Methodologies for Distributed Information Retrieval

Owen de Kretser

Alistair Moffat

Dept. of Computer Science, University of Melbourne, Parkville 3052, Australia
{oldk,alistair } @cs.mu.oz.au

Tim Shimmin

Justin Zobel

Dept. of Computer Science, RMIT, GPO Box 2476V, Melbourne 3000, Australia
{tes,jz}@Qcs.rmit.edu.au

Abstract

Text collections have traditionally been located at a sin-
gle site and managed as a monolithic whole. However,
it is mow common for a collection to be spread over
several hosts and for these hosts to be geographically
separated. In this paper we examine several alterna-
tive approaches to distributed text retrieval. We report
on our experience with a full implementation of these
methods, and give retrieval efficiency and retrieval ef-
fectiveness results for collections distributed over both a
local area network and a wide area network. We con-
clude that, compared to monolithic systems, distributed
information retrieval systems can be fast and effective,
but that they are not efficient.

1 Introduction

The efficient management of large text collections is an
important practical problem. With the growth in the
use of network services, text collections such as digital
libraries are increasingly being distributed. For exam-
ple, a branch office of an organisation may be responsi-
ble for archiving its documents, allow access by the head
office, and be able to access information held at head of-
fice or any branch. Even at a single site it may be useful
for document collections to be distributed over several
machines, to simplify update and to balance load.

The change in emphasis from mono-server collec-
tions to multi-server collections changes the manner
in which queries are evaluated. Omne form of query
to a document database is Boolean, where, in a dis-
tributed environment, independent servers execute the
query on each of the subcollections, and the overall re-
sult set is simply the union of the individual result sets.
Another form of query is ranking, in which each doc-
ument in the collection is assigned a similarity score
that indicates how closely (according to some heuris-
tic) the document matches the query. Documents are

then presented to the user in decreasing similarity order
until the user indicates that no further documents are
required. In contrast to Boolean queries, there is no
precise set of documents that constitute the answers,
and thus no “perfect” mechanism for identifying which
documents should be returned. However, with a good
heuristic ranked queries provide more effective retrieval
than Boolean queries in terms of satisfying an informa-
tion need [16]; and ranked queries can be evaluated in
time similar to that required by an equivalent Boolean
query [14, 15].

The drawback of ranked queries in a distributed en-
vironment is that the most successful heuristics make
use of several collection-dependent statistics, including
the total number of documents; the number of distinct
terms; the number of documents in which each term
appears; and the number of times each term appears
in each document. In an ideal system query evaluation
would involve no more than communication of the query
to the subcollections, collation of the answers from each,
and communication of them to the user, much as for
Boolean queries. However, the use of local rather than
global parameters might lead to inaccurate similarity
scores, and in such a scheme most of the answers re-
turned will not be presented to the user. In such cases
computation of similarity and transmission of unwanted
documents are a waste of resources.

In this paper we examine a range of techniques for
evaluating ranked queries to distributed text databases,
seeking a method that gives good effectiveness—the
ability to find relevant answers—while using minimal
computational resources. To allow exploration of differ-
ent approaches we developed the TERAPHIM distributed
text database system, based on our mono-server text
database system MG [1, 12, 26]. Our experiments
with TERAPHIM show that retrieval effectiveness can be
maintained in the face of distribution, and that, given a

reasonable network bandwidth, a distributed text col-
lection can be queried as quickly as can a mono-server
collection. However, central coordination is necessary
for aggregation of the results of the ranking, and distri-
bution leads to much greater overall use of resources.

2 Ranked Retrieval

In principle a ranked query is resolved by using a sta-
tistical measure to compute the similarity of each doc-
ument to the query, then retrieving the documents
with the highest similarity. There have been many
effective similarity measures presented in the litera-
ture [4, 17, 29]. These weight rare terms more highly
than common terms, with the “rareness” of term ¢ de-
termined as an inverse function of the number f; of
documents in the collection that contain t¢; take into
account the number of times f;; that term ¢ appears in
document d; and use the length W (according to some
metric) of document d for normalisation.

