually be sorted out, or proven to be fallacious by carefully designed experiments. The difficulty
here is that the electromagnetic fields inside matter are expressed in terms of field variables which cannot be
directly measured in laboratories.’’ Recent critiques of these theories may be found in Rinaldi and Brenner
(2002), and in McMeeking and Landis (2005).

Pao’s remarks were directed to general theories of electromagnetism in matter, but we find his remarks apt
for theories of deformable dielectrics. To give some ideas of the controversies involved, we mention two
difficulties.

One difficulty has to do with the notion of electric force. Consider, for example, a parallel-plate capacitor,
consisting of an insulating medium and two electrodes, with a battery maintaining a positive charge on one
electrode, and a negative charge on the other (Fig. 1). If the insulating medium is a vacuum or a fluid, we must
apply a force (e.g., by using a weight) to maintain equilibrium. In this case, there is no ambiguity as to what
the electric force is: the force between the two electrodes can be measured by the weight. Maxwell (1891)
converted this force into a state of stress in the medium. When the insulating medium is a solid dielectric,
however, the electric force cannot be measured. Indeed, for many common solid dielectrics subject to a
voltage, the two electrodes appear to repel, rather than attract, each other (Newnham, 2005). The atomic
origin of this phenomenon is clear. Influenced by the voltage between the electrodes, charged particles inside
the dielectric tend to displace relative to one another, often accompanied by an elongation of the material in
the direction of the electric field.

On the force between electric charges in a solid, Feynman et al. (1964) remarked, ‘‘This is a very difficult
problem which has not been solved, because it is, in a sense, indeterminate. If you put charges inside a
dielectric solid, there are many kinds of pressures and strains. You cannot deal with virtual work without
including also the mechanical energy required to compress the solid, and it is a difficult matter, generally
speaking, to make a unique distinction between the electrical forces and mechanical forces due to solid
material itself. Fortunately, no one ever really needs to know the answer to the question proposed. He may
sometimes want to know how much strain there is going to be in a solid, and that can be worked out. But it is
much more complicated than the simple result we got for liquids.’’
+Q
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Fig. 1. A parallel capacitor gives rise to a homogeneous field inside the dielectric.
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A second difficulty has to do with work conjugates. It is a simple matter to show that, when a dielectric
solid deforms, the true electric field and the true electric displacement are not work conjugates. Although
this fact does not preclude them from being used to formulate the field theory of deformable dielectrics, the
nonconjugates do lead to complications, and their almost exclusive, and sometimes erroneous, use in the
literature contributes to the controversies.

While the first difficulty was noted by nearly all authors on the subject, we have not found any explicit
discussion on the second. The dubious status of electric force is unsettling as most textbooks start by defining
electric field by the force acting on a test charge divided by the amount of charge. In a solid dielectric, the
electric force is not a measurable quantity, so that this definition is not operational. A common approach is to
forgo this definition, and regard the field equations of electrostatics as the starting point. But to discuss
deformation one has to link the electric field to a force, and this connection is usually made by invoking work.
Some authors (e.g., Landau et al., 1984; Lines and Glass, 1977) assumed that the true electric field and the true
electric displacement are work conjugates. While this assumption does not lead to serious errors for
infinitesimal deformation, it does for finite deformation.

In this paper, in the spirit of Feynman’s remark, we ask questions concerning measurable quantities. In
effect, we ask, given an applied voltage and applied force, how much does one electrode move relative to the
other, and how much charge flows from one electrode to the other? Instead of leaving various fields undefined,
we define them by operational procedures.

As a mental aid in formulating the theory, imagine that each material particle in a dielectric is attached with
a weight and a battery, and then prescribe a field of virtual displacement and a field of virtual voltage. We will
use virtual work to define fields inside media, an approach well established in mechanics, but perhaps less so in
electrostatics. Associated with the work done by the weights and inertia, we define the stress inside the
dielectric as the conjugate to the gradient of displacement. Associated with the work done by the batteries, we
define the electric displacement inside the dielectric as the conjugate to the gradient of electric potential. The
approach requires no additional postulate beyond what is meant by work, displacement, charge and inertia.
The approach does not start with field equations, but produces them as consequences. The theory is applicable
to finite deformation, and to both elastic and inelastic dielectrics.

We write the body of the paper with minimal digression, hoping that a reader with basic knowledge of
electrostatics and mechanics can appreciate the theory. Section 2 reviews elementary facts of work, energy and
electromechanical coupling, using a generic transducer. Section 3 uses a homogenous field to illustrate a
procedure to define quantities per unit length, area, and volume, a procedure that we generalize in Section 4 to
inhomogeneous fields in three dimensions. Section 5 sketches the material laws for elastic dielectrics. Section 6
applies the theory to fluid dielectrics, and recovers the Maxwell stress. Section 7 discusses solid dielectrics.
Section 8 applies the theory to infinitesimal fields superimposed upon a given field.

There is considerable flexibility in choosing alternatives measures of stress, strain, electric field, and electric
displacement. The body of the paper will focus on nominal quantities using material coordinates. Various
Appendices describe alternative formulations and link to the existing literature. We show that our theory
recovers the results of McMeeking and Landis (2005), who formulated a theory of deformable dielectrics by
using spatial coordinates and the true electric field and true electric displacement. These authors started with
an electric force, but concluded that this force cannot be measured in solid dielectrics. A parallel reading of
that paper and the present one should provide a fuller understanding of both approaches.

2. Work, electromechanical coupling, and energy

Work: Fig. 2 illustrates a system of insulators and conductors, loaded by a field of weights and batteries, of
which only one of each is drawn. All batteries are connected to a common ground. We can measure the
displacement dl of the weight, and the amount of charge dQ pumped by the battery from the ground to the
electrode. There might be other weights dropping or rising and other batteries pumping charge from or to
the ground, but the work done by this particular weight is Pdl, and the work done by this particular battery is
FdQ. If we regard work, displacement and charge as primitive, measurable quantities, the above statements of
work define the force P supplied by the weight, and the voltage F supplied by the battery. The force is said to
be the work conjugate to the displacement, and the voltage the work conjugate to the charge. We will use the
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Fig. 2. A dielectric is loaded by two mechanisms: a weight and a battery. When the weight drops by a displacement dl, the weight does

work Pdl. The dielectric is perfectly insulating, but battery can pump electric charges from the ground to the electrode. When the electrode

gains charge dQ, the battery does work FdQ.
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word weight as a shorthand for all external mechanisms that do work through displacements, and the word
battery as a shorthand for all external mechanisms that do work through flows of charge. We will neglect the
effects of magnetism and electromagnetic radiation.

