
amAssist: In-IDE Ambient Search of Online
Programming Resources

Hongwei Li∗†§, Xuejiao Zhao‡, Zhenchang Xing‡, Lingfeng Bao¶, Xin Peng∗†, Dongjing Gao∗†, Wenyun Zhao∗†

∗School of Computer Science, Fudan University, Shanghai, China
†Shanghai Key Laboratory of Data Science, Fudan University, Shanghai,China
‡School of Computer Engineering, Nanyang Technological University, Singapore

§School of Computer Information Engineering, Jiangxi Normal University, Nanchang, China
¶College of Computer Science, Zhejiang University, Hangzhou, China

{lihongwei,pengxin,wyzhao,gaodj14}@fudan.edu.cn {zcxing,xjzhao}@ntu.edu.sg
lingfengbao@zju.edu.cn

Abstract—Developers work in the IDE, but search online
resources in the web browser. The separation of the working
and search context often cause the ignorance of the working
context during online search. Several tools have been proposed
to integrate the web browser into the IDE so that developers
can search and use online resources directly in the IDE. These
tools enable only the shallow integration of the web browser
and the IDE. Some tools allow the developer to augment search
queries with program entities in the current snapshot of the code.
In this paper, we present an in-IDE ambient search agent to
bridge the separation of the developer’s working context and
search context. Our approach considers the developers’ working
context in the IDE as a time-series stream of programming event
observed from the developer’s interaction with the IDE over
time. It supports the deeper integration of the working context
in the entire search process from query formulation, custom
search, to search results refinement and representation. We have
implemented our ambient search agent and integrate it into the
Eclipse IDE. We conducted a user study to evaluate our approach
and the tool support. Our evaluation shows that our ambient
search agent can better aid developers in searching and using
online programming resources while working in the IDE.

Index Terms—Context Sensing, Context-Aware Search, Con-
textual Search Results Annotation

I. INTRODUCTION

As online programming resources contributes a fast-
growing body of software development knowledge, it has be-
come a common practice to interleave coding, web search, and
learning during software development [1], [2], [3]. Developers
work in the Integrated Development Environment (IDE), but
search online resources in the web browser. As a result, search
engines are unaware of the specifics of the developer’s working
context due to the separation of working and search context.
Several tools [2], [4], [5], [6] have been proposed to integrate
the web browser into the IDE. These tools allow developers to
search and use online resources directly from within the IDE.
These tools make two simplistic assumptions.

First, they assume that the developers’ working context can
be extracted from the current snapshot of the program (e.g.,
a program entity or exception that the developers currently
select). Our empirical study [7] of developers’ online search

behavior shows that the developers’ working context usually
include a set of related program entities at different time
periods. Furthermore, the developers often augment program
context with task context (e.g., technology being used) and
preference (e.g., searching for API specification or code exam-
ple). This suggests that the dynamics of developers’ working
context and the task context and preference should be captured,
modeled and used to improve online search.

Second, existing tools assume that integrating the IDE
and the web browser can effectively bridge the separation of
working and search context. They simply present search results
in an IDE view in the same way as in the web browser. But
more researcher’s want to change this status, like Ponzanelli
et al. [8] and Bacchelli et al. [4], they try to integrating
online resources to IDE in their works. However, the IDE is
crowed with many views of program information. As a result,
the search results view can use only a small portion of the
display. Previous study [2] shows that such a small search
results view often becomes inefficient when the developer has
to search and explore many online resources (e.g., to learn an
unfamiliar API). Furthermore, a shallow integration of the IDE
and the web browser do not effectively use the working context
in customizing search and exploring search results. Context-
aware custom search and exploration techniques are needed to
enable the deep integration of working and search context.

In this paper, we present an in-IDE ambient search agent
(called amAssist) to bridge the separation of the developer’s
working and search context. amAssist considers the developer’s
working context in the IDE as a time-series stream of pro-
gramming event observed from the developer’s interaction with
the IDE over time. It unobtrusively monitors the developer’s
programming event in the IDE and determines the developer’s
working focus over time. amAssist deeply integrates the de-
veloper’s working context in the online search process. The
developer can use the context to augment his search query or
refine the search results. amAssist uses the context to tweak
the ranking of the search results. It also uses the context to
annotate search results and web pages to help the developer
assess and browse the search results.

We have implemented our ambient search agent and inte-

978-1-4799-8469-5/15 c© 2015 IEEE SANER 2015, Montréal, Canada

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

390



grate it with the Eclipse IDE. We conducted a user study to
evaluate our amAssist tool. The study involved 10 developers
using our amAssist tool and standard Eclipse/Webbrowser
respectively. The task was to fix a bug in an existing Eclipse
editor plugin and extend the plugin with file save and content
statistics features. Our study shows that amAssit can help
the developers formulate more specific queries with working
context information. As such, the developers using amAssist
can find and integrate relevant online programming resources
more quickly with less search queries.

The remainder of the paper is organized as follows. Sec-
tion II describes the design of ambient search agent. Section III
presents the amAssist tool. Section IV evaluates our ambient
search approach and the amAssist tool. Section V reviews
related work. Section VI concludes the work and discusses
our future plan.

