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Abstract— In urban environments, moving obstacles detec-
tion and free space determination are key issues for driving
assistance systems and autonomous vehicles. When using lidar
sensors scanning in front of the vehicle, uncertainty arises from
ignorance and errors. Ignorance is due to the perception of
new areas and errors come from imprecise pose estimation
and noisy measurements. Complexity is also increased when
the lidar provides multi-echo and multi-layer information . This
paper presents an occupancy grid framework that has been
designed to manage these different sources of uncertainty.A
way to address this problem is to use grids projected onto
the road surface in global and local frames. The global one
generates the mapping and the local one is used to deal with
moving objects. A credibilist approach is used to model the
sensor information and to do a global fusion with the world-
fixed map. Outdoor experimental results carried out with a
precise positioning system show that such a perception strategy
increases significantly the performance compared to a standard
approach.

I. I NTRODUCTION

There is a strong interest in the field of intelligent systems
and robotics to develop autonomous vehicles with the ability
to navigate in challenging environments. Indeed, several
large-scale experiments like the DARPA Urban Challenge
[1] or the new challenge VIAC [2] (4 vehicles from Italy to
China) have shown impressive results. However, autonomous
driving in urban areas remains a problem and needs scene
understanding capabilities to predict the short-term evolution
for reliable navigation. For road navigation applications,
safety is one of the fundamental requirements. A mere detec-
tion of the obstacles is not enough: a fine characterization of
the navigable space is necessary to plan a safe motion of the
robot [3]. For a car-like robot, navigable space means all the
drivable space in the surrounding of the vehicle and obstacle
means a insurmountable part of the space. This information
has to be provided in real time with high level of confidence.

Some sensors providing high density information, for
example the Velodyne [4], are able to attempt the necessary
level of confidence for navigation. But it requires perception
systems that are capable of handling its high bandwidth or
processing requirements. However, an other solution consists
in using sensor providing sparse data. Representation of the
environment is obtained exploiting temporal redundancy and
temporal complementary of data.

In robotics, mapping (M) is coupled generally with lo-
calization in the Simultaneous Localization And Mapping
(SLAM) problem [5], [6]. Two main approaches exist: the
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feature-based approach which tries to map with a predeter-
mined set of shapes (segment, arc, etc...) [7] and the grid
approach which is based on a discrete space representation
[8]. SLAM methods are sensitive to the presence of moving
objects in the scene. Indeed, algorithms are based on the
temporal consistency of the map. A way to address this
issue is to perform detection and Mobile Objects Tracking
(MOT) [9]. Usually, a detection and tracking mechanism is
used in the feature-based framework. It works in 3 steps:
clustering of raw data for object detection, data association
and temporal fusion [10]. The main sources of error are in
the clustering phase and in the association step [11]. Some
recent works use parametric models to follow the variation
of the shape of the objects [12], [13].

This paper presents an approach dedicated to mapping and
detection of moving obstacles using a sensor observing just
a part of the environment. This kind of range sensor provides
two types of information: the presence of echoes in the line-
of-sight, and their relative position. The main contributions of
this paper are the definition of a new sensor model adapted to
a grid representation and a method to extract moving objects
while performing the mapping using a credibilist fusion. Asa
clustering step is no longer necessary, there is no assumption
on the shape of the objects, making it suitable for a wide
range of urban objects (pedestrians, vehicles, bicycles ,...).
Moreover, partially observed objects because of occlusions
or sensor field of view limitation can be more precisely
localized. The accurate pose of the robot is not a study of
this paper and is provided by a specific module.

The paper is organized as follows. In section II, we
present the occupancy grid. We then introduce the credibilist
grids proposed in this work. Afterward, the sensor model is
presented in section III, followed by the fusion processing
stage in section IV. Finally, experimental results are given
and analyzed in section V.

II. CREDIBILIST OCCUPANCY GRIDS

A. Grid representation

An occupancy grid is a representation of the environment
which proposes to split the space into a set of cells that
may be free or occupied. Usual approaches attempt to
determine the probability that every cell is occupied from
sensor data. The grid framework was proposed by Elfes
[14], but it remained little used at that time because this
approach is time, memory and computing consuming. During
the recent years, this representation has become more and
more used because it is an efficient framework for vehicle
navigation since it represents in an explicit way the navigable
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space. Moreover, embedded computers have more powerful
calculation capabilities (memory, multi-core, GPU, etc...).