In our experiments we have used the cosine measure
with logarithmic in-document frequency [8], which is
one of the most effective similarity measures. In this
method the similarity C(g, d) of query ¢ and document
d in a collection of N documents is given by

Zteqﬂd (Wq,t ~ W)

C(q,d) = ; S
v (ZtEq Wa i D sed wd,t)
where
Wt log(fa:+1) and
Wet = log(fee+1)-log(N/fi+1).
In this formulation the collection-wide statistic

log(N/f: + 1) applies only to query weights, so that
document lengths are not collection-dependent and up-
date is simplified. There are many similar formulations;
all are handled in the same manner as far as query eval-
uation is concerned, and most have similar, good effec-
tiveness [29].

To allow efficient resolution of ranked queries two
main structures are used. The first is an inverted file
that stores, for each term ¢ that appears in the collec-
tion, a list of document numbers d in which ¢ appears
together with fg:. While large, the inverted file can be
stored compressed, and modern text retrieval systems
generate indexes that typically occupy 10% or less of
the volume of the text. [14, 26]. The second impor-
tant structure is a table of document weights computed
by Wi = (2 ica wit). These are precalculated and
stored as part of the database.

To allow measurement of the effectiveness of an infor-
mation retrieval technique three resources are required:

a corpus of text; a set of test queries; and a set of
relevance judgements—human evaluations as to which
of the sample documents are relevant to which of the
queries. The data of the NIST TREC project [6] supplies
these three components. The experiments described be-
low were performed on the gigabyte of data on TREC
disk two, and two subsets of the queries, 51-200 and
202-250. The queries were split to allow investigation
of both long and short queries. In the first group, after
simple transformations such as removal of stop-words,
the average length is 90.4 terms, whereas in the second
group the average length is 9.6 terms; our experiments
have been primarily with the second group.

We measure retrieval effectiveness in two ways: by
the standard measure of recall-precision, that is, aver-
age precision obtained at 11 recall values (denoted in
our tables as 11-pt average) over 1000 documents re-
trieved; and by the number of relevant documents in
the top 20 documents returned. For example, if one
screen of titles of suggested answer documents contains
20 lines, then the precision at 20 is an important way of
quantifying retrieval effectiveness—users will be satis-
fied if they can fulfil their information need in the first
screen of document headers.

3 Distributed Retrieval

In a multi-server distributed text retrieval system, there
are several independent mono-servers, or librarians.
Each is responsible for some component of the collec-
tion, for which it maintains an index, evaluates queries,
and fetches documents. Separate from the librarians
are one or more receptionists, which interact with the
users of the system and communicate user requests to
the librarians. Each receptionist may be resident on
the same physical machine as one or more librarians,
or may be quite separate. In the models of computa-
tion we consider, the receptionists may have available
global information about each librarian, such as the to-
tal number of documents or perhaps a partial (or even
full) copy of its index information. (Note that this ar-
rangement is not a typical master-slave or client-server
architecture, as a librarian may be in communication
with several receptionists; hence our decision to adopt
fresh terminology.) A receptionist is essential to ranked
query evaluation because it is necessary to collate the
results of ranking each subcollection.
In this model, queries evaluation is as follows.

1. A user lodges a query with a receptionist, which
examines any global information it has access to
and passes the query, with perhaps some of the
global information, to a selected set of librarians.

2. Each selected librarian evaluates the query and,
making use of any transmitted global information
and its own local information, determines a ranking
for the local collection—a list of document identi-
fiers and similarity scores.

3. Each ranking is returned to the receptionist, which
waits for all the nominated librarians to respond
and then merges their rankings to obtain a global
collection-wide ranking and identify the top k doc-
uments. During the merging process the reception-
ist may again make use of global information.

4. Each selected librarian is given a list of document
identifiers within its domain and is requested to
return the text of the corresponding documents to
the receptionist for display to the user.

As an optional initial step, the receptionist may con-
verse with the librarians to establish parameters.

In this generic description of the model we have spec-
ified neither how the rankings are merged nor the inter-
nal structure of the librarians and receptionists. In the
alternative federated methodologies described below we
assume that the librarians and receptionist are similar
enough to share information such as vocabulary and
index and use the same similarity heuristic, but other
arrangements are possible. For example, Voorhees et
al. [21, 22, 23, 24] have described strategies for merg-
ing the rankings returned by librarians with no knowl-
edge of how they were computed, so long as appropriate
training queries are available.