II. THE APPROACH

amAssist unobtrusively monitors the developer’s program-
ming activity in the IDE and determines the developer’s
working focus over time. It visualizes the API entities that
are potentially of the most interest to the developer in an
interactive visualization [9] (e.g., foam tree 1 ). The
developer can formulate a search query by combining the API
entities in the foam tree with his own keywords. amAssist
integrates Google Custom Search Engine to search popular
programming websites. It tweaks the ranking of the search
results based on the interest values of API entities in the
search query and the developer’s preference for websites. The
developer can select other API entities in the foam tree to refine
the search results. To help the developer assess the relevance
of search results, amAssist clusters the search results based
on the topics mined from the search results. It augments the
Google search results entries with the API entities in the foam
tree that are mentioned in the corresponding web pages. To
help the developer browse a particular web page, amAssist
highlights the API entities in the foam tree that are mentioned
in the opened page.

A. Time-Series Working Context Sensing

Our definition of the developer’s working context in the
IDE is not a set of program entities at the current snapshot of
the code. Instead, the working context is a time-series stream
of programming event observed from the developer’s interac-
tion with the IDE over time. Table I summarizes observable
programming event that amAssist tracks. A programming event
consists of a tuple (t, a, P, L). t is an index of the event. It
increases by one as a new event occurs. a is a category value
describing an observable action performed by the developer.
P is a set of source-code program entities directly involved in
an action. L is a set of library or framework API entities that
source-code entities extend and use.

Modern IDE supports various actions to access and update
program entities in the IDE. We abstract these concrete actions
into 5 types of observable actions. select refers to the selection
of a program entity in various views (e.g., Package Explorer,
Outline, Type Hierarchy, Search Results, Compilation Prob-
lems, Stack Trace) and code editor of the IDE. reveal refers

1http://carrotsearch.com/foamtree-overview

to the action (e.g., open, select, scroll, switch) that makes a
program entity visible or partially visible in code editor. select
action may reveal a program entity in an opened code editor.
In such cases, amAssist records only reveal action. save refers
to saving code edits made by the developer in a compilation
unit. debug refers to debug actions such as set breakpoint,
suspend execution, and step execution. execute − exception
refers to the program throwing an unhandled exception while
the developer executes the program.

A source-code program entity psrc ∈ P can be a com-
pilation unit, class (including interface), method, field, and
statement in the source code that the developer acts on.
amAssit retrieves the program entity involved in an observation
action using the appropriate IDE APIs (e.g., Eclipse JDT
IJavaElement interfaces and Java DOM/AST classes). If the
developer attaches source code to the library API entities, he
can select, reveal, and debug API entities in the same way as
source-code entities. amAssist tracks the events involving API
entities with source code in the same ways as the real source-
code entities. It adds the source-code-attached API entities in
the set P of an event to the event’s API entity set L, while it
does not do so for the real source-code entities.

A library API entity papi ∈ L can be an API class, method,
and field that a source-code program entity extends and uses.
Online programming resources describe how to extend and
use certain library or framework APIs. Thus, the application-
specific source-code entities are meaningless for online search.
amAssist uses the appropriate IDE APIs to retrieve the set of
library API entities L (may be entity) extended or used by the
set of source-code entities P of an event. Developers can use
these library API entities to augment their search queries. If
an API entity cause compilation errors or runtime exceptions,
amAssist annotates the API entity accordingly.

TABLE I. DEFINITION OF WORKING CONTEXT

Action (a) Src Entity (P) Library API Entities (L)

Select
Reveal

Class Inherited API classes

Method
Overridden methods
Inherited API classes of parameter type
Inherited API classes of return type

Field Inherited API classes of field type
Select Statement APIs used in the statement

Save Compilation Unit
Inherited API classes of the edited
classes
Overridden methods of the edited meth-
ods
APIs used in the edited statements

Suspend
SetBreakpoint
Step

Method
Overridden methods of the debugged
methods
Inherited API classes of parameter type
Inherited API classes of return type

Statement APIs used in the debugged statement

Execute
-Exception

Method
Overridden methods of the immediate
exception-throwing method
Inherited API classes of parameter type
Inherited API classes of return type

Statement APIs used in the exception-throwing
statement

Exception
(Runtime Object)

API exception classes
Immediate exception-throwing API
method

Table II shows an example of a stream of programming
events observed from the developer’s interaction with
the IDE and the program. The developer double-clicks
the class MyEditPart to open the class. MyEditPart
extends the Eclipse class EditorPart. The developer

391



then selects the method doSave(IProgressMonitor)
in the outline view to reveal the method. This method
overrides EditorPart.doSave(IProgressMonitor).
Next, the developer edits the method doSave() to use
FileDialog APIs and saves the file. The developer
runs the program. The program throws a Java exception
IOException. The immediate exception-throwing API
method is FileWriter.F ileWriter(File) . The developer
selects in the stack trace the code statement (calls
FileWriter.F ileWriter(File). The developer sets a
breakpoint at the code statement (calls FileDialog.open())
just before the exception-throwing statement (calls
FileWriter.F ileWriter(File)). The developer runs
the program. The program suspends at the breakpoint
statement (calls FileDialog.open()). The developer
realizes that he needs to use absolute path to call
FileWriter.F ileWriter(File). He finally edits and
saves the file.

B. Working Context Summarization and Visualization

As the programming events occur, amAssist encodes the
developer’s working context into a Degree-of-Interests (DOI)
model of library API entities. It visualizes the API entities that
are potentially of the most interest to the developer.

