

Toward efficient failure detection and recovery in HPC

Sunil Rani1, Chokchai Leangsuksun1, Anand Tikotekar1, Vishal Rampure1

Stephen L. Scott2, Richard Libby3

1Computer Science Department, Louisiana Tech University
Ruston, LA 71272, USA

2Computer Science and Mathematics Division, Oak Ridge National Laboratory
Oak Ridge, TN 37831, USA

³ HPC Technical Marketing Engineer Digital Enterprise Group, Intel Corporation

1{ssr011, box, aat007,vdr003}@latech.edu, 2scottsl@ornl.gov,3richard.m.libby@intel.com

1 Research supported by the Department of Energy Grant no: DE-FG02-05ER25659.
2 Research supported by the Mathematics, Information and Computational Sciences Office, Office of Advanced Scientific Computing
Research, Office of Science, U. S. Department of Energy, under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

Abstract
Application outages due to node failures are
common problems in high performance
computing. Reliability becomes a major issue,
especially for long running jobs, as the number
of compute nodes increase. Support for head
node failure exists in projects like HA-OSCAR
[8] and SLURM [9]. However, fault tolerance
for compute node outages has not been
effectively tackled. In this paper, we present a
transparent fault tolerant approach and proof-
of-concept solution that provides the ability to
detect and self-recover parallel runtime
environment in cases of compute node failure.
Our solution aims to address common fault
tolerance issues in the large scale system,
especially due to permanent component failure
in a parallel MPI [5] environment that requires
a recovery with an exact runtime configuration.
We proposed a lightweight heartbeat protocol
(BHB) that addresses the scalability issues in
system monitoring and failure detection. We also
introduce a cloning technique for our recovery
framework that essentially recreates an identical
environment from spare nodes and thereby
minimizes and controls the length of mean time
to repair (MTTR) of any node outage. Our
preliminary experiments show that our protocol
can reduce overhead over the common approach
by an order-of-magnitude.
1. Introduction

There are two central issues in large
scale high performance computing (HPC) today.
The first issue is concerned with the reliability
for jobs that require large number of nodes and
are long running. Thus, the reliability is affected
due to the scalability and possible compute node

failures. Mean time to repair (MTTR) for
permanent failures can be significant. Parallel
MPI jobs normally stall in the case of any node
failures. If one of the compute node crashes the
whole MPI application crashes. This happens
since a typical MPI runtime system represents a
static view of cooperating machines. Jobs thus
need to be restarted from scratch on another set
of compute nodes that has exactly the same
configuration. One of the most common ways to
avoid this is to checkpoint and then to restart the
job from the last checkpoint state. There is a
caveat however. Most of the checkpoint/restart
 Mechanisms such as BLCR [14] require the
exact run time configuration. Moreover, the
parallel run time environment such as LAM/MPI
[10] has its peculiarities such as job session
suffix and its checkpoint files and thus bolstering
the exact run time configuration condition. This
complicates the issue of restarting the job
transparently from the last checkpoint. The issue
is further exacerbated when required number of
nodes is not available in the event of any failure.
The MTTR can vary greatly with the type and
nature of the failure, thereby making it difficult
to restart the failed job quickly. The failed job
recovery time thus becomes a function of the
MTTR of the failed nodes.

The other central issue is scalability for
some important services such as failure detection
and system monitoring. Current system
monitoring/failure detection techniques such as
ganglia [1], clumon [2] tend to be heavyweight
and consequently become difficult to scale. A
lightweight mechanism for failure detection is
thus desirable for tackling the scalability issue in
large clusters.

We discuss about the related research in
section 2. Section 3 presents algorithm for our
fault tolerant framework; section 4 entails
experiment and analysis study as well as
comparisons followed by conclusion in section
5.

