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Abstract

Capacity is an important property for QoS support in Mobile Ad Hoc Networks (MANETs) and has been exten-
sively studied. However, most approaches rely on simplified models (e.g., protocol interference, unidirectional links,
perfect scheduling or perfect routing) and either provide asymptotic bounds or are based on integer linear program-
ming solvers. In this paper, we present a probabilistic approach to capacity calculation by linking the normalized
throughput of a communicating pair in an ad hoc network to the connection probability of the two nodes in a so-
called schedule graph GT ðN;EÞ. The effective throughput of a random network is modeled as a random variable
and its expected value is computed using Monte-Carlo methods. A schedule graph GT ðN;EÞ for a given network is
directly derived from the physical properties of the network like node distribution, radio propagation and channel
assignment. The modularity of the approach leads to a capacity analysis under more realistic network models. In
the paper, throughput capacity is computed for various forms of network configurations and the results are compared
to simulation results obtained with ns-2.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Capacity is typically studied by choosing a net-
work model that facilitates analytical treatment.
In doing so, the problem has to be simplified
by either making assumptions about the network
1389-1286/$ - see front matter � 2007 Elsevier B.V. All rights reserved

doi:10.1016/j.comnet.2007.09.014

q The work presented in this paper was supported (in part) by
the National Competence Center in Research on Mobile Infor-
mation and Communication Systems (NCCR-MICS), a center
supported by the Swiss National Science Foundation under
Grant Number 5005-67322.

* Corresponding author.
E-mail addresses: stuedip@inf.ethz.ch (P. Stuedi), alonso@

inf.ethz.ch (G. Alonso).

Please cite this article in press as: P. Stuedi, G. Alonso, Mod
Comput. Netw. (2007), doi:10.1016/j.comnet.2007.09.014
(e.g., symmetric links), radio propagation (e.g,
isotropic signal propagation, protocol interfer-
ence) or the size of the network (e.g., very large
number of nodes). In this paper, we eliminate
many of these restrictions by looking at through-
put capacity from a probabilistic perspective.
Since the capacity of random networks must be
random as well, we model the achievable
throughput per communication pair in a multihop
wireless network as a random variable. The
approach is centered around a so-called schedule

graph GT ðN;EÞ which is directly derived from
the physical properties of the network. The effec-
tive throughput capacity of a pair of nodes in an
.
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ad hoc network is then shown to be related to
the connection probability of these two nodes in
GT ðN;EÞ. Due to its modularity, our approach
is decoupled from specific network properties
such as the channel multiplexing scheme, the sig-
nal propagation and interference model, the rout-
ing, or the node distribution. Thus, our approach
can be seen as a powerful tool to analyze any
form of interaction between the physical and log-
ical properties of the network with regard to
throughput capacity.

1.1. Related work

Capacity and scheduling issues have been a
focus of research for many years [9,7,12]. In con-
trast to the consensus that accurate physical layer
models are important [3,21,25,1], many recent
studies are still based on a simplified interference
model such as the protocol model. In [6], the
authors use the protocol model to investigate
the interaction between channel assignment and
distributed scheduling in multi-channel, multiradio
wireless mesh networks. Broadcast capacity of
multihop wireless networks under protocol inter-
ference is studied in [10]. The k-hop interference
model is an extension of the traditional protocol
model in that it considers all nodes within a
hop distance of k from the receiver as interfering
nodes. Such a model is studied in [19] to derive
bounds for the scheduling complexity. The rela-
tion between the k-hop neighborhood and the
set of interfering nodes, however, is not clear.
An interference model similar to the disk model
described in this work is used in [14]. The authors
describe an improved packet scheduling algorithm
based on virtual coordinates. In [24], the authors
also use a disk-based interference model but their
work allows for different transmission and inter-
ference range settings per node. In their seminal
work [9], Gupta and Kumar have studied capac-
ity asymptotically for an increasing node density.
They have shown that the throughput capacity
k(n) for a network of n nodes within an area of
[0, 1]2 is in the order of Hð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n