Electromechanical coupling: Now imagine that the weight and battery are adjustable, so that the force P and
the voltage F can vary. When the displacement is held constant, a change in the charge may cause the force to
change. When the charge is held constant, a change in the displacement may cause the voltage to change.
These electromechanical coupling effects are universal to all dielectrics, because all dielectrics have electrons
and protons, and the charged particles can move relative to one another.

A system of elastic conductors and dielectrics: The two electromechanical coupling effects are linked any
system of elastic conductors and dielectrics. Under isothermal conditions, the work done by the weight and the
battery is fully stored as the Helmholtz free energy of the system. That is, associated with small changes dl and
dQ, the free energy of the system, U, changes by

dU ¼ Pdl þ FdQ. (2.1)

To this equation we should add the work done by all other weights and batteries. For simplicity, however,
here we assume that only one weight and one battery do work. This may be achieved by removing all other
weights and batteries, and making sure that every other part in the system other than the particular electrode is
either grounded or charge neutral.

These idealizations ensure that the free energy of the system is a function of two variables, Uðl;QÞ. We only
need to measure the difference in U, l and Q between the current state and a reference state. Eq. (2.1) implies
that the force and the voltage are partial derivatives:

Pðl;QÞ ¼
qUðl;QÞ

ql
; Fðl;QÞ ¼

qUðl;QÞ

qQ
. (2.2)

Associated with small changes dl and dQ, the force and the voltage change by

dP ¼
q2Uðl;QÞ

ql2
dl þ

q2Uðl;QÞ

qlqQ
dQ, (2.3)
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dF ¼
q2Uðl;QÞ
qlqQ

dl þ
q2Uðl;QÞ

qQ2
dQ. (2.4)

We may call q2Uðl;QÞ=ql2 the mechanical tangent stiffness of the system, and q2Uðl;QÞ=qQ2 the electrical
tangent stiffness of the system. The two electromechanical coupling effects are both characterized by the same
cross derivative, namely,

qPðl;QÞ

qQ
¼

q2Uðl;QÞ
qlqQ

¼
qFðl;QÞ

ql
. (2.5)

Consequently, for a system of elastic conductor and dielectrics, the two electromechanical coupling effects
reciprocate.

Vacuum: As an illustration, consider the parallel-plate capacitor, loaded by both the voltage and the weight.
The two electrodes are separated by a vacuum. The separation between the two electrodes l may vary, but the
area of either electrode remains to be A. Recall the elementary fact

Uðl;QÞ ¼
lQ2

2�0A
, (2.6)

where e0 is the permittivity of vacuum, so that

P ¼
qUðl;QÞ

ql
¼

Q2

2A�0
. (2.7)

This force is due to the attraction of the opposite charges on the two electrodes, and is balanced by the weight.
The force divided by the area of the electrode is a special case of the Maxwell stress. See Section 6 for how the
Maxwell stress comes out from our formulation for inhomogeneous fields in fluids in three dimensions.

3. A homogeneous field in a parallel-plate capacitor

To exhibit the essentials of our approach in a simple setting, we first analyze a parallel-plate capacitor (Fig. 1).
We assume that the capacitor is made such that the field in the capacitor is homogenous, an assumption that
enables us to readily define intensive quantities (i.e., quantities per unit length, area, and volume). We wish to
endow these quantities no more significance than merely being intensive, work conjugating quantities.

Take any state of the dielectric as the reference state, in which the dielectric has cross-sectional area A and
thickness L. In the current state, the dielectric deforms to cross-sectional area a and thickness l. Define the
stretch l as the thickness of the dielectric in the current state divided by the thickness of the dielectric in the
reference state:

l ¼
l

L
. (3.1)

Define the nominal stress s as the force supplied by the weight in the current state divided by the area in the
reference state:

s ¼
P

A
. (3.2)

When the thickness changes by dl, the weight does work Pdl ¼ ALsdl. Note that V ¼ AL is the volume of the
dielectric in the reference state. Thus, sdl is the incremental work done by the weight in the current state divided
by the volume of the dielectric in the reference state, and the nominal stress is work conjugate to the stretch.

We may define the nominal stress by an alternative procedure, which can be readily generalized for
inhomogeneous fields in three dimensions. Let x be a test function, and define the nominal stress s such that
the equation

Vs
x
L
¼ Px (3.3)

holds true for arbitrary x. This definition recovers s ¼ P/A.
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The test function x is sometimes called virtual displacement, and has no relation with the actual
displacement. In fact, it need not have any physical interpretation. We deviate from a usual practice and drop
the symbol d in front of the test function for two reasons: (a) the test function need not be small and can have
arbitrary magnitude and unit, and (b) we will reserve the symbol d to indicate an actual, small change of a
physical quantity.

Define the nominal electric field ~E as the voltage supplied by the battery in the current state divided by the
thickness in the reference state:

~E ¼
F
L
. (3.4)

Define the nominal electric displacement ~D by the charge Q on an electrode in the current state divided by the
area in the reference state:

~D ¼
Q

A
. (3.5)

When a small amount of electric charge dQ flows from the negative electrode to the positive electrode, the
work done by the battery is FdQ ¼ AL ~Ed ~D. Thus, ~Ed ~D is the incremental work done by the battery in the
current state divided by the volume of the dielectric in the reference state, and the nominal electric field is work
conjugate to the nominal electric displacement.

The nominal electric displacement can also be defined by an alternative procedure. Let Z be a test function,
and define the nominal electric displacement ~D such that the equation

V
Z
L
~D ¼ ZQ (3.6)

holds true for arbitrary Z. This definition recovers ~D ¼ Q=A.
Incidentally, when a solid dielectric deforms, the true electric field and electric displacement are not work

conjugate to each other. This can be seen readily as follows. Define the true electric field by the voltage
supplied by the battery in the current state divided by the thickness in the current state:

E ¼
F
l
, (3.7)

Define the true electric displacement D by the charge Q in the current state divided by the area in the current
state:

D ¼
Q

a
. (3.8)

In terms of the true electric field and the true electric displacement, the work done by the battery is

FdQ ¼ ðlEÞdðaDÞ ¼ lEDdaþ laEdD. (3.9)

For a solid dielectric, daa0, so that the true electric displacement is not work conjugate to the true electric
field.