Evaluation Criteria To evaluate performance we
need to consider three factors. One is effectiveness.
Another is response time: the delay between issuing
the query and return of answers, which depends on the
amount of processing involved, the volume of network
traffic, and the number of handshaking steps used. The
last factor is use of resources: CPU time at the recep-
tionist and librarians, volume of data needed by librar-
ians and transmitted over the network, and disk space
required by the receptionist. Response time and re-
source usage are linked, but only loosely. In particular,
response time measures the minimum delay a user will
experience, even on a lightly loaded system, whereas
resource use is an indication (in an inverse sense) of
the overall query throughput possible with the system
when it is operating at capacity, with multiple users and
queries competing for resources.

A key facility that we strived for was transparency:
it should be possible for any set of collections to be
queried as a single database. We require that each of
the subcollections can be accessed without recourse to

any central information; and that any subcollection can
be a logical component of databases managed by several
different receptionists. Note that this independence of
librarians eliminates some other possible models for dis-
tribution, such as having component files (for example,
text, index and dictionary files) at different sites [11]
or partitioning the index so that different terms are in-
dexed at different sites [19].

We now describe several specific methodologies for
distributed information retrieval. These are not the
only possible methodologies—for example, other au-
thors have considered several variants on the “central
vocabulary” scheme described below [5, 7, 20], as well as
other possibilities [2, 3, 21, 25] that are similar to ours.
The methodologies described here are chosen because
they are relatively straightforward and lend themselves
to efficient query evaluation.

Central Nothing In what we call a Central Nothing
(CN) system the only global information maintained
by the receptionist is a list of librarians. When a query
is entered every librarian is given the query and pre-
pares a ranking of its k “best” documents, as deter-
mined by its index and its values for parameters f; and
N. When these lists have all been returned the recep-
tionist merges them, accepting at face value all supplied
similarity values—it has no basis for perturbing either
the numeric values or the ordering. For S subcollections
the result is a list of £S similarities. The top k are then
extracted, and a document request list sent to each li-
brarian. Some of the librarians may not be required in
this second phase.

The main advantage of CN operation is that no
global information is required; the receptionist is free
to choose any subset of librarians. The disadvantage is
that much of the power of a ranked query is potentially
lost. For example, a term might be common in one sub-
collection and be assigned a minimal weight, but in the
context of the collection as a whole that term might be
rare, and documents from the subcollection important;
thus the final ranking will be poor. It might also be
that effectiveness is dramatically compromised by the
use of subcollection weights. Finally, it is possible that
unnecessary calculation is performed—the receptionist
has no basis for excluding any subcollection, and so ev-
ery subcollection processes the query in full.

In principle the receptionist could pass the query
terms to the librarians and the librarians then return &
documents immediately, without the intermediate step
of passing back document identifiers and similarities,
much as for Boolean queries. Unfortunately this is no
more effective than the approach described in the next
section [25]; and it is not pragmatic. Document identi-

fiers are only a few bytes each, but documents are much
larger; in TREC the average size is over two kilobytes
and the largest is over two megabytes. Transmission
of kS rather than k documents would severely degrade
performance.

Central Vocabulary In a Central Vocabulary (or
CV) system the global information stored by the recep-
tionist is the vocabularies of the subcollections, which
allows the receptionist to determine for each term a
collection-wide weight. This should allow better rank-
ing, but the preprocessing stage eliminates the spur-of-
the-moment choice of subcollections possible in a CN
scheme, and storage is required for the collection-wide
vocabulary.

Query processing is similar to that in a CN system,
with the crucial difference that each query term trans-
mitted to the librarians is accompanied by a weight
to be used; a similar approach is used by Walczuch et
al. [25]. In our implementation, the librarians still cal-
culate a k-ranking, but the similarity scores computed
by the various librarians are exactly the same as for
the mono-server alternative. The formation of a global
vocabulary means that collections can be completely
avoided if they contain none or few of the query terms.
There is evidence that the vocabularies of the subcol-
lections can be used to guide the search, allowing it to
be focussed on a subset of the subcollections [5, 27, 28].

Central Index In a Central Index (or CI) system,
the receptionist has full access to the indexes of the
subcollections, so it can perform all the index process-
ing and request from each librarian the documents re-
quired to make a global ranking of length k. In this
case the preprocessing involves merging the subcollec-
tion vocabularies and indexes, and the need for storage
space on the part of the receptionist is relatively large.