Bayesian inference is the common background used to
cope with errors and uncertainty. Many extensions have been
published in the literature, like the Bayesian Occupancy
Filter (BOF) [15] which estimates simultaneously the oc-
cupation and the speed of the cells. Some works add prior
information to the BOF in order to model mobile object
motions [16]. The grid framework has currently been used
to solve the complete perception problem from a mobile
platform point of view in a dynamic environment [17], since
it is able to represent explicitly the free space and the
locations of the obstacles.

In the present work, two grids are managed simultane-
ously: a ScanGrid (SG) which captures the current sensor
information and a MapGrid (MG) performing the temporal
integration of data in a fixed frame.

B. A credibilist framework to combine sensor data

In this work, we propose to use a Credibilist approach
based on Dempster-Shafer (DS) theory because this frame-
work offers an interesting solution to make the difference
between unknown (there is no information) and doubt caused
by conflicting information gathered incrementally in the
fusion process. Similar ideas have been developed in [18]
to implement a DS (also called Evidential) occupancy grid
intended to manage in the representation of the environment
the specific uncertainty arising from the ultrasonic sensor
used. Unfortunately, the DS fusion operator used in that work
was very time consuming and showed a important sensitivity
to aberrant measurements.

Let consider a concrete case to illustrate these concepts.
There is an undiscovered cell in the map and a cell that has
been observed free previously and that is now occupied by a
moving object. When using a Bayesian framework, these two
cells will have the same belief after the measurement update,
e.g. an occupancy probability equal to 0.5. In a credibilist
framework undiscovered cells receive a belief mass on a
special state called ”unknown” whereas in the other cases
(appearance or disappearance of an object) lead to produce
a belief mass on what is called “conflict”.

Let see how these concepts are handled. In a way sim-
ilar to probabilistic occupancy grids, every grid cell is
assigned a state between two possible valuesFree (F ) and
Occupied (O). Let definedΩ the ignorance state in the same
way that in [18], e.g.Ω = {F,O}. In the theory of belief
functions, one has to increase this set, by considering the
power-set which is defined as2Ω = {F,O,Ω, ∅}. For each
cell, a mass function is calculated and provides four beliefs
on the state of the cell[m (F ) m (O) m (Ω) m (∅)], where
m (A) represents respectively the piece of evidence that the
space is free, occupied, unknown or resulting of conflict.
Mass functions verify the property

∑

A⊆Ωm (A) = 1.
The Transferable Belief Model (TBM) framework pro-

posed by Smets [19] provides also powerful tools since
many fusion operators were developed in order to cope with
different problems. The conjunctive combination rule, noted

∩©, is the one that is the most well known and treats the
case of the fusion of two reliable sources. It is defined as
follows. Letm1 andm2 be two given mass functions and let
m1 ∩©2 be the result of their combination by∩©. The result
of the combination using conjunctive rule is computed in the
following way:

∀A ⊆ Ω, m1 ∩©2 (A) =
∑

B∩C=A|B,C⊆Ω

m1 (B) ·m2 (C)

In the case of undiscovered cells by both sourcesS1 and
S2, (Eq. 1) gives the Basic Belief Assignments (BBA). The
result of the combination (Eq. 2) shows that the mass remains
on Ω.

∀i ∈ [1 2] mi (F ) = 0 mi (O) = 0
mi (Ω) = 1 mi (∅) = 0

(1)

m1 ∩©2 (F ) = 0 m1 ∩©2 (O) = 0
m1 ∩©2 (Ω) = 1 m1 ∩©2 (∅) = 0

(2)

In the case of two opposite observations of the sources
S1 andS2, the combination of the two BBA (Eq. 3) shows
that the resulting mass is concentrated on the empty set
illustrating the conflicting situation (Eq. 4).

m1 (F ) = 0 m1 (O) = 0.8 m1 (Ω) = 0.2 m1 (∅) = 0
m2 (F ) = 0.8 m2 (O) = 0 m2 (Ω) = 0.2 m2 (∅) = 0

(3)

m1 ∩©2 (F ) = 0.16 m1 ∩©2 (O) = 0.16
m1 ∩©2 (Ω) = 0.04 m1 ∩©2 (∅) = 0.64

(4)

Contrary to a probabilistic approach, the difference be-
tween the two cases is significant. Several works have
emphasized the importance of conflict analysis [20], [21].
This particular point is a key issue in our approach.