There is considerable flexibility in choosing measures of stress, strain, electric field, and electric
displacement. So long as a theory relates measurable quantities, all alternative definitions are equally valid,
and are related by transformations. However, a given boundary value problem may be easier to solve in terms
of one set of variables than in terms of another. To avoid confusion, we will develop one set of measures (the
nominal quantities) in the body of the paper and discuss alternatives in Appendices A and B.

4. Inhomogeneous fields in three dimensions

Consider a continuous body of material particles. As a mental aid, imagine that each material particle is
connected to a battery, which maintains the electric potential of the material particle with respect to the
ground. The material itself is an insulator, but the battery may pump charge from the ground to the material
particle. Similarly, we imagine that each material particle is connected to a weight. We will first show
that a procedure to define nominal stress in continuum mechanics is still applicable for deformable dielectrics.
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This procedure makes additional postulates in the literature of deformable dielectrics superfluous. We will
then apply the same procedure to define the nominal electric displacement.

Any state of the body may serve as the reference state. Following the usual practice in continuum mechanics
(Truesdell and Noll, 2003), we use the coordinates X of each material particle in the reference state to name the
material particle. Let dV(X) be a material element of volume in the reference state. The body extends in the
entire space, but may contain interfaces between dissimilar media. Let NK ðXÞdAðXÞ be a material element of
an interface, where dA(X) is the area of the element, and NK(X) is the unit vector normal to the interface
between media labeled as � and +, pointing toward medium +.

In a current state at time t, a particle X occupies a place with coordinate xðX; tÞ, and has velocity qxðX; tÞ=qt

and acceleration q2xðX; tÞ=qt2. In Section 3, deformation is measured by the stretch, defined as the thickness in
the current state divided by the thickness in the reference state. For inhomogeneous fields in three dimensions,
the stretch is generalized to the deformation gradient

FiK ðX; tÞ ¼
qxiðX; tÞ

qX K

. (4.1)

Also in the current state at time t, let ~bðX; tÞdV ðXÞ be the force due to the weights on a material element of
volume, ~tðX; tÞdAðXÞ be the force due to the weights on a material element of interface, and ~rðXÞdV ðXÞ be the
mass of the material element of volume. We do not connect each material particle with a ‘‘pump of mass’’, so
that ~rðXÞ is time-independent, and is taken to be known. Let xiðXÞ be a vector test function. We have dropped
the time dependence in the test function because we have no use of it. Generalizing the procedure in one
dimension, we define the tensor of nominal stress, siK ðX; tÞ, such that the equation

Z
siK

qxi

qX K

dV ¼

Z
~bi � ~r

q2xi

qt2

� �
xi dV þ

Z
~tixi dA, (4.2)

holds true for arbitrary xi(X). The test function needs to have no physical interpretation and can be of any
unit. In a special case, when xi is replaced by a small, actual deformation of the body, dxiðX; tÞ, the right-hand
side is the incremental work done by the weights and the inertial force, so that the nominal stress is work
conjugate to the displacement gradient.

Applying the divergence theorem to the left-hand side of (4.2), one obtains thatZ
siK

qxi

qX K

dV ¼

Z
qðsiKxiÞ

qX K

�
qsiK

qX K

xi

� �
dV ¼

Z
ðs�iK � sþiK ÞNKxi dA�

Z
qsiK

qX K

xi dV .

The surface integral extends over the area of all interfaces. Across the interface, xi(X) is assumed to be
continuous, but the stress need not be continuous. Insisting that (4.2) holds true for arbitrary xi(X), one finds
that the nominal stress obeys that

qsiK ðX; tÞ

qX K

þ ~biðX; tÞ ¼ ~rðXÞ
q2xiðX; tÞ

qt2
(4.3)

in the volume of the body, and

s�iK ðX; tÞ � sþiK ðX; tÞ
� �

NK ðX; tÞ ¼ ~tiðX; tÞ, (4.4)

on the interfaces. These equations express momentum balance in every current state in terms of the nominal
fields, and is well known in continuum mechanics.

At time t, the material particle X has electric potential FðX; tÞ. In Section 3, we have defined the nominal
electric field by the voltage in the current state divided by the thickness of the dielectric in the reference state.
As a generalization to inhomogeneous fields in three dimensions, the nominal electric field is defined as the
gradient of the electric potential:

~EK ðX; tÞ ¼ �
qFðX; tÞ
qX K

. (4.5)

In the current state at time t, let the charge on the element of volume be ~qðX; tÞdV ðXÞ, and the charge on the
element of an interface be ~oðX; tÞdAðXÞ. Let ZðXÞ be a scalar test function. Define the vector of nominal
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electric displacement, ~DK ðX; tÞ, such that the equationZ
�

qZ
qX K

� �
~DK dV ¼

Z
Z ~qdV þ

Z
Z ~odA (4.6)

holds true for arbitrary ZðXÞ. This definition is equally valid when we replace ~DK , ~q and ~o by corresponding
increments, d ~DK , d ~q and d ~o. The test function ZðXÞ needs to have no physical interpretation and can be of any
unit. In a special case, when Z is replaced by the actual electric potential FðX; tÞ and the increments d ~DK , d ~q
and d ~o are used, the right-hand side is the incremental work done by the batteries, so that the nominal electric
displacement is work conjugate to the nominal electric field.

Applying the divergence theorem to the left-hand side of (4.6), we obtain that
Z

qZ
qX K

~DK dV ¼

Z
qðZ ~DK Þ

qX K

� Z
q ~DK

qX K

� �
dV ¼

Z
Zð ~D

�

K �
~D
þ

K ÞNK dA�

Z
Z
q ~DK

qX K

dV .

The test function ZðXÞ is assumed to be continuous across the interface, but the electric displacement need not
be continuous across the interface. Insisting that (4.6) holds true for arbitrary ZðXÞ, we find that the nominal
electric displacement obeys that

q ~DK ðX; tÞ

qX K

¼ ~qðX; tÞ (4.7)

in the volume of the body, and

~D
þ

K ðX; tÞ � ~D
�

K ðX; tÞ
� 	

NK ðX; tÞ ¼ ~oðX; tÞ. (4.8)

on the surface of the body. These equations express Gauss’s law in every current state in terms of the nominal
fields.

