
JaBEE - Framework for Object-oriented Java Bytecode
Compilation and Execution on Graphics Processor Units

Wojciech Zaremba
Jacques-Louis Lions Laboratory
woj.zaremba [at] gmail.com

Yuan Lin
NVIDIA Corporation
yulin [at] nvidia.com

Vinod Grover
NVIDIA Corporation
vgrover [at] nvidia.com

Abstract
There is an increasing interest from software developers in
executing Java and .NET bytecode programs on General
Purpose Graphics Processor Units (GPGPUs). Existing so-
lutions have limited support for operations on objects and
often require explicit handling of memory transfers between
CPU and GPU. In this paper, we describe a Java Bytecode
Execution Environment (JaBEE) which supports common
object-oriented constructs such as dynamic dispatch, encap-
sulation and object creation on GPUs. This experimental en-
vironment facilitates GPU code compilation, execution and
transparent memory management. We compare the perfor-
mance of our approach with CPU-based and CUDA-C-based
code executions of the same programs. We discuss chal-
lenges, limitations and opportunities of bytecode execution
on GPGPUs.

Categories and Subject Descriptors D.3.2 [Language
Classifications]: Object-oriented languages, Concurrent,
distributed, and parallel languages; D.3.4 [Processors]:
Compilers, Run-time environments

General Terms Languages, Performance

Keywords Java, bytecode, PTX, compilation, translation,
virtual table, embedded language, CUDA, VMKit, SIMD,
dynamic compilation

1. Introduction
Graphics Processing Unit (GPU) based parallel computing
offers a significant performance improvement for many of
the computational tasks in comparison to the traditional
CPU-based computing. The performance increases from
five up to even fifteen times are common, when compar-
ing with the modern CPUs [1, 15]. Major GPU vendors such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPGPU-5 March 03 2012, London, United Kingdom
Copyright c© 2012 ACM 978-1-4503-1233-2/12/03. . . $10.00

as NVIDIA have designed their own programming envi-
ronments for GPU-based computing such as CUDA ([18])
and OpenCL([10]). A number of approaches already ex-
ist enabling GPU-based code execution from the high-level
programming languages (e.g., [4, 5, 13, 14, 19]).

This paper presents JaBEE (Java bytecode execution en-
vironment) which is an experimental environment support-
ing GPU-based execution of Java programs by facilitat-
ing their GPU-centric compilation and transparent memory
management. Our aim is to understand challenges, limita-
tions and opportunities associated with running bytecode
languages on the General-Purpose computation on Graph-
ics Processing Units (GPGPU). The main difference and
contribution of the presented research, which distinguishes
JaBEE from existing similar solutions, is the support for
object oriented constructs. Projects OpenCL [10], JCuda
[21], JavaCL1 do not allow for any operations on the objects
processed on the device side. Aparapi2 provides a mecha-
nism for access to object fields on the device, but not allow
method calls on an object. CUDA [18] does not allow pass-
ing objects with virtual functions between the host’s and the
device’s environment. JaBEE is able to perform the follow-
ing operations on a GPU:

• Object creation
• Dynamic dispatch
• Passing objects between a host and a device

We describe main components of our system in section 2,
followed by section 3 where we show an example program
that computes Julia set. We then describe the compilation
process in section 4 and the data management in section
5. In section 6, we compare performance results among
different frameworks: (1) CPU-based Java virtual machine
code execution, (2) GPU-based Java byte code execution and
(3) GPU-based CUDA code execution. We discuss related
work in the section 7. Finally, we discuss future work and
highlight our contribution with respect to other approaches.

1 http://code.google.com/p/javacl
2 http://code.google.com/p/aparapi/

Figure 1: System architecture

The appendix presents a sample code fragment showing the
transformation between various phases.

2. JaBEE Architecture
JaBEE architecture is based on a hybrid model allowing se-
lective bytecode execution on both CPU and GPU. Building
a complete JVM that executes all bytecode on GPU is cur-
rently out of the scope of this research. JaBEE system con-
sists of three main components:

1. A base Java class called GPUKernel, which provides Java
interface for GPU code execution (see section 3)

2. An online compiler that selectively compiles Java byte-
code to the GPU code (see section 4)

3. A memory management system, which transfers data be-
tween CPU and GPU (see section 5)

Figure 1 presents an overview of the system architecture.
A JaBEE execution is initiated by an incoming call from

a Java code requesting to perform GPU kernel execution.
The control is passed first to the GPUKernel object, which
is a Java class instance providing an interface for GPU code
execution and validation of correctness of a kernel launch
request. The GPUKernel passes control further to the native
code. The system collects necessary information from the
native code, by creating a collection of dependent classes re-
quired for compilation, it validates variables names and cre-
ates maps of pointers, all of which are needed during further
phases of the execution process. Then the control is further
passed to the Compilation Unit, which compiles a bytecode
to a GPU assembly code (this step is optional as a code might
be already compiled, when passed to this stage). The control
goes next to Memory management unit, which copies all the

necessary data to GPU and adjusts pointers through chang-
ing CPU RAM pointers to GPU RAM pointers. As one of
the last steps of the execution process, GPU kernel is get-
ting executed. Finally, after GPU kernel execution, memory
is copied back by Memory management unit and control re-
turns back to Java code.