III. F ROM SENSOR DATA TO CREDIBILISTSCANGRID

In this section, we explain how to build a credibilist
SG in polar coordinates using a multi-layer lidar scan with
potentially several echoes in the same line of sight.

A. Sensor model

Sensors provide data from physical phenomena regardless
of the contextual situation. To interpret such information,
one has to model the sensor by making some simplifying
assumptions. In this paper, a lidar sensor is used and we
assume that the different laser beams are above the road i.e.
the echoes are coming from potential obstacles. In order to
be as close as possible to the sensor acquisition process, the
SG is created in a polar frame.

The space is divided in several angular sectors as shown
in Figure 1. Multiple measures in the same angular sector
are possible because the sensor provides multi-echo mea-
surement in several layers.

On one hand, each sector is considered independently of
the others. This allows computing the SG row by row (1 row
= 1 sector). On the other hand, each cell in a row depends
on the other ones. This is due to the propagation of the laser
beam and also to the multi-echoes strategy, since the state of
cells in a row depends on their position compared to the echo
position. Figure 2 illustrates the row affectation according to
several lidar measurements in a sector.
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Fig. 1. Polar space representation, showing how the information from a
measurement can be interpreted. Green refers to free space,red to occupied
and blue to unknown .

r

angle

r
1

2

Fig. 2. ScanGrid Construction, top figure is a bird’s eye viewof the sensor.
Bottom figure plots the conceptual SG row state assignment.

B. ScanGrid computation

This section details the construction of one row of the
SG, corresponding to the angular sectorΘ = [θ−, θ+].
We define a BBA for each cell computed from the sensor
scan points. One cell is a boxR × Θ, R = [r−, r+]. Let

ZΘ =

{

zi =

[

ri
θi

]

, θi ∈ Θ, i ∈ [0, n]

}

the set ofn scan

points in the angular sectorΘ. BBAs mS are performed in
the following way.

for every cell {R,Θ} :
-∀i ∈ [1, n] if ∃ ri|ri ∈ R then

mS (∅) = 0 mS (F ) = 0 mS (O) = 1− λO mS (Ω) = λO

-∀i ∈ [1, n] if ∄ ri| ri ∈ R then

mS (∅) = 0 mS (F ) = 1− λF mS (O) = 0 mS (Ω) = λF

-∀i ∈ [1, n] if ∄ ri| ri ∈ R and r+ < min (ri) then

mS (∅) = 0 mS (F ) = 0 mS (O) = 0 mS (Ω) = 1

λF and λO are parameters belong to[0 , 1] and reflect
the confidence in the measurement (0 if confident). This
confidence is linked to the principle of measurement (false
alarm or miss detection). Indeed, the angular separation
between two points is larger than the width of a laser beam.
So, there is a nonzero probability that an object is not
detected as explained in Figure 3.

Laser Beam 0.25°

minimal angle between laser 0.5°

max angle between laser 1°

Lidar rotation

Object not detected on this scan

Fig. 3. Case of no detected object with lidar

It is important to notice that the non scanned angular
sectors are fully affected with the vacuous massmΩ (Eq.
5) in order to indicate that there is no information.

mΩ (F ) = 0 mΩ (O) = 0 mΩ (Ω) = 1 mΩ (∅) = 0 (5)

IV. GLOBAL FUSION AT THE MAPPING LEVEL

Grid transformations, map updating and mobile objects
detection are described in this section.

A. System overview

Our aim is to build a grid in a global world frame (Map-
Grid) to map the navigable space and the static environment.
The MG is a Cartesian map referenced in a world frame
and composed ofL-length squared cells. Each cell refers to
an occupancy mass function defines on2Ω as described in
section II-B.mMi,j ,t is the mass function referring to the
cell (i, j) of MG at time t.

The MapGrid is initialized using no prior information, e.g.
with vacuous massmΩ on every cell.

The updating mechanism is sequential. At a given time,
the previous MapGrid, MG(t-1), is updated with the current
ScanGrid SG(t) built from the sensor measurements. The
result is a new MapGrid MG(t). The updating step allows
classifying cells containing moving objects. The proposed
scheme is composed of four phases as described by Figure 4.