Appendix C lists the well known relations between the true fields and the nominal fields. For example, the
true stress sij relates to the nominal stress by

sij ¼
F jK

det Fð Þ
siK . (4.9)

The true electric displacement relates to the nominal electric displacement as

Di ¼
FiK

det Fð Þ
~DK . (4.10)

The true electric field relates to the nominal electric field as

Ei ¼ HiK
~EK , (4.11)

where HiK is the inverse of the deformation gradient, namely, HiK FiL ¼ dKL and HiK FjK ¼ dij .

5. Material laws for elastic dielectrics

One bothers to define intensive quantities like stress and electric displacement because one conjectures that
each material particle behaves like a miniaturized parallel-plate capacitor, i.e., a material in homogenous field.
Whether this conjecture is true can be examined by comparing its consequences with experimental
observations. If the conjecture turns out to be inconsistent with experimental observations, one can define
higher-order stress-like quantities, or simply abandon intensive quantitative and just focus on the system as a
whole, as we did in Section 2. In this paper, we focus on the consequences of this conjecture, and leaving their
comparison with experimental observations to future work.

According to the definition of the nominal stress (4.2), associated with a small, actual change in the
deformation gradient, dFiK , the field of weights and mass does actual work

R
siKdFiK dV . Similarly, according

to the definition of the nominal electric displacement (4.6), associated with a small, actual change in the
nominal electric displacement, d ~DK , the field of batteries does work

R
~EKd ~DK dV .
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We define an elastic dielectric by stipulating that the actual work is fully converted to the free energy of the
body. The conjecture that each material particle behaves like a miniaturized parallel-capacitor is interpreted as
follows. Let W dV ðXÞ be the free energy of a material element of volume. Associated with the actual changes,
dFiK and d ~DKi, the free energy of the material element of volume changes by

dW ¼ siKdFiK þ ~EKd ~DK . (5.1)

It is further assumed that the free energy density is a function of the deformation gradient and the nominal
electric displacement, W ðF; ~DÞ. Consequently, the nominal stress, the nominal electric field, the deformation
gradient, and the nominal electric displacement are related as

siK ðF; ~DÞ ¼
qW ðF; ~DÞ

qF iK

; ~EK ðF; ~DÞ ¼
qW ðF; ~DÞ

q ~DK

. (5.2)

Invariance under rigid-body rotation: Inspecting definition (4.6), we conclude that, when the entire system in
the current state rotates as a rigid body, the nominal electric displacement ~D is invariant. However, it is well
known that the deformation gradient, FiK, varies when the system in the current state rotates as a rigid body.
To ensure that W is invariant under such a rigid-body rotation, following a usual practice, we invoke the
Lagrangian strain

LKM ¼
1
2ðFiK FiM � dKM Þ, (5.3)

which is invariant when the entire system in the current state rotates as a rigid body. Consequently, the free
energy of an elastic dielectric is a function of the Lagrangian strain and the nominal electric displacement; we
will denote this function by W ðL; ~DÞ. The nominal stress and the nominal electric field are obtained from
partial derivatives:

siK ðL; ~DÞ ¼ F iM

qW ðL; ~DÞ

qLKM

; ~EK ðL; ~DÞ ¼
qW ðL; ~DÞ

q ~DK

. (5.4)

Material laws expressed in true fields: A combination of (5.4) with (4.9)–(4.11) can express the material laws
in terms of the true stress and the true electric field:

sijðL; ~DÞ ¼
FiMFjK

detðFÞ

qW ðL; ~DÞ

qLKM

; EiðL; ~DÞ ¼ HiK

qW ðL; ~DÞ

q ~DK

. (5.5)

While in general the nominal stress is not a symmetric tensor, the true stress is.
Nonpolar material: For a nonpolar material, a reference state exists such that the free energy density is

invariant when the electric displacement reverse the direction, namely,

W ðL; ~DÞ ¼W ðL;� ~DÞ (5.6)

holds true for all L and ~D. For example, vacuum and fluid dielectrics are nonpolar; so are many solid
dielectrics. For a nonpolar dielectric, in the absence of a voltage, a change in applied force will cause no
electric charge to flow to or from the electrodes.

Isotropic material: For an isotropic material, a reference state exists such that the energy density is a
function of the invariants formed by the tensor L and the vector ~D:

LKK ; LKNLKN ; LKNLNMLMK ; ~DK
~DK ; LAB

~DA
~DB; LKA

~DALKB
~DB. (5.7)

An isotropic material is nonpolar.
Electrical Gibbs function: Note that nominal electric field obeys similar field equations as the deformation

gradient, and the nominal electric displacement obeys similar field equations as the nominal stress.
Consequently, it is often convenient to replace the nominal electric displacement with the nominal electric field
as an independent variable. Define the electrical Gibbs free energy by

Ŵ ¼W � ~EK
~DK . (5.8)
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A combination of (5.1) and (5.8) gives that

dŴ ¼ siKdF iK � ~DKd ~EK . (5.9)

Consequently, the Gibbs free energy is a function of the deformation gradient and the nominal electric field,
Ŵ ðF; ~EÞ. The stress and the electric displacement are given by

siK ¼
qŴ ðF; ~EÞ

qFiK

; ~DK ¼ �
qŴ ðF; ~EÞ

q ~EK

. (5.10)

6. Fluid dielectrics

We will treat a common fluid that has no memory of its reference state. Consequently, the fluid is
characterized by a free energy per unit volume in the current state and, under isothermal conditions, is a
function of two variables: the density in the current state, r, and the invariant of the true electric displacement,
L ¼ DiDi. Let f ðr;LÞ be the free energy of the fluid divided by its volume in the current state.

To use the apparatus developed in the previous sections, we still imagine a reference state, and let F be the
deformation gradient of the current state. The free energy per unit volume in the reference state is

W ðF; ~DÞ ¼ detðFÞf ðr;LÞ, (6.1)

where, in terms of the nominal quantities,

r ¼
~r

det F
; L ¼

F jMF jN

ðdet FÞ2
~DM

~DN . (6.2)

Inserting (6.1) into (5.2) and recall that

q detðFÞ=qFiK ¼ HiK detðFÞ. (6.3)

A direct calculation gives that

~EK ¼ 2
qf ðr;LÞ

qL
F jK FjL

~DL

detðFÞ
, (6.4)

and

siK ¼ HiK detðFÞf � ~r
qf

qr

� �
þ
~DM

~DN

detðFÞ
ð2F iNdMK � 2FjMFjNHiK Þ

@f

qL
. (6.5)

Using (4.9)–(4.11), we can express the above material laws in terms of the true fields:

Ei ¼ 2
qf ðr;LÞ

qL
Di (6.6)

and

sij ¼ f � r
qf

qr
� 2

qf

qL
DkDk

� �
dij þ 2

qf

qL
DiDj. (6.7)

This results agree with that in Becker (1982) and Landau et al. (1984). The agreement is expected because these
authors derived this result by adhering to the statements of work, even though their steps are quite different
from ours.