2.1 VMKit - Framework for building virtual machines
JaBEE is built on top of VMKit3 ([8, 9]) which is a substrate
that supports building custom virtual machines. VMKit cur-
rently has a decent implementation of a JVM called J3. It
uses LLVM for compiling and optimizing high-level lan-
guages to machine code. VMKit supports three modes of
code execution: (1) Ahead-of-time compilation, (2) Code in-
terpretation and (3) Just-in-time compilation. In the Ahead-
of-time compilation mode, it can generate LLVM IR files
which after linking against Java core libraries and native
code generation become executable.

We select VMKit as the backbone for our JaBEE project
for practical reasons. VMKit is open source. It supplies a
Java bytecode-to-LLVM IR compiler which JaBEE uses as
the front-end for its online GPU compiler. JaBEE use J3 as
the JVM for bytecode execution on CPU.

3. Core Execution - GPUKernel
GPUKernel is a Java class, which acts as an interface for
GPU code execution. Here we uses a simple example to
show how GPUKernel serves as a ’bridge’ between the CPU
code execution and the GPU code execution. The program
in Listing 1 calculates Julia fractal set, which is a two-
dimensional picture where each pixel is defined based on
convergence or divergence of a corresponding sequence of
complex numbers. The main part of the program requires
considerable computational power and is executed on a
GPU. All that a programmer has to do is extend the class
GPUKernel (see line 1) to enable GPU-based code execu-
tion. GPUKernel is an abstract Java class, which contains
two methods:

• run - an abstract method whose implementation must be
provided in a subclass

• start - a final method which is implemented in GPUKer-
nel

Method run is abstract and must be implemented by a
subclass of GPUKernel. The code in the run method cor-
responds to the code executed on a GPU (a GPU kernel in
CUDA terminology). The code contained in run method is
executed in parallel by multiple GPU threads. Any call to
other methods, called from run method, is also executed on
a GPU. Another way of thinking about run method is to treat
it by analogy to run method in classes extending Thread.

3 http://vmkit.llvm.org/

1 public class Julia extends GPUKernel {

2
3 static Complex c=new Complex (-0.8, 0.156);

4 static int DIM =1000;

5 byte tab []=new byte[DIM*DIM];

6
7 byte julia(int x, int y) {

8 double jx=(double)(DIM/2-x)/(DIM /2);

9 double jy=(double)(DIM/2-y)/(DIM /2);

10 Complex a=new Complex(jx, jy);

11 for (int i=0;i<255;i++) {

12 if (a.mul(a).add(c).magnitude2 () >

1000)

13 return i;

14 }

15 return 255;

16 }

17
18 public void run() {

19 int i=BlockId.x+BlockId.y*GridSize.x;

20 tab[i]=julia(BlockId.x, BlockId.y);

21 }

22
23 public static void main(String [] args) {

24 Julia m=new Julia ();

25 m.start(new Dim(DIM , DIM), new Dim());

26 }

27 }

Listing 1. Program O - Julia set computation

Method start launches kernel execution on GPU. Argu-
ments of the start method specifies the number of threads
used to execute the kernel. These threads work in groups,
which are called blocks. A grid element is comprised of
multiple blocks. Size of a block can be defined not only as
a single number, but also as a size of a rectangle or as a
size of cuboid of threads. In such cases, threads will carry
IDs which corresponds to their position within a workload.
Method start in Julia example is shown at line 25 of listing
1. It launches kernel with a grid of size DIM x DIM blocks,
and each block contains just one thread.

A major difference, which distinguishes JaBEE from
Aparapi and GPU.NET4, is its support for object operations.
JaBEE can create objects inside of a GPU kernel. There is
the object of a class Complex created in line 10, which is
fully functional on GPU. Object c in line 3 is allocated on
CPU and is used in the kernel in line 12. A JaBEE’s GPU
kernel can an object’s virtual methods and can pass objects
as arguments - regardless of whether the object is allocated
on GPU or on CPU. For example, object c is allocated on
CPU and in line 12 and is passed as an argument to method
add. Dynamic dispatching is also supported within GPU
kernel. Method mul is called in line 12 for object a which is
allocated on GPU.