Map Updating

Mobile Objects

Detection

Sensor Model

Grid Transfomation

Lidar scan (t)

ScanGrid+ (t)

Polar ScanGrid (t)

MapGrid (t)

Pose (t)

Mobile Cells (t)

Fig. 4. Grid based perception scheme for mapping and moving objects
detection

B. Grid transformation

To be able to merge data from the SG, one has to
transform the grid support to be spatially compatible with
the MapGrid. This is achieved in two stages. First, the SG
is converted from polar to Cartesian coordinates, then it is
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moved from the sensor frame into the reference frame of
MapGrid. This requires the absolute pose of the vehicle at
time t to be available. Both transformations are achieved
by using bi-linear interpolation methods on each of piece
of evidence of mass functions. In practice, the grid can be
regarded as a multi-channel image, which allows the use of
image processing tools. The result is a credibilist grid called
ScanGrid+ (SG+) and mass function is notedmS+,t.

C. Global map update with the ScanGrid

When a new ScanGrid+ SG+(t) is computed, we fuse it
with the previous MapGrid MG(t-1). Every cell is considered
independent from the others.

The fusion is performed using the Dempster combination
rule, but it is achieved in two steps in order to keep the
conflicting information.

We fuse with a conjunctive rule (Eq. 6) and we store the
empty set massm′ (∅) for a further process. As the fusion
is done element by element across the entire grid, we do not
repeat the indices of the cells:mM,t refers to∀i, j, mMi,j ,t.
Then the empty-set mass is used for normalization (Eq. 7).

m′
M,t = mM,t−1 ∩©mS+,t (6)

{

mM,t (A) =
m′

M,t(A)

1−m′

M,t
(∅) A 6= ∅

mM,t (∅) = 0 A = ∅
(7)

Figure 5 shows the behavior of the mass function of one
cell belongs to the MG along the process composed of six
situations.

In the first step, the MG cell, initialized with the vacuous
mass, converges to a free state according to the SG+. Then
during step 2, since no change occurs, it remains stable. Step
3 is the beginning of a change in the SG+ fromF to O. Two
contradictory pieces of information create a part of conflict,
the other part of the mass remains onF . When SG+ remains
on the same state, it forces the MG to change fromF to O as
shown by step 4. The following steps 5 and 6 do the inverse
process.

D. Mobile object detection

If MG and SG+ contradicts themselves conflict occurs. A
mobile object detection is done by analyzing the conflicting
mass. This mass is computed by:

m′
M,t (∅) = mM,t−1 (O) .mS+,t(F )+mM,t−1 (F ) .mS+,t(O)

It is composed of two different parts.
• The termmM,t−1 (F ) .mS+,t(O) represents the conflict

produced by the fusion of an occupied cell of the SG+
with a free cell of the MG. This can occur when a
moving object appears in the cell.

• The termmM,t−1 (O) .mS+,t(F ) represents the conflict
produced by the fusion of a free cell of the SG+ with
an occupied cell of the MG. This can occur when a
moving object leaves the cell.

It may be noted that the conflict is generated for a short time,
because if an object remains in a new cell, it will gradually
change the MG and will be considered as static.
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Fig. 5. Simulation of the evolution of the mass functions. Top figure:
simulated ScanGrid+ detection. Center figure: result of theconjunctive
combination. Bottom figure: result of Dempster’s rule.

V. EXPERIMENTAL RESULTS

The presented algorithm was tested on a data-set acquired
with an equipped vehicle in urban conditions and was com-
pared to another approach based on accumulation operators
[22]. The data-set is a 20-minutes long sequence, acquired
in collaboration with the French Geographic Institute (IGN)
in Paris. The vehicle (left Fig. 6) follows a reference track
(Right Fig. 6) repeated 3 times. The results presented were
conducted during the first loop.

Fig. 6. Left: the test vehicle with the lidar sensor in front.Right: the track
followed by the vehicle

Two sensors were used: Lidar ALASCA XT and Applanix
positioning system. To synchronize the data, time stamps
in GPS time were used. The lidar was installed to have its
lowest layer horizontally: if we assume a low pitch, the floor
was not detected by lidar. The lidar frequency was 15 Hz
with a maximum angular resolution of 0.25° in the vehicle
front and 1° on the sides. The Applanix positioning data was
post-processed in order to provide a precise pose. A camera
was installed just below the lidar located on the front bumper.
Images were not processed, they were just used for validation
and visualization of the scene.
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The SG reaches a distance of 100 m with a 180° angular
aperture and a resolution of 0.5 m x 1° angle. MG covers an
area of 800m x 700m with a resolution of 0.5m x 0.5m.

An offline implementation of the algorithm has been
developed with Matlab and a real time version ( C++ ) is
under development.

The coefficientsλF and λo have been set at 0.5 and
the detection threshold on the conflict for mobile objects
detection at 0.1.

