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Abstract 
Application outages due to node failures are 
common problems in high performance 
computing. Reliability becomes a major issue, 
especially for long running jobs, as the number 
of compute nodes increase. Support for head 
node failure exists in projects like HA-OSCAR 
[8] and SLURM [9]. However, fault tolerance 
for compute node outages has not been 
effectively tackled. In this paper, we present a 
transparent fault tolerant approach and proof-
of-concept solution that provides the ability to 
detect and self-recover parallel runtime 
environment in cases of compute node failure.  
Our solution aims to address common fault 
tolerance issues in the large scale system, 
especially due to permanent component failure 
in a parallel MPI [5] environment that requires 
a recovery with an exact runtime configuration. 
We proposed a lightweight heartbeat protocol 
(BHB) that addresses the scalability issues in 
system monitoring and failure detection. We also 
introduce  a cloning technique  for our recovery 
framework that essentially recreates an identical 
environment from spare nodes and thereby 
minimizes and controls the length of mean time 
to repair (MTTR) of any node outage. Our 
preliminary experiments show that our protocol 
can reduce overhead over the common approach 
by an order-of-magnitude.  
1. Introduction 

There are two central issues in large 
scale high performance computing (HPC) today. 
The first issue is concerned with the reliability 
for jobs that require large number of nodes and 
are long running. Thus, the reliability is affected 
due to the scalability and possible compute node 

failures. Mean time to repair (MTTR) for 
permanent failures can be significant. Parallel 
MPI jobs normally stall in the case of any node 
failures. If one of the compute node crashes the 
whole MPI application crashes. This happens 
since a typical MPI runtime system represents a 
static view of cooperating machines. Jobs thus 
need to be restarted from scratch on another set 
of compute nodes that has exactly the same 
configuration. One of the most common ways to 
avoid this is to checkpoint and then to restart the 
job from the last checkpoint state. There is a 
caveat however. Most of the checkpoint/restart 
 Mechanisms such as BLCR [14] require the 
exact run time configuration. Moreover, the 
parallel run time environment such as LAM/MPI 
[10] has its peculiarities such as job session 
suffix and its checkpoint files and thus bolstering 
the exact run time configuration condition. This 
complicates the issue of restarting the job 
transparently from the last checkpoint. The issue 
is further exacerbated when required number of 
nodes is not available in the event of any failure. 
The MTTR can vary greatly with the type and 
nature of the failure, thereby making it difficult 
to restart the failed job quickly. The failed job 
recovery time thus becomes a function of the 
MTTR of the failed nodes.  

The other central issue is scalability for 
some important services such as failure detection 
and system monitoring. Current system 
monitoring/failure detection techniques such as 
ganglia [1], clumon [2] tend to be heavyweight 
and consequently become difficult to scale. A 
lightweight mechanism for failure detection is 
thus desirable for tackling the scalability issue in 
large clusters. 



   

 

We discuss about the related research in 
section 2. Section 3 presents algorithm for our 
fault tolerant framework; section 4 entails 
experiment and analysis study as well as 
comparisons followed by conclusion in section 
5. 

 
2.  Related research  
Within the project scope, our main objectives are 
to provide an efficient failure detection 
mechanism and secondly to deal with failed 
compute nodes running MPI environment that 
requires transparent checkpoint/restart 
mechanism.  
Our first goal demands a lightweight approach 
for failure detection, especially in a very large 
scale system. Although there are quite a few 
existing tools for system monitoring, they may 
not be practical and applicable as efficient and 
scalable failure detection for a significant size 
system. Ganglia is a popular system/performance 
monitoring tool for clusters and grids. Clumon is 
a cluster monitoring system which employs SGI 
Performance Copilot (PCP) module [6]. Clumon 
consists of node monitoring daemon PCP, server 
daemon clumond, relational database and web 
portal. Supermon [11] and big brother [21] are 
other similar cluster monitoring systems. These 
tools gather metrics from nodes which normally 
contain performance-related and system health 
data. For example, Ganglia send a packet size of 
36 bytes per node at 60 seconds time interval. 
The network traffic can quickly become 
overwhelming as the number of compute nodes 
increase. Even though, these tools acceptably 
perform for comprehensive system monitoring 
purposes, they are rather heavyweight for failure 
detection purposes.  
In a HPC cluster environment, a head node acts 
as a gateway to the system. An outage at the 
head node renders a single point of failure 
(SPOF).  There are some solutions that tackle the 
head node failure, but only very few that address 
the compute node failure problem, especially for 
MPI applications. Moreover, in downtime 
sensitive or mission critical environment, it is of 
paramount importance that the solution must be 
automatic and transparent from the resource 
manager’s point of view.  
Transparent head-node failure recovery exists in 
projects like HA-OSCAR and SLURM. HA-
OSCAR is an Open source project that provides 
high availability and eliminates the single point 
of failure in a cluster environment. Lawrence 
Livermore National Laboratory SLURM was 
developed with scalability in mind coupled with 
fault tolerance and simplistic management. 
Although, SLURM has an Active/Standby server 