In a limiting case that the fluid is incompressible and linearly dielectric, the free energy density is

f ¼
1

2�
DiDi, (6.8)

where e is the permittivity of the fluid. The material laws are

Ei ¼
1

�
Di (6.9)
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and

sij ¼
1

�
DiDj �

1

2
DmDmdij

� �
. (6.10)

We regard a vacuum as another limiting case, when the fluid has vanishingly mechanical stiffness. The free-
energy density is

f ¼
1

2�0
DiDi, (6.11)

so that

Ei ¼
1

�0
Di, (6.12)

sij ¼
1

�0
DiDj �

1

2
DmDmdij

� �
. (6.13)

Eqs. (6.10) and (6.13) recover the Maxwell stress (Maxwell, 1891). See Pao (1978) for a review of the
literature on Maxwell stress. Within our approach, the Maxwell stress requires no special treatment: the
Maxwell stress comes out as a material law once an incompressible fluid or a vacuum is viewed as a limiting
form of material. In both limits, both mechanical work and electrical work are stored as electrostatic energy.
Consequently, the electric force can be measured with no ambiguity.

By contrast, for compressible fluids, and for solid dielectrics discussed below, the stress (6.7) depends on
deformation and electric displacement in a coupled way. Any attempt to separate them and call part of the
stress the Maxwell stress must be arbitrary. The practice may provide temporary mental comfort, but on close
examination is without merit.

The material laws in conjunction with the field equations in Section 4, determine fields in compressible fluids
in equilibrium. Note that in general the material laws couple the electrical and mechanical fields in both ways,
so that the two sets of fields must be solved simultaneously. For an incompressible fluid and for a vacuum,
however, the material laws in terms of the true fields only couple the fields in one way, so that the electrical
field is determined without the knowledge of the mechanical field, except that the mechanical field may deform
the shape of the fluid, and the deformed shape will enter as a boundary condition in solving the electrical field.

7. Solid dielectrics

A solid dielectric remembers its reference state. We will formulate the material laws using the nominal fields.
Small-strain, small-electric-displacement approximation: When the magnitudes of various fields are small, a

commonly used approach is to expand the energy function into the Taylor series, and retain the leading terms.
For nonpolar materials, the most general form up to quadratic terms of the strain and electric displacement is

W ðL; ~DÞ ¼ 1
2
CABKM LABLKM þ

1
2
gAB

~DA
~DB þ RABKM

~DA
~DBLKM , (7.1)

where the tensors C, g and R are independent of strain and electric displacement. The condition of being
nonpolar requires that each term be an even function in the electric displacement. The material laws are

siK ¼ FiM ðCABKM LAB þ RABKM
~DA
~DBÞ, (7.2)

~EK ¼ ðRKMABLAB þ gKM Þ
~DM . (7.3)

To further reduce to commonly used laws for electrostrictive materials (e.g., Newnham, 2005), one has to
retain just the terms linear in the gradient of displacement. This is yet another distinct approximation, and has
to be justified on a case by case basis, as illustrated by the von Karman plate theory.

Landau et al. (1984) assumed that the electrical Gibbs free energy is a function of infinitesimal strain and
true electric field. This assumption raises several concerns. When the body is subject to a rigid-body rotation in
the current state, the true electric field is not invariant, so that the true electric field by itself is an inappropriate
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variable to formulate material laws. Also, the true electric displacement is not work conjugate to the electric
displacement. Given these concerns, it is unclear to us if the derivation in Landau et al. (1984) should lead to
any measurable difference from the Taylor expansion.

For a polar material, one can expand the energy function into a quadratic form:

W ðL; ~DÞ ¼ 1
2
CABKMLABLKM þ

1
2
gAB

~DA
~DB þ gAKM

~DALKM þ RABKM
~DA
~DBLKM . (7.4)

Since W need not be an even function of the electric displacement, the leading term that couples the electric
displacement and the strain is linear in the electric displacement. The coupling term quadratic in the electric
displacement can often be neglected. When the infinitesimal strain is used, the above form is commonly used
to describe linearly piezoelectric material.

Mechanically compliant but electrically stiff material: The large deformation of elastomers and the large
electric displacement of water are both due to entropy. Common elastomers seem to exhibit large deformation
but modest electric displacement. For such materials, we will only retain the Taylor series of W ðL; ~DÞ up to
quadratic terms in ~D. We assume that the material is mechanically compliant, and allow arbitrary value of
stretch. Thus, the free-energy function takes the form

W ðL; ~DÞ ¼W 0ðLÞ þ bAðLÞ ~DA þ
1
2bABðLÞ

~DA
~DB, (7.5)

where W 0ðLÞ, bAðLÞ and bABðLÞ are functions of strain tensor, to be fitted to experimental data.
If the material is nonpolar, bAðLÞ ¼ 0. Furthermore, if the material is isotropic, W 0ðLÞ is a function of the

three invariants of the strain tensor, as reviewed by, e.g., Holzapfel (2000). For an isotropic material, the
electrical stiffness bABðLÞ takes the form

bABðLÞ ¼ b0dAB þ b1LAB þ b2LKALKB, (7.6)

where b0, b1 and b2 are each a function of the three invariants of the strain tensor. For a layer of dielectric
between two electrodes, empirically, it is known that, subject to a voltage and under a constant force, some
materials contract, while others elongate. The former is like vacuum; and the latter, unlike. This difference can
be represented by a suitable choice of the function bABðLÞ.

One can also formulate a theory for electrically compliant and mechanically stiff materials by using a free
energy function

W ðL; ~DÞ ¼W 1ð ~DÞ þ dABð ~DÞLAB þ
1
2
CABKM ð ~DÞLABLKM . (7.7)

Such materials are treated extensively in the literature on ferroelectric materials (e.g., Lines and Glass, 1977),
and will not be discussed here.