p
Þ. However,

asymptotic analysis typically omits the constant
factor that determines whether a realistic and
finite network will have a useful per node
throughput. Recently, there has been some effort
to compute concrete throughput values [2,4,23]
using integer linear programming (ILP). However,
ILP makes it very difficult to model physical net-
Please cite this article in press as: P. Stuedi, G. Alonso, Mod
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work properties such as realistic signal propaga-
tion, link asymmetry or interference. There is
some work on capacity trying to use more realis-
tic network assumptions. In [8], the result in [9]
was extended for models including variable trans-
mission power. Bound attenuation functions and
multiple channels are studied in [7,12]. Joint con-
gestion control and resource allocation, also
under physical interference, has been investigated
in [20]. One of the first approaches to apply com-
bined topology control and channel assignment
algorithms to SINR-based interference models in
multi-hop wireless networks can be found in
[15]. A fast scheduling algorithm for the physical
interference model is proposed in [5]. Similar to
interference, an accurate modeling of signal prop-
agation is fundamental when computing capacity
in wireless networks. Effects of shadowed radio
propagation on the packet success probability of
a fixed distance link have been analyzed in [26].
In such networks, any variation in the signal pat-
tern impacts the perceived interference at a given
node. Non-deterministic variation of signal power
may further lead to link asymmetry. This behav-
ior was measured experimentally in [1]. IEEE
802.11, the MAC protocol often mentioned in
combination with ad hoc networks, allows for
data transmission only if there exists a bi-direc-
tional connection between the two communicating
nodes since data packets need to be acknowl-
edged by the receiving node. Effects of asymmet-
ric links on higher network layers were
investigated in [25].

1.2. Contribution

The contributions of this paper are as follows:

– The paper presents an abstract model to com-
pute throughput capacity in multihop wireless
networks. By combining the model with
Monte-Carlo methods, the paper proposes a
new way of throughput capacity computation
for more realistic network configurations with
complex random properties. Our approach of
first transforming the physical properties of the
network into a graph representation has two
advantages: it makes the actual throughput com-
putation independent of low level network
details and at the same time facilitates the anal-
ysis of various physical and logical effects with
regard to throughput capacity.
eling and computing throughput capacity of wireless ...,



P. Stuedi, G. Alonso / Computer Networks xxx (2007) xxx–xxx 3

ARTICLE IN PRESS
– By linking throughput capacity of multihop wire-
less networks with the connection probability in a
schedule graph GT ðN;EÞ, the paper proposes a
way of analyzing capacity in sparse and partially
disconnected random networks. This might be
particularly helpful with regard to throughput
calculations in mobile scenarios where the move-
ment of the nodes often leads to temporarily bro-
ken paths.

– The paper further presents and discusses an algo-
rithm for a conflict-free channel assignment
under arbitrary interference models, including
SINR-based interference.
2. Network model

As a first step, we turn the physical properties of
wireless multihop networks into a so-called schedule

graph GT ðN;EÞ. Examples of physical properties
are node locations or perceived signal strengths. In
a schedule graph, N is the set of nodes in the net-
work and E denotes a set of directed edges between
the nodes such that the existence of a sequence of
nodes n0, n1, . . . , nk – with ni 2N 8i 6 k and
ðni; niþ1Þ 2 E 8i < k – states that there is also a sche-
dule of channel assignments w(n0, n1), w(n1, n2), . . .
w(nk�1, nk) such that node n0 is able to consecutively
transmit data to node nk at a rate kn0;nk > 0. The idea
behind building a schedule graph is to create an
abstraction that allows us to – later on – reason
about the achievable capacity of the underlying
wireless network. In this section, we first define
some common properties in order to then gradually
develop the graph representation by assigning two
sets Dn � Un of nodes to each node n, with
Dn �N. Nodes within the particular sets corre-
spond to the different forms of interaction nodes
can have, such as unidirectional and bi-directional
communication. A list of all the notations used in
this paper, including the aforementioned sets of
nodes, can be found in Table 1.