4 http://www.tidepowerd.com/

Figure 2: The flow of a compilation

4. Compilation
JaBEE performs on-line code compilation during runtime
of an application. The compilation is done in two stages.
First, the system transforms bytecode to LLVM IR using a
modified Java bytecode compiler provided by VMKit. Then
the LLVM IR is compiled into PTX ([17]), which is a virtual
compute ISA for NVIDIA GPUs.

4.1 The Flow of a Compilation Process
The compilation flow is presented in Figure 2. During
the first phase JaBEE system compiles Java bytecode into
LLVM IR code. The generated LLVM IR code contains
proper GPU specific address spaces and references GPU
specific objects and methods.

JaBEE system links the generated LLVM IR code with a
library that implements basic math functions and GPU spe-
cific methods using the LLVM linker llvm-ld. The linked
code now is self-sufficient and does not have external ref-
erences. JaBEE then passes the linked code to a NVIDIA
implemented LLVM-IR-to-PTX compiler, which is respon-
sible for generating the PTX code. The PTX code is ready to
execute on a GPU.

VMKit J3 allows JNI methods to access internal data
structures and call methods of a Virtual Machine. JaBEE
compiles only a subset of classes that are loaded at the time

when the JNI call is made. JaBEE exploits access to J3’s in-
ternal structures and can find loaded classes that need to
be compiled in this step. Currently the JaBEE compiler
and the virtual machines are two independent processes
which do not share memory. All bytecode scheduled for
compilation must be read directly from a file system. For
the sake of implementation simplicity, JaBEE reads only
these classes that are stored relatively to one root direc-
tory. For example, if JaBEE is requested to compile class
a.b.Foo it will only attempt to read bytecode for this class
from <root dir>/a/b/Foo.class location. Compiler does not
search entire application’s classpath (JAR files). Classes
from a standard library, JAR files and other classes which
are not stored under the root directory cannot be used on
GPU. This technical limitation is an implementation detail
that can be easily mitigated in the future, e.g., by having the
same process shared by Compiler Unit and other parts of the
system.

4.2 J3 Specific Data Layout
JaBEE uses J3 as the JVM for bytecode execution on CPU.
We initially wanted to make JaBEE VM-agnostic, meaning
that Java code could be executed on any Java VM (e.g.,
Oracle’s JVM or Kaffe). However, as our work of adding
support for object oriented features continued it became
clear that achieving this goal was more difficult than initially
anticipated.

Compiler Unit generates code which internally represents
a Java object as a data structure with references to other ob-
jects as pointers, and fields as values stored in a structure.
JaBEE’s compiler is based on VMKit, therefore code gener-
ated by JaBEE’s compiler has the same representation of ob-
jects as the one used by VMKit J3 virtual machine when run-
ning Java programs. VMKit J3 virtual machine’s in-memory
objects are compatible with the definition of objects pro-
vided by the code generated by JaBEE’s compiler. JaBEE
transfers the original objects directly from virtual machine’s
memory to GPU, without altering their structure. However,
some of values’ pointers have to be transformed. Section 5
gives more details about this aspect. The way how an ob-
ject is stored in a memory is not part of Java specification
([16]), therefore different virtual machines differ in terms of
in-memory data layout. JaBEE can only support VMKit vir-
tual machine as an execution environment since in-memory
data layout is known for VMKit what is not the case for other
Java virtual machines (e.g., Oracle VM).

1 %JavaObject = type {%VT addrspace (1)*, i8*}

2 %VT = type [0 x i32 (...) *]

Listing 2. Representation of Java data types in LLVM code

Listing 2 presents a fragment of a LLVM IR code, includ-
ing the representation of Java Objects (line 1). Internal repre-
sentation of JaBEE’s and VMKit’s Java object is a structure
that consists of:

• Pointer to the virtual table followed by object-specific
data

• Java Object’s virtual table being an array of pointers to
32-bit integer data

This definition is specific to VMKit and other virtual ma-
chines might have different data layout for object represen-
tation.

4.3 Code Generation for GPGPU Address Spaces
NVIDIA’s GPUs have their own hierarchical memory model,
which is designed for accelerating hyper parallel operations
rather than serial computation. PTX as well as enriched
LLVM IR has mechanism called address spaces for inform-
ing the GPU where to allocate memory. Address spaces cor-
respond to a storage area with varying characteristic such
as: size, addressability, access speed, access rights, and level
of sharing between threads. JaBEE compiler generates code
with variables in the following address spaces:

• local
• global
• generic

Each variable has to define allocation address space. Gen-
erated LLVM IR code without address space definitions is
invalid.