Fig. 7. Result of an accumulation mapping, black refers to occupied cells,
gray refers to the road space provided by IGN

Fig. 8. Result of the credibilist mapping, black refers to occupied cells,
gray refers to the road space provided by IGN

Static environment mapping:Figure 7 draws the map-
ping results of a previously implemented method based on
accumulation [22]. Figure 8 draws the mapping results of the
credibilist method in the same conditions. The mapping was
performed in real traffic condition, i.e. with the presence of
many cars and pedestrians. In order to evaluate the quality
of the mapping, we use a map of road space provided
by IGN (Fig. 7,8: gray cells). The black cells outside the

gray area represent the building. They are mapped in the
same way with both methods. The accumulation approach
presents many occupied cells scattered on the free space.
This phenomenas are due to moving objects. The credibilist
framework is less affected because this approach offers a
better management of the moving objects. Indeed, the con-
flict analysis allows the detection of moving objects without
mapping them. So, the updating mechanism performs a filter
rejecting moving objects and outliers measurements while
taking advantage of redundancy. The accumulation scheme
adds mobile objects into the map and clean them when they
leave the place. If one object is not observed when it leaves
a cell, this cell remains occupied.

Moving object detection:Figure 9 illustrates results
of both method to detect mobile objects during a small
sequence. This sequence shows two cars passing in front
of the ego-vehicle from the right then a truck crossing from
the left. As there is no clustering, the vehicle was manually
circled with the same color on the camera frame and on
the maps in order to identify them. Maps are displayed in
global frame (MG) and give a bird view of the scene. The
ego-vehicle is represented by the yellow triangle looking at
the top left side.

First, let focus on the accumulation approach (middle plots
on each step). On this sequence, it presents poor results.
Indeed, for each vehicle, even if the front is partially detected
as mobile (green cells), they are mostly miss classified (blue
cells refer to static objects). We can also see that mobile
objects were propagated into the map during such a time
(for example: black cells on the truck). The results may be
made better by tuning the classification threshold, but this
will create false alarms on real static elements classified as
mobile.

The credibilist approach (low plot on each step) shows
correct classification on each vehicle. Mobile objects don’t
remain enough time on the cells to change the map. The
main drawback of the method is the false alarms on static
objects due to the map transformation and on free space
due to outliers measurement. We can notice that with both
methods, objects moving in masked area are directly mapped
and not classified (cluster of occupied cells in top right for
example). Finally, one can conclude that the analysis of the
conflict improves greatly the performance.

VI. CONCLUSION

This paper has presented a perception fusion scheme
based on both local and global grid interactions. The main
contribution of this work has been to develop and test a
credibilist fusion approach which provides the navigation
space, the mobile obstacles and the static objects. Experi-
mental results reported here illustrate the good performance
of such a strategy for detecting mobile objects which is a
crucial stage in perception. A credibilist framework seemsto
be an interesting way to achieve such kind of simultaneous
mapping and moving objects localization using grids. Indeed,
a particular attention can be given to the distinction of total
ignorance with conflict arising from movements in the scene.
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3

1 2

4

Fig. 9. Result of the detection of moving objects, four snapshots of the
sequence. Each snapshot is illustrated by a camera image of the scene and
the local map displaying the moving objects. For the accumulation approach
(middle) the blue refers to static and the green refers to moving. In the
credibilist approach (bottom), green refers tom (∅) , the moving objects.

We have noticed a deep performance improvement compared
to accumulation strategies that are quite difficult to tune and
which often fail to detect large moving objects. Moreover,
this strategy has shown to be very efficient for capturing
pieces of information coming from all the lidar’s echoes
by explicitly giving no occupancy information between the
echoes.

In its current implementation, precise localization is a
prerequisite. One perspective is to analyze how our approach
is robust to a dead-reckoning localization method, using
for instance lidar odometry. Another perspective is to use
another credibilist sensor model able to fuse each sensor

measurement independently.

ACKNOWLEDGMENTS

This work is supported by the French ANR CityVip project. The
system has been tested on sequences recorded by the test platform
“STEREOPOLIS”.

REFERENCES

[1] M. Buehler, K. Iagnemma, and S. Singh, Eds.,The DARPA Urban
Challenge: Autonomous Vehicles in City Traffic, George Air Force
Base, Victorville, California, USA, ser. Springer Tracts in Advanced
Robotics, vol. 56. Springer, 2009.