We parameterize the network using the following
five properties: The set of N nodes N, a node distri-
bution d, a signal propagation #, a channel assign-
ment w and an interference model j. We assume
xn 2 R2 to be the coordinate1 of node n, identifying
the node’s position with respect to an area A, and
we consider the set N of nodes as being distributed
1 The model could also be applied to R3.
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in A according to some probability function d :
A! ½0; 1�. Throughout this paper, we use Pð�Þ to
refer to the collection of all possible subsets of a set.

Let us start by defining how signals are propa-
gated. A node n in the network is supposed to trans-
mit with a signal power P t

n 2 ½0;1½. We use the
tuple notation (n 0, n) to refer to the transmission
from a node n 0 to a node n. For a certain signal
propagation function #, P n n0 ¼ #ðP t

n0 ; jxn0 � xnjÞ 2
½0; P t

n0 � denotes the power of the received signal at
node n due to the transmission (n 0, n). In the
simplest case, # is a direct function of the distance.
The path loss radio propagation model, for
example, defines #pl(p, l) = p Æ (l/l0)�q for some path
loss exponent q, and l0 as a reference distance
for the antenna far-field. A more sophisticated
model is the log-normal shadowing radio
propagation [18]:

#shðp; lÞ ¼ p � ðl=l0Þ�q � 10X=10 ð1Þ

where X is a gaussian random variable with zero
mean and standard deviation r and q is the afore-
mentioned path loss exponent. In case of r equal
0, there is no random effect and #sh � #pl. In this
work, we assume the physical signal propagation
to be symmetric. Thus, the gaussian random vari-
able X involved in the computation of P n n0 is the
same as the one involved in the computation of
P n0  n2. From practical measurements, however,
it is known that the signal strengths P n n0 and
P n0 n (corresponding to transmissions of two identi-
cal radio transmitters) may not always be equal.
This is due to tiny differences of the radio hardware
and is taken into account in our model by the power
distribution P t

n.
Whether a signal from a node n 0 can be decoded

correctly at node n in the absence, or the presence,
of concurrent transmissions, is determined by the
interference model. In the literature, two main inter-
ference models have been proposed [9]: the protocol

and the physical interference model. In the protocol
model, a transmission from a node n 0 is said to be
received successfully by another node n if no node
n00 closer to the destination node is transmitting
simultaneously. However, in practice, nodes outside
the interference range of a receiver might still cause
enough cumulative interference to prevent the recei-
ver from decoding a message from a given sender.
This behavior is captured by the physical model,
2 Therefore P t
n � P t

n0 ) P n n0 � P n0 n.

eling and computing throughput capacity of wireless ...,



Table 1
Mathematical notations

Symbol Semantic

Parameters for GT ðN;E)
N Set of nodes in the network
d Node distribution function
# Signal Propagation function
w Channel assignment function
j Interference model

GT ðN;EÞ internal
X Set of coordinates xn for each node n

C Set of channels
P t

n Transmission power of node n

P n n0 Signal power perceived at node n due to the transmission of node n0

P 	n Thermal noise perceived at node n

Dn Set of nodes that can be decoded at node n without noise
Un Set of nodes that can be decoded at node n under noise
E Set of directed edges in a schedule graph

Parameters for k
GT ðN;EÞ Schedule graph
x(n0, n) Weight function indicating the number of channels used on a link
� Set of source destination pairs
g Routing function

k internal
P Set of paths participating in communication
Bn0 ;n Lowest number of channels between any two neighbors along a path
T Used channels, T = jCj in GT ðN;EÞ
fn0 ;n Achievable throughput capacity along a path
k Expected throughput capacity
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where a communication between nodes n 0 and n is
successful if the SINR (Signal to Interference and
Noise Ratio) at v (the receiver) is above a certain
threshold.