Local memory is private to a given thread. JaBEE gen-
erates LLVM code which allocates all local variables and
temporary variables in the local address space. Compiler al-
locates local memory always statically.

All threads have access to the same global memory.
Global PTX variables have to be stored in global memory
space. Following information is stored in global variables:

• Virtual tables
• Static fields

The global memory space is persistent, thus virtual tables
can be assigned once and their values do not have to be re-
assigned across kernel launches. Static fields are global to
the entire application, therefore JaBEE stores static fields as
PTX global variables.

Every address space has its own specific set of PTX
instructions. For instance, load instruction for the global
address space pointer a is:
%ld.global.u32 r1, a;

However, load instruction for the local address space pointer
b is different:
%ld.local.u32 r2, b;

Attempt to execute instruction ld.local.u32 performed on
global variable would crash the application. PTX 2.0 offers
a feature called generic address space, which unifies access
to all address spaces including local and global. Any pointer

can be converted to generic address space pointer. Instruc-
tion
%ld.u32 r3, c;

performed on the generic pointer c is valid regardless of
whether c points to local memory or global memory. JaBEE
converts every pointer to generic pointer. References to ob-
jects are stored as pointers to generic address space - in
LLVM code it is is marked by addrspace(10). Method ar-
guments are always generic address space pointers. For in-
stance, LLVM code of run from Figure 5 shows that it takes
as an argument generic pointer to Java Object. Converting all
pointers to generic ones simplifies JaBEE code as compiler
does not need to keep track of variables’ memory location.

4.4 Support for GPU Specific Objects and Methods
Java bytecode is enriched with GPU specific methods and
calls. Such enrichments allow Java bytecode instructions to
become SIMD instructions (single instruction multiple data).
References to fields and calls to methods listed below have
special meaning in Java bytecode which corresponds to the
GPU kernel:

• ThreadId.x, ThreadId.y, ThreadId.z return x-id, y-id, and
z-id of a thread (id is coordinate in 3D space)

• BlockId.x, BlockId.y, BlockId.z return x-id, y-id, and z-id
of the thread’s block

• BlockSize.x, BlockSize.y, BlockSize.z return size of x, y,
and z side of the block cuboid

• GridSize.x, GridSize.y, GridSize.z return size of x, y, and
z side of the grid cuboid

• Call to function GPUThread.syncThread() synchronizes
all threads in the block

• mathematical functions like log, exp

Fields ThreadId.x, BlockId.x, BlockSize.x, GridSize.x
(similarly corresponding .y and .z fields) are transformed
during compilation to corresponding calls to intrinsics,
which are used further in PTX code generation. NVIDIA
LLVM-to-PTX compiler replaces a call to intrinsics with
references to special purpose registers %tid.x, %ctaid.x,
%ntid.x, and %nctaid.x which correspond to thread id, block
id, block size and grid size respectively. Figure 5 shows how
code
int x=ThreadId.x

is first transformed to:
%1 = call i32 @llvm.nvvm.read.ptx.sreg.tid.x()

and further to:
mov.u32 %r2, %tid.x;

Method call GPUThread.syncThread() is transformed
in the same way, however final result in PTX is a call to
bar.sync, instead of an access to a register. All classes Threa-
dId, BlockId, BlockSize, and GridSize have static fields x,
y, and z. GPUThread class has static method syncThread.

Thus references to them can be placed anywhere in Java
code keeping the code valid.

Some basic mathematical functions are implemented
as a library. The implementation is highly optimized for
GPU code execution and is very different from the one
shipped with Java core libraries. Functions log and exp from
java.math package have implementation which take a dou-
ble as an argument type, but not float. Value of float passed
as argument to log function is automatically converted to
double and operation is performed on double. Operations
on double are less efficient than operations performed on
float. At this stage, JaBEE lacks the logic that would detect
such automatic conversions and undo them in case of calls to
mathematical functions leading to code operating on more
specific types, e.g., using float instead of more general (and
less efficient) double.

4.5 Dynamic Object Creation
NVIDIA architectures prior to Fermi (e.g., Tesla) do not sup-
port dynamic memory allocation. Dynamic memory alloca-
tion on Fermi graphics cards can be performed with CUDA
malloc function call. Probably due to the lack of dynamic
allocation in existing architectures (except the Fermi) there
is no bytecode execution environment which would offer
dynamic memory allocation. All high-level languages pre-
allocate memory before calling a kernel.

