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AUSLANDER-REITEN COMPONENTS IN THE BOUNDED

DERIVED CATEGORY

SARAH SCHEROTZKE

Abstract. Derived Categories of finite dimensional algebras whose Auslander-

Reiten quiver has a finite component, a component with Dynkin tree

class or a bounded component are classified. Their Auslander-Reiten

quiver is determined. We use these results to show that certain algebras

are piecewise hereditary. A necessary condition for components of Eu-

clidean tree class is deduced and components that contain shift periodic

complexes are determined.

1. introduction

In this paper we analyze the Auslander-Reiten triangles in bounded de-

rived categories of a finite-dimensional algebra A, denoted by Db(A). The

bounded derived category of a finite-dimensional algebra is a triangulated

category and Auslander-Reiten triangles are triangles with analogous prop-

erties then Auslander-Reiten sequences of finite-dimensional algebras. The

conditions of existence of those triangles in Db(A) have been determined by

Happel in [H].

Analogously to the classical Auslander-Reiten theory, which applies to

Artin algebras, we can define Auslander-Reiten components in the bounded

derived category. Those are locally finite graph, where the vertices corre-

spond to indecomposable complexes in Db(A). We want to know how and

if certain results on the Auslander-Reiten quivers of finite-dimensional alge-

bras extend to the bounded derived category. We call a component stable

if the so called translation map is an automorphism when restricted to the

elements of the component. Stable components are isomorphic to Z[T ]/Γ

where T is a tree, and Γ is an admissible group of automorphisms.

The Auslander-Reiten components of Db(A) for A self-injective have been

determined by W. Wheeler in [W]. But very little is known about the

components of the bounded derived category of non self-injective algebras.
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In the first section we introduce Auslander-Reiten triangles as defined by

Happel in [H1] and deduce some properties of Auslander-Reiten triangles

that will be used in the other sections.

In the classical Auslander-Reiten theory finite components occur if and

only if the algebra is representation type finite. We show in the second

section that finite stable Auslander-Reiten components occur for Db(A) if

and only if A is semi-simple. In this case the components of the Auslander-

Reiten quiver are all isomorphic to A1.

We also show that finite components can occur in the bounded derived

category of non semi-simple algebras if the Auslander-Reiten component is

not stable by constructing an example.

In this section, we introduce bounded Auslander-Reiten components and

show that the following are equivalent:

1) Db(A) has finite representation type;

2) There is a stable component with Dynkin tree class;

3) There is a bounded stable component.

The Auslander-Reiten quiver consists in this case of only one component

Z[T ] with T 6= A1 a finite Dynkin diagram or of infinitely many components

A1. In the first case A is derived equivalent to kT , which is a hereditary

algebra of finite representation type. In the second case A is semi-simple.

Finally possible tree classes for derived categories with shift periodic mod-

ules are deduced and a sufficient condition for components of tree class A∞.

In the third section irreducible maps in Comp−,b(A) that end in an in-

decomposable contractible complex are analyzed. Those irreducible maps

start in a complex that is isomorphic to a simple module of A embedded into

Db(A). A corollary of this result is that stable Euclidean Auslander-Reiten

components all contain a simple A-module.

Finally we analyze the Auslander-Reiten quiver of Nakayama algebras

given as a path algebra kAn/I for the ideal I ≤ kAn gerenated by a path of

length n− 1 in the first case and paths of length 2 in the second case. The

Auslander-Reiten quiver is given by one component Z[Dn] in the first case

and Z[An] in the second case. This result provides an alternative proof to

[HS] that A is derived equivalent to kAn and kDn respectively.

2. Introduction to Auslander-Reiten triangles

In this section we introduce Auslander-Reiten Theory for triangulated

categories. We state the existence conditions for Auslander-Reiten triangles
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in the bounded derived category of a finite-dimensional algebra and prove

some properties that will be needed in the other sections.

Let T be a triangulated category with translation functor T .

Definition 2.1. [H1, 4.1] [Auslander-Reiten triangles] A distinguished tri-

angle X →u Y →v Z →w TX is called an Auslander-Reiten triangle if the

following conditions are satisfied:

(1) X, Z are indecomposable

(2) w 6= 0

(3) If f : W → Z is not a retraction, then there exists f ′ : W → Y such

that v ◦ f ′ = f .

By [H1, 4.2] we have the following equivalences: the condition (3) is

equivalent to

(3’) If f : X → W is not a section, then there exists f ′ : Y → W such

that f ′ ◦ u = f .

The condition (2) is equivalent to

(2’) u is not a section.

(2”) v is not a retraction.

We say that the Auslander-Reiten triangle X → Y → Z → TX starts

in X, has middle term Y and ends in Z. Note also that an Auslander-

Reiten triangle is uniquely determined up to isomorphisms of triangles by

the isomorphism class of the element it ends or starts with. Analogously

to the classical Auslander-Reiten theory we can define irreducible maps,

minimal maps, left almost split maps and right almost split maps. We have

the same statement than in the case of Artin algebras for irreducible maps:

Lemma 2.2. Let f : N →M be an irreducible map.

(1) Let N →g Q→ E → TN be the Auslander-Reiten triangle, then there

is a section s : Q→M such that f = s ◦ g.

(2) Let L→ B →h M → TL be an Auslander-Reiten triangle, then there

is a retraction r : N → B such that f = h ◦ r.

In order to define Auslander-Reiten components we need the following

property:

Definition 2.3. [Ben, 1.4.2] An object M of an additive category C has the

unique decomposition property if

(1)M has a finite decomposition as direct sum of indecomposable object.
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(2)The decomposition is unique up to isomorphism and reordering. So if

M = ⊕n
i=1Mi

∼= ⊕m
i=1Ni for indecomposable objects Mi and Ni, then n = m

and there is a permutation π of n such that Mπ(i)
∼= Ni for all i = 1, · · · , n.

We call an additive category C a Krull-Schmidt category if every object in

C has a unique decomposition property.

If T is a Krull-Schmidt category we define the Auslander-Reiten quiver

to be a labelled graph Λ with vertices the isomorphism classes of indecom-

posable objects. We denote the set of vertices by Λ0. The label of an arrow

X
(dXY ,d′

XY
)

→ Y is defined as follows: if there is an Auslander-Reiten triangle

t starting in X, then dXY is the multiplicity of Y as a direct summand of

the middle term of t. Analogously if there is an Auslander-Reiten triangle s

ending in Y , then d′XY is the multiplicity of X as a direct summand of the

middle term of s.

Let Λ′
0 denote the subset of vertices of Λ such that there is an Auslander-

Reiten triangle that ends in this vertex. Let τ be the morphism τ : Λ′
0 → Λ0

such that for all arrows y → x and x ∈ Λ′
0 we have an arrow τ(x) → y.

Then an Auslander-Reiten quiver is a translation quiver with translation τ .

From now on let A be a finite-dimensional algebra and T = Db(A). By [K,

2.6] we have that Db(A) is a Krull-Schmidt category and that the endomor-

phism ring of indecomposable objects is local. Therefore Auslander-Reiten

components of Db(A) are well-defined.

As the endomorphism spaces of indecomposable elements are local, the

following lemma holds:

Lemma 2.4. [H1, 4.3, 4.5] Let X →u M →v Z → TX be an Auslander-

Reiten triangle and M ∼= M1 ⊕M2, where M1 is indecomposable. Let i :

M1 → M be the inclusion and p : M → M1 the projection. Then v ◦ i :

M1 → Z and p ◦ u : X →M are irreducible maps.

Let νA denote the Nakayama functor of A. We denote by ν the functor

that maps a complex D ∈ Comp(P) to ν(D) ∈ Comp(I), where ν(D)i :=

νA(Di) and di
ν(D) := νA(di

D) for all i ∈ Z. As ν maps contractible complexes

to contractible complexes, ν is a well-defined functor on K(P) and therefore

also on K−,b(P) ∼= Db(A). Note that ν is the left derived functor of νA on

Db(A) and ν−1 the right derived funtor of ν−1
A .

The conditions for the existence of Auslander-Reiten triangle in a trian-

gulated category have been determined in [BR, I.2.4]. It is shown that a



AUSLANDER-REITEN COMPONENTS IN THE BOUNDED DERIVED CATEGORY 5

triangulated category admits Auslander-Reiten triangles, that is for every

indecomposable element X there is an Auslander-Reiten triangle that ends

in X and one that starts in X, if and only if the category has a Serre functor.

A specialization of this result is given in the next Theorem for the case

of Db(A).

Theorem 2.5. [H, 1.4] (1) Let Z ∈ K−,b(P) be indecomposable. Then there

exists an Auslander-Reiten triangle ending in Z if and only if Z ∈ Kb(P).

The triangle is then given by ν(Z)[−1] → Y → Z → ν(Z) for some Y ∈

K−,b(P).

(2) Let X ∈ K+,b(I) be indecomposable, then there exists an Auslander-

Reiten triangle starting in X if and only if X ∈ Kb(I). The triangle is then

given by X → Y → ν−1(X)[1] → X[1] for some Y ∈ K−,b(P).