To save some of the central index space the reception-
ist can collect adjacent documents into groups and then
index the groups as if they were single documents [13];
space is saved because the number of groups containing
each term is less than the number of documents, reduc-
ing index size. For example, in our earlier work [13],
where we explored the effect of group size on effec-
tiveness, we showed that use of groups of ten docu-
ments approximately halves index size. Suppose then
that a grouped index has been formed with groups of
size G. To process a query the receptionist first exam-
ines its own index, and determines a list of &’ highly
ranked groups, where k' > k/G is a function of both
G and k. The k' group identifiers are then expanded
into k' ranges, each containing G document identifiers,
and the subcollections owning each of the k¥'G document

identifiers is instructed to consult its local index to de-
termine a similarity value for that document. With a
mechanism that allows similarity values for some doc-
uments to be computed without processing the index
lists in full [14], processing at the librarians can be con-
siderably faster than for CN or CV operation. The K'G
similarity values so calculated are then sorted, and a
final listing of the k highest scoring documents deter-
mined and requested from the various librarians.

Compared with a CV system, the advantage is that
each librarian must consult only a fraction of its in-
dex. The potential disadvantage is that highly rele-
vant documents that are (by bad luck) grouped with
non-relevant documents may not be retrieved. In our
earlier work with grouped indexes, which used a sim-
ulated implementation, we measured the relationship
between G, k', and k—how far the number of groups
can be reduced before retrieval effectiveness declines.
The performance questions we sought to answer in our
full implementation were the size of the central index,
the cost of processing the central index, the extent to
which the librarians could be protected from redundant
computation, and how overall costs compare to other
approaches.

Implementation To test our proposals we devel-
oped a prototype distributed text-retrieval engine,
TERAPHIM. It is built on the research prototype
MG [1, 12, 26], a mono-server text database system that
uses compression for text and index, and in doing so
provides an attractive combination of fast query pro-
cessing and modest storage overheads. In TERAPHIM,
each librarian-to-receptionist session is an ordinary MG
process, so that the individual subcollections can be
queried independently, and the receptionist is a data-
less MG process. MG and TERAPHIM have had several
years of development and we are confident that perfor-
mance is as good as or better than production text re-
trieval systems.! We have used MG to investigate large
numbers of similarity heuristics [29], and the one used
in these experiments is competitive with the best known
measures.

4 Results

Effectiveness We first investigated effectiveness, us-
ing, as discussed above, TREC disk two, which contains
about one gigabyte of text in four distinct collections:
AP, FR, WSJ, and ZIFF. The systems investigated were
a MS database of the full one gigabyte of text, and

1MG and TERAPHIM are written in C. A publicly available ver-
sion of MG (but not, at this stage, TERAPHIM) can be fetched from
ftp://munnari.oz.au/pub/mg. An on-line description of MG can
be found at http://www.mds.rmit.edu.au/mg.

Mode 11-pt average Relevant docs.

% in top 20

Long queries (51-200)

MS and CV 23.07 8.2
CN 24.35 8.6
CI, k¥ =100 10.49 7.2
CI, ¥’ = 1000 21.10 8.5
Short queries (202-250)

MS and CV 15.67 4.7
CN 16.21 4.9
CI, k¥ =100 14.01 5.3
CI, ¥’ = 1000 16.81 5.0

Table 1: Retrieval effectiveness using two query sets:
11-point average recall-precision at 1000 documents re-
trieved; and average number of relevant documents in
the 20 documents most highly ranked.

distributed systems built from the four subcollections
using the CN, CV, and CI paradigms, and using the
formulation of the cosine measure described earlier. In
the CI method we set the groupsize G to be 10 based
on our earlier experiments [13], and undertook differ-
ent runs with different values for the parameter k’, the
number of groups to be expanded. For example, with
k' = 100 and G = 10 a total of ¥’G = 1000 similar-
ity values are generated; and it is unsurprising that for
this combination the 11-point retrieval effectiveness is
very low, since in the TREC methodology the 11-point
average is based upon a ranking of 1000 documents.