1) Computing the DOI Model of API Entities: A design
issue of amAssist is content variance [10]. If the working
context rarely changes, developers will stop looking over
because they have already seen the information. On the other
hand, if the working context changes too often it could be a
distraction, or relevant information could be swapped out while
the developer is trying to view it. Thus, amAssist should detect
important focus shifts in the working context. Meanwhile, it
should remain relative stable so that the contextual information
has time to be used.

The amAssist DOI model of API entities is inspired by the
Fisheye view [11] and the Read-Edit-Wear model [12]. This
DOI model associates an interest value with each distinct API
entity in the working context. The initial interest value of an
API entity of an event is assigned based on the intrinsic interest
level of the action and the API entity of the event. The interest
value of the API entity is then decayed as new events arrive
in the working context.

We define four interest levels of the action: select < reveal
< save or debug < execute − exception. We denote the
interest level of an action a using an integer value la (1 ≤
la ≤ 4). We define three interest levels of the API entity:
normal < has− compile− error < cause− exception. We
denote the interest level of an API entity papi using an integer
value lapi (1 ≤ lapi ≤ 3). Given an event e < t, a, P, L > and
an API entity papi ∈ e.L, the initial interest value of papi (i.e.,
vinit(papi, e) is computed as γla × lapi, where γ is an integer
constant value (γ > 1). According to this definition, the API
entity that causes exception during program execution has the
highest initial interest value, while the normal API entity that
the developer selects has the lowest initial interest value.

We assume that the older an event e < t, a, P, L > is,
the less interests the developer has in papi ∈ e.L. Thus, the
current interest value of papi in the event e < t, a, P, L > (i.e.,
v(papi, e)) is computed as vinit(papi, e)/γtm−t where tm is

the current event index. An API entity papi can be involved
in several events in the working context. We assume that the
more times an API entity papi is used in the working context,
the more interests the developer has in papi. Thus, the interest
value of papi in the working context at the current event index
tm (i.e., v(papi, tm)) is computed as

∑
1≤i≤tm

f(papi, e(i)).
The function e(i) returns the event at the index i. The function
f(papi, e(i)) returns v(papi, e(i)) if papi ∈ e(i).L, otherwise
returns 0.

When a new event e < tm +1, a, P, L > occurs, amAssist
updates the interest value of all the distinct API entities in
the working context. The updated interest value of papi in the
working context at the latest event index tm + 1 is computed
as v(papi, tm +1) = v(papi, tm)/γ+ f(papi, e(tm +1)). That
is, the updated interest value of papi is the sum of the decayed
interest value of papi’s previous interest value and the current
interest value of papi in the new event e(tm + 1).

Table III presents an example of DOI computation
of the API entities collected in the example of
dynamic working context in Table II . We can
see that the developer’s initial working focus is on
EditorPart related APIs, such as EditorPart.doSave(),
EditorPart.getSite(), EditorPart.getShell(). As he
works on implementing doSave() method, his working
focus shifts to FileDialog related APIs, such as
FileDialog.open(), FileDialog.setF ileName(String),
and File.getAbsolutePath(). Note that once the exception
occurs during program execution, the relevant API entities
(such as the exception class IOException and the exception-
throwing method FileDialog.open()) are ranked high in the
DOI model, because the exception is an unusual incident that
should highly likely be attended first. However, these exception
related API entities will not dominate the DOI model forever.
Their interest levels gradually decay over time. Other API
entities (such as FileDialog.setF ileName(String) and
File.getAbsolutePath()) can still enter the top positions in
the DOI model.

2) Visualizing the DOI Model of API Entities: The DOI
model of API entities captures the developer’s working focus
over time. amAssit ranks the API entities by their interest
values. It can use intuitive visualization to present the top N
(e.g., 10) highest-interest-value API entities to the developer.
For example, foam tree or tag cloud [13] are widely used visual
representations of weighted list of text data. Such visualization
can provide a quick overview of the API entities that are
potentially of the most interest to the developer. amAssit uses
two strategies to update the visualization of the top N highest-
interest-value API entities. First, it updates the visualization
immediately if the top N API entities change. Second, it
updates the visualization at regular time interval T (e.g., 10
seconds) if the top N entities remain the same but their interest
values change.

C. Ambient Search and Exploration

amAssist uses the developer’s working context in the entire
online search process, from query formulation, custom search,
to search results refinement and representation.

1) Context-Aware Custom Search: The developer can in-
teractively select one or more API entities in the visualization

392



TABLE II. AN EXAMPLE OF DYNAMIC WORKING CONTEXT THAT THE amAssist TOOL TRACKS

t Action SrcEntity API Entities Remark

1 Reveal MyEditorPart
(Class) EditorPart Inherited API classes

2 Select to Reveal doSave(IProgressMonitor)
(Method)

EditorPart.doSaveAs(IProgressMonitor)
IProgressMonitor

Overridden methods
Inherited API classes of parameter type

3 Save

FileDialog,fd =new FileDialog
(this.getSite().getShell())
fd.setFileName(”test.txt”)
String path = fd.open()

FileWriter filewriter = new FileWriter
(new File(path))

(Compilation Unit)

FileDialog.FileDialog(Shell)
EditorPart.getSite()
EditorPart.getShell()

FileDialog.open()
FileDialog.setFileName(String)

FileWriter.FileWriter(File)

APIs used in the edited statements
Overridden methods

4 Execute Exception java.io.IOException
(Exception)

java.io.IOException
FileWriter.FileWriter(File)