configuration for fault tolerance, it does not 
dictate a redundancy at the head-node like HA-
OSCAR. Thus, it results in SOPF when the head-
node outage occurs.  Furthermore, SLURM 
doesn’t have support for compute node failures 
and address a fault tolerance to running MPI 
applications. Linux-HA [12] is a tool for 
building Highly Available clusters. However, 
Linux-HA only provides a heartbeat and failover 
mechanism for a flat-structure cluster and does 
not provide any support for addressing compute 
node failures, especially in MPI environments. 
Commercial software like Déjà vu [20] exist that 
aims to solve the self restart job fault tolerance 
problem but not open source. 
Numerous checkpoint/restart mechanisms like 
Epckpt [13], BLCR [14], Libckpt [15], and 
CoCheck [16] exist for a process-level solution. 
LAM/MPI [10] provides coordinated 
checkpoint/restart mechanisms based on BLCR. 
However, these mechanisms can not deal with 
transparent restart of the jobs in the event of any 
node failures.  Furthermore, both BLCR and 
LAM/MPI requires exact run time configuration 
to restart the job and HA mechanism outside 
BLCR must exist to create it. Fault tolerant 
enabled MPI such as FT-MPI [17] target issues 
such as process failure on a compute node by re-
spawning/restarting them. However, the FT-MPI 
requires the application developer to include a 
special construct similar to C++ try-catch block 
when a failure event occurs. LA MPI only 
handles network failures and suffers from the 
same problems as in FT-MPI. Open MPI [18] is 
an attempt to bring together forte of all other 
MPI implementations. The fault tolerance 
approach has not been properly carved out as yet.  
Kerrighed [19] uses process migration in the case 
of failure of any process on the compute node. A 
process migration solution is a fine grained 
approach and therefore is not concerned with 
providing an integrated solution with the 
resource manager.  
Our goal is to develop a framework that enables 
and automates the recovery of MPI applications 
and does not require any or minimum 
modifications under the run time system. Our 
mechanism aims to help these checkpoint/restart 
mechanisms to transparently restart the jobs in 
addition to addressing lightweight failure 
detection in the large scale system. Our 
framework is designed to be easily plugged-in 
within a HPC runtime system. In next sections, 
we described the proposed solution, as well as 
our experiment and integration with HA -
OSCAR. 
 



   

 
 
3. Proposed solution 
Our main objective is to provide a low-overhead 
support for node failure detection in a large scale 
system running MPI application that supports 
third party checkpoint/restart mechanism. Our 
proposed solution has two main phases:  

1. To detect the failed node(s) efficiently 
2. To recover from any failure and present 

an environment for a full recovery such 
as job fault tolerance 

Let set C represent monitored nodes in the 
cluster = {C1, C2 …, Cn}, Let set R representing 
corresponding node response set from the 
broadcast request = {R1, R2 …, Rn}, Let set Fail 
represent the nodes that have apparently failed 
but need confirmation = {Fail1, Fail2…Failn} 

1. Detection Phase 
• Select a tunable interval for the 

Broadcast heartbeat (BHB) 
protocol 

• Broadcast BHB to all the nodes in 
C 

• Retrieve the response in R 
• A = C – R 
• If  A = φ  

 Sleep for the tunable interval 
 Goto step 1 

• End If 
• If A  ≠ φ  

• Conf  = A 
• End If 
• Apply point-to-point confirmation 

protocol to the nodes in Conf. 
• Goto step 1 

2. Recovery infrastructure creation phase 
• Select a spare node from the spare   

nodes database 
• If the network configuration file for 

the spare node is found, 
 Clone the spare node with the 
ip. 

• If the network configuration file for 
the spare node is NOT found, 

 Create new conf file and 
transfer to the spare node 

 Configure the spare node to 
clone the failed one 

 Log the failed IP for analysis 
 Allocate the repaired node to 
the spare node’s database. 