We deduce the following from this result:

(1) The translation τ is given by ν[−1] and τ is a bijective map from

Kb(P) to Kb(I).

(2) Let N , M ∈ Db(A) be two indecomposable elements and let f :

N → M be an irreducible map. Then there is an arrow from N to M in

the Auslander-Reiten quiver representing f if and only if N ∈ Kb(I) or

M ∈ Kb(P).

(3) Db(A) admits Auslander-Reiten triangles if and only if A has finite

global dimension.

(4) Every Auslander-Reiten triangle is isomorphic to

ν(X)[−1] → cone(w)[−1] → X →w ν(X)

for X ∈ Kb(P) and some map w : X → ν(X).

The following lemma determines the relation between irreducible maps,

retractions and sections in K(P) and Comp(P). Note that by duality the

same is true if we replace P by I.

Lemma 2.6. Let B,C ∈ Comp(P) be indecomposable complexes that are

not contractible. Let f : B → C be a map of complexes.

(1) f is irreducible in Comp(P) if and only if f is irreducible in K(P).

(2) f is a retraction in Comp(P) if and only if f is a retraction in K(P).

(3) f is a section in Comp(P) if and only if f is a section in K(P).

Proof. We first give a proof of (2). Let f : B → C be a retraction in

Comp(P). Then f is clearly a retraction in K(P). Let f be a retraction

in K(P), then there is a map g : C → B such that f ◦ g is homotopic to
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idC . Therefore f ◦ g − idC factors through a contractible complex P via

s : C → P and t : P → C. Then
(

t
h

)

◦ (−s, g) = idC . As C does not have a

contractible summand, we have that f ◦ g is an isomorphism. The proof of

(3) is analogous.

We prove (1). Let f : B → C be an irreducible map in K(P), then by (2)

f is also an irreducible map in Comp(P). Suppose now that f is irreducible

in Comp(P) and let g ◦ h be homotopic to f for some g : D → C and

h : B → D. Then g ◦ h − f factors through a contractible complex P via

s : B → P and t : P → C. So f =
(

g
−t

)

◦ (h, s) factors through D ⊕ P in

Comp(P). Therefore (h, s) is a section in Compb(P) or
(

g
−t

)

is a retraction

in Comp(P). This means that h is a section in K(P) or g is a retraction in

K(P). Therefore f is irreducible in K(P). �

The next theorem determines the relation between Auslander-Reiten tri-

angles in Db(A) and Auslander-Reiten sequences in Comp−,b(P). The anal-

ogous statement for self-injective algebras was given by [W, 2.3, 2.2].

Theorem 2.7. Let P ∈ Compb(P) be an indecomposable complex that is

not contractible. Let w : P → ν(P ) be a map of complexes. Then

0 → νP [−1] → cone(w)[−1] → P → 0

is an Auslander-Reiten sequence in Comp−,b(P) if and only if w induces an

Auslander-Reiten triangle in Db(A).

Proof. Let w : P → ν(P ) induce an Auslander-Reiten triangle in Db(A).

The sequence

0 → νP [−1] → cone(w)[−1] →σ P → 0

is exact. Furthermore νP [−1] and P are indecomposable. Let P1 be an

indecomposable complex in Comp−,b(P) and f : P1 → P be a non-split map

in Comp−,b(P). Then by 2.6, f is not a retraction in K−,b(P). Therefore

there is a map f1 : P1 → cone(w)[−1] such that σf1 = f in K−,b(P).

Therefore f −σf1 factors through a contractible complex P2. Let f −σf1 =

g ◦h where h : P1 → P2 and g : P2 → P . As P2 is projective in Comp−,b(P)

there is a map s : P2 → Q such that g = σ◦s. We set f ′ = f1+sh, then σf ′ =

σf1 + σsh = f . The converse follows immediately by the definitions. �

All indecomposable contractible complexes in Comp(P) have the form

· · · → 0 → P →id P → 0 → · · ·
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for an indecomposable projective module P of A. We denote such a complex

where P occurs in degree 0 and −1 by P̄ . Note that if P̄ ∈ Compb(P) is

contractible, then there is no Auslander-Reiten sequence in Comp−,b(P) that

ends in P̄ , as contractible complexes are projective object in Comp−,b(P)

by [W, 1].

Let N be a left A-module and N → I0 →d0
I
I1 →d1

I
· · · its minimal

injective resolution and by · · · →d2
P
P1 →d1

P
P0 → N its minimal projective

resolution. We define pN to be the complex with (pN)i = P−i and di := d−i
P

for i ≤ 0 and (pN)i = 0 for i > 0. Similarly we define iN to be the complex

with (iN)n = In and dn := dn
I for n ≥ 0 and (iN)n = 0 for n < 0.

Finally we define for a complex X, the complex σ≤n(X) to be the complex

with σ≤n(X)i = Xi for i ≤ n and di
σ≤n(X)

= di
X for i < n and σ≤n(X)i = 0

for i > n. We define σ≥n(X) analogously.

We can determine the homology of the middle term of an Auslander-

Reiten triangle ending in a projective indecomposable module.

Lemma 2.8. Let P be a projective indecomposable module and let M be the

middle term of the Auslander-Reiten triangle ending in P . Then H1(M) =

I/ soc I where I := ν(P ), H0(M) = radP and H i(M) = 0 for all i 6= 0, 1.

Proof. By 2.5 the Auslander-Reiten triangle can be written as I[−1] →

cone(w)[−1] → P →w I, where I := ν(P ). Then M = cone(w)[−1]. Let

· · · → P2 →g P1 →f P0 be a minimal projective resolution of I. Then I is

isomorphic to pI in Db(A). Using this isomorphism, we view w as a map of

complexes in K−,b(P). Then M is given by · · · → P2 →g P ⊕ P1 →(f,w0)

P0 → 0 → · · · . Let h : P ′ → P be a projective cover of radP. We identify h

with the corresponding map of complexes P ′ → P . As h is not a retraction

we have w◦h = 0 in K−,b(P) and w◦h is therefore homotopic to zero. Then

there is a map s : P ′ → P1 such that w0 ◦h = f ◦ s. We visualize this in the

following diagram:

· · · // 0 //

��

P ′ //

h

��

s

����
�
�
�
�
�
�
�
�
�
�
�
�
�

0 //

��

· · ·

· · · // 0 //

��

P //

w0

��

0 //

��

· · ·

· · · // P1

f
// P0

// 0 // · · ·
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Therefore w0(radP ) ⊂ Im f and w0(P ) 6⊂ Im f . As P/ radP is simple,

we have H1(M) = I/ soc I. Furthermore ker((f,w0)) = radP ⊕ Im(g).

Therefore H0(M) = rad(P ). Clearly H i(M) = 0 for all i 6= 0, 1. �

We call an Auslander-Reiten component Λ stable, if τ is an automorphism

on Λ. By 2.5 this is equivalent to the fact that all vertices in Λ are in Kb(I)

and Kb(P). By [XZ, 2.2.1], the Auslander-Reiten quiver of Db(A) does not

contain loops. Therefore we can apply Riedtmanns structure theorem [Ben,

4.15.6].

Corollary 2.9. Let Γ be a stable Auslander-Reiten component of Db(A).

Then Γ ∼= Z[T ]/I, where T̄ is a tree and I is an admissible ideal of aut(Z[T ]).

We can determine when all components are stable.

Lemma 2.10. The Auslander-Reiten components of Db(A) containing at

least one elements of Kb(P) or Kb(I) are all stable if and only if A has

finite injective dimension.

Proof. A has finite injective dimension if and only if A∗ has finite projective

dimension. This is equivalent to the fact that Kb(P) = Kb(I) as subcat-

egories of Db(A). By 2.5 this is equivalent to the fact that all Auslander-

Reiten components are stable. �

The next result is then immediate.

Corollary 2.11. Let A be a self-injective algebra or an algebra of finite

global dimension. Then the Auslander-Reiten quiver is a stable translation

quiver.

Lemma 2.12 (Irreducible maps that do not appear in Auslander-Reiten

triangles). Let f : B → C be an irreducible map in Db(A) that does not

appear in an Auslander-Reiten triangle. Then B,C 6∈ Kb(P) and B,C 6∈

Kb(I).

Proof. By 2.5 it is clear that B 6∈ Kb(I) and C 6∈ Kb(P). Let us assume that

B ∈ Kb(P) and let n ∈ N be minimal such that Bn 6= 0. Then f factorizes

through σ≥n−1(C), where C is represented as an element of K−,b(P). Let

f = h ◦ g be this factorization, then g is not a section, as f is not a section

and h is not a retraction as σ≥n−1(C) 6∼= C. This is a contradiction to the

fact that f is irreducible. Therefore B 6∈ Kb(P). Analogously, we can show

C 6∈ Kb(I). �
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3. Finite and bounded Auslander-Reiten Components

In this section, we determine the tree class of bounded and finite stable

Auslander-Reiten components. We show that finite stable components can

only appear if A is semi-simple. Bounded stable components appear if and

only the representation type of Db(A) is finite. This is also equivalent to

the fact that the Auslander-Reiten quiver has a component with tree class

finite Dynkin. We describe the Aulander-Reiten quiver concretely in these

cases.