In this work, we assume interference models to be
defined by a binary interference function
j : N�N�PðNÞ ! f0; 1g with

jðn0;n;IÞ ¼

1 The signal of n0 can be

decoded at node n

under a set I of interferers

0 otherwise:

8>>>>><
>>>>>:

ð2Þ
The interference function for the protocol model [9]
is

jprotocolðn0; n;IÞ ¼ 1() dðn00; nÞ
> dðn0; nÞ 8n00 2 I: ð3Þ

For the physical interference model [9], the interfer-
ence function is
Please cite this article in press as: P. Stuedi, G. Alonso, Mod
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jsinrðn0; n;IÞ ¼ 1() P n n0

P 	n þ
P

n002IP n n00
> bsinr;

ð4Þ

for some threshold bsinr and P 	n as the thermal noise
perceived at node n.

We now assign two sets of nodes to each node
n 2N, namely, Dn and Un,

Dn ¼ fn0 2Njjðn0; n; ;Þ ¼ 1g ð5Þ
is the set of nodes that can be correctly decoded at
node n in the absence of any other concurrent
transmission,

Un ¼ fn0 2 Dnjjðn0; n; In0 Þ ¼ 1g ð6Þ
contains all nodes n 0 that can be correctly decoded
at node n in the presence of a set of nodes In 0 trans-
mitting concurrently as node n 0. For later use we
define D ¼ fðn0; nÞjn0 2 Dng to be the set of trans-
missions in the network when interference is ig-
nored, and U ¼ fðn0; nÞjn0 2 Dng to be the set of
transmissions in the network if interference is
considered.
eling and computing throughput capacity of wireless ...,
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Fig. 1. Channel assignment under physical interference. The
straight line arrows represent the transmissions. The dotted
arrows denote signals which contribute to the interference noise
of transmission e1. The weight assigned to an edge corresponds to
the signal strength. We assume the thermal noise P* used in Eq.
(4) to be 1. According to Algorithm 1, nodes in the grey area are
considered as the smallest set of nodes such that the remaining
cumulative interference does not prohibit transmission e1 from
being established. There is no conflict between transmissions e1

and e3 because node n1 is not included in the grey area. Note that
both conflict graph and channel assignment are considered as
snapshots from the perspective of e1.
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3. Scheduling

Which transmissions in the network occur simul-
taneously is determined by the scheduling algo-
rithm. In our model, we assume the medium to be
divided into a set of channels T. Each channel
wi 2 T can be seen as a set of directed transmissions
(n 0, n), with n0 2 Dn, between two nodes n 0 and n.
For the sake of simplicity, we use w(n 0, n) to refer
to the set of channels used by the transmission
(n 0, n). We further use w	ðnÞ ¼

S
n0:n2Dn0

wðn; n0Þ to
refer to all the channels where node n acts as a
transmitter.

Scheduling transmissions in multi-hop wireless
networks so that no two transmissions scheduled
within the same channel interfere, is trivial for the
protocol model, but turns out to be more difficult
under the physical interference model. In general,
the problem of scheduling is related to the tradi-
tional graph coloring problem, except that the verti-
ces in the graph to be colored refer to the
transmissions in the network and the edges in the
graph refer to the interference conflicts. Two verti-
ces conflict if their corresponding transmissions can-
not be scheduled simultaneously. We call such a
graph a conflict graph.