For Java developers, dynamic allocation is very common
technique. In Java, memory is dynamically allocated for ev-
ery newly created object. However, as an optimization strat-
egy Java virtual machines try to avoid dynamic allocation
and use escape analysis to keep track of life time of an ob-
ject ([2, 6, 20]) and in reality memory is often allocated stat-
ically. Both CPU and GPU allocate memory faster statically
than dynamically. Support for objects is essential for JaBEE,
so user can create object inside of GPU kernel. Internally
there are two ways of handling object creation implemented
by JaBEE:

• dynamic allocation (same mechanism as CUDA’s mal-
loc)

• static allocation on a stack

Control over which allocation is performed is done manu-
ally by environment variable manipulation. JaBEE does not
implement escape analysis, which would choose appropri-
ate allocation strategy depending on a variable life time.
Memory allocation is called from the VMKit garbage col-
lection allocation function gcmalloc, which is overridden by
JaBEE implementation taken from library. However, current
dynamic allocation with malloc is very experimental and
was not well tested. We executed tests only on small data
sets, which do not determine real performance penalty seen
in real applications. Evaluation section presents results only
with static memory allocation.

4.6 Virtual Table
Virtual table is a table of pointers to methods defined in a
class. Every object contains a pointer to the virtual table. The
following steps have to be performed in order to call object’s
method:

1. Read a pointer to the virtual table

2. Read a method pointer from the virtual table

3. Call a method returned from the virtual table

These steps are equivalent to a method call in a Java code.
Bytecode transformed to LLVM code or to PTX code has
to follow the steps mentioned above when calling a method.
Figure 5 shows how code is transformed from bytecode via
LLVM to PTX. Call to function comput is transformed to
corresponding LLVM code, more specifically:
%9= getelementptr %VT addrspace (1)* %0,i32 0,i32 32
%10= load i32 (...)* addrspace (1)* %9, align 4
%11= bitcast i32 (...)* %10 to i32 (% JavaObject

addrspace (1)*, i32)*
%12= call i32 %11(% JavaObject addrspace (1)* %0,i32 %6)

Register %0 stores a reference to this Java object for all non-
static methods. JavaObject structure carries all information
about an object. Address to a method pointer is loaded to
the register %9. Pointer %9 points to an element of virtual
memory (it is a pointer to a method pointer). Register %10
is a pointer to a method to be called in the last line. LLVM
code is then converted to PTX:
ldu.global.u32 %r5, [%r4 +128];
{
call (retval0), %r5, (param0 , param1), prototype_1;
ld.param.u32 %r6 , [retval0 +0];
...
}

Dynamic dispatch is less efficient than a function call,
because of overhead of additional operations of look-up to
virtual table. Java virtual machine developers already solved
this issue, by so called de-virtualization ([3, 7, 11, 12]), how-
ever JaBEE does not implement any such mechanism. Code
with in-line short non-recursive functions is more effective
than with function calls. LLVM-to-PTX compiler is capable
replace function call with in-lined code, but it is not able to
in-line dynamic dispatch call. LLVM linker, which performs
some simple optimizations, is also not able to optimize dy-
namic dispatch call. That might turn out to be serious per-
formance penalty especially for calls to simple methods like
getters or setters.

5. Data management
One of the important goals of JaBEE is to avoid user han-
dling explicit data transfers, including transfer of Java ob-
jects, between CPU and GPU. Every time JaBEE’s applica-
tion launches GPU kernel data is copied between host and
device. Our current solution takes a simplistic approach by
bi-directionally transferring the entire object graph that is
reachable from the kernel code. JaBEE copies:

1. this object which calls method run

2. All objects passed as parameters to kernel method

3. All static fields reachable from run method

4. Recursively all objects which are pointed at by already
copied objects

The entire object graph is copied back from GPU memory
to CPU memory once GPU code execution is completed.
JaBEE allows for object graph modification on the GPU.
That means that elements of an object graph and relations
between them can be modified by code executed on the GPU
and after copying back the relation will be preserved. It is
achieved by traversing object graph modified on GPU while
copying it back to the CPU memory.

Operating system and GPU driver are responsible for
memory allocation on CPU and GPU respectively. There are
no mechanisms to control address of memory returned from
allocation function from user space (JaBEE is user space
application) both for CPU and GPU memory. JaBEE stores
the same objects both in RAM and in the GPU memory,
however their memory addresses do not coincide. Every time
when JaBEE copies data between host and device it slightly
modifies the data by changing :

1. CPU pointers to Java object - to corresponding GPU
pointers and vice-versa

2. CPU virtual table pointer - to corresponding GPU point-
ers and vice-versa

Pointers to Java objects represent references in Java code.
Every object contains virtual table pointer. JaBEE changes
all pointers in the application pointing to CPU locations
corresponding to GPU locations. The same reverse operation
of changing pointers is performed when objects are copied
back.