API exception classes
Immediate exception-throwing API method

5 Select
FileWriter filewriter = new FileWriter

(new File(path))
(Statement)

FileWriter.FileWriter(File) APIs used in the statement

6 Set Breakpoint String path = fd.open()
(Statement) FileDialog.open() API used in the debugged statement

7 Suspend String path = fd.open()
(Statement) FileDialog.open() API used in the debugged statement

8 Save getAbsolutePath()
(Method) File.getAbsolutePath() API used in the edited statement

TABLE III. AN EXAMPLE OF DOI COMPUTATION

API Entities Action/Type la lapi t1 t2 t3 t4 t5 t6 t7 t8
EditorPart Reveal/Normal 2 1 4 2 1 0.5 0.25 0.125 0.0625 0.03125

EditorPart.doSaveAs(IProgressMonitor) Select to Reveal/Normal 2 1 — 4 2 1 0.5 0.25 0.125 0.0625
IProgressMonitor Select to Reveal/Normal 2 1 — 4 2 1 0.5 0.25 0.125 0.0625

FileDialog.FileDialog(Shell) Save/Normal 3 1 — — 8 4 2 1 0.5 0.25
EditorPart.getSite() Save/Normal 3 1 — — 8 4 2 1 0.5 0.25
EditorPart.getShell() Save/Normal 3 1 — — 8 4 2 1 0.5 0.25

FileDialog.open(String)
Save/Normal 3 1 — — 8 4 2 — — —

Set Breakpoint/Normal 3 1 — — — — — 9 — —
Suspend/Normal 3 1 — — — — — — 12.5 6.25

FileDialog.setFileName(String) Save/Has Compile Error 3 2 — — 16 8 4 2 1 0.5

FileWriter.FileWriter(File)
Save/Normal 3 1 — — 8 — — — — —

Execute Exception/Cause Exception 4 3 — — — 52 — — — —
Select/Cause Exception 1 3 — — — — 32 16 8 4

java.io.IOException Execute Exception/Cause Exception 4 3 — — — 48 24 12 6 3
File.getAbsolutePath() Save/Normal 3 1 — — — — — — — 8

of the top N highest-interest-value API entities as keywords
in his search query. He can customize the selected API entity
keywords and augment these API entity keywords with his
own search keywords (e.g., task context). The developer can
instruct amAssist to tweak the ranking of the search results
using the interest values of the selected API entities.

amAssist integrates the Google Custom Search API
2 to search online program resources. It allows the developer
to customize the Google Custom Search Engine to search
his preferred websites. The developer can attach one or more
category labels to these websites. By default, amAssist searches
the following popular programming-oriented web sites as sum-
marized in Table IV, such as technical blogs, code examples,
discussion forums, and Q&A websites. The developer can
select website category labels to inform Google Custom Search
Engine his preference for certain categories of websites (e.g.,
code examples websites).

amAssist programmatically customizes the Google Cus-
tome Search Engine in two ways. First, if the developer
indicates that he wants to use the interest values of the
selected API entities to tweak the ranking of the search results,
amAssist normalizes the interest values of the selected API
entities as the weight of the search keywords for tweaking the
ranking of the search results. It promotes the search results
containing the higher-interest-value API entities in the results

2https://developers.google.com/custom-search/

TABLE IV. WEB SITE CATEGORIES

Category Label Web Sites Match String

Technical Blogs (TB)

*.iteye.com/blog/*
blog.sina.com.cn/*
blog.163.com/*
www.360doc.com/content/*

Code Examples (CE)

blog.csdn.net/*
*.iteye.com/blog/*
*.code.google.com/*
*.grepcode.com/*
*.codeproject.com/*

Discussion Forum (DF)

bbs.csdn.net/*
zhidao.baidu.com/*
*.stackoverflow.com/*
*.superuser.com/*
*.stackexchange.com/*
*.serverfault.com/*

Q&A web site (QA)

zhidao.baidu.com/*
*.stackoverflow.com/*
*.superuser.com/*
*.stackexchange.com/*
*.serverfault.com/*

ranking. Second, if the developer indicates their preferred
website categories, amAssist promotes the search results from
the websites of the preferred categories in the results ranking.
amAssist uses the BOOST mode of Google Custom Search
Engine. That is, it promotes the websites of the developer’s
preferred categories without excluding other sites.

2) Search Results Refinement: The developer’s online
search often returns a large number of search results. For the

393



reason of ease recognizing those search results that program-
mers want to explorer, It need to clustering those search results,
like the way of topics, based on their snippets or contents.
amAssist supports two ways for the developer to refine the
search results.

First, the developer can select one ore more API entities
(those not used as query keywords) in the visualization of the
the top N highest-interest-value API entities. amAssist uses
the selected API entities to refine the search results based on
Google Custom Search’s “Refine Search” feature.

Second, amAssist uses semantic clustering technique to
cluster the search results. Semantic clustering reveals topics
of search results by grouping search results that use similar
vocabulary. amAssit can display the clusters of search results
in a list view. Each list item represents a cluster. It can show
the topics of the cluster and the number of search results in the
cluster. It can also shows the number of search results from
different category of web sites. The developer can filter the
search results by the cluster topics and the category of web
site he is interested in.

3) Search Results Representation and Browsing: The de-
veloper’s online search does not end with presenting a list of
relevant web pages [14]. The developer must also be able to
recognize which web pages meets their particular need and
make use of their content.