Throughout the rest of this chapter, let A be an indecomposable finite-

dimensional k-algebra. We start with the following easy Lemma

Lemma 3.1. The following are equivalent:

(1) There is an Auslander-Reiten component of Db(A) isomorphic to A1;

(2) Db(A) has an Auslander-Reiten triangle with middle term zero;

(3) A is semi-simple;

(4) The Auslander-Reiten quiver of Db(A) is the union of infinitely many

components A1.

Proof. Clearly from (1) follows (2). If ν(x)[−1] → 0 → x →w ν(x) is an

Auslander-Reiten triangle, then w is an isomorphism. Also for all inde-

composable m ∈ Db(A) with m 6= x we have HomDb(A)(m,x) = 0 and

rad End(x) = 0 by the third Auslander-Reiten triangle axiom. Therefore

there is a simple projective module S ∈ modA such that x = S. Further-

more ν(S) = S as w is an isomorphism. Therefore S is injective. By [Ben,

1.8.5] A is semi-simple and S is the only simple module in A up to iso-

morphism. Therefore (3) follows from (2). Clearly (3) implies (4) and (4)

implies (1). �

In Comp−,b(P) we have

Lemma 3.2. The following are equivalent:

(1) There is an Auslander-Reiten component of Comp−,b(P) isomorphic

to A∞
∞;

(2) Comp−,b(P) has an Auslander-Reiten triangle with contractible mid-

dle term;

(3) A is semi-simple;

(4) The Auslander-Reiten quiver of Comp−,b(P) is isomorphic to A∞
∞.

Proof. Use 3.1 and 2.7. �
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Let S be the simple A-module and let S̄ be a contractible complex. Then

the Auslander-Reiten quiver of Comp−,b(P) is given by · · · → S[−1] →

S̄[−1] → S → S̄ → · · ·

Lemma 3.3. Let τ(C) →f B →g C →w τ(C)[1] be an Auslander-Reiten

triangle in Db(A) and M an indecomposable element in Db(A). Then

Hom(M, τ(C)) →f∗ Hom(M,B) →g∗ Hom(M,C)

and

Hom(C,M) →ḡ Hom(B,M) →f̄ Hom(τ(C),M)

are exact. Furthermore

(1) f∗ is injective if and only if M [1] 6∼= C ;

(2) ḡ is injective if and only if M [−1] 6∼= τ(C);

(3) g∗ is surjective if and only if M 6∼= C;

(4) f̄ is surjective if and only if M 6∼= τ(C).

Proof. The sequence Hom(M, τ(C)) →f∗ Hom(M,B) →g∗ Hom(M,C) is

exact as by T5 and T4 there exists for any map s : M → B with g ◦ s = 0 a

map t such that the following diagram of distinguished triangles commutes:

M
id

//

t

��

M //

s

��

0 //

��

M [1]

t[1]
��

τ(C)
f

// B
g

// C
w
// τ(C)[1].

Suppose there is an h : M → τ(C) such that f ◦ h = 0. Then by T5

there is an j : M [1] → C such that the following diagram of distinguished

triangles commutes:

M //

h

��

0 //

��

M [1]
id

//

j

��

M [1]

h[1]
��

τ(C)
f

// B
g

// C
w

// τ(C)[1].

If M [1] 6∼= C then w◦j = 0 by Auslander-Reiten axioms. This forces h[1] = 0

and therefore h = 0. So in this case f∗ is injective. If M [1] ∼= C, then f∗ is

not injective as w[−1] : M → τ(C) is mapped to zero. By Auslander-Reiten

axioms it is clear that g∗ is surjective if and only if M 6∼= C. This proves (1)

and (4).

The remaining cases are proven analogously. �
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The following version of Lemma [Ben, 4.13.4] holds for our setup.

Lemma 3.4. (1) Suppose that C and B are indecomposable complexes in

Kb(P) that are not contractible. Let t : C → B be a map that is not an

isomorphism. Suppose there is no chain of irreducible maps in D−,b(A)

from C to B of length less than n.

Assume B lies in a component Λ of the Auslander-Reiten quiver of Db(A)

such that all elements of Λ are in Kb(P). Then there exists a chain of

irreducible maps in Λ

P 0 →g1 P 1 →g2 · · · → Pn−1 →gn B

and a map h : C → P 0 with gn · · · g1h 6= 0.

(2) Suppose that C and B are indecomposable complexes in Kb(I). Let

t : C → B be a map that is not an isomorphism. Suppose there is no chain

of irreducible maps in Db(A) from C to B of length less then n.

Assume C lies in a component Λ of the Auslander-Reiten quiver of Db(A)

such that all elements of Λ are in Kb(I). Then there exists a chain of

irreducible maps in Λ

C →g1 P 1 →g2 · · · → Pn−1 →gn Pn

and a map h : Pn → B with hgn · · · g1 6= 0.

Proof. We give a proof of (1) as the proof of (2) is analogous. The proof

follows by induction on n. Assume first n = 1. Then there is no irreducible

map from C to B. Let v(B)[−1] →f E →l B → ν(B) be the Auslander-

Reiten triangle ending in B. As t is not an isomorphism, there is some

σ : C → E such that t = l ◦ σ. Let E = ⊕m
i=1Ei. Then t =

∑m
i=1 li ◦ σi for

some maps li : Ei → B and σi : C → Ei. Clearly there exists an 1 ≤ s ≤ m

such that ls ◦ σs 6= 0 in Kb(P) as t 6= 0 in Kb(P). By 2.2 g1 := ls is

irreducible and Es lies in Λ. Furthermore by the induction assumption σs

is not an isomorphism as there is no irreducible map from C to B. We can

therefore use the same argument in the induction step on the map σs. �

We denote by lc the function that maps an element B ∈ Compb(A) to

the length of composition series of ⊕i∈ZB
i. For X ∈ Kb(P) we denote

by lp(X) :=min{l(Y )|Y ∈ Compb(P) and Y ∼== X in Kb(P)}. We define

analogously li for elements of Kb(I).

With exactly the same proof as in [Ben, 4.14.1] we have
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Lemma 3.5. Let P0, . . . , P2n−1 ∈ Compb(A) be indecomposable. If lc(Pi) ≤

n for all i and fi : Pi−1 → Pi is not an isomorphism for 1 ≤ i ≤ 2n − 1,

then f2n−1 · · · f2f1 = 0.

By 2.6 every irreducible map f : C → B in Kb(P) where C and B are

indecomposable complexes in Compb(P), is an irreducible map in Comp(P).

Therefore f is a non-isomorphism, when seen as a map in Compb(A). Also

C and B are indecomposable complexes in Compb(A).

We therefore have the following result.

Corollary 3.6. Let P0, . . . , P2n−1 ∈ Kb(P) be indecomposable. If lc(Pi) ≤ n

for all i and fi : Pi−1 → Pi irreducible maps for 1 ≤ i ≤ 2n − 1, then

f2n−1 · · · f2f1 = 0.

We call an Auslander-Reiten component Λ bounded if lp and li take

bounded values on Λ. We can now determine some properties of bounded

components.

Theorem 3.7 (bounded components). Let Λ be a stable bounded Auslander-

Reiten component of Db(A). We assume that A is not semi-simple. Then Λ

is the only component of the Auslander-Reiten quiver. Furthermore A has

finite global dimension and is representation type finite.

Proof. There is an n ∈ N such that lp(M) ≤ n and li(M) ≤ n for all

complexes M ∈ Λ. Let R ∈ Kb(P) be an indecomposable non-contractible

complex such that there is a map g : R→ N that is not an isomorphism and

not homotopic to zero for some N ∈ Λ. Let u := max(lp(R), n)∗dimA then

by 3.4 part (1) and 3.6 there exists a chain of irreducible maps of length at

most 2u from R to N . Therefore R ∈ Λ. As A is not semi-simple, there is a

non-isomorphism from M to τ(M)[1] that is not homotopic to zero for any

complex M ∈ Λ by 3.1. Therefore we have that τ(M), τ(M)[1] ∈ Λ. Thus

the [1] shift acts on the component.

Let A =
⊕n

i=1 Pi be a decomposition of A into indecomposable projective

summands Pi. Let C be an element of Λ. Then there exists a map f

from Pi to C for some 1 ≤ i ≤ n that is not homotopic to zero and not

an isomorphism. Therefore Pi ∈ Λ and as A is indecomposable we have

Pj ∈ Λ for all 1 ≤ j ≤ n. For all indecomposable elements X in Kb(P)

there is an sx ∈ Z such that there is a non-zero map Pi → X[sx]. Therefore

X[sx] ∈ Λ using the first part of the proof. The proof for X ∈ Kb(I) is

analogous. As the [1] shift acts on the component, every indecomposable
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complex in Kb(I) and Kb(P) is in Λ. Therefore Λ is the Auslander-Reiten

quiver. Furthermore A has finite global dimension as Λ is bounded. As the

dimension of the indecomposable A-modules are bounded, we know by [?,

1.5] that A has finite representation type. �

We can now determine finite components.