6. Evaluation
It has been the primary goal of the first release of JaBEE plat-
form to deliver a prototype and provide a proof-of-concept
solution. This research has not focused so far on delivering
a high-performance application, which would be already a
fully optimized solution. There are number of optimizations
techniques presented in the future work in section 8, which
are going to be investigated along as this project develops.
The following section estimates constraints for objects sup-
port and discusses the importance of optimization, when ex-
ecuting object oriented applications.

A set of tests were performed on two equivalent ’Julia’
applications called P and O (listing 1). While both are almost
equivalents, the only difference between them is the fact that
in the first case Primitive types are used as a primary type
in GPU the kernel, while in the second example - Objects.
To conduct this evaluation, programs P and O were rewritten
to pure Java and CUDA, and executed on (1) VMKit virtual

Figure 3: Program P execution time evaluation of Julia
program, which uses only primitive types

machine, (2) Oracle virtual machine and (3) CUDA system.
All tests were executed on a 32-bit Fedora system with 8 core
Intel(R) Core(TM) i7 CPU machine with 6 GB of RAM and
with GTX 480 NVIDIA graphics card.

The evaluation of P program 3 shows that the shortest ex-
ecution time is achieved with CUDA platform, followed by
JaBEE system, then Oracle Java virtual machine and finally
the VMKit. The VMKit and the JaBEE internally execute a
very similar code, because both of them use the same com-
piler engine to generate LLVM code out of a bytecode. The
speed-up ratio between JaBEE and VMKit shows the perfor-
mance boost achieved by changing the execution processor
from a CPU to a GPU. The timing for the Oracle virtual
machine (the fastest VM on the market) indicates the excel-
lent optimization for a Java bytecode. The performance of
the CUDA code execution shows the lower bound for the
JaBEE possible optimizations.

The second experiment was performed on Julia code
called O, which uses objects to represent complex num-
bers (complex numbers correspond to Complex class object
in listing 1). The Figure 4 shows results of this evaluation,
on which the best result has been achieved in CUDA en-
vironment, then is the Oracle virtual machine, followed by
the JaBEE and finally the VMKit. Usage of objects instead
of primitives results in increased execution time for all plat-
forms except Oracle virtual machine. The time ratio between
different configurations for programs P and O is constant
for sufficiently big data sets (over 10 million pixels). Table 1
shows the performance ratio for big data sets for all applica-
tions, when comparing to the execution time of the program
P on the VMKit virtual machine:

Figure 4: Program O execution time evaluation of Julia
program, which uses operations on objects

J3 Oracle Java JaBEE CUDA
Program P 1 1.26 4.15 9.97
Program O 0.30 1.27 1.04 3.59

Table 1. Speed up ratios in compare to program P execution
time on VMKit virtual machine

JaBEE keeps the speed-up of about four times in compari-
son to VMKit virtual machine just by code execution on a
GPU instead of a CPU. Oracle Java (table 1) shows that it is
possible to optimize operations on objects so good that per-
formance results can be the same for object data types as for
primitives. Java Oracle achieves good performance by both
static and dynamic optimizations (virtual machines use JIT).
JaBEE contains online compiler and it is out of scope of this
project to build-in JIT compiler (because of the complex-
ity), which means that only static optimizations are available
for the system. The overview of generated PTX and LLVM
IR for programs P and O shows that de-virtualization would
speed up program O. Methods like add and mul for Complex
object are very simple and de-virtualization of them would
allow LLVM-IR-to-PTX compiler to in-line such methods.
Assembly code generated with de-virtualization for program
O would be very similar to current final code of the program
P, so performance would be also alike.

7. Related Work
There are a number of related approaches that attempt to
extend Java programming model with GPU-specific con-
structs. JCuda [21] is a Java binding for CUDA, which trans-
late CUDA methods into Java methods and introduces Java

objects that are CUDA specific e.g. it introduces device
Pointer object, cudaMalloc method for memory allocation
or cudaFree for memory freeing. Call to such Java method
invokes corresponding CUDA method, e.g., call to JCuda
method cudaMalloc invokes JNI native code, which exe-
cutes CUDA function cudaMalloc. JCuda approach does not
raise the level of abstraction of CUDA. JavaCL offers simi-
lar, low-level solution for OpenCL.