Table 1 shows the behaviour of the various retrieval
modes on the long and short TREC query sets, and illus-
trates the effect that &’ has upon the 11-point average.
Note how the precision values in the last column are
relatively insensitive to the value of k’. These results
show that, for high-precision retrieval in applications
such as web search engines, small values of ¥’ may be
used without the usefulness of the result being substan-
tially eroded.

It is possible that the good performance may be to
some extent a result of the small set of subcollections
we used, and of their uniform size (although, however,
most of the relevant documents were in AP and TREC).
To explore this issue further we also examined effec-
tiveness when TREC disk two is broken into 43 subcol-
lections (using a standard division into subcollections
developed for TREC). The impact on effectiveness was
surprisingly small. For the short queries and CN, for
example, the effectiveness was only marginally poorer
than in Table 1. However, the variation in subcollec-
tion size was relatively small—from just over 1000 to

just under 10,000 documents—and it is quite possible
that with greater variation that effectiveness would de-
cline. That is, for these large collections the size means
that the statistics can be used for reliable retrieval, but
in general the CN method is likely to be less robust
than the other approaches.

Efficiency Efficiency and response time in a dis-
tributed text database system depend on many factors,
including the power of the machines on which the text
is resident, bandwidth of the network, network traffic,
and point-to-point network transmission time. In order
to obtain indicative results, we decided to evaluate the
various modes of operation in several configurations:

Mono-Disk: On a single machine with the data on
a single disk, which is almost certainly a worst
case; not only is disk bandwidth a bottleneck for
librarian query processing but the librarians inter-
fere with each other by repositioning the disk head
unpredictably.

Multi-Disk: On a single machine with the data dis-
tributed across three locally mounted disk drives
and two NFS mounted drives (four librarians plus
one receptionist). In both this case and the one
above the machine used was a Sun SPARC 10 with
four processors, thus allowing a modest amount of
CPU parallelism.

LAN: On three machines (a four-processor SPARC 10,
running the receptionist and the FR database; a
dual-processor SPARC 10, running the AP and wsJ
collections; and a two-processor SPARC 20, run-
ning the ZIFF collection) on a common 10 megabit
ethernet cable. This configuration was designed as
typical of a local area network.

WAN: On machines at geographically separated sites,
namely Melbourne (the receptionist); Canberra
(Australia, running the ZIFF collection); Brisbane
(Australia, running the AP collection); Hamilton
(New Zealand, running the FR collection); and Tel
Aviv (Israel, running the wsJ collection). This
configuration was designed to emulate a typical ar-
rangement using a wide area network.

The connectivity of the various remote sites used for
the WAN experiments is summarised in Table 2. Note
the relatively high cost of communicating with both
New Zealand and Israel; in the first case the link is
relatively direct, but of modest bandwidth; and in the
other the link traverses the United States. An obvious
but nevertheless crucial consequence is that handshak-
ing should be kept to an absolute minimum. For exam-

Location Network hops Avg. “ping”
from Melbourne time (sec)
Waikato 13 0.76
Canberra 14 0.18
Brisbane 16 0.14
Israel 28 1.04

Table 2: Network communication costs: network hops;
and average round-trip communication time for one
packet using “ping” at approximately GMTO0100 on a
Wednesday (12 noon local Australian time).

ple, documents should be bundled into blocks by the
librarians rather than transferred individually.

Reasonable efforts were made to run these experi-
ments on idle machines, but this was not within our
control for the WAN configuration, and we were unable
to predict network load—depending upon the time of
day and time of week, the cost of running the WAN
queries varied by as much as a factor of one hundred.
(As a consequence the times reported for the WAN are
representative rather than accurate.) Finally, as a base
case we measured the performance of a mono-server MG
system with all the data files on a single disk drive.

Tables 3 and 4 show the response time measured with
the various modes of operation and network configura-
tions for the short TREC queries. (Network problems
prevented us from completely trialling the long queries;
based upon the trials we did complete, we would expect
to see the same trends.) Table 3 shows the component
of the response time caused by index processing, from
the moment the query is issued until the list of answer
documents is determined, but excluding the actual cost
of fetching those documents. As can be seen, the multi-
disk versions operate slightly faster than do the mono-
disk configurations, and all but the WAN arrangement
operate at speeds comparable with the MS system. Ta-
ble 4 shows the response time for the same queries, but
including the cost incurred through the librarians re-
turning the answer documents back to the receptionist.
Fetching the documents adds to the cost, but, in all but
the WAN case, by a relatively small amount.