To help the developer access the relevance of search results,
amAssist annotates the search-results entries with the working-
context API entities mentioned in the corresponding web pages
(see the Search Results view in Figure 1). For example, the
annotation of the first search results entry shows that this
web page contains not only the API entities used as keyword
(i.e.,IWorkbenchPage.openEditor(IEditorPart ) ) but also other
API entities in the working context foam tree (e.g., PartInitEx-
ception, IOException) . Such API entity annotations provide
a context-aware augmentation of the document surrogate [15].
To support responsive user interaction, amAssist can download
and search for the working-context API entities in the search-
results pages using multi-thread. It can update the search-
results entry once the analysis of the corresponding web page
is complete.

To help the developer make use of a particular web
page, amAssist summarizes the working-context API entities
mentioned in the opened web page in a tree view. Each tree
node represents a mentioned API entity. Expanding the tree
node will lists the places where the mentioned API entity
appears in the web page. amAssist extracts a short excerpt
surrounding such places (e.g., 5 words before and after the
mentioned API entity). This overview of the mentioned API
entities in the opened page can help the developer quickly
locate and navigate to the content of the page he is interested
in.

III. TOOL SUPPORT

We have developed an amAssist tool and integrate the tool
with the Eclipse IDE. The amAssist tool listens to the Eclipse
workbench’s selection, change, and runtime events to monitor
the developer’s programming activities in the IDE. It uses the
Eclipse JDT IJavaElement APIs and Java DOM/AST APIs

to resolve the program entities involved in the events. The
amAssist tool visualizes the DOI model of the API entities
using the interactive foam tree provided by the Carrot2
Search 3 (An open-source search results clustering engine).

The amAssist integrates the Google Custom Search Engine
to support custom search and refinement of search results. To
cluster the search results, amAssist retrieves the snippet of the
top 50 (can be configured by the developer) search results from
the search engine. A snippet is a small sample of web page
content that the search engine returns with each search result
to give search users an idea of what is the web page. amAs-
sist applies the Lingo algorithm [16] provided by Carrot2
Search for semantic clustering of search results based on
their snippets. Lingo algorithm reverses the traditional order
of cluster discovery by first finding good, conceptually varied
cluster labels and then assigning documents to the labels
to form clusters [16]. It can generate longer, often more
descriptive labels than other topic mining algorithms. This
characteristic can help the developer better understand and
select group of relevant search results.

Figure 1 presents the user interface of the amAssist tool
in the Eclipse IDE. The DOI Model view display the top 10
(can be configured by the developer) highest-interest-value API
entities that the amAssist tool summarizes in an interactive
foam tree. The Ambient Search view contain a search box. The
developer can enter their own keywords (e.g., task context) and
select API entities in the foam tree as keywords. The developer
can tweak the ranking of the search results using the interest
values of the selected API entities.

The developer can select his preferred website categories in
the list. The Ambient Search displays the search-results clusters
in a list view as described in Section II-C2. The developer can
select a cluster to filter the search results. The Search Results
view shows the search results. amAssist annotates the search
results entries as described in Section II-C3. The developer can
select one or more search results clusters in the Ambient Search
view to filter the search results. The developer can open a web
page in the embedded Eclipse web browser. The API entities
in the working context foam tree that are mentioned in the
opened web page are summarized in the Webpage Overview
view (not visible in the Figure 1). The developer can use this
view to quickly locate and navigate to the parts of the web
page he is interested in.

IV. EVALUATION

Our amAssit tool aims to deepen the integration of the
developers’ working context in the IDE with their online
search. To evaluate if the amAssist tool achieves this goal,
we conducted a user study to investigate the following three
research questions:

Q1 Can the amAssit tool help developers formulate more
specific queries and locate relevant online resources
faster?

Q2 How do developers use the amAssist tool during a
software development task?

Q3 How does the amAssist tool change the developers’
behaviors during a software development task?

3http://project.carrot2.org

394



Fig. 1. The amAssist Tool

A. Experimental Design

Experiment Task: In this study we designed a software
maintenance task. The participants were given the source
code of a simple Eclipse editor plugin. They were asked
to complete the two subtasks. First, the participants needs
to fix a bug in the existing implementation. When the user
opens a new editor, the existing implementation throws an
IllegalArgumentException. Fixing this bug requires the
knowledge of EditorPart.openEditor() and IEditorInput
APIs. After fixing the bug, the participants needs to extending
the editor plugin with file open/save/close and word count
features. Implementing these new features require the knowl-
edge of EditorPart’s file open/save/close APIs and status bar
extension points.

Participants: We used between-subject design in our user
study. We recruited 10 volunteer graduate students from the
School of Computer Science, Fudan university. Based on our
pre-experiment survey, all the participants described them-
selves as ”above average” Java expertise or ”Java experts”.
All the participants used Eclipse IDE regularly in their re-
search work. We use P1,P2,...,P10 to represent them. These
Participants were matched in pairs based on their programming
experience and then randomly allocated to experimental group
or control group. The participants of the experimental group
G1 used the amAssist tool to perform the software maintenance
task. The participants of the control group G2 used the
Eclipse IDE and web browser to perform the same task. As
an explanation for the pairs of participants, we use (P1,P6),
(P2,P7), (P3,P8), (P4,P9), (P5,P10) to represent those pairs,
the P1 to P5 from group G1 and the P6 to P10 from group
G2.