8. Infinitesimal fields superimposed upon a given field

Let us now summarize the basic equations. On each material element of volume, we prescribe mass ~rðXÞdV ,
electric charge ~qðX; tÞdV and mechanical force ~bðX; tÞdV . On each material element of interface, we prescribe
electric charge ~oðX; tÞdA and mechanical force ~tðX; tÞdA. We describe an evolving system by the motion
xðX; tÞ and the potential FðX; tÞ. The corresponding deformation gradient and electric field are

FiK ¼
qxiðX; tÞ

qX K

; ~EK ¼ �
qFðX; tÞ
qX K

. (8.1)

An elastic dielectric characterized by an electrical Gibbs free energy Ŵ ðF; ~EÞ, so that the stress and the electric
displacement relate to the deformation gradient and electric field as

siK ¼
qŴ ðF; ~EÞ

qFiK

; ~DK ¼ �
qŴ ðF; ~EÞ

q ~EK

. (8.2)

The stress and electric displacement satisfy

qsiK ðX; tÞ

qX K

þ ~biðX; tÞ ¼ ~rðXÞ
q2xiðX; tÞ

qt2
;

q ~DK ðX; tÞ

qX K

¼ ~qðX; tÞ (8.3)
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in the volume of the body, and

ðs�iK � sþiK ÞNK ¼ ~ti; ð ~D
þ

K �
~D
�

K ÞNK ¼ ~oðX; tÞ (8.4)

on the interfaces.
The structure of the theory immediately lends itself to theoretical studies in parallel with similar ones in

finite elasticity; see, e.g., Truesdell and Noll (2003). As an example, we sketch a study of infinitesimal fields
superimposed upon a given field.

Except for mass density, perturb every field by a small amount; for example, perturb the motion by dxðX; tÞ
and the potential by dFðX; tÞ. Associated with the perturbation, the deformation gradient and the nominal
electric field change by

dFiK ðX; tÞ ¼
qdxiðX; tÞ

qX K

; d ~EK ðX; tÞ ¼ �
qdFðX; tÞ
qX K

. (8.5)

The stress and the electric displacement change by

dsiK ¼ KiKjLdFjL � eiKLd ~EL, (8.6)

d ~DL ¼ eiKLdFiK þ �LKd ~EK . (8.7)

Various tangent moduli are calculated from the second derivatives of the Gibbs free energy:

KiKjLðF; ~EÞ ¼
q2Ŵ ðF; ~EÞ
qFjLqFiK

; �KLðF; ~EÞ ¼ �
q2Ŵ ðF; ~EÞ

q ~EKq ~EL

; eiKLðF; ~EÞ ¼ �
q2Ŵ ðF; ~EÞ

qF iKq ~EL

. (8.8)

As indicated, the derivatives are calculated at the given field F and ~E. So long as the perturbation around a
given field is concerned, all dielectrics, including vacuum, act like a linear piezoelectric.

The perturbation satisfies the field equations:

qdsiK

qX K

þ d ~bi ¼ ~rðXÞ
q2dxi

qt2
;

qd ~DK

qX K

¼ d ~q (8.9)

in the volume, and

ðds�iK � dsþiK ÞNK ¼ d~ti; ðd ~D
þ

K � d ~D
�

K ÞNK ¼ d ~oðX; tÞ (8.10)

on the interfaces. Consequently, the perturbation satisfies the statements:Z
dsiKdFiK dV ¼

Z
d ~bi � ~r

q2dxi

qt2

� �
dxi dV þ

Z
d~tidxi dA, (8.11)

Z
d ~EKd ~DK dV ¼

Z
dFd ~qdV þ

Z
dFd ~odA. (8.12)

Adding the two equations, and inserting the material laws, we obtain thatZ
ðKiKjLdFjLdFiK þ �LKd ~ELd ~EK ÞdV ¼

Z
d ~bidxi � ~r

q2dxi

qt2
dxi þ dFd ~q

� �
dV þ

Z
ðd~tidxi þ dFd ~oÞdA.

(8.13)

This relation was derived for linear piezoelectric undergoing infinitesimal deformation (Suo et al., 1992). This
relation may be interpreted in several ways, depending on whether the tensor of elasticity and the tensor of
permittivity are positive-definite.

First we assume that both tensors are positive-definite. Further assume that the external loads do not vary,
i.e., d ~bi ¼ 0, d ~q ¼ 0, d~ti ¼ 0, d ~o ¼ 0. The following conclusions are obvious.
(i)
 If the perturbation is static, the perturbation in the deformation gradient and nominal electric field must
vanish.
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(ii)
 If the perturbation is dynamic, it vibrates around the given field. Let

dxiðX; tÞ ¼ f iðXÞ sin Ot; dFðX; tÞ ¼ f 4ðXÞ sin Ot. (8.14)

The positive-definite tangent moduli ensure that the natural frequency O is real.

(iii)
 If the given field is static and homogenous, then all the tangent moduli are constant. The equations of

motion for perturbation become

KiKjL

q2dxj

qX KqX L

þ eiKL

q2dF
qX KqX L

¼ ~r
q2dxi

qt2
. (8.15)

eiKL

q2dxi

qX KqX L

� �LK

q2dF
qX KqX L

¼ 0. (8.16)

Consider an infinite medium. Assume a plane wave with unit normal vector N and speed c. The
disturbance takes the form

dxiðX; tÞ ¼ daif ðN � X� ctÞ, (8.17)

dFðX; tÞ ¼ da4f ðN � X� ctÞ, (8.18)

where da is the direction of the displacement, and f is the profile of the wave.
The equations of motion become

KiKjLNK NLdaj þ eiKLNLNKda4 ¼ ~rc2dai, (8.19)

eiKLNLNKdai � �KLNLNKda4 ¼ ~rc2da4. (8.20)

This is an eigenvalue problem. When the tangent modulus is positive-definite, we can find four distinct
plane waves.
(iv)
 Under the same assumption as in (iii), the equations of motion are the same as those for infinitesimal field
in a linear piezoelectric. One can use the complex-variable method to solve boundary value problems and
eigenvalue problems, such as cracks, surface waves and transonic waves; see Suo et al. (1992) and Yu and
Suo (2000) for examples.
Now consider the bifurcation from an equilibrium state. We ask the question, in the neighborhood of the
given equilibrium state, without changing the boundary conditions, can we find another equilibrium state? The
perturbations dxi and dF satisfies the homogenous field equations (8.15), with the inertia term removed, and
(8.16), as well as the homogenous boundary conditions. This eigenvalue problem will determine bifurcation
modes.