Theorem 3.8 (finite components). Let Λ be a finite Auslander-Reiten com-

ponent of Db(A) such that all elements in Λ belong to Kb(P). Then A is

semi-simple and Λ is isomorphic to A1.

Proof. Suppose that A is not semi-simple. As Λ is a finite component and

all vertices of Λ are in Kb(P), the translation τ is an automorphism on Λ.

Therefore the component Λ is stable and bounded. By 3.7, [1] acts on Λ

which is a contradiction, as Λ contains only finitely many vertices. Therefore

A is semi-simple and Λ is isomorphic to A1 by 3.1. �

This theorem together with 2.5 give the next corollary.

Corollary 3.9. Let A be a finite-dimensional indecomposable algebra of

finite global dimension. Suppose that the Auslander-Reiten quiver of A has

a finite component Λ, then A is semi-simple.

In the case of Comp−,b(P) there are no finite components:

Corollary 3.10. There is no finite Auslander-Reiten component Λ, such

that all elements in Λ are in Compb(P).

Proof. Suppose Λ is a finite component such that all elements in Λ are

in Compb(P). By 2.7 we have that the corresponding Auslander-Reiten

component in Db(A) is finite. Therefore A is semi-simple by 3.8. But by 3.2

we have Λ ∼= A∞
∞ which is a contradiction to the finiteness of Λ. �

For hereditary algebras the Auslander-Reiten quiver has already been

determined by [H, IV]. We give an alternative proof. Let Tr(A) denote the

regular component of the Auslander-Reiten quiver of an hereditary algebra

A.

Theorem 3.11. Let Q be an oriented tree. Then the Auslander-Reiten

quiver of kQ has a component Z[Q] containing a shift of every indecom-

posable projective and every indecomposable injective module. If Q is a

Dynkin diagram, then the Auslander-Reiten quiver is Z[Q]. Otherwise the

Auslander-Reiten quiver consists of infinitely many copies of Z[Q][i] and

Tr(A)[i] for i ∈ Z.
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Proof. Let i be a vertex in Q with set of predecessors S and R the set of

successors. Then the predecessors of Pi in the Auslander-Reiten quiver of

Db(A) are Pj for j ∈ I and It[−1] = τ(Pt) for t ∈ R by triangle heredi-

tary. Therefore the Auslander-Reiten component containing the projectives

is Z[Q]. AsDb(kQ) has finite representation type if and only if Q is a Dynkin

diagram, we have that the Auslander-Reiten quiver is Z[Q] by 3.13. If Q is

not a Dynkin diagram, then by 3.7, the Auslander-Reiten quiver does not

have bounded components. Therefore [i] does not act on Z[Q] for any i ∈ Z.

So there are infinitely many copies Z[Q] in the Auslander-Reiten quiver and

infinitely many component isomorphic to Tr(A) by [H, 4.7]. �

Note also that this result provides us with Auslander-Reiten components

of Euclidean tree class.

We say that Db(A) has finite representation type, if all indecomposable

complexes are shifts of finitely many complexes.

We call an indecomposable complex X in a stable Auslander-Reiten com-

ponent τ -periodic, if there are n,m ∈ Z such that τn(X) = X[m]. If we have

τ -periodic modules in a component, we can construct subadditive functions.

Theorem 3.12. Let C be a stable component. Suppose there is a complex

X ∈ C that is τ -periodic. Then C has tree class T a finite Dynkin diagram

or A∞.

(a) If T is a finite Dynkin diagram, then the Auslander-Reiten quiver is

equal to C and Db(A) has finite representation type.

(b) Suppose Q is a stable component of the Auslander-Reiten quiver of

Db(A), that is not a shift of C. If the set HomDb(A)(C,Q[i]) or HomDb(A)(Q[i], C)

is non empty for some i ∈ Z, then the tree class of Q is either Euclidean or

infinite Dynkin.

Proof. Let n ∈ N, m ∈ Z such that τn(X) = X[m]. We consider the

following subadditive function for all M ∈ C:

d(M) :=

n
∑

i=1

∑

j∈Z

dimHom(τ i(X),M [j]).

By 3.3 this is a subadditive function that is not additive. Therefore T is

a finite Dynkin diagram or A∞. So [m] induces an automorphism of finite

order on T and we have M [l] = τ t(M) for some t, l ∈ N and all complexes

M ∈ C. If T is finite, then C is bounded and by 3.7, C is the only component



AUSLANDER-REITEN COMPONENTS IN THE BOUNDED DERIVED CATEGORY 15

of the Auslander-Reiten quiver. Furthermore Db(A) has only finitely many

complexes up to shifts.

Without loss of generality, let HomDb(A)(X,L) 6= 0 for some L ∈ Q. Then

we define d(M) as above for all M ∈ Q. Then d is an additive function by

3.3 on Q and therefore its tree class is Euclidean or infinite Dynkin. �

We can describe Auslander-Reiten quivers that have bounded components

and are not finite.

Theorem 3.13. The following are equivalent:

1. The Auslander-Reiten quiver of Db(A) has a bounded component.

2. The representation type of Db(A) is finite.

3. The Auslander-Reiten quiver of Db(A) has a component of Dynkin tree

class.

Proof. Let C be a bounded component. Then lc takes values smaller equal

n ∈ N for all elements in C. Let M ∈ C such that M0 contains the projective

summand P and M i = 0 for all i > 0. If P 6= M there is a map ψ : P →M

that is not an isomorphism and non-zero in Db(A). As P ∈ C by 3.8, we

know by 3.4 and 3.6, that there is a chain of irreducible maps of length at

most 2n that connects P and M . Therefore there are only finitely many

complexes L in Db(A) such that L0 contains P as a summand and Li = 0

for i > 0. Therefore Db(A) has finite representation type.

Let Db(A) have finite representation type. Then A has finite global di-

mension and all Auslander-Reiten components are bounded and stable. If

there is a finite component then by 3.8 the Auslander-Reiten component

consists of copies of A1. Otherwise the Auslander-Reiten quiver has only

one component, that contains a periodic module. Therefore the tree class

is finite Dynkin or A∞ by 3.12. As [1] acts as the identity on A∞ such

a component can only occur if the representation type of Db(A) is not fi-

nite. Therefore the Auslander-Reiten quiver consists of one component Z[T ]

where T is a finite Dynkin diagram.

Suppose now that Db(A) has an Auslander-Reiten component with tree

class Dynkin. If this component is finite, then A is semi-simple and Db(A)

has finite representation type by 3.8. Assume now that there is a component

Z[T ] with tree class T a finite Dynkin diagram. We index the vertices in

Z[T ] by pairs (t, i) where i ∈ Z denotes the ith copy of T and t denotes

the vertex of T . We assume that lp is subadditive for only finitely many

Auslander-Reiten sequences. Then we can choose an l ∈ Z such that lp is



16 SARAH SCHEROTZKE

additive for all vertices (t, j) with j > l and t a vertex of T . Choose T = An

and denote xt,i := lp((t, i)). Let the values xt,j be given for a fix j > l and

all vertices t of An. Then we can calculate the values of xt,j+1 from the left

to the right as follows:

x1,j // x2,j

wwoooooooooooo
// · · · //

zztttttttttt
xn−1,j //

yytttttttttt
xn

xxqqqqqqqqqqq

x2,j − x1,j // x3,j − x1,j // · · · // xn,j − x1,j // xn,j+1

Clearly this gives a contradiction as lp cannot be additive on the Auslander-

Reiten sequence ending in (n, j+1). Therefore lp is not additive for infinitely

many Auslander-Reiten sequences. We can use a similar argument for all

Dynkin diagrams. If T = Dn we have the following:

xn−1,j

uulllllllllllllllllx1,j //x2,j

vvmmmmmmmmmmmm
//· · · //

xxqqqqqqqqqq
xn−2,j

uulllllllllllll

11bbbbbbbbbbbbbbb
..\\\\\\\\\\\\\\\\
xn,j

rrffffffffffffff
xn−1,j − x1,j

x2,j − x1,j //x3,j − x1,j //· · · //xn−1,j + xn,j − x1,j

11ccccc

--[[[[[[
xn,j − x1,j

Then the values xn,i are strictly decreasing for strictly increasing i > j. This

is a contradiction as they have to be positive integers for all i ∈ Z.

In the case E6 we have by the same argument that x6,j+4 = −x1,j,

in the case E7 we have that x3,j+20 = −x3,j + x4,j and for E8 we have

x1,j+14 = −x1,j. Those are negative values and we obtain a contradiction to

the assumption that lp is additive on all but finitely many Auslander-Reiten

sequences in the component.

As lp is subadditive for infinitely many Auslander-Reiten sequences in C,

there have to be infinitely many complexes that are homotopic to zero in

the Auslander-Reiten component in Compb(P) that is associated to C.