2. Related research
Within the project scope, our main objectives are
to provide an efficient failure detection
mechanism and secondly to deal with failed
compute nodes running MPI environment that
requires transparent checkpoint/restart
mechanism.
Our first goal demands a lightweight approach
for failure detection, especially in a very large
scale system. Although there are quite a few
existing tools for system monitoring, they may
not be practical and applicable as efficient and
scalable failure detection for a significant size
system. Ganglia is a popular system/performance
monitoring tool for clusters and grids. Clumon is
a cluster monitoring system which employs SGI
Performance Copilot (PCP) module [6]. Clumon
consists of node monitoring daemon PCP, server
daemon clumond, relational database and web
portal. Supermon [11] and big brother [21] are
other similar cluster monitoring systems. These
tools gather metrics from nodes which normally
contain performance-related and system health
data. For example, Ganglia send a packet size of
36 bytes per node at 60 seconds time interval.
The network traffic can quickly become
overwhelming as the number of compute nodes
increase. Even though, these tools acceptably
perform for comprehensive system monitoring
purposes, they are rather heavyweight for failure
detection purposes.
In a HPC cluster environment, a head node acts
as a gateway to the system. An outage at the
head node renders a single point of failure
(SPOF). There are some solutions that tackle the
head node failure, but only very few that address
the compute node failure problem, especially for
MPI applications. Moreover, in downtime
sensitive or mission critical environment, it is of
paramount importance that the solution must be
automatic and transparent from the resource
manager’s point of view.
Transparent head-node failure recovery exists in
projects like HA-OSCAR and SLURM. HA-
OSCAR is an Open source project that provides
high availability and eliminates the single point
of failure in a cluster environment. Lawrence
Livermore National Laboratory SLURM was
developed with scalability in mind coupled with
fault tolerance and simplistic management.
Although, SLURM has an Active/Standby server

configuration for fault tolerance, it does not
dictate a redundancy at the head-node like HA-
OSCAR. Thus, it results in SOPF when the head-
node outage occurs. Furthermore, SLURM
doesn’t have support for compute node failures
and address a fault tolerance to running MPI
applications. Linux-HA [12] is a tool for
building Highly Available clusters. However,
Linux-HA only provides a heartbeat and failover
mechanism for a flat-structure cluster and does
not provide any support for addressing compute
node failures, especially in MPI environments.
Commercial software like Déjà vu [20] exist that
aims to solve the self restart job fault tolerance
problem but not open source.
Numerous checkpoint/restart mechanisms like
Epckpt [13], BLCR [14], Libckpt [15], and
CoCheck [16] exist for a process-level solution.
LAM/MPI [10] provides coordinated
checkpoint/restart mechanisms based on BLCR.
However, these mechanisms can not deal with
transparent restart of the jobs in the event of any
node failures. Furthermore, both BLCR and
LAM/MPI requires exact run time configuration
to restart the job and HA mechanism outside
BLCR must exist to create it. Fault tolerant
enabled MPI such as FT-MPI [17] target issues
such as process failure on a compute node by re-
spawning/restarting them. However, the FT-MPI
requires the application developer to include a
special construct similar to C++ try-catch block
when a failure event occurs. LA MPI only
handles network failures and suffers from the
same problems as in FT-MPI. Open MPI [18] is
an attempt to bring together forte of all other
MPI implementations. The fault tolerance
approach has not been properly carved out as yet.
Kerrighed [19] uses process migration in the case
of failure of any process on the compute node. A
process migration solution is a fine grained
approach and therefore is not concerned with
providing an integrated solution with the
resource manager.
Our goal is to develop a framework that enables
and automates the recovery of MPI applications
and does not require any or minimum
modifications under the run time system. Our
mechanism aims to help these checkpoint/restart
mechanisms to transparently restart the jobs in
addition to addressing lightweight failure
detection in the large scale system. Our
framework is designed to be easily plugged-in
within a HPC runtime system. In next sections,
we described the proposed solution, as well as
our experiment and integration with HA -
OSCAR.

3. Proposed solution
Our main objective is to provide a low-overhead
support for node failure detection in a large scale
system running MPI application that supports
third party checkpoint/restart mechanism. Our
proposed solution has two main phases:

1. To detect the failed node(s) efficiently
2. To recover from any failure and present

an environment for a full recovery such
as job fault tolerance

Let set C represent monitored nodes in the
cluster = {C1, C2 …, Cn}, Let set R representing
corresponding node response set from the
broadcast request = {R1, R2 …, Rn}, Let set Fail
represent the nodes that have apparently failed
but need confirmation = {Fail1, Fail2…Failn}

1. Detection Phase
• Select a tunable interval for the

Broadcast heartbeat (BHB)
protocol

• Broadcast BHB to all the nodes in
C

• Retrieve the response in R
• A = C – R
• If A = φ

 Sleep for the tunable interval
 Goto step 1

• End If
• If A ≠ φ

• Conf = A
• End If
• Apply point-to-point confirmation

protocol to the nodes in Conf.
• Goto step 1

2. Recovery infrastructure creation phase
• Select a spare node from the spare

nodes database
• If the network configuration file for

the spare node is found,
 Clone the spare node with the
ip.

• If the network configuration file for
the spare node is NOT found,

 Create new conf file and
transfer to the spare node

 Configure the spare node to
clone the failed one

 Log the failed IP for analysis
 Allocate the repaired node to
the spare node’s database.