Under the physical interference model (Eq. (4)),
conflicts between two transmissions cannot be
determined without considering all other transmis-
sions. As an example, two nodes n00 and n000 may
interfere with a transmission from node n 0 to node
n, even if node n cannot successfully decode the sig-
nals of either n00 or n000 in the absence of interference.
For a node n 0 to belong to Un, jphysicalðn0; n;
N n Cn n0 Þ must compute to 1, given Cn n0 contains
all nodes n00 acting as a sender in a transmission that
conflicts with the transmission (n 0, n). In practice, of
course, one wants to find the minimum set Cn n0 of
conflicts for a transmission (n 0, n) because this min-
imizes the number of channels to be used at a later
point in time. How to compute the minimum set of
conflicts for a given set of transmissions D in the
physical interference model is shown in Algorithm
1. For a given transmission (n 0, n), the algorithm
operates by gradually testing the SINR ratio with
an increasing set of interferers, starting with the
node contributing the lowest signal power. At the
point where the cumulated interference of a node
n00 leads to a SINR ratio smaller than bSINR, all
transmitting nodes n000 with Pn n000 P Pn  n00 are
considered as interferers and their associated trans-
missions are defined as conflicts with (n 0, n).
Please cite this article in press as: P. Stuedi, G. Alonso, Mod
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Algorithm 1. Conflict graph under physical
interference
elin
Input: Set of all transmission D
Output: Set of conflicts C � fðe; e0Þje; e0 2 Dg
1: C :¼ ;;
2: for all e :¼ ðn0; nÞ 2 D do

3: L:¼sort(N fn0; ng) such that n00 
 n000 $
P n n00 < P n n000

4: M	 :¼ ;;
5: for all n00 2 L

6: M	 :¼M	 [ fn00g
7: if jsinrðn0; n;M	Þ ¼ 0 then

8: Q :¼ fðn00; n000Þ j n00 2 D000n g
9: for all e0 2 Q do

10: C :¼ C [ fðe0; eÞ; ðe; e0Þg;
11: end for

12: end if
13: end for

14: end for
We have shown how a conflict graph can be
built for the physical interference model. Based
on the conflict graph, efficient coloring algorithms
might be used to assign channels to the transmis-
sions (represented as nodes in the conflict graph).
Finding the minimum number of channels, how-
ever, is an NP hard problem and thus is not feasi-
ble for large networks [11,17]. We decided to apply
a Greedy channel assignment algorithm. Algorithm
2 assigns channels to transmissions in a greedy
g and computing throughput capacity of wireless ...,
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way, so that no two transmissions e1, e2 will be
scheduled using the same channel if there exists a
conflict between the two transmissions (ðe1; e2Þ 2
C). Algorithm 2 further assigns channels in a traffic
proportional way, meaning that each node pair
(n 0, n), with n0 2 Dn, is assigned exactly as many
channels as there are flows occupying the wireless
link. The function l(Æ) in Algorithm 2 refers to
the number of flows of a link. Conflict graph and
channel assignment for the physical interference
model are illustrated in Fig. 1 in a small example
network.

Algorithm 2. Greedy channel assignment

Input: Set of all transmission D, set of conflicts C
Output: Set of channels {w0, w1, . . . , wT�1} with
wi � D
1: for all e 2 D do

2: for i:¼0; i < l(e) do

3: Q :¼ fe0jðe; e0Þ 2 Cg
4: X:¼;;
5: for all e0 2 Q do
6: X:¼X [ {wjje 0 2 wj}
7: end for

8: k:¼freechannel(X);
9: wk:¼wk [ {e};
10: end for

11: end for

freechannel(Q)
1: X	 :¼ sortðQÞ such that wi 
 wj $ idwi <
idðwjÞ
2: i:¼�1
3: for all w 2 X* do

4: if id(w) > i + 1 then

5: break;

6: end if

7: i:¼id(w);
8: end for

9: return i + 1;
3 In practice, a route would be modeled as a sequence rather
than as a set, however, since we assume no loops and the order of
the edges in a route is not important for the computation of k we
prefer the set notion which simplifies further treatment.
4. Schedule graph