Figure 1 algorithm for our framework 

 

The broadcast heartbeat (BHB) mechanism  
Our algorithm is divided into two distinct phases. 
Firstly, in the detection phase, we employ our 
lightweight protocol that relies on the low-
overhead heartbeat broadcast method to send 
heartbeats to all the nodes in the cluster as shown 
in Figure 2(a). The heartbeat rate can be set 
using a tunable interval. A point to point 
confirmation protocol as shown in Figure 3(b) is 
applied to ensure that there are no false alarms. 
The strategy of using point to point (P2P) 
protocol after the broadcast is critical to our goal 
of lightweight failure detection mechanism by 
performing P2P confirmation only for a 
confirmation. This two-phase solution saves 
considerable overhead as detailed in the results 
section. 
Secondly, the recovery phase as shown in Figure 
4 is invoked after detecting the failure of any 
nodes. This phase is responsible for recreating 
the recovery infrastructure and spawning the 
exact runtime configuration on the spare nodes. 
We simplified the task of this phase by pre-
provisioning the cloned spare nodes. The spare 
nodes assume the identity of the failed nodes. 
We conduct our experiment and compare our 
approach vs. existing systems in later section.  
 

 
 Figure 2(a) BHB Protocol 

 

 
Figure 3(b) Confirmation Protocol 
   
 

 



   

 
 Figure 4: Recovery Phase Protocol 

 
4. Results and analysis 
 

Our experiment focuses on overhead 
study among various monitoring mechanisms. 
The following results discuss our findings on the 
failure detection mechanism. Figure 5, Figure 
6, and Figure 7 show the comparison for CPU, 
memory and bandwidth usage, generated by 
experimental study on Ganglia, Clumon, BHB 
protocol and typical heartbeat mechanism. 
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Figure 5: Ganglia, Clumon, BHB and Typical 
heartbeat CPU Load Comparison 

The resource usage was, measured for an 
experimental cluster size of 1 to 8 and the rest 
was synthesized from a performance model. For 
example, the CPU usage was 0.05% for clumon 
and 0.0675% for ganglia. However after another 
node was added, the CPU usage increased by 
another 0.026% for clumon and 0.03 for ganglia. 
When scaled for about hundred nodes, the CPU 
usage for ganglia is about 1.5% more than that 
used by clumon. 
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Figure 6: Ganglia, Clumon, BHB and Typical 
heartbeat Memory usage Comparison 

Similar to CPU usage, memory usage was also 
measured for a cluster size of 1 to 8. The 
memory usage for clumon and ganglia are 
similar for nodes less than 6, but there is a 
difference of 26-30% when graphed for hundred 
nodes. BHB and typical heartbeat almost go 
hand in hand and have little CPU usage and 
memory usage as compared to the heavyweight 
application like ganglia and clumon. 

Network usage of Ganglia, clumon, typical 
heartbeat and Bhb
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Figure 7: Ganglia, Clumon, Typical heartbeat 
and BHB Bandwidth usage Comparison 

The bandwidth usage for ganglia is 36 bytes/sec/ 
node, typical heartbeat is 40 bytes/sec/node and 
that of BHB is 8 bytes/sec/node. The above 
experiments were conducted for a cluster of size 
8 and then the scalability was synthesized based 
on the actual experimental data. 

Packet overhead when numberof nodes in cluster = number 
of nodes in network
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Figure 8: Packet overhead 

From Figure 8 the number of packets in a case 
of point-to-point = 2*N whereas, the number of 
packets generated in case of broadcast is P + 1. 
The advantage of broadcast is amplified when P 

 



   

 

= N and rapidly deteriorates when P becomes 
more than N. The advantage is nullified when N 
= (P + 1) / 2 
 
5. Conclusion 

In this paper, we have presented 
solutions with two main goals, efficient scalable 
failure detection and transparent runtime 
recovery. Firstly, we have demonstrated that our 
failure detection mechanism has considerably 
less overhead than most existing monitoring 
mechanisms. Our recovery infrastructure 
satisfies our main objective of fulfilling the need 
for a fast recovery by recreating exact runtime 
configuration. We also believe that our solution 
can be adapted to augment other MPI runtime 
systems, equipped with a third party 
checkpoint/restart mechanism.  