Figure 1 algorithm for our framework

The broadcast heartbeat (BHB) mechanism
Our algorithm is divided into two distinct phases.
Firstly, in the detection phase, we employ our
lightweight protocol that relies on the low-
overhead heartbeat broadcast method to send
heartbeats to all the nodes in the cluster as shown
in Figure 2(a). The heartbeat rate can be set
using a tunable interval. A point to point
confirmation protocol as shown in Figure 3(b) is
applied to ensure that there are no false alarms.
The strategy of using point to point (P2P)
protocol after the broadcast is critical to our goal
of lightweight failure detection mechanism by
performing P2P confirmation only for a
confirmation. This two-phase solution saves
considerable overhead as detailed in the results
section.
Secondly, the recovery phase as shown in Figure
4 is invoked after detecting the failure of any
nodes. This phase is responsible for recreating
the recovery infrastructure and spawning the
exact runtime configuration on the spare nodes.
We simplified the task of this phase by pre-
provisioning the cloned spare nodes. The spare
nodes assume the identity of the failed nodes.
We conduct our experiment and compare our
approach vs. existing systems in later section.

 Figure 2(a) BHB Protocol

Figure 3(b) Confirmation Protocol

 Figure 4: Recovery Phase Protocol

4. Results and analysis

Our experiment focuses on overhead
study among various monitoring mechanisms.
The following results discuss our findings on the
failure detection mechanism. Figure 5, Figure
6, and Figure 7 show the comparison for CPU,
memory and bandwidth usage, generated by
experimental study on Ganglia, Clumon, BHB
protocol and typical heartbeat mechanism.

CPU usage comparison

0
1
2
3

4
5
6
7

1 10 20 30 40 50 60 70 80 90 100

Number of nodes

%
 c

pu
 u

sa
ge Ganglia

Clumon
Typical heartbeat
Bhb

Figure 5: Ganglia, Clumon, BHB and Typical
heartbeat CPU Load Comparison

The resource usage was, measured for an
experimental cluster size of 1 to 8 and the rest
was synthesized from a performance model. For
example, the CPU usage was 0.05% for clumon
and 0.0675% for ganglia. However after another
node was added, the CPU usage increased by
another 0.026% for clumon and 0.03 for ganglia.
When scaled for about hundred nodes, the CPU
usage for ganglia is about 1.5% more than that
used by clumon.

Memory usage comparison

0

10

20

30

40

50

1 10 20 30 40 50 60 70 80 90 10
0

number of nodes

%
 m

em
or

y
us

ag
e

Ganglia
Clumon
Typical heartbeat
Bhb

Figure 6: Ganglia, Clumon, BHB and Typical
heartbeat Memory usage Comparison

Similar to CPU usage, memory usage was also
measured for a cluster size of 1 to 8. The
memory usage for clumon and ganglia are
similar for nodes less than 6, but there is a
difference of 26-30% when graphed for hundred
nodes. BHB and typical heartbeat almost go
hand in hand and have little CPU usage and
memory usage as compared to the heavyweight
application like ganglia and clumon.

Network usage of Ganglia, clumon, typical
heartbeat and Bhb

0

1000

2000

3000

4000

5000
1 10 20 30 40 50 60 70 80 90 10
0

Number of nodes

By
te

s
pe

r s
ec

on
d

Ganglia
Clumon
Typical heartbeat
Bhb

Figure 7: Ganglia, Clumon, Typical heartbeat
and BHB Bandwidth usage Comparison

The bandwidth usage for ganglia is 36 bytes/sec/
node, typical heartbeat is 40 bytes/sec/node and
that of BHB is 8 bytes/sec/node. The above
experiments were conducted for a cluster of size
8 and then the scalability was synthesized based
on the actual experimental data.

Packet overhead when numberof nodes in cluster = number
of nodes in network

0

10

20

30

40

50

60

5 10 15 20 25

Num ber of nodes in the cluster

N
um

be
r o

f p
ac

ke
ts

ge

ne
ra

te
d

Braodcast

point-to-point

Figure 8: Packet overhead

From Figure 8 the number of packets in a case
of point-to-point = 2*N whereas, the number of
packets generated in case of broadcast is P + 1.
The advantage of broadcast is amplified when P

= N and rapidly deteriorates when P becomes
more than N. The advantage is nullified when N
= (P + 1) / 2

5. Conclusion

In this paper, we have presented
solutions with two main goals, efficient scalable
failure detection and transparent runtime
recovery. Firstly, we have demonstrated that our
failure detection mechanism has considerably
less overhead than most existing monitoring
mechanisms. Our recovery infrastructure
satisfies our main objective of fulfilling the need
for a fast recovery by recreating exact runtime
configuration. We also believe that our solution
can be adapted to augment other MPI runtime
systems, equipped with a third party
checkpoint/restart mechanism.