Procedure: The participants were ask to work on the task
in a 2-hour session. They were required to run a screen-

capture software throughout the session. The screen-recorded
task videos allow us to analyze the participants’ behavior after
the experiment. We also instrumented the amAssist tool to
collect tool usage statistics.

After the experiment, we interviewed the two groups sep-
arately to collect their general feedbacks on the task and the
tool usage. During our data analysis, we conducted individual
interviews with participants as needed, for example to confirm
the intention of their certain actions.

B. Results: Improvement on Search Performance (Q1)

We evaluate the search performance improvement of amAs-
sist by comparing the following metrics of the experimental
group (G1) and the control group (G2): task completion time,
time spent on bug fixing subtask, the number of queries, the
number of keywords, and the number of opened web pages.
Table V shows the statistics of these performance metrics in
the experiment group (G1) and the control group (G2).

We can see that there is no obvious difference in the overall
task completion time. This is mainly due to the task design.
All the participants in both the experiment group and control
group completed the bug fixing subtask. However, none of
them completed the feature extension subtask. That is why all
the participants worked till the end of the experiment session.
For the bug-fixing subtask that all the participants completed,
the experimental group had shorter task completion time than
the control group did.

We can see that the experimental group on average issued
less search queries but they used more keywords, compared
with the control group. Furthermore, the experimental group
opened less web pages during the task. This can be attributed
to the visualization of the developers’ working context. The

395



visualization makes it explicit to the developers what they have
been working on. It increases the chance that the developers
can formulate more context-aware search queries using the API
entities in the working context. More context-aware search
queries can better reflect the developers’ information needs,
and thus can cause the more relevant web pages ranked higher
in the search results. This may lead to the less effort in
selecting relevant web pages, and consequently the less number
of opened web pages.

We conducted Wilcoxon’s matched-pairs signed-ranked
tests to evaluate the significance of the differences in these
search performance metrics of the experimental group and the
control group. Our statistical tests show that the differences
in these search performance metrics are not significant. This
may be attributed to the limited number of participants and
the limited task completed time. Our initial results show
that the amAssist tool seems promising in improving the
developers’ online search by deepening the integration of the
developers’ working context in their online search. However,
more systematic study is required to confirm the findings.

TABLE V. STATISTICS OF PERFORMANCE METRICS IN THE TWO
GROUPS

Participant Task
Time

Bug Fix
Time

#Query #Key
Words

#Web
Pages

Experimental Group (G1)
p1 73m36s 60m20s 3 7 4
p2 72m47s 58m13s 3 8 6
p3 52m01s 08m00s 11 30 10
p4 68m25s 46m49s 9 24 15
p5 60m47s 35m25s 8 28 9

Min. 52m01s 08m00s 3.00 7.00 4.00
Max. 73m36s 60m20s 11.00 30.00 15.00

Average 65m31s 41m45s 6.80 19.40 8.80
Std.Dev. 08m08s 19m05s 3.25 9.91 3.76

Control Group (G2)
p6 67m08s 67m08s 9 9 10
p7 54m23s 54m23s 8 11 19
p8 69m40s 29m30s 11 27 14
p9 68m36s 53m29s 10 14 12

p10 59m45s 45m10s 14 17 12
Min. 54m23s 29m30s 8.00 9.00 10.00
Max. 69m40s 67m08s 14.00 27.00 19.00

Average 63m54s 49m50s 10.40 15.60 13.40
Std.Dev. 05m54s 12m34s 2.06 6.31 3.07

C. Results: Use of amAssist (Q2)

Figure 2 shows the ratio of the API entities in the devel-
opers’ search queries divided by all the API entities in the
foam tree at the time the developer issued the queries. On
average, the four developers (P2, P3, P4, P5) used about 37%-
50% of the API entities in the foam tree to formulate their
search queries. It seems that the working context in the foam
tree can effectively summarize the developers’ information
needs. The API entities in the foam tree seems useful for
formulating context-aware search queries. The developer (P1)
used on average about 18% of the API entities in the foam tree,
which was less than the other four developers. This developer
is an experienced Eclipse plugin developer. He seems to prefer
to formulate the search queries with his own words.

D. Results: Behavior Change (Q3)

Figure 3 presents the time of the developers’ first query
and the time to opening the first web page. We can see

0.18 

0.50 

0.40 0.41 

0.37 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Avgerage

p1

p2

p3

p4

p5

Fig. 2. The Ratio API Entities in query versus in foam tree

that four of the five experimental group developers (P1, P2,
P3, P4) had much shorter time to first query than their
counterpart developers in the control group (P6, P7, P8, P9).
The experimental group developer P5 had slightly longer time
to first query than his counterpart developer in the control
group P10. All the developers in both experimental and control
group opened the first web page shortly (in 4 - 6 seconds) after
they obtained the search results. As a whole, the experimental
group developer seems to be able to start their online search
faster and find the potentially relevant web pages faster.

Figure 4 presents the time at which the developers inte-
grated the online resources in their tasks for the first time.
We identified such integration time by looking for actions
such as copy-paste from the web browser to the IDE or the
manual entering of web page content into the code editor.
Three of the five experimental group developers (P1, P4, P5)
had short time to start integrating the online resource than their
counterpart developers (P2, P9, P10) in the control group. The
two experimental group developers (P2, P3) had longer time
to start integrating the online resource than their counterpart
developers (P7, P8) in the control group. The results of first-
time integration seems to be mixed. It seems that unlike search
behavior, the integration behavior seems to be more affected
by the programming habits of different developers.