As there are only finitely many indecomposable complexes homotopic to

zero in Compb(P) up to shift, we deduce that a shift [m] induces an automor-

phism on Z[T ] for some m ∈ N. Therefore Z[T ] is a bounded component. �

Note that we only require one component to be bounded or of Dynkin

tree class in order to deduce that the reprsentation type of Db(A) is finite.

We can describe the Auslander-Reiten quiver and derived category more

precisely in the case of the previous Theorem.
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Theorem 3.14. Let one of the condition of 3.13 be true. Then A is either

semi-simple and the Auslander-Reiten quiver of Db(A) consists of Z copies

of A1 or the Auslander-Reiten quiver consists of one component Z[D] where

D 6= A1 is a finite Dynkin diagram and A is derived equivalent to kD.

Proof. Suppose the bounded stable component is finite, then the first case

holds by 3.3. If the bounded component is not finite then by 3.7 the

Auslander-Reiten quiver consists of only one component which needs to be

Z[D] for D a finite Dynkin diagram D 6= A1 by 3.13. As Db(A) is of finite

representation type, it is discrete in the sense of [?, 1.1]. By [BGS, Theorem

A,B] A is derived equivalent to kQ where Q is a Dynkin diagram. By 3.11

we have Q̄ = D̄. Then Db(kQ) ∼= Db(kD), which proves the Theorem. �

Knowing that there is only one component in the second case we have

by [XZ, 3.6.1] that locally finite Db(A) is in fact equivalent to A is derived

equivalent to an hereditary algebra of finite reprsentation type. We can

generalize [W, 3.2]

Theorem 3.15. Let X ∈ Kb(P) be an indecomposable complex with νi(Xj)

is projective and injective for all i, j ∈ Z. Then X is in an Auslander-Reiten

component Z[A∞] or A1.

Proof. Let C be the Auslander-Reiten component containing X. The func-

tion lp is constant on all τ -orbits and therefore a subadditive function on

C. Suppose lp is bounded. Then by 3.13 A is derived equivalent to Db(kQ)

for a Dynkin diagram Q or A is semi-simple. As no hereditary algebra has

a complex that satisfies the assumption, we have that A is semi-simple. So

C ∼= A1. Otherwise lp is unbounded and C has therefore tree class A∞.

Assume without loss of generality that Xi 6= 0 if and only if 0 ≤ i ≤ n.

Then τ(X) viewed as complex in Kb(P) satisfies τ(X)i 6= 0 if and only if

1 ≤ i ≤ n+ 1. Therefore X is not periodic and C ∼= Z[A∞]. �

By the next example we see that it is not sufficient to assume that the

τ -orbits are bounded or that there are τ -periodic modules in a component

C if we want to deduce that C is bounded.

Example 3.16. Let k be a field and let G be a quiver

1

α
))
2

β

ii
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Then let A := kG/R where kG is the path algebra of G, and where R is

the ideal generated by {αβ}. We denote by S1 and S2 the simple modules

corresponding to the vertices 1 and 2. Let Pi be the projective covers of Si.

Then P1 has basis {e1, β, βα}; and P2 has basis {e2, α}. We have S1 =

P1/P2 and P2/S1 = S2. Here ei is as usual the path of length zero at vertex

i. We define f : P1 → P1 to be a non-isomorphism and non-zero map that

maps top P1 to socP1. We define

Im
n = P1 for all 0 ≤ m ≤ n−1 and dl = f for 0 ≤ l ≤ n−2 for all n ∈ N.

As I1 = P1 we have by 3.15 that all In are the elements of a component

Z[A∞].

As we have τ(S2) = S2[1] the element S2 belongs to a component Z[A∞]

by 3.12 and 3.13.

Finally we note that the τ -orbit of P2 is given by

τn(P2)i =











P1, for − n ≤ i ≤ n

P2, for i = −n− 1

0 else.

Therefore the value of lp is strictly increasing on τ -orbits of the component

containing P2. The predecessors of P2 are S1 and S1[−1]. Therefore the

component is Z[A∞
∞].

Note that the Auslander-Reiten quiver for this classes of example has

been determined in [BGS, Theorem A].

The goal of the rest of this section is to construct an example showing

that finite components can occur in Auslander-Reiten components that are

not stable.

For the next lemmas of this section let P be a projective indecomposable

module of A and I an indecomposable injective A-module.

We want to determine the irreducible maps ending in P and starting from

P .

For the rest of the section we assume that all indecomposable complexes

in K(P) and K(I) are minimal.

Note that the next Lemma is true if we exchange P by I, K(P) by K(I)

and P ′ by an injective module I ′.

Lemma 3.17. Let M be an indecomposable complex in K(P) .
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(1) Let f : P → M be an irreducible map in K(P) and suppose that

M−1 6= 0. Then f0 is a section and M0 ∼= P ⊕P ′ for a projective A-module

P ′. Furthermore M i = 0 for i ≤ −2.

(2) Let f : M → P be an irreducible map in K(P) and suppose that

M1 6= 0. Then f0 is a retraction and M0 ∼= P ⊕ P ′ for some projective

A-module P ′. Furthermore M i = 0 for i ≥ 2.

Proof. Let

· · · // 0 //

��

P //

f0

��

0

��

// · · ·

· · · // M−1
d

// M0
e

// M1 // · · ·

be an irreducible map. We can factorize this map through the stupid trun-

cation σ≥0M as follows:

· · · // 0 //

��

P //

f0

��

0

��

// · · ·

· · · // 0 //

��

M0
e

//

id
��

M1

id
��

// · · ·

· · · // M−1
d

// M0
e

// M1 // · · · .

The map between the first two rows has to be a section. Therefore f0

has to be a section and M0 ∼= P ⊕ P ′. We can also factorize f through

σ≥−1M : · · · → 0 → M−1 →d P ⊕ P ′ →e M
1 → · · · . Then the map

between the first two rows is not a section as f is not a section. Therefore

the map between the two last rows has to be a retraction and we have

M i = 0 for all i ≤ −2.

Let now f be an irreducible map given as

· · · // M−1
d

//

��

M0
e

//

f0

��

M1

��

// · · ·

· · · // 0 // P // 0 // · · ·
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We can factorize f through the element σ≤0M as follows:

· · · // M−1

id
��

d

//

��

M0
e

//

id
��

M1

��

// · · ·

· · · // M−1 //

��

M0

f0

��

// 0 //

��

· · ·

· · · // 0 // P // 0 // · · ·

The map given by the first two rows is not a section, therefore the map given

by the last two rows has to be a retraction. So f0 is a retraction and we can

write M0 = P ⊕P ′. As above, we can factorize f through σ≤1M . Then the

map between the last two rows is not a retraction and therefore the map

between the first two rows has to be a section. It follows that M i = 0 for

i ≥ 2.

�

Lemma 3.18. Let A be an algebra such that HomA(S,A) 6= 0 for all simple

A-modules S. Let f : M → W be an irreducible map from M ∈ K−(P)

to W ∈ K−(P), where M and W are indecomposable. Without loss of

generality let M i = 0 for i ≥ 1. Then W i = 0 for all i ≥ 1.

Proof. Let n be the maximal integer such that W n 6= 0. Suppose that

n ≥ 1. As W is indecomposable, wn : W n−1 → W n is not surjective. Let

S be a simple module in the top of W n/ Imwn, say S ∼= W n/R where

Imwn ⊂ R ⊂ W n. Then there is a projective module W ′ such that there

exists a non-zero map π : W n → W ′ with π(R) = 0. We can then factor f

as follows:

· · · // Mn−1

fn−1

��

//

��

0 //

��

0

��

// · · ·

· · · // W n−1 //

id
��

W n

id
��

π
// W //

��

· · ·

· · · // W n−1 // W n // 0 // · · ·

The map between the two first rows is not a split monomorphism, as f is

not a split monomorphism and the map between the last two rows is not

a split epimorphism. This is a contradiction to the irreducibility of f and

therefore n ≤ 0. �
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Lemma 3.19. Suppose that P/ radP ⊂ socA. Let f : D → P be an

irreducible map with D ∈ K−(P) indecomposable. Then D0 = P ⊕ P ′ for

some projective A-module P ′ and f0 is a split epimorphism. Furthermore

Di = 0 for i ≥ 2 and D1 6= 0.

Proof. Suppose that D1 = 0. Then f0 is not surjective, as f is not a

retraction. As f0 is not surjective, there exist a map t : P → P ′ such that

t ◦ f0 = 0 (we can for instance map the top of P into the socle of another

projective module P ′). Then we can factorize f as

· · · // D−1 //

��

D0 //

f0

��

0

��

// · · ·

· · · // 0 //

��

P
t

//

id
��

P ′

��

// · · ·

· · · // 0 // P // 0 // · · · .

As the map between the last two rows is not a retraction, the map between

the first two rows has to be a section. But then f0 is a section and therefore

f is a section. This gives a contradiction.

Therefore D1 6= 0 and part 2 of 3.17 proves the rest of the statement. �

This lemma proves the following

Corollary 3.20. Suppose that P/ radP ⊂ socA. If P has infinite injective

dimension, then there is no irreducible map from any element of Kb(I) to

P , and there is no irreducible map from P to any element of Kb(P).