[2] A. Broggi, L. Bombini, S. Cattani, P. Cerri, and R. Fedriga, “Sensing
requirements for a 13,000 km intercontinental autonomous drive,”
Intelligent Vehicles Symposium (IV), 2010 IEEE, 2010.

[3] M. Himmelsbach, T. Luettel, F. Hecker, F. von Hundelshausen, and
H.-J. Wuensche, “Autonomous off-road navigation for mucar-3,” KI -
KÃijnstliche Intelligenz, pp. 1–5, 2011.

[4] M. Himmelsbach, F. v. Hundelshausen, and H. Wuensche, “Fast
segmentation of 3d point clouds for ground vehicles,” inProc. IEEE
Intelligent Vehicles Symp. (IV), 2010, pp. 560–565.

[5] Y. Zhao, H. Chiba, M. Shibasaki, R. Shao, X. Cui, and J.Zha, “Slam in
a dynamic large outdoor environment using a laser scanner,”in IEEE
Int. Conf. on Robotics and Automation (ICRA), 2008.

[6] S. Thrun, W. Burgard, and D. Fox,Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents), 2001.

[7] W. Y. Jeong and K. M. Lee, “Visual slam with line and corner
features,” inProc. IEEE/RSJ Int Intelligent Robots and Systems Conf,
2006, pp. 2570–2575.

[8] O. Garcia-Favrot and M. Parent, “Laser scanner based slam in real road
and traffic environment,” inIEEE International Conference Robotics
and Automation (ICRA09). Workshop on Safe navigation in open and
dynamic environments Application to autonomous vehicles, 2009.

[9] C. C. Wang, C. Thorpe, S. Thrun, M. Hebert, and H. Durrant-Whyte,
“Simultaneous localization, mapping and moving object tracking,” The
International Journal of Robotics Research, vol. 26, no. 9, pp. 889–
916, September 2007.

[10] Y. Bar-Shalom,Multitarget-Multisensor tracking : Applications and
Andvances. Artech House, 2000.

[11] S. Blackman and R. Popoli,Design and Analysis of Modern Tracking
Systems. Artech House, 1999.

[12] A. Petrovskaya and S. Thrun, “Model based vehicle detection and
tracking for autonomous urban driving,”Auton. Robots, vol. 26, no.
2-3, pp. 123–139, 2009.

[13] F. Fayad and V. Cherfaoui, “Tracking objects using a laser scanner
in driving situation based on modeling target shape,”IEEE Intelligent
Vehicles Symposium, 2007.

[14] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46 – 57, 1989.

[15] C. Coue, C. Pradalier, C. Laugier, T. Fraichard, and P. Bessiere,
“Bayesian occupancy filteing for multitarget tracking : an automotive
application,” International Journal of robotics research, vol. 25, no. 1,
pp. 19–30, 2006.

[16] T. Gindele, S. Brechtel, J. Schröder, and R. Dillmann, “Bayesian
occupancy grid filter for dynamic environments using prior map
knowledge,” Intelligent Vehicles Symposium, 2009 IEEE, 2009.

[17] G. Gate, “Reliable perception of highly changing environments :
Implementations for car-to-pedestrian collision avoidance systems,”
Ph.D. dissertation, Ecole Nationale Superieure Des Mines De Paris,
2009.

[18] D. Pagac, E. M. Nebot, and H.Durrant-Whyte, “An evidential approach
to map-building for autonomous vehicles,”IEEE Transactions on
Robotics and Automation, vol. 14, no. 4, pp. 623–629, 1998.

[19] P. Smets and R. Kennes, “The transferable belief model,” Artificial
Intelligence, vol. 66, pp. 191–234, 1994.

[20] P. Smets, “Analyzing the combination of conflicting belief functions,”
Inf. Fusion, vol. 8, no. 4, pp. 387–412, 2007.

[21] E. Ramasso, M. Rombaut, and D. Pellerin, “State filtering and change
detection using tbm conflict. application to human action recognition
in athletics video.”IEEE transaction on circuits and systems for video
technology (CSVT), vol. 17, no. 7, pp. 944–949, 2007.

[22] J. Moras, V. Cherfaoui, and P. Bonnifait, “A lidar Perception Scheme
for Intelligent Vehicle Navigation,” in11th International Conference
on Control, Automation, Robotics and Vision, Singapore, 12 2010.

ha
l-0

06
15

30
3,

 v
er

si
on

 1
 - 

18
 A

ug
 2

01
1