Analysis Some clear trends emerge from the experi-
ments recorded in the previous sections. In particular,
distribution need not have any impact on effectiveness:
with vocabularies held at the receptionist, effectiveness
is identical to that of a MS system. The space required
by the combined vocabularies is moderate (less than
10 Mb for the gigabyte of text), and saves a prelimi-
nary round of communication between receptionist and
librarians, and a central vocabulary may allow recep-

Mode Configuration
mono-disk multi-disk LAN WAN
Short queries (202-250)
MS 1.07 — — —
CN 1.11 0.91 0.91 4.21
CV 1.17 0.90 0.82 4.20
CI 1.55 1.42 1.25 4.86

Table 3: FElapsed time (sec) in each configuration per
query, indexing processing time only (steps 1, 2, and 8
of the method listed in Section 3), k = 20 and k' = 100.

Mode Configuration
mono-disk multi-disk LAN WAN
Short queries (202-250)
MS 1.43 — — —
CN 1.33 1.31 1.33 15.04
CV 1.49 1.37 1.27 14.71
CI 2.00 2.08 1.63 10.71

Table 4: FElapsed time (sec) in each configuration per
query, total time including index processing and Te-
trieval of answers (steps 1 to 4 of the method listed in
Section 3), k =20 and k' = 100.

tionists to neglect some librarians [5, 27, 28]. The CN
method was similarly effective and efficient. However,
it is not clear that it is robust, because small, topical
collections are likely to have highly distorted statistics.
The results showed that little was gained by storing a
full central index, which in this case occupied around
40 Mb: elapsed times were greater because of the se-
quential processing of the central index. However, the
CI method does have the potential to save net index
processing time, because only part of the index at each
librarian need be inspected.

Network bandwidth and round-trip times are crucial
to efficiency. In the WAN experiments the cost is dom-
inated by the latency of the Internet. However there
is some scope for improvement in the current imple-
mentation; with prefetching and blocking the cost of
fetching documents from the remote sites can proba-
bly be reduced. Compression can also help: a tradi-
tional solution to the problem of network costs is to
compress data prior to transmission, a solution that is
facilitated in TERAPHIM since all documents are stored
compressed [1]. However, performance was still poor
compared to the MS approach. A further refinement
would be to only send part of each document, such
as a header (on the assumption that users will inspect

only a few documents in full, and these can be fetched
on demand), a solution that reduces costs but requires
knowledge of document structure.

Also, for the CI system the CPU cost can be re-
duced: in these experiments we did not employ our
“skipping” mechanism [14], and we expect that, with
skipping, when the number &’ of groups to be processed
is small the CPU cost at the librarians would decrease
by a factor of two or more.

With regard to overall efficiency, all of the dis-
tributed methods were poor. In some distributed ap-
plications, each site can operate fairly independently
and elapsed times can be greatly reduced; but in this
case, significant central coordination is needed, limit-
ing possible savings. Furthermore, one of the major
costs of query evaluation for text databases is access-
ing the vocabulary and fetching the inverted lists, and
this operation is repeated at each librarian. Although
the individual lists are shorter, overall many more lists
must be fetched. Thus only a small speed increase is
available through distribution of a text database, and
total resource costs are greater than for a traditional
mono-server implementation. These problems become
more acute as the number of collections is increased—
the small gain in response is at the cost of a great deal of
additional processing. Net savings are possible only if,
given a query, it can be reliably determined that many
of the subcollections can be neglected. As a manage-
ment measure, however, distribution has other benefits,
such as faster update, allowing data to be controlled in-
dependently at local sites, and allowing text data from
different sources to be stored separately.

5 Related Work

With compression, inverted indexes are only a small
fraction of the size of the indexed data. Nonetheless,
having a combined index of all stored data and du-
plicating it for each receptionist is clearly impractical.
It was for this reason that we introduced the concept
of grouping, to reduce index size while allowing query
evaluation to proceed. However, it is not the only way
of reducing index size. Another possibility is to apply
a threshold based on fg: values; for term occurrences
that can only make a small contribution to similarity
values, because both fq; and w; are small, not using
these values in ranking may have little impact on ef-
fectiveness. Persin et al. [15] describe experiments with
per-query thresholding that show that the volume of in-
dex information processed can be reduced by a factor of
five without reducing effectiveness. In preliminary ex-
periments, applying thresholds that only reduced index
size by a third severely degraded effectiveness; nonethe-

less we plan to further investigate this option in future
work. Smeaton et al. [18] have considered thresholding
in a mono-server context.