Proof. Let f : D → P be an irreducible map, where D is indecomposable. If

P has infinite injective dimension, then D has infinitive injective dimension

by 3.19. Therefore D 6∈ Kb(I).

Suppose there is an irreducible map from P to some object in Kb(P),

then by 2.2, there exists an Auslander-Reiten triangle that has P as di-

rect summand of its middle term. This means that there is an irreducible

map from ν(M)[−1] ∈ Kb(I) to P which contradicts the first part of this

corollary. �

This corollary implies that in this case P does not appear in the middle

term of an almost split sequence.

Lemma 3.21. Let f : M → W be an irreducible map with M ∈ K−(P)

and W ∈ Kb(P). Let n be the minimal integer such that W n 6= 0. Suppose
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that · · · →Mn−1 →Mn → Im dn
M is an infinite projective resolution. Then

fn is a split epimorphism.

Proof. Note first that fn is not injective as fn ◦ dn−1
M = 0. Let

· · · → Ln−1 →Mn →fn Im fn

be a projective resolution of Im fn, then we can factorize f as follows:

· · · // Mn−1

��

//

��

Mn //

id
��

Mn+1

fn+1

��

// · · ·

· · · // Ln−1

��

//

��

Mn

dn
W fn

//

id

��

W n+1

id
��

// · · ·

· · · // 0 // W n // W n+1 // · · ·

Suppose first that the map between the two first rows is a section. Then

all fi for i ≥ n + 1 are sections. Furthermore Li = M i for all i ≤ n − 1.

Therefore Im dn−1
M

∼= ker fn. It follows Im dn
M

∼= Mn/ Im dn−1
M

∼= Im fn.

We also have Im(fn+1 ◦ dn
M ) = Im dn

M as fn+1 is a monomorphism. This

means that idIm dn
M

factorizes through W n as Im fn → W n
dn

W→ Im dn
M .

This holds as Im fn = Im dn
M is a submodule of W n and by the fact that

dn
W (Im fn) = Im fn+1 ◦ dn

M = Im dn
M . Therefore Im dn

M is a direct summand

of W n and is projective. This is a contradiction to the fact that Imdn
M has

an infinite projective resolution.

Therefore the map between the last two rows is a retraction. Then fn is

a retraction and Mn ∼= W n ⊕ P ′ for some projective module P ′.

�

We give now an example of a finite-dimensional algebra, whose bounded

derived category has a finite Auslander-Reiten component.

Example 3.22. Let k be a field and let G be a quiver

1

b
))
2

a

ii

3.

c

OO

Then let A := kG/R where kG is the path algebra of G, and where R is

the ideal generated by all paths of length ≥ 2. We denote by S1, S2 and S3

the simple modules corresponding to the vertices 1, 2 and 3. Let Pi be the

projective covers of Si. Then P1 has basis {1, a}; and P2 has basis {2, b, c};
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and P3 is simple spanned by e3. Here ei is as usual the path of length zero

at vertex i. Clearly Hom(Si,X) 6= 0 for i = 1, 2, 3. Let Ii be the injective

hulls of Si. Each Ii is uniserial of length two, and I1/S1
∼= S2, I2/S2

∼= S1

and I3/S3
∼= S2.

Theorem 3.23. We use the notation from 3.22. The Auslander-Reiten

component of Db(X) containing P3 consists only of the triangle I3[−1] →

M → P3 → I3. Therefore it is finite.

Proof. We have ν(P3) = I3 and P3 has an infinite injective resolution

P3
// I3 //

  @
@@

@@
@@

I2 //

  A
AA

AA
AA

A
I1 //

  A
AA

AA
AA

A
I2 // · · ·

S2

OO

S1

OO

S2

OO
.

Therefore there is no Auslander-Reiten triangle starting in P3 by 2.5. By

Corollary 3.20 there is no Auslander-Reiten triangle that has P3 as summand

of its middle part.

Let M be the middle term of the Auslander-Reiten triangle ending in P3.

Then M ∈ K−,b(P) is given by

· · · → P2 → P1 ⊕ P3 → P2 → P1 ⊕ P3 → P2 → 0 → · · · .

Clearly M is indecomposable, as H1(M) = S2 and H i(M) = 0 for i 6= 1.

Note that M ∼= S2 in Db(A). As S2 has infinite projective and injective

dimension, there is no Auslander-Reiten sequence starting or ending in M .

Therefore we only need to show thatM does not appear as a direct summand

of a middle term of an Auslander-Reiten triangle.

Let therefore f : M → W be an irreducible map where W ∈ Kb(P). Let

n be minimal so that W n 6= 0. By 3.21, we know that fn is a retraction.

Therefore Mn = P1 ⊕ P3, W
n ∼= P3 and either dn+1

W is an injection into a

direct summand of W n+1 isomorphic to P2, or W n+1 = 0. If W n+1 6= 0 we

have that fn+1 : P2 → W n+1 has Im fn+1 ∼= P2/S1. Such a map does not

exist as P2/S1 is not a submodule of any projective A-module. Therefore

W n+1 = 0. Suppose that n < 0. We can factorize f through σ≤n+1M as
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follows:

P2
//

id
��

P1 ⊕ P3
//

id
��

P2
//

id
��

P1 ⊕ P3
//

��

· · · //

��

P2
//

��

0

��
P2

//

��

P1 ⊕ P3
//

fn

��

P2
//

��

0 //

��

· · · //

��

0 //

��

0

��
0 // P3

// 0 // 0 // · · · // 0 // 0.

The map between the first two rows is not a split monomorphism and the

map between the last two rows is not a split epimorphism. This proves that

n = 0 and M → P3 is the only irreducible map.

The module I3 has an infinite projective resolution

· · · // P2
//

##H
HH

HH
HH

HH
H

P1 ⊕ P3
//

%%LLLLLLLLLL
P2

//

##H
HH

HH
HH

HH
H

P1
//

  A
AA

AA
AA

A
P2

// I3

S2

OO

S1 ⊕ P3

OO

S2

OO

S1

OO
.

Therefore I3 does not appear at the end of an Auslander-Reiten sequence.

We therefore only need to show that I3 does not appear as a direct summand

of a middle term of an Auslander-Reiten triangle. We need to determine the

irreducible maps f : I3 → L, where L ∈ Kb(P). We view L as en element

in K+,b(I). By Lemma 3.17, we can assume that Li = 0 for i ≤ −1 because

otherwise L 6∈ Kb(P). As f0 is not injective, we have Im f0 ∼= S2. Therefore

L0 has a direct summand isomorphic to I2. The simple module S2 has the

periodic injective resolution S2 → I2 → I1 → I2 → · · ·

Then we can factorize f through this resolution

· · · // 0 //

��

I3 //

f0

��

0

��

// · · ·

· · · // 0 //

��

I2 //

��

I1

��

// · · ·

· · · // 0 // L0 // L1 // · · · .

The map between the first two rows is not a split monomorphism. Then

the map between the last two rows has to be a split epimorphism. As S2

is indecomposable, L ∼= S2 in Db(A). As S2 is Ω-periodic, it has an infinite

projective resolution. Therefore L 6∈ Kb(P). This shows that I3 does not

appear as summand of the middle term of an Auslander-Reiten triangle.
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This shows that the Auslander-Reiten component of Db(A) containing P3

consists only of the triangle I3[−1] →M → P3 → I3.

�

Note that in the previous example the map between the complexes S2 →

S1[−1] is an irreducible map that does not appear in an Auslander-Reiten

component as S1, S2 6∈ Kb(P), Kb(I).

4. Irreducible maps ending in contractible complexes

Next we analyze under which conditions a contractible complex can ap-

pear as direct summand of cone(w)[−1] ∈ Comp−,b(P) for a map w that

induces an Auslander-Reiten triangle ν(Z)[−1] → Y → Z →w ν(Z) in

Db(A).

We first introduce a new definition.

Definition 4.1. Let P1, P2 ∈ P and f : P1 → P2 be a map. Then f is

p-irreducible if f is not a section and not a retraction and if for any P ∈ P

and maps f1 : P1 → P and f2 : P → P2 such that f = f2 ◦ f1 we have that

f1 is a section or f2 is a retraction.

Throughout this section let P be an indecomposable projective module.

Lemma 4.2. Let f : Q → P̄ be an irreducible map, where Q ∈ Compb(P)

is indecomposable and not contractible. Then there exists a map d : P0 → P

that is p-irreducible, such that Q = p(Coker(d)).

Proof. Let f be an irreducible map given by the diagram

· · · // Q−1 //

��

Q0

d

//

f0

��

Q1 //

f1

��

Q2 //

��

· · ·

· · · // 0 // P
id

// P // 0 // · · ·

We can factorize f through σ≤1Q as

· · · // Q−1 //

id
��

Q0

d

//

id
��

Q1 //

id
��

Q2 //

��

· · ·

· · · // Q−1 //

��

Q0

d

//

f0

��

Q1 //

f1

��

0 //

��

· · ·

· · · // 0 // P
id

// P // 0 // · · ·
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The map given by the last two rows is not a retraction, as f is not a

retraction. Therefore the map between the first two rows is a section and

Qi = 0 for all i ≥ 2.