In a limiting case, we may seek a localized bifurcation mode in an infinite body. The tensor of tangent
modulus depends on the state of homogeneous field, and may no longer be positive-definite. A static,
inhomogeneous field of perturbation may set in. Write the perturbation as

dxiðXÞ ¼ daif ðN � XÞ, (8.21)

dFðXÞ ¼ da4f ðN � XÞ. (8.22)

Substitute into the equation of motion, and we obtain that

KiKjLNK NLdaj þ eiKLNLNKda4 ¼ 0, (8.23)

eiKLNLNKdai � �KLNLNKda4 ¼ 0. (8.24)

This is a set of homogenous algebraic equation for da1, da2, da3 and da4. To have a nontrivial solution, the
determinant of the equation must vanish. This Hadamard-type condition can be used to search for the
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direction N and the state of the given field when inhomogeneous field sets in. An example of indefinite tensor
of tangent modulus is described by Zhao et al. (2007).

9. Concluding remarks

It appears that basic field equations can be derived by definitions consistent with what is meant by work. The
troublesome notion of electric force is not invoked: for deformable dielectric solids, such force can be neither
defined nor measured. Also for deformable dielectric solids, the true electric field and true electric displacement
are not work conjugate. Instead, we use nominal electric field and nominal electric displacement in the body of the
paper, and define various other work conjugates in Appendices. Gauss’s law takes the same form in the material
description and spatial description. Our theory recovers the Maxwell stress for dielectric fluids, and provides a
basis to characterize finite deformation in dielectric solids. As an application of the theory, we study infinitesimal
fields superimposed on a given field, including phenomena such as vibration, wave propagation, and bifurcation.
In the beginning of Section 8, we have summarized the basic equations. Alternatively, a combination of (4.2), (4.6)
and material laws (5.4) provide a basis for a finite element method for deformable dielectrics (Zhou et al., 2007).
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Appendix A. Define work conjugates for parallel-plate capacitor normalized by the current thickness and area

In the body of the paper, we have elected to use the thickness and area in the reference state to normalize
various quantities. Now we list definitions using the thickness and area in the current state. Deform the
dielectric from the current thickness l by a small amount to l þ dl. Define the increment in the natural strain
d�, as the increment in the thickness divided by the current thickness, namely,

d� ¼
dl

l
. (A.1)

Define the true stress, s, as the force supplied by the weight in the current state divided by the area in the
current state, namely,

s ¼
P

a
. (A.2)

In terms of the natural strain and the true stress, the work done by the weight is

Pdl ¼ alsd�. (A.3)

Note that al is the volume of the dielectric in the current state. Associated with the change in thickness, the
work done by the weight divided by the volume of the dielectric in the current state is sd�. That is, the true
stress is work conjugate to the natural strain.

In Section 3, we have shown that the true electric field and the true electric displacement are not work
conjugates. If we do not wish to use such a pair of nonconjugates, we may define a natural electric
displacement such that when the battery pumps charge dQ from the ground to the electrode, the increment in
the natural electric displacement field is

dD̂ ¼
dQ

a
. (A.4)

In terms of the natural electric displacement field and the true electric field, the work done by the battery is

FdQ ¼ alEdD̂. (A.5)

http://imechanica.org/node/635
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Associated with the relocation of charge, the work done by the battery divided by the volume of the dielectric
in the current state is EdD̂. That is, the true electric field is work conjugate to the natural electric displacement.

It may be convenient for computation to formulate the theory using the complementary work, �QdF. We
may define the incremental natural electric field by the increment in the voltage in the current state divided by
the thickness in the current state:

dÊ ¼
dF
l
. (A.6)

Because �QdF ¼ �alDdÊ, the true electric displacement is work conjugate to the natural electric field.

Appendix B. Spatial description

McMeeking and Landis (2005) formulated a theory of deformable dielectrics using spatial description,
along with true electric displacement and true electric field. The two true fields are not work conjugate, but
these authors started with the field equations of electrostatics, and derived a correct expression of the rate of
work due to electric charges. To show our approach reproduces their results, this Appendices develops our
approach using spatial description. Unlike their approach, however, we will start with statements of work, and
show that it is unnecessary to invoke the notions of electric force and Maxwell stress.

Associated with the motion xðX; tÞ, a material element of volume dV ðXÞ in the reference state becomes
dvðx; tÞ in the current state, and a material element of interface NK ðXÞdAðXÞ in the reference state becomes
niðx; tÞdaðx; tÞ in the current state, where ni is the unit vector normal to the interface.

In terms of the spatial coordinates, the velocity and acceleration of material particle Xðx; tÞ takes the
familiar expressions:

vðx; tÞ ¼
qxðx; tÞ

qt
; aðx; tÞ ¼

qvðx; tÞ
qt
þ

qvðx; tÞ
qxj

vjðx; tÞ. (B.1)

In the current state, let bðx; tÞdv be the force due to the weights on a material element of volume, tðx; tÞda be
the force due to the weights on a material element of interface, and rðx; tÞdv be the mass of a material element
of volume.

Let DiðxÞ be the field of virtual displacement. Define the tensor of true stress sij as the work conjugate to
qDi=qxj. That is, we insist thatZ

sij

qDi

qxj

dv ¼

Z
ðbi � raÞDi dvþ

Z
tiDi da, (B.2)

holds true for any fields of virtual displacement DiðxÞ. Using the divergence theorem, we find that the true
stress satisfies the following equations:

qsijðx; tÞ

qxj

þ biðx; tÞ ¼ ra (B.3)

in the volume of the body, and

ðs�ij � sþij Þnj ¼ ti (B.4)

on the interfaces. Because we define the true stress as the conjugate to the gradient of displacement to calculate
the work done by the weights and inertia, we do not invoke electrical body force in our theory.

Electrostatics using true electric field and natural electric displacement: The potential as a function of the
spectral coordinates,fðx; tÞ, relates to the potential as a function of material coordinates, FðX; tÞ, by a change
of variable:

fðx; tÞ ¼ FðX; tÞ. (B.5)

Define the true electric field by

Eðx; tÞ ¼ �
qfðx; tÞ

qx
. (B.6)
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Let dq̂ðx; tÞdv be the change in charge on a material element of volume, and dôðx; tÞda be the change in
charge on a material element of interface. Let zðxÞ be a test function, which we may call the virtual voltage.
Define the vector of natural electric displacement dD̂i as the work conjugate to �qz=qxi. That is, we insist thatZ

�
qz
qxi

dD̂i

� �
dv ¼

Z
zdq̂dvþ

Z
zdôda, (B.7)

holds true for any test function zðxÞ. Using the divergence theorem, we find that natural electric displacement
field satisfies the following equations:

qdD̂iðx; tÞ

qxi

¼ dq̂ðx; tÞ (B.8)

in the volume of the body, and

ðdD̂
þ

i � dD̂
�

i Þni ¼ dôðx; tÞ (B.9)

on the interfaces. Because the place x will be occupied by different material particles at different times, we
cannot drop the sign of increment in the above equations involving natural electric displacement.