Finally we note that the INQUERY system that has
been developed over many years at the University of
Massachusetts is being considered as a platform for dis-
tributed collections, and there are several common ele-
ments between their architecture and our own. Cahoon
and McKinley [2] describe the result of simulated ex-
periments on the distributed INQUERY architecture.
Using observed behaviour for a mono-server implemen-
tation they derive likely performance figures for a dis-
tributed implementation, showing it to be scaleable.

6 Conclusions

We have described three alternative methodologies for
practical distributed information retrieval, each based
on a common architecture in which subcollections are
managed independently by librarians and queries are
brokered to librarians by receptionists. The method-
ologies are differentiated by the kind of data that must
be held by the receptionist, varying from no more than a
list of valid subcollections (central nothing) to a merged
vocabulary (central vocabulary) to a full index of stored
data (central index).

To test these methodologies we implemented a
prototype distributed information retrieval system,
TERAPHIM, and used it to index and query one giga-
byte of text. These experiments showed that distri-
bution need have no impact on effectiveness, and it
is possible to obtain faster response times to queries.
However, overall resource usage rises significantly as a
consequence of distribution.

The main performance bottleneck was network de-
lay. We had hypothesised that achievement of good
performance would require that the number of com-
munication steps between librarians and receptionists
be kept low; this supposition was confirmed by our
experiments, which showed that—with even the min-
imal number of communication steps required by our
architecture—network delay was the dominant factor in
response for wide-area distribution. Our experiments
show that addressing the costs of handshaking, data
transmission, and unnecessary access to subcollections
are the major problems that must be addressed in con-
struction of a practical system for distributed text re-
trieval.

Acknowledgements

We thank Dave Hawking (Australian National Univer-
sity, Canberra), Tomi Klein (Bar-Ilan University, Is-
rael), Rodney Topor (Griffith University, Brisbane),
and Tan Witten (Waikato University, New Zealand) for

arranging access to their machines.

We also thank

Daryl D’Souza and Ross Wilkinson. This work was sup-
ported by the Australian Research Council.

References

[1]

[2]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

T.C. Bell, A. Moffat, I.H. Witten, and J. Zobel. The MG
retrieval system: compressing for space and speed. Commu-
nications of the ACM, 38(4):41-42, April 1995.

B. Cahoon and K.S. McKinley. Performance evaluation of
a distributed architecture for information retrieval. In H.-P.
Frei, D. Harman, P. Schiuble, and R. Wilkinson, editors,
Proc. ACM-SIGIR International Conference on Research
and Development in Information Retrieval, pages 110-118,
Zurich, Switzerland, 1996.

J.P. Callan, Z. Lu, and W.B. Croft. Searching distributed
collections with inference networks. In E.A. Fox, P. Ingwer-
son, and R. Fidel, editors, Proc. ACM-SIGIR International
Conference on Research and Development in Information
Retrieval, pages 21-28, Seattle, Washington, July 1995.

W.B. Frakes and R. Baeza-Yates, editors. Information Re-
trieval: Data Structures and Algorithms. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1992.

L. Gravano and J.H. Garcia-Molina. Generalising GIOSS to
vector-space databases and broker hierarchies. In U. Dayal,
P.M.D. Gray, and S. Nishio, editors, Proc. International
Conference on Very Large Databases, pages 78-89, Zurich,
Switzerland, September 1995.

D. Harman. Overview of the second text retrieval confer-
ence (TREC-2). Information Processing €& Management,
31(3):271-289, May 1995.

D. Harman, W. McCoy, R. Toense, and G. Candela. Proto-
typing a distributed information retrieval system using sta-
tistical ranking. Information Processing € Management,
27(5):449-460, 1991.

D.K. Harman. Ranking algorithms. In Frakes and Baeza-
Yates [4], chapter 14, pages 363-392.

D.K. Harman, editor. Proc. Third Text REtrieval Confer-
ence (TREC-3), Gaithersburg, MD, November 1994. Na-
tional Institute of Standards and Technology Special Publi-
cation 500-225.