 
 Last, we have presented an approach 
that creates the necessary environment for 
efficient failure detection and recovery. We also 
have demonstrated the ability of our transparent 
fault tolerant approach in both departments. Our 
results clearly show that our detection 
mechanism has a very low overhead as compared 
to existing monitoring systems. We also took a 
step towards separating functionalities of metrics 
collection and failure detection. 
 
6. References: 

1. “The ganglia distributed monitoring system: 
Design, Implementation, and Experience” 
M.L.Massie, B.N.Chun, D.E.Culler 

2. Clumon cluster monitoring system, 
http://clumon.ncsa.uiuc.edu 

3. M.J. Brim, T.G. Mattson, and S.L.Scott, 
“OSCAR: Open Source Cluster Application 
Resources”, Ottawa Linux Symposium, Ottawa, 
Canada, 2001. 

4.  “Highly Reliable Linux HPC Clusters: Self-
awareness Approach”    C.Leangsuksun, T.Liu, 
Y.Liu, S.L.Scott, R.Libby, I.Haddad, In the 
International Symposium on Parallel and 
Distributed Processing and Applications, Hong 
Kong. 

5. A Message Passing Interface Standard, 
http://www.mpi-forum.org/docs/mpi1-report.pdf 

6. Performance co-pilot website, 
http://oss.sgi.com/projects/pcp/ 

7. “Failure Prediction in Hardware Systems” 
D.Turnbull, N.Alldrin. 

8. Availability Prediction and Modeling of High 
Availability OSCAR Cluster, IEEE Cluster 2003, 
Hong Kong, December 2003. 

9. SLURM: Simple Linux Utility for Resource 
Management. 

 http://www.llnl.gov/linux/slurm/, June 2005.  

10. S. Sankaran, J. M. Squyres, B. Barrett, A. 
Lumsdaine, J. Duell, P. Hargrove, and E. Ro-
man. “The LAM/MPI Checkpoint/Restart 
Framework: System-Initiated Checkpoint.” The 
2003 Los Alamos Computer Science Institute 
Symposium, Santa Fe, NM. October 2003. 

11. Matthew J. Sottile Ronald G. Minnich, 
Supermon: A high-speed cluster monitoring 
system, IEEE International Conference on Cluster 
Computing (CLUSTER'02) 

12. http://www.linux-ha.org/ 
13. http://www.research.rutgers.edu/~edpin/epckpt/ 
14. J. Duell, P. Hargrove, and E. Roman. The Design 

and Implementation of Berkeley Lab’s Linux 
Checkpoint/Restart, 2002. 

15. http://www.cs.utk.edu/~plank/plank/www/libckpt
.html 

16. G. Stellner. CoCheck: Checkpointing and Process 
Migration for MPI. In Proceedings of the 10th 
International ParallelProcessing Symposium, 
Honolulu, HI, 1996. 

17. G. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. 
Bosilca, J. Pjesivac-Grbovic, and J. Dongarra. 
Process fault-tolerance: Semantics, design and 
applications for high performance computing. 
International Journal for High Performance 
Applications and Supercomputing, 2004. 

18.  E. Garbriel, G. Fagg, G. Bosilica, T. Angskun, J. 
J. D. J. Squyres, V. Sahay, P. Kambadur, B. 
Barrett, A. Lumsdaine,R. Castain, D. Daniel, R. 
Graham, and T. Woodall. Open MPI: Goals, 
Concept, and Design of a Next Generation MPI 
Implementation. In Proceedings, 11th European 
PVM/MPI Users’ Group Meeting, 2004. 

19. Christine Morin, Renaud Lottiaux, Geoffroy 
Valle, Pascal Gallard, David Margery, Jean-Yves 
Berthou, and Isaac Scherson. Kerrighed and data 
parallelism: Cluster computing on single system 
image operating systems. In Proceedings of 
Cluster 2004. IEEE, September 2004. 

20. http://www.csrl.cs.vt.edu/dejavu.html 
21. http://www.quest.com/bigbrother/ 
 
 
 
 
 
 

http://clumon.ncsa.uiuc.edu/
http://www.mpi-forum.org/docs/mpi1-report.pdf
http://oss.sgi.com/projects/pcp/
http://www.linux-ha.org/
http://www.research.rutgers.edu/~edpin/epckpt/
http://www.cs.utk.edu/~plank/plank/www/libckpt.html
http://www.cs.utk.edu/~plank/plank/www/libckpt.html
http://www.csrl.cs.vt.edu/dejavu.html
http://www.quest.com/bigbrother/

	Go Back