V. RELATED WORK

Researchers have sought to monitor the users’ interaction
with software tools and documents to infer their interests
or working context. Read and Write Wear [12] models the
document places where users frequently read and write using
wear metaphor. Similar concepts were used to visualize code
changes [17]. The Jaba tool [18] elides code regions by means
of Fisheye view which computes the DOI of code regions
based on their distance to the selected region. The Mylar
tool [19] monitors the Eclipse workbench selection and viewer
services to infer the relevance of an element to a particular task.
As we know, The Mylar project is now called Mylyn4 , one of
the top project in Eclipse. Now, It has powerful functions. It
can recode programmer’s behaviour and working context then
outputting them with XML format file in silence way. Mylyn

4http://www.eclipse.org/mylyn/

396



P 1

P 6

P 2

P 7

P 3

P 8

P4

P 9

P 5

P 1 0

130

485

120

402

42

236

175

474

341

304

5

3

3

5

4

4

5

6

5

6

p1 p6 p2 p7 p3 p8 p4 p9 p5 p10

Query Time 130 485 120 402 42 236 175 474 341 304

Fist Open WebPage Time 5 3 3 5 4 4 5 6 5 6

Query Time Fist Open WebPage Time

Fig. 3. Time of First Query and Time of Opening the First Webpage

Min.

Max.

Avg.

Std.Dev.

p1

p6

p2

p7

p3

p8

p4

p9

p5

p10

06m00s

24m01s

17m11s

6m26s

24m01s

16m04s

06m00s

16m49s

23m00s

11m06s

20m40s

14m32s

3m17s

12m53s

20m40s

14m52s

13m09s

11m06s

Fig. 4. Time of First Integration of Online Resources

can give the advices on the UI, It can help programmer focus
on working contexts and code hits which are related current
task. McKeogh et al. [20] implemented a plug-in, which use
the monitor providing by SWT, to monitoring the programmer
behaviour like exploring code or programming in the Eclipse
Editor.

Robillard and Murphy [21] infers concern code from the
source code visible to a developer over time. The amAssist
DOI model was inspired by these related work. It tracks
more comprehensive programming events in the developer’s
interaction with the IDE and program entities.

Researchers have used context in code search. Code-
Broker [22] locates reusable components in a component
repository based on task description and method signature.
Strathcona [23] asks the developer to highlight a partially
complete code fragment and retrieves code examples from
existing framework applications based on structural context
of the highlighted code fragment. Suade [24] recommends
additional program elements based on their estimated structural
relevance to a previously-identified set of program elements.
MFIE [25] allows developers to interactively group, sort, and
filter feature location based on automatically mined multiple
syntactic and semantics facets. The tools consider context as
a set of program entities at the current snapshot of the code.

Our amAssist tool considers context as a time-series stream of
programming events.

Researchers have used crowdsourced knowledge to assist
software development. GraPacc [26] uses a snapshot of cur-
rently edited code to search and rank the relevant API usage
patterns based on a database of API usage patterns mined from
open source projects. HelpMeOut [5], [27] suggests program
edits to fix compilation errors based on program edits from
other programmers that fix the errors. These tools use only
current code context and they do not search online resources.

Brandt et al. [28] investigated how programmers oppor-
tunistically interleave web foraging, learning, and writing code.
The Seahawk tool [4] integrates Stack Overflow with the
Eclipse IDE. It allows developers to query, view, and link
Stack Overflow Q&As into their code. Blueprint [2] supports
example-centric programming by code examples extracted
from online forums. Dora [5] allows developers to query
online discussions to locate relevant solutions to programming
problems within the IDE. These tools still use only current
code context. Furthermore, the code context was simply used to
augment the search query. In contrast, our amAssist tool deeply
integrate the working context in the entire search process from
query formulation, custom search, to search results refinement
and representation.

397



VI. CONCLUSIONS AND FUTURE WORK

The paper presented the design of an in-IDE ambient search
agent and the amAssist tool. The amAssist tool has two distinct
characteristics. First, the amAssist tool unobtrusively monitors
the developer’s dynamic working context as a stream of time-
series programming events observed from the developer’s
interaction with the IDE and the program. It uses interactive
visualization to make the contextual information explicit to the
developer what he has been working on over time. Second, the
amAssist tool deeply integrate the developer’s working context
in the entire search process from query formulation, custom
search, to search results refinement and representation.

Our initial evaluation suggests that the design of ambient
search agent and its implementation in the amAssist tool is
promising in better support the developer searching and using
online programming resources while working in the IDE.
By the deep integration of the developer’s dynamic working
context in the online search process, the developers seems to
be able to formulate context-aware search queries with more
specific API keywords and to locate and use relevant online
programming resources faster to satisfy their information needs
during software development.

In the future we will exploit Google Custom Search Engine
features to better support custom search with context. We will
also design and implement more intuitive ways to annotate the
web page with relevant working context APIs. We will also
conduct more comprehensive user study to evaluate the design
of the ambient search agent and the benefits and limitations of
deeper integration of the developers’ working context in their
online search.

ACKNOWLEDGEMENTS

This work is supported by National Natural Science Foun-
dation of China under Grant No.61370079, National High
Technology Development 863 Program of China under Grant
No.2013AA01A605 and is partially supported by NTU SUG
M4081029.020 and MOE AcRF Tier1 M4011165.020.