We can factorize f as

· · · // Q−1 //

��

Q0

d

//

d
��

Q1 //

id
��

0 //

��

· · ·

· · · // 0 //

��

Q1

id
//

f1

��

Q1 //

f1

��

0 //

��

· · ·

· · · // 0 // P
id

// P // 0 // · · ·

If the map between the first two rows is a section, Q is contractible,

which is a contradiction. Therefore the map between the last two rows is a

retraction. We can write Q1 ∼= P ⊕ P ′ for a projective module P ′ and f1 is

a retraction. But then we can factorize f as follows:

· · · // Q−1 //

id
��

Q0

d

//

id
��

P ⊕ P ′ //

f1

��

0 //

��

· · ·

· · · // Q−1 //

��

Q0

f1d

//

f0

��

P //

id

��

0 //

��

· · ·

· · · // 0 // P
id

// P // 0 // · · ·

If the map in the last two rows is a retraction, then f is the identity.

Therefore the map between the two upper rows has to be a section and

P ′ = 0, f0 = d and f1 = id.

Let · · · → L−2 → L−1 → ker d be a minimal projective resolution of ker d.

Then f factorize through Coker d as follows:

· · · // Q−1 //

��

Q0

d

//

id
��

P //

id

��

0 //

��

· · ·

· · · // L−1
//

��

Q0

d

//

d

��

P //

id

��

0 //

��

· · ·

· · · // 0 // P
id

// P // 0 // · · ·

Clearly the bottom diagram is not a retraction, because else f would be

the identity. Therefore the upper diagram is a section and Q is isomorphic

to the complex consisting of a minimal projective resolution of Coker d and
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0 elsewhere. Suppose d is not p-irreducible. Then we can factorize d = s ◦ t

where t : Q0 → P̃ is not a section and s : P̃ → P is not a retraction for

some projective module P̃ . But then we can factorize f as follows:

· · · // Q−1 //

��

Q0

d

//

s

��

P //

id

��

0 //

��

· · ·

· · · // Q−1 //

��

P̃
t

//

t

��

P //

id

��

0 //

��

· · ·

· · · // 0 // P
id

// P // 0 // · · ·

This is a contradiction to the irreducibility of f as the map between the first

two rows is not a section and the map between the two bottom rows is not

a retraction. Therefore d is p-irreducible. �

We therefore determine p-irreducible maps between indecomposable pro-

jective modules.

Lemma 4.3. Let P1 and P2 be indecomposable projective modules. Then

d : P1 → P2 is p-irreducible if and only if P1 is a direct summand of the

projective cover of radP2.

Proof. Let d : P1 → P2 be as in the statement. Suppose that d factors as

d = g ◦ f where f : P1 → P̃ and g : P̃ → P2, and g is not a retraction. Then

Im d ⊂ Im g ⊂ radP2. Let P1 ⊕ P ′
1 be the projective cover of radP2. Then

there is a map e : P̃ → P1 such that the following diagram commutes:

P1
f

//

d

��

P̃

g

��

e
// P1 ⊕ P ′

1

��
Im d // Im g // radP2

Therefore e ◦ f = idP1
. So f is a section and d is p-irreducible.

Conversely, let s : P ′ → P2 be a p-irreducible map. Then s is not surjec-

tive and therefore Im s ⊂ radP . Then s factors through i : P0 → P2 and

h : P ′ → P0, where i is the projection onto radP2. As s is p-irreducible, h

is a section and P ′ is a direct summand of P0. �

Next we determine which p-irreducible maps induce an irreducible map

in Comp−,b(P).



28 SARAH SCHEROTZKE

Theorem 4.4. Let P0 be a projective module and let d : P0 → P be a p-

irreducible map. Then there is an irreducible map in Comp−,b(P) from the

complex p(Coker(d)) to the contractible complex P̄ if and only if P0 is the

projective cover of radP .

Proof. Let p(Coker(d)) := · · · → P−1 → P0
d
→ P → 0 → · · · , where P0 is

the projective cover of radP . We claim that the map h given by

· · · // P−1
//

��

P0
d

//

d

��

P //

id
��

0 //

��

· · ·

· · · // 0 // P
id

// P // 0 // · · ·

is irreducible.

Suppose the given map factors through a complex X ∈ Comp−,b(P) via

maps f : Coker(d) → X and g : X → P̄ . As idP = g1 ◦ f1, we have that

f1 is a section and g1 is a retraction. We have that X1 = P ⊕ P̃ . Suppose

that Im g1d1
X = P . Then g is a retraction. If Im g1d1

X = radP , then f0 is

a section, X0 = P0 ⊕ P ′ and g1d1
X(P ′) = 0. We visualize this in the next

diagram:

· · · // P−1
//

��

P0
d

//

id
��

P //

id
��

0 //

��

· · ·

· · · // X−1 //

��

P0 ⊕ P ′

(d,0

0,x)
//

(d,0)

��

P ⊕ P̃ //

(id,0)

��

0 //

��

· · ·

· · · // 0 // P
id

// P // 0 // · · ·

But then we can factorize the map g through s : X → pCoker(d) and

h : pCoker(d) → P̄ . So s ◦ f is an isomorphism. Therefore f is a section.

Conversely, if P̃ is a direct summand of P0 but P0 6∼= P̃ , then the map of

complexes p(Coker(r)) → P̄ induced by the p-irreducible map r : P̃ → P

factors through p(Coker(d)) and is therefore not irreducible.

�

Let P1 be a summand of the projective cover of radP and d : P1 → P

the induced map. Then p(Coker(d)) ∈ K−,b(P) is isomorphic to the element

P/ Im d ∈ Db(A) and is therefore indecomposable. By the previous Theorem

a contractible complex P appears in the middle term of an Auslander-Reiten
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sequence in Comp−,b(P) if and only if P/ radP has finite injective dimen-

sion.

Corollary 4.5. Let θ be a stable Auslander-Reiten component. Then lp is

not additive if and only if there exists an indecomposable projective module

P such that P/ radP has finite projective and finite injective dimension and

P/ radP ∈ θ.

Proof. The function lp is not additive if and only if there exists an inde-

composable object L ∈ θ and a connecting map w : L → p(ν(L)) of the

Auslander-Reiten triangle in Kb(P) such that cone(w)[−1] ∈ Compb(P)

contains a contractible summand.

So there is a complex P̄ that is a direct summand of cone(w)[−1] and an

irreducible map f : ν(L)[−1] → P̄ . By Lemma 4.3, ν(L)[−1] is isomorphic

in Db(A) to P/ radP. As θ is a stable Auslander-Reiten component, we have

p(P/ radP ) ∈ Kb(P) and i(P/ radP ) ∈ Kb(I). �

¿From this corollary it follows that if A is self-injective, then l is an

additive function on the Auslander-Reiten components of Db(A).

We can deduce that Euclidean components always contain a simple mod-

ule.

Theorem 4.6. Let C be a stable component of the Auslander-Reiten quiver

of Db(A) with tree class an Euclidean diagram. Then C contains a simple

module.

Proof. The function lp is subadditive on C. Suppose lp is additive. By

[Web][2.4], the function lp takes bounded values on C. This is a contradiction

to 3.13. Therefore lp is not additive. By 4.5, this means that C contains a

simple module. �

5. Auslander-Reiten triangles of Nakayama algebras

In this section we analyze the Auslander-Reiten quiver of certain Nakayama

algebras A with finite global dimension and show that they are derived equiv-

alent to hereditary algebras of finite representation type. The author learned

that the results are already known by [HS]. As the methods are different

and give an application of section 2, they were included.

Let A := kAn/I where kAn is the path algebra of An, and where I is an

ideal of kAn. Then A is a Nakayama algebra of finite global dimension. We

denote by J the ideal generated by the paths of length one in kAn.
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Let An : 1 → 2 → · · · → n − 1 → n, and we consider left modules.

We denote by Si the simple modules at the vertex i, by Pi the projective

indecomposable modules with Pi/ radPi = Si and by Ii the injective inde-

composable modules with soc(Ii) = Si.

By [ASS, 3.5] every indecomposable moduleM of A is given by Pi/ radt(Pi)

for a uniquely determined i and t. We denote by dj
i : Ii → Ij the canonical

maps. Let l := l(P ) and l̄ := l(Ii−t+1). Let · · · → Pi−l → Pi−t → Pi be the

minimal projective resolution of M and Ii−t+1 → Ii+1 → Ii+l̄−t+1 → · · · be

the minimal injective resolution of M . We thereby set Ik = 0 and Pk = 0 if

k ≤ 0.

We introduce three conditions:

(1) di−t+1
i−l = 0 or pdimM ≤ 1.

(2) di+l̄−t+1
i = 0 or idimM ≤ 1.

(3) di+1
i−t = 0 or pdimM = 0 or idimM = 0.

The next lemma will be used to calculate concrete examples.

Lemma 5.1. Let w : pM → ν(pM)[−1] define an Auslander-Reiten triangle

terminating in M .