 Last, we have presented an approach
that creates the necessary environment for
efficient failure detection and recovery. We also
have demonstrated the ability of our transparent
fault tolerant approach in both departments. Our
results clearly show that our detection
mechanism has a very low overhead as compared
to existing monitoring systems. We also took a
step towards separating functionalities of metrics
collection and failure detection.

6. References:

1. “The ganglia distributed monitoring system:
Design, Implementation, and Experience”
M.L.Massie, B.N.Chun, D.E.Culler

2. Clumon cluster monitoring system,
http://clumon.ncsa.uiuc.edu

3. M.J. Brim, T.G. Mattson, and S.L.Scott,
“OSCAR: Open Source Cluster Application
Resources”, Ottawa Linux Symposium, Ottawa,
Canada, 2001.

4. “Highly Reliable Linux HPC Clusters: Self-
awareness Approach” C.Leangsuksun, T.Liu,
Y.Liu, S.L.Scott, R.Libby, I.Haddad, In the
International Symposium on Parallel and
Distributed Processing and Applications, Hong
Kong.

5. A Message Passing Interface Standard,
http://www.mpi-forum.org/docs/mpi1-report.pdf

6. Performance co-pilot website,
http://oss.sgi.com/projects/pcp/

7. “Failure Prediction in Hardware Systems”
D.Turnbull, N.Alldrin.

8. Availability Prediction and Modeling of High
Availability OSCAR Cluster, IEEE Cluster 2003,
Hong Kong, December 2003.

9. SLURM: Simple Linux Utility for Resource
Management.

 http://www.llnl.gov/linux/slurm/, June 2005.

10. S. Sankaran, J. M. Squyres, B. Barrett, A.
Lumsdaine, J. Duell, P. Hargrove, and E. Ro-
man. “The LAM/MPI Checkpoint/Restart
Framework: System-Initiated Checkpoint.” The
2003 Los Alamos Computer Science Institute
Symposium, Santa Fe, NM. October 2003.

11. Matthew J. Sottile Ronald G. Minnich,
Supermon: A high-speed cluster monitoring
system, IEEE International Conference on Cluster
Computing (CLUSTER'02)

12. http://www.linux-ha.org/
13. http://www.research.rutgers.edu/~edpin/epckpt/
14. J. Duell, P. Hargrove, and E. Roman. The Design

and Implementation of Berkeley Lab’s Linux
Checkpoint/Restart, 2002.

15. http://www.cs.utk.edu/~plank/plank/www/libckpt
.html

16. G. Stellner. CoCheck: Checkpointing and Process
Migration for MPI. In Proceedings of the 10th
International ParallelProcessing Symposium,
Honolulu, HI, 1996.

17. G. Fagg, E. Gabriel, Z. Chen, T. Angskun, G.
Bosilca, J. Pjesivac-Grbovic, and J. Dongarra.
Process fault-tolerance: Semantics, design and
applications for high performance computing.
International Journal for High Performance
Applications and Supercomputing, 2004.

18. E. Garbriel, G. Fagg, G. Bosilica, T. Angskun, J.
J. D. J. Squyres, V. Sahay, P. Kambadur, B.
Barrett, A. Lumsdaine,R. Castain, D. Daniel, R.
Graham, and T. Woodall. Open MPI: Goals,
Concept, and Design of a Next Generation MPI
Implementation. In Proceedings, 11th European
PVM/MPI Users’ Group Meeting, 2004.

19. Christine Morin, Renaud Lottiaux, Geoffroy
Valle, Pascal Gallard, David Margery, Jean-Yves
Berthou, and Isaac Scherson. Kerrighed and data
parallelism: Cluster computing on single system
image operating systems. In Proceedings of
Cluster 2004. IEEE, September 2004.

20. http://www.csrl.cs.vt.edu/dejavu.html
21. http://www.quest.com/bigbrother/

http://clumon.ncsa.uiuc.edu/
http://www.mpi-forum.org/docs/mpi1-report.pdf
http://oss.sgi.com/projects/pcp/
http://www.linux-ha.org/
http://www.research.rutgers.edu/~edpin/epckpt/
http://www.cs.utk.edu/~plank/plank/www/libckpt.html
http://www.cs.utk.edu/~plank/plank/www/libckpt.html
http://www.csrl.cs.vt.edu/dejavu.html
http://www.quest.com/bigbrother/

	Go Back