Coming back to the definition of Un, we can say
that a node n 0 belongs to Un if In 0 in Eq. (6) is
defined as the set of nodes transmitting in the same
channel as node n 0. Given a schedule and the set Un

for each node, we define a so-called schedule graph
as a directed and weighted graph GT ðN;EÞ, where
E denotes the set of directed edges with
Please cite this article in press as: P. Stuedi, G. Alonso, Mod
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E ¼ fðn0; nÞ 2N�Njn0 2 Un ^ n 2 Dn0 g: ð7Þ
The set E includes all transmissions (n 0, n) whose
signals can be decoded correctly at node n under
interference, while the reverse signal might only be
correctly decoded if there is no interference. Note
that Eq. (7) models the acknowledgment as an infi-
nitely small packet not occupying the medium. The
subscript T indicates the number of channels used
(Algorithm 2). The weight of an edge ðn0; nÞ 2 E is
given by x(n 0, n),

xðn0; nÞ ¼
X

c2wðn0;nÞ
jðn0; n; IcÞ: ð8Þ

Here, Ic denotes the set of nodes transmitting during
channel c, or Ic ¼ fn0 2Njc 2 w	ðn0Þg.

It follows directly from the definition of a sche-

dule graph GT ðN;EÞ that for any path n0, n1, . . . , nk

– with ni 2N 8i 6 k and ðni; niþ1Þ 2 E 8i < k –
there is also a corresponding schedule of channel
assignments w(n0, n1), w(n1, n2), . . . , w(nk�1, nk) in
a way that node n0 is able to consecutively transmit
data to node nk at a rate strictly greater than zero.
We will make use of this property later on to reason
about the achievable capacity of the underlying
physical network.

5. Throughput capacity

Throughout this section, an ad hoc network is
represented by its schedule graph GT ðN;EÞ and
the corresponding weight function x. Capacity is
then defined over a set � of communication pairs,

� � fðn0; nÞ 2N�Njn0 6¼ ng: ð9Þ
More precisely, we say that a schedule graph

GT ðN;EÞ with a communication pattern � has a
throughput capacity of kn0 ;n if a communication pair
(n 0, n) 2 � can expect an end-to-end throughput of
kn0;n bits per second. Important to the computation
of throughput capacity is the routing function
g : N�N! PðEÞ. Hence, for a given source–des-
tination pair (n 0, n) the resulting route simply con-
sists of the set3 of edges included in the sequence
e0, e1, . . . , ek�1, with ei ¼ ðni; niþ1Þ 2 E; n0 ¼ n0 and
nk = n.
eling and computing throughput capacity of wireless ...,
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We now want to analyze the expected throughput
k of a communication pair (n 0, n) 2 � . Since both the
network and its graph representation GT ðN;EÞ are
random, obviously the resulting throughput per
node pair can also be considered to be random.
Based on this, the approach we follow is of a proba-
bilistic nature. For any node pair (n, n 0) 2 � , we
model throughput capacity as a random variable
fn0 ;n : Pð� Þ ! ½0;1½ to then compute the expected
value E½fn0;n� of fn0;n, with E½fn0 ;n� ¼ kn0 ;n. Consider
the fact that in a schedule graph, a path between
two nodes also reflects a schedule of channels.
Throughput capacity is a concave metric, meaning
that the available throughput for a certain source
destination pair is always determined by the node
with the lowest bandwidth, the so-called bottleneck.
Hence, let B	n0 ;n ¼ mine2gðn0 ;nÞxðeÞ be a random vari-
able indicating lowest number of channels available
between two nodes along the path from n 0 to n. One
can easily verify that the resulting throughput capac-
ity along the path cannot be bigger than W � B	n0;n=T ,
where W is the maximum transmission rate equal to
all nodes and T = jCj is the number of channels used
in total. The throughput capacity may however be
further diminished when considering all the traffic
� taking place in the network. For this purpose let
us define a so-called load function l : E! ½0;N �,
indicating to what extent a certain edge e 2 E is
shared with other ongoing traffic, or, more formally:

lðeÞ ¼
X

i¼gðn0 ;nÞðn0 ;nÞ2�
1iðeÞ ð10Þ

where 1i : E! f0; 1g is the set membership func-
tion. If we want to take all ongoing traffic into ac-
count we therefore have to consider l while
computing B	n0 ;n, or