GPU.NET for .NET and Aparapi for Java are closely re-
lated to the JaBEE approach. GPU.NET performs a run-
time compilation of .NET bytecode (CLI) into PTX. Simi-
larly to JaBEE, GPU.NET uses an online compiler for code
generation. Then, it copies all data to GPU, launch ker-
nel and copies data back, after the computation is com-
pleted. For GPU code execution GPU.NET supports oper-
ations on primitives and arrays of primitives, but not on ob-
jects. Microsoft .NET platform is not an open source and
there is no information about in-memory data representation.
GPU.NET can get an access to objects only through P/In-
voke (.NET equivalent of JNI), however it requires multiple
P/Invoke for objects with multiple fields, which is inefficient.

The Aparapi, as well as the JaBEE systems are built as
JNI binding to Java. The Aparapi gets an access to an object
field address in the memory by a low level routines provided
by the class sun.misc.Unsafe. The Aparapi infrastructure
allows transferring arrays of objects between a host and
a device, however objects on GPU do not keep all their
properties. Objects on GPU are only data containers in this
approach and only methods which can be called on them
are their respective getters and setters. There is no access
through references to other objects on GPU from such a
data container, which gives access only to the primitive data.
Aparapi does not allow creating objects within the kernel,
which is possible for JaBEE. Therefore, it is currently out
of scope for Aparapi to support Java core library classes
such as ArrayList, HashSet, SortedMap etc. JaBEE does not
compile system libraries, however this limitation is not hard
to bypass (see section A). Aparapi bounds compilation scope
to class, which contains an entry to a GPU kernel. In the
contrast, JaBEE allows for kernel execution from a bytecode
collected from multiple classes. Aparapi requires compiling
Java classes with debug flag, because it makes use of debug
information, while JaBEE works with pure Java bytecode
without any debug code.

Aparapi targets OpenCL instead of PTX and therefore the
generated code is more restrictive, than in the case of JaBEE.
More specifically Aparapi does not support :

1. dynamic dispatch,

2. recursion,

3. primitive type double,

4. object allocation on GPU.

These are probably due limitations in OpenCL and/or AMD’s
GPU hardware.

8. Future Work
The research, which has been conducted so far on JaBEE
showed a set of considerable benefits, when using object ex-
ecution on GPUs. Still, we touched in the context of this
work just an ”ice berg”, as many topics were not addressed
or investigated at all. The following set of activities is fore-
seen to be a part of the future research work:

1. Compiler integration with the remaining part of the sys-
tem and direct access to bytecode through memory

2. Support for shared memory (there is a fast memory re-
gion available on GPU that can be shared among threads
running in a block)

3. Compilation optimizations (known optimizations for the
Java static compiler)
• De-virtualization
• Stack allocation instead of heap allocation

4. Garbage collection on GPU

5. More efficient data management

6. Implementation of VM on GPU

The current approach of separating the Compilation unit
from the main system has several negative implications. For
example it is hard to access bytecode of Java core libraries.
Close integration of the compiler would resolve this issue.
Partial support for shared memory was implemented, how-
ever it has not yet been well tested. Shared memory should
be used to achieve performance boost in many GPU specific
algorithms (e.g., dot product). Implementation of the com-
pilation optimization for GPU execution would result in a
considerable improvement in the performance. Finally, other
enhancements such as garbage collection, more efficient data
management and VM implementation on GPU are unex-
plored, and still promising research areas to be conducted
in the context of JaBEE.

9. Conclusions
JaBEE research undertook a challenging topic on how to
provide a support for objects operations in a GPU kernel and
laid down a foundation for object oriented programming on
GPU for Java. This initial approach proposes a hybrid model
allowing a selective bytecode execution on both CPUs and
GPUs.

This paper and the presented research addresses in the
new way a set of following aspects:

1. the creation of objects on a GPU,

2. the transparent objects sharing between GPU and CPU
code,

3. the dynamic dispatch on GPU.

Figure 5: The flow of code transformations

Two approaches have been investigated: (1) a GPU-based
computing using objects, and (2) a classical GPU-based
computing approach using primitive data types. Although
in this initial work, we have experienced some issues re-
lated to performance degradation, we have also proposed
several optimizations techniques, where through the de-
virtualization and the local scope of a memory allocation,
the performance problems could be addressed. Our research
is a proof-of-concept, which proposes a new approach for
the GPU computing for Java. Our approach allows Java de-
velopers to benefit from GPU-based code execution without
dealing with low-level details of GPU-specific programming
environments, such as CUDA or OpenCL.