(a) Suppose (1) and (3) hold, then cone(w) has a direct summand v(p(Ω(M)))[1].

(b) Suppose (2) and (3) hold, then cone(w) has a direct summand i(Ω−1(M)).

(c) Suppose (1) and (2) hold, then cone(w) has a direct summand · · · →

0 → Ii−t+1 → Ii → 0 · · · .

(d) Suppose (1), (2) and (3) hold, then cone(w) decomposes as sum of the

indecomposable complexes i(Ω−1(M)), · · · → 0 → Ii−t+1 → Ii → 0 · · · , and

v(p(Ω(M)))[1].

(e) If at most one condition (1)-(3) holds, then cone(w) is indecomposable.

Proof. We will write d instead of dj
i for an easier presentation. The connect-

ing map w of the Auslander-Reiten quiver ending in M is given as follows:

· · · // 0 //

��

0

��

// Ii−t+1

d

��

d

// Ii+1
d

//

��

Ii+l̄−t+1

��

// · · ·

· · · // Ii−l
d

// Ii−t
d

// Ii // 0 // 0 // · · ·

Then cone(w) is given by the sequence

· · · // Ii−l
(d,0)

// Ii−t ⊕ Ii−t+1
(d,0

d,d)
// Ii ⊕ Ii+1

(0

d)
// Ii+l̄−t+1

// · · ·
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The following diagram is a retraction if and only if condition (1) and (3)

are satisfied.

Ii−l

id
��

(d,0)

// Ii−t ⊕ Ii−t+1

(id

0)
��

(d,0

d,d)
// Ii ⊕ Ii+1

(0

d)
//

��

Ii+l−t+1

��
Ii−l

d

// Ii−t

id−d

TT

// 0 //

TT

0

TT

The bottom row is then ν(p(Ω(M)))[1]. This is an indecomposable com-

plex, as Ω(M) is indecomposable.

The following diagram is a retraction if and only if condition (2) and (3)

are satisfied:

Ii−l

��

(d,0)

// Ii−t ⊕ Ii−t+1

��

(d,0

d,d)
// Ii ⊕ Ii+1

(0

d)
//

(−d

id )
��

Ii+l−t+1

��
0 // 0

TT

// Ii+1
//

id

TT

Ii+l−t+1

id

TT

The bottom row is then i(Ω−1(M)). As A is a Nakayama algebra, Ω−1(M)

is indecomposable. Therefore the complex i(Ω−1(M)) is indecomposable.

The following diagram is a retraction if and only if (1) and (2) are satisfied:

Ii−l

��

(d,0)

// Ii−t ⊕ Ii−t+1

id
��

(d,0

d,d)
// Ii ⊕ Ii+1

(0

d)
//

( d

id)
��

Ii+l−t+1

��
0 // Ii−t+1

(id,d)

TT

d

// Ii //

id

TT

0

TT

The bottom row is clearly indecomposable as a complex. This proves part

(a)-(d).

The complexes σ≥1(cone(w)) and σ≤−1(cone(w)) are indecomposable in

Comp+,b(I), as the first one is a minimal injective resolution of an inde-

composable module and the second one is v applied to a minimal projective

resolution of an indecomposable module. Therefore the retractions pre-

sented in the previous three diagrams are the only possiblities for a direct

summand. So if at most one condition is satisfied, then cone(w) has to be

indecomposable, which proves part (e).

�

We determine the number of predecessor of the simple modules.
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Lemma 5.2. Let Si be simple and assume that Si is not projective and not

injective. Then Si has two predecessors if and only if di+1
i−1 = 0. Otherwise

it has only one predecessor.

Proof. With the notation of 5.1, we have that t = 1 and l̄ = l(Ii). Clearly

condition (1) and condition (2) are always satisfied. Therefore Si has two

predecessors if and only if (3) is satisfied. This is the case if and only if

di+1
i−1 = 0. Then we have the two predecessor ν(p(radPi)) and i(Ii/Si)[−1].

In all other cases, we have only one predecessor. �

We can determine the Auslander-Reiten quiver for a class of examples.

Theorem 5.3. Let A := kAn/I with n ≥ 4 and I is generated by the path

of length n. Then the Auslander-Reiten quiver of Db(A) is isomorphic to

Z[Dn]. If n is even, then [−1] acts as the identity on Dn. If n is odd [−1]

acts as the involution on Dn. Also A is derived equivalent to kDn.

Proof. Let 1 < i < n, then the projective resolution of Si is given by 0 →

Pi−1 → Pi and the injective resolution by Ii → Ii+1 → 0. Therefore τ(Si) =

Si−1 for 2 < i < n, τ(S2) = · · · → 0 → I1 → I2 → 0 → · · · and τ2(S2) =

Sn−1[−1]. Therefore all non-injective and non-projective simples are in the

same τ -orbit and [−1] operates on that orbit. By 5.2 the Si have exactly one

predecessor given by · · · → 0 → Ii−1 → Ii+1 → 0 → · · · which is isomorphic

to Pi/ rad2(Pi) for i > 2.

We note that Ii has projective resolution 0 → P1 → Pi−1 → Pn for i > 2.

Therefore τ(Ii) = Pi−2[1] for i > 2, τ(I2) = In[−1] and τ(I1) = In−1[−1].

Suppose now that n is even, then the orbit of S1 = P1 is given by

P1, I1[−1], In−1[−2], Pn−3[−1], · · · , In−(2k+1)[−2], Pn−(2k+3)[−1], · · · , P1[−1].

In this case the orbit of Sn = In is given by Sn, Pn−2[1], In−2, · · · , In−2k,

Pn−2k−2[1], · · · , I2, Sn[−1].

Suppose now that n is odd. Then the orbit of P1 is given by

P1, I1[−1], In−1[−2], Pn−3[−1], · · · , In−(2k+1)[−2], Pn−(2k+3)[−1], · · · , I2[−2],

Sn[−3], Pn−2[−2], In−2[−3], · · · , In−2k[−3], Pn−2k−2[−2], · · · , P1[−2] and con-

tains the odd shifts of Sn.

So Sn and S1 lie in different orbits. If n is even [-1] operates on each

orbits. If n is odd, [−2] operates on the orbits and [-1] maps the orbit of S1

onto the orbit of Sn.

The only predecessor of S1 is given by Pn−1/ radn−2(Pn−1)[−1].

Next we investigate the predecessors of modules Ms := Ps/ rads−1(Ps) for

2 ≥ s ≥ n − 1. The projective resolution of Ms is given by 0 → P1 → Ps
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and the injective resolution of Ms is given by I2 → Is+1 → 0. Therefore (1)

and (2) are always satisfied. We have ds+1
1 = 0 if and only if s = n − 1.

So Ms has three predecessor if and only if s = n − 1 and else it has only

two predecessor. By the proof of 5.1, the predecessors of Mn−1 are Sn[−1],

τ(S1[1]) and Mn−2. The predecessors of Ms for 2 < s < n− 1 are Ms−1 and

τ−1(Ms+1). Therefore a sectional path of the Auslander-Reiten component

looks as follows:

S1[1]

S2
// M3

// · · · // Mn−1

::uuuuuuuuu

Sn[−1]

ddIIIIIIIII

The the component is isomorphic to Z[Dn] by 3.8. Furthermore we know

that [−2] acts on the τ -orbit of Si, Sn and S1. Therefore [2] acts as the

identity on all τ -orbits of the component. By 3.7 this component is the only

Auslander-Reiten component of Db(A).

�

We investigate another cass of examples.

Theorem 5.4. Let A be of global dimension n − 1. Then the Auslander-

Reiten quiver is isomorphic to Z[An]. In particular [−1] is an involution on

An. Also A is derived equivalent to An.

Proof. If A has global dimension n − 1, then I is generated by all paths

of length 2. Let 1 < i < n, then Si is non-projective and non-injective.

Furthermore by 5.2 Si has the two predecessors τ(Si−1)[1] and Si+1[−1], S1

has the only predecessor S2[−1] and Sn has the only predecessor τ(Sn−1)[1].

A sectional path is therefore given by:

Sn[−n+ 1] // · · · // S2[−1] // S1.

By direct computation we have that τ s(Si) = · · · → 0 → Is → · · · →

Ii+s−1 → 0 → · · · [i− s − 1]. Therefore τ s(Si) has two non-zero homologies

except for s = n − i + 1 where τn−i+1(Si) = Sn−i+1[−n + 2i − 2] and

s = n+ 1 where τn+1(Si) = Si[−2]. The τ -orbit of S1 is given by τ s(S1) =

Is[−s]. Therefore a shift of all projective indecomposables and injective

indecomposables are in the orbit of S1. Also τn(S1) = Sn[−n] and τ(Sn) =
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S1[n − 2]. Therefore τn+1(Si) = Si[−2] for all 1 ≤ i ≤ n. It is therefore

clear that the Auslander-Reiten component is isomorphic to Z[An] given as

above.

As the shift [2] operates on τ -orbits, we can see that all elements in the

component are of bounded length. By 3.7 all indecomposable elements are

part of the component. �
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