Electrostatics using natural electric field and true electric displacement: In computation, it might be
convenient to use the increment of the natural electric field of a material particle. Let FðX; tÞ be the electric
potential of material particle X at time t, and let dFðX; tÞ be an increment. By a change of variable, we write
that

dfðX; tÞ ¼ dFðX; tÞ, (B.10)

Define the vector of the increment of natural electric field by

dÊiðx; tÞ ¼ �
qdfðx; tÞ

qxi

. (B.11)

Let zðxÞ be a test function. Define the vector of true electric displacement Diðx; tÞ as the work conjugate to
the natural electric field. That is, we insist that the following hold true for any variation in the electric potentialZ

Di

qz
qxi

dv ¼ �

Z
qzdv�

Z
ozda, (B.12)

where qðx; tÞdvðx; tÞ is the charge on a material element of volume in the current state, and oðx; tÞdaðx; tÞ is the
charge on a material element of an interface in the current state. This definition leads to the usual expression of
Gauss’s law in spatial description:

@Diðx; tÞ

qxi

¼ qðx; tÞ (B.13)

in the volume of the body, and

ðDþi �D�i Þni ¼ oðx; tÞ. (B.14)

on the interfaces.
We can also state a relation similar to (B.12) using the material description:Z

~DK

qz
qX K

dV ¼ �

Z
~qzdV �

Z
~ozdA. (B.15)

This statement once again leads to (4.7) and (4.8).

Appendix C. Relating fields in material and spatial descriptions

The fields in material and spatial descriptions relate in usual ways (e.g., Truesdell and Noll, 2003; Kuang,
2002, Holzapfel, 2000; Huang, 2003). Here we list some of these relations for convenience. A few of the
relations concerning electrical quantities are possibly new, but are derived using similar methods.



ARTICLE IN PRESS
Z. Suo et al. / J. Mech. Phys. Solids 56 (2008) 467–486484
Some identities of kinematics: Associated with motion xðX; tÞ, the volume of a material element in the
current state relates to that in the reference state by

dv ¼ detðFÞdV , (C.1)

and the area of a material element in the current state relates to that in the reference state by

FiK ni da ¼ detðFÞNK dA, (C.2a)

and

da ¼ detðFÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HiK NK HiLNL

p
dA, (C.2b)

where HiK is the inverse of the deformation gradient, i.e., HiK FiL ¼ dKL and HiK FjK ¼ dij .
Note that

qHiK

qFmN

¼ �HiNHmK , (C.3)

q detðFÞ

qFmN

¼ detðFÞHmN . (C.4)

In the time between t and tþ dt, the material particle X moves by small, actual displacement

dxðX; tÞ ¼ xðX; tþ dtÞ � xðX; tÞ. (C.5)

By a change of variable, we define the actual displacement by

duðx; tÞ ¼ xðX; tþ dtÞ � xðX; tÞ. (C.6)

Associated with this small actual displacement, the material element of volume and the material element of
interface changes by

dðdvÞ ¼
qduk

qxk

dv; dðdaÞ ¼ ðdij � ninjÞ
qdui

qxj

da. (C.7)

Mechanical fields: By definition, the true and nominal mass density relate to each other as

rðx; tÞdvðx; tÞ ¼ ~rðXÞdV ðXÞ, (C.8)

so that

rðx; tÞ detðFÞ ¼ ~rðXÞ. (C.9)

Note that

qDiðXÞ

qX K

¼
qDiðxÞ

qxj

qxjðX; tÞ

qX K

¼
qDiðxÞ

qxj

F jK ðX; tÞ. (C.10)

By definition, the true stress relates to the nominal stress as

sijðx; tÞ
qDðxÞi
qxj

dvðx; tÞ ¼ siK ðX; tÞ
qDiðXÞ

qX K

dV ðXÞ, (C.11)

which reduces to

sijðx; tÞ ¼
FjK

detðFÞ
siK ðX; tÞ. (C.12)

Electrical fields: Note that

qzðX; tÞ
qX K

¼
qzðx; tÞ
qxi

qxiðX; tÞ

qX K

¼
qzðx; tÞ
qxi

F iK ðX; tÞ, (C.13)

so that the nominal electric field relates to the true electric field as

~EK ðX; tÞ ¼ F iK ðX; tÞEiðx; tÞ, (C.14)
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and the natural electric field relates to the nominal electric field as

d ~EK ðX; tÞ ¼ FiK ðX; tÞdÊiðx; tÞ. (C.15)

By definition, the natural electric displacement field relates to the nominal electric field as

qz
qxi

dD̂i dv ¼
qz

qX K

d ~DK dV , (C.16)

which reduces to

dD̂iðx; tÞ ¼
FiK

detðFÞ
d ~DK ðX; tÞ. (C.17)

By definition, the true electric displacement field relates to the nominal electric field as

Di

qz
qxi

dv ¼ ~DK

qz
qX K

dV , (C.18)

which reduces to

Diðx; tÞ ¼
FiK

detðFÞ
~DK ðX; tÞ. (C.19)

Using this relation and Gauss’s law in the spatial description, one can derive Gauss’s law in the material
description (e.g., Kuang, 2002).By definition,

dq̂dv ¼ dðqdvÞ ¼ d ~q dV ; dôda ¼ dðodaÞ ¼ d ~odA, (C.20)

so that

dq̂ ¼ dqþ
qduk

qxk

q; dô ¼ doþ ðdij � ninjÞ
qdui

qxj

o, (C.21)

and

q ¼
~q

detðFÞ
; o ¼

~o
detðFÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HiK HiLNK NL

p . (C.22)

Using Gauss’s law and the divergence theorem, McMeeking and Landis (2005) showed that the material
rate of electrical work isZ

�
qf
qxi

dDi

dt
þ

qvk

qxk

Di �
qvi

qxj

Dj

� �
dv. (C.23)

This expression once again shows that the true electric field and the true electric displacement are not work
conjugates. Using the relations among various measures of electric displacement, however, one can confirm
that (C.23) is equivalent to (B.7) and (4.5), each defining a set of work conjugate measures.
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