A. Appendix The Flow of the Code
Transformation

The Figure 5 presents stages of the code transformation,
but it omits Java bytecode to improve its readability (there
is a corresponding Java code included). First, JaBEE sys-
tem compiles a Java bytecode to LLVM IR. The generated
LLVM IR code has to fulfill several constraints (details have
been presented in the section 4). The generated file is not yet
ready for the execution since the following references are
missing:

1. VMKit specific methods - gcmalloc (a call to garbage
collector to allocate memory), getVT (an operation ob-
taining virtual table of object) and several others,

2. Mathematical operations - optimized GPU execution im-
plementation instead of core Java libraries implementa-
tion

These missing methods are implemented in the LLVM
IR library file, which JaBEE links with the generated file
through the LLVM linker (llvm-ld). Finally, the generated
file is passed to the NVIDIA LLVM-IR-to-PTX compiler,
which creates PTX file to be executed on the GPU.

References
[1] N. Bell and M. Garland. Implementing sparse matrix-vector

multiplication on throughput-oriented processors. In SC’09,
pages –1–1, 2009.

[2] B. Blanchet. Escape analysis for javatm: Theory and prac-
tice. ACM Trans. Program. Lang. Syst., 25(6):713–775, 2003.
ISSN 0164-0925. doi: http://doi.acm.org/10.1145/945885.
945886.

[3] B. Calder and D. Grunwald. Reducing indirect function
call overhead in c++ programs. In POPL, pages 397–
408, 1994. URL http://dblp.uni-trier.de/db/conf/

popl/popl94.html#CalderG94.

[4] O. Chafik. ScalaCL: Faster Scala: optimizing compiler
plugin + GPU-based collections, Sept. 2011. URL http:

//code.google.com/p/scalacl/.

[5] M. M. T. Chakravarty, G. Keller, T. L. M. S. Lee, and
V. Grover. Accelerating Haskell array codes with multicore
GPUs. In Declarative Aspects of Multicore Programming
2011, 2011.

[6] J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P.
Midkiff. Escape analysis for java. In OOPSLA’99, pages 1–
19, 1999.

[7] D. Detlefs and O. Agesen. Inlining of virtual methods. In
ECOOP’99, pages 258–278, 1999.

[8] N. Geoffray. Fostering Systems Research with Managed Run-
times. PhD thesis, PhD thesis, Université Pierre et Marie
Curie, Paris, France, September 2009.

[9] N. Geoffray, G. Thomas, J.Lawall, G. Muller, and B. Folliot.
VMKit: a Substrate for Managed Runtime Environments. In
Virtual Execution Environment Conference (VEE 2010), Pitts-
burgh, USA, March 2010. ACM Press.

[10] K. Group. The OpenCL Specification, Oct. 2009. URL
http://www.khronos.org/registry/cl/specs/

opencl-1.0.pdf.

[11] D. Grove, J. Dean, C. Garrett, and C. Chambers. Profile-
guided receiver class prediction. In OOPSLA’95, pages 108–
123, 1995.

[12] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and
T. Nakatani. A study of devirtualization techniques for a java
just-in-time compiler. In OOPSLA’00, pages 294–310, 2000.

[13] A. Klckner. PyCUDA: CUDA parallel computation API from
Python, Sept. 2010. URL http://mathema.tician.de/

software/pycuda.

[14] A. Klckner. PyOpenCL - Python programming environment
for OpenCL, Sept. 2011. URL http://mathema.tician.

de/software/pyopencl.

[15] J. Kong, M. Dimitrov, Y. Yang, J. Liyanage, L. Cao, J. Staples,
M. Mantor, and H. Zhou. Accelerating matlab image process-
ing toolbox functions on gpus. In GPGPU’10, pages 75–85,
2010.

[16] T. Lindholm and F. Yellin. Java Virtual Machine Specifica-
tion. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd edition, 1999. ISBN 0201432943.

[17] NVIDIA. PTX: Parallel Thread Execution ISA Version 2.0,
Jan. 2010. URL http://developer.download.nvidia.

com/compute/cuda/3_0/toolkit/docs/ptx_isa_2.0.

pdf.

[18] NVIDIA. CUDA - Compute Unified Device Architec-
ture, Sept. 2011. URL http://developer.nvidia.com/

category/zone/cuda-zone.

[19] N. Nystrom, D. White, and K. Das. Firepile: run-time compi-
lation for gpus in scala. In GPCE’11, 2011.

[20] J. Whaley and M. Rinard. Compositional pointer and escape
analysis for java programs. In In Proceedings of the 14th An-
nual Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 187–206. ACM Press,
1999.

[21] Y. Yan, M. Grossman, and V. Sarkar. Jcuda: A programmer-
friendly interface for accelerating java programs with cuda. In
Euro-Par’09, pages 887–899, 2009.