REFERENCES

[1] J. Brandt, P. J. Guo, J. Lewenstein, and S. R. Klemmer, “Opportunistic
programming: How rapid ideation and prototyping occur in practice,”
in Proceedings of the 4th international workshop on End-user software
engineering. ACM, 2008, pp. 1–5.

[2] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer, “Example-
centric programming: integrating web search into the development
environment,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2010, pp. 513–522.

[3] B. Hartmann, S. Doorley, and S. R. Klemmer, “Hacking, mashing,
gluing: Understanding opportunistic design,” Pervasive Computing,
IEEE, vol. 7, no. 3, pp. 46–54, 2008.

[4] A. Bacchelli, L. Ponzanelli, and M. Lanza, “Harnessing stack overflow
for the ide,” in Recommendation Systems for Software Engineering
(RSSE), 2012 Third International Workshop on. IEEE, 2012, pp. 26–
30.

[5] O. Kononenko, D. Dietrich, R. Sharma, and R. Holmes, “Automati-
cally locating relevant programming help online,” in Visual Languages
and Human-Centric Computing (VL/HCC), 2012 IEEE Symposium on.
IEEE, 2012, pp. 127–134.

[6] N. Sawadsky and G. C. Murphy, “Fishtail: from task context to source
code examples,” in Proceedings of the 1st Workshop on Developing
Tools as Plug-ins. ACM, 2011, pp. 48–51.

[7] H. Li, Z. Xing, X. Peng, and W. Zhao, “What help do developers seek,
when and how?” in Reverse Engineering (WCRE), 2013 20th Working
Conference on. IEEE, 2013, pp. 142–151.

[8] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining stackoverflow to turn the ide into a self-confident programming
prompter,” in Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 2014, pp. 102–111.

[9] J. Kohlhammer, T. May, and M. Hoffmann, “Visual analytics for the
strategic decision making process,” in GeoSpatial Visual Analytics.
Springer, 2009, pp. 299–310.

[10] J. Matejka, T. Grossman, and G. Fitzmaurice, “Ambient help,” in Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2011, pp. 2751–2760.

[11] G. W. Furnas, Generalized fisheye views. ACM, 1986, vol. 17, no. 4.
[12] W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless, “Edit wear

and read wear,” in Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, 1992, pp. 3–9.

[13] B. Y. Kuo, T. Hentrich, B. M. Good, and M. D. Wilkinson, “Tag
clouds for summarizing web search results,” in Proceedings of the 16th
international conference on World Wide Web. ACM, 2007, pp. 1203–
1204.

[14] J. Stefanowski and D. Weiss, “Carrot2 and language properties in web
search results clustering,” in Advances in Web Intelligence. Springer,
2003, pp. 240–249.

[15] M. Hearst, Search user interfaces. Cambridge University Press, 2009.
[16] S. Osiński, J. Stefanowski, and D. Weiss, “Lingo: Search results clus-

tering algorithm based on singular value decomposition,” in Intelligent
information processing and web mining. Springer, 2004, pp. 359–368.

[17] S. G. Eick, J. L. Steffen, and E. E. Sumner Jr, “Seesoft-a tool for
visualizing line oriented software statistics,” Software Engineering,
IEEE Transactions on, vol. 18, no. 11, pp. 957–968, 1992.

[18] A. Cockburn and M. Smith, “Hidden messages: evaluating the efficiency
of code elision in program navigation,” Interacting with Computers,
vol. 15, no. 3, pp. 387–407, 2003.

[19] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for
ides,” in Proceedings of the 4th international conference on Aspect-
oriented software development. ACM, 2005, pp. 159–168.

[20] J. McKeogh and C. Exton, “Eclipse plug-in to monitor the programmer
behaviour,” in Proceedings of the 2004 OOPSLA workshop on eclipse
technology eXchange. ACM, 2004, pp. 93–97.

[21] M. P. Robillard and G. C. Murphy, “Automatically inferring concern
code from program investigation activities,” in Automated Software
Engineering, 2003. Proceedings. 18th IEEE International Conference
on. IEEE, 2003, pp. 225–234.

[22] Y. Ye and G. Fischer, “Reuse-conducive development environments,”
Automated Software Engineering, vol. 12, no. 2, pp. 199–235, 2005.

[23] R. Holmes, R. J. Walker, and G. C. Murphy, “Strathcona example
recommendation tool,” ACM SIGSOFT Software Engineering Notes,
vol. 30, no. 5, pp. 237–240, 2005.

[24] F. W. Warr and M. P. Robillard, “Suade: Topology-based searches
for software investigation,” in Proceedings of the 29th international
conference on Software Engineering. IEEE Computer Society, 2007,
pp. 780–783.

[25] J. Wang, X. Peng, Z. Xing, and W. Zhao, “Improving feature location
practice with multi-faceted interactive exploration,” in Proceedings of
the 2013 International Conference on Software Engineering. IEEE
Press, 2013, pp. 762–771.

[26] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Gra-
pacc: a graph-based pattern-oriented, context-sensitive code completion
tool,” in Proceedings of the 2012 International Conference on Software
Engineering. IEEE Press, 2012, pp. 1407–1410.

[27] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer, “What
would other programmers do: suggesting solutions to error messages,”
in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2010, pp. 1019–1028.

[28] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
“Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, 2009, pp. 1589–1598.

398