D.K. Harman, editor. Proc. Fourth Text RFEtrieval Confer-
ence (TREC-4), Gaithersburg, MD, November 1995. Na-
tional Institute of Standards and Technology Special Publi-
cation 500-236.

I.A. Macleod, T.P. Martin, B. Nordin, and J.R. Phillips.
Strategies for building distributed information retrieval sys-
tems. Information Processing € Management, 23(6):511—
528, 1987.

A. Moffat and J. Zobel. Compression and fast indexing for
multi-gigabyte text databases. Australian Computer Jour-
nal, 26(1):1-9, February 1994.

A. Moffat and J. Zobel. Information retrieval systems for
large document collections. In Harman [9], pages 85-93.

A. Moffat and J. Zobel. Self-indexing inverted files for fast
text retrieval. ACM Transactions on Information Systems,
14(4):349-379, October 1996.

M. Persin, J. Zobel, and R. Sacks-Davis. Filtered docu-
ment retrieval with frequency-sorted indexes. Journal of the
American Society for Information Science, 47(10):749-764,
1996.

(16]

(17]

(18]

(19]

20]

(21]

(22]

(23]

[24]

25]

[26]

27)

(28]

29]

G. Salton. Awutomatic Text Processing: The Transforma-
tion, Analysis, and Retrieval of Information by Computer.
Addison-Wesley, Reading, Massachusetts, 1989.

G. Salton and C. Buckley. Term-weighting approaches in
automatic text retrieval. Information Processing & Man-
agement, 24(5):513-523, 1988.

A.F. Smeaton, F. Kelledy, and R. O’Donnell. TREC-4 ex-
periments at Dublin City University. In Harman [10], pages
373-389.

A. Tomasic and H. Garcia-Molina. Performance of inverted
indices in shared-nothing distributed text document infor-
mation retrieval systems. In M.J. Carey and P. Valduriez,
editors, Proc. 2nd International Conference On Parallel and
Distributed Information Systems, pages 8-17, Los Alamitos,
CA, January 1993. IEEE Computer Society Press. Confer-
ence held in San Diego.

C.L. Viles and J.C. French. Dissemination of collection wide
information in a distributed information retrieval system. In
E.A. Fox, P. Ingwersen, and R. Fidel, editors, Proc. ACM-
SIGIR International Conference on Research and Develop-
ment in Information Retrieval, pages 1220, Seattle, WA,
1995.

E.M. Voorhees. Siemens TREC-4 report: Further experi-
ments with database merging. In Harman [10], pages 121—
130.

E.M. Voorhees, N.K. Gupta, and B. Johnson-Laird. The
collection fusion problem. In Harman [9], pages 95-104.

E.M. Voorhees, N.K. Gupta, and B. Johnson-Laird. Learn-
ing collection fusion strategies. In E.A. Fox, P. Ingwersen,
and R. Fidel, editors, Proc. ACM-SIGIR International Con-
ference on Research and Development in Information Re-
trieval, pages 172-179, Seattle, WA, 1995.

E.M. Voorhees and R.M. Tong. Multiple search engines in
database merging. In R.B. Allen and E. Rasmussen, editors,
Proc. ACM Digital Libraries, pages 93—-102, Philadephia,
Pennsylvania, 1997.

N. Walczuch, N. Fuhr, M. Pollmann, and B. Sievers. Rout-
ing and ad-hoc retrieval with the TREC-3 collection in a
distributed loosely federated environment. In Harman [9],
pages 135-144.

I.LH. Witten, A. Moffat, and T.C. Bell. Managing Giga-
bytes: Compressing and Indexing Documents and Images.
Van Nostrand Reinhold, New York, 1994.

B. Yuwona and D.L. Lee. Server ranking for distributed
text retrieval systems on the Internet. In R. Topor and
K. Tanaka, editors, Proc. International Conf. on Database
Systems for Advanced Applications, pages 41-49, Mel-
bourne, Australia, 1997.

J. Zobel. Collection selection via lexicon inspection. In
P. Bruza, editor, Proc. Australian Document Computing
Conference, pages 74-80, Melbourne, Australia, 1997.

J. Zobel and A. Moffat. Exploring the similarity space. SI-
GIR Forum. To appear.