Bn0;n ¼
0 gðn0; nÞ ¼ ;
min

e2gðn0;nÞ
xðeÞ
lðeÞ otherwise:

8<
: ð11Þ

Based on the definition of Bn0;n we now claim that
the achievable throughput fn0 ;n for a communication
pair (n 0, n) 2 � in a schedule graph GT ðN;EÞ can be
modeled as

fn0 ;n ¼
W � Bn0 ;n

T
: ð12Þ

In a simplified setup, where each node is only al-
lowed to transmit within one single channel, Bn0 ;n re-
fers to the path availability between n 0 and n in
Please cite this article in press as: P. Stuedi, G. Alonso, Mod
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GT ðN;EÞ and therefore fn0 ;n can be seen as a direct
function of the connection probability between the
two nodes. Or one can say that the capacity of an
ad hoc network is related to the connectivity of its
corresponding schedule graph GT ðN;EÞ. This might
be of interest when analyzing capacity in sparse and
partially disconnected random networks, but also in
mobile scenarios where the movement of the nodes
often leads to temporarily broken paths.

In the following sections we show how
kn0 ;n ¼ E½fn0;n� can be computed using Monte-Carlo
methods.
5.1. Computing kn0;n using Monte-Carlo methods

One could compute E½fn0 ;n� given the common
density function pðfn0 ;nÞ for the random variables
fn0 ;n. However, finding the density function pðfn0;nÞ
is not trivial. In fact, the problem can be viewed
as an extension to the traditional connectivity prob-
lem where one tries to find the probability of
whether a given node distribution and transmission
range result in a connected network. In this paper,
we do not pursue an analytical treatment of E½fn0;n�
but rather use a Monte-Carlo estimator. For this
purpose we first generalize our model fn0;n to also
reflect the average throughput capacity f ¼ 1

j� jP
ðn0 ;nÞ2� fn0 ;n that can be expected in the network.

In fact, due to the linearity of the expected value,
one can easily verify that E½fn0 ;n� ¼ E½f�, namely,

E½f� ¼ E
1

j� j
X

ðn00;n000Þ2�
fn00 ;n000 g

" #

¼ 1

j� j
X

ðn00;n000Þ2�
E½fn00;n000 � ¼ E½fn;n0 �: ð13Þ

Hence, the expected throughput capacity kn0 ;n can be
approximated using the Monte-Carlo method:

kn;n0 ¼ E½fn;n0 � ¼ E½f� ¼ 1

j� j
X

ðn00 ;n000Þ2�
E½fn00 ;n000 �

¼ 1

j� j
X

ðn00;n000Þ2�

Z
R2N

E½fn00 ;n000 jX

¼ X 	�f ðX 	ÞdX 	

� 1

j� j
X

ðn00;n000Þ2�

1

k

Xk�1

i¼0

E½fn00;n000 jX ¼ X 	i �

¼ 1

j� j
X

ðn00;n000Þ2�

1

k

Xk�1

i¼0

fn00 ;n000 jX¼X 	i
ð14Þ
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In other words, we approximately compute the ex-
pected value of f for a given set of parameters by
sampling over k realizations of the underlying ran-
dom network, with X 	i as a concrete set of node
placements in the area A.
6. Capacity of static networks

To validate the model, we compute the through-
put capacity of two simple, static scenarios, static in
the sense that the network topology as well as the
communication pattern is fixed. The throughput of
such fixed network configurations can be seen as
the conditional expected value E[fjX] of the random
variable f under a concrete node placement X. For a
Fig. 2. Static topologies.

Table 2
States for the triangle scenario

T w(n0, n) Un

1 w(B, A) = ; ;
w(C, B) = ;
w(A, C) = ;
w(A, B){0}
w(B, C) = {0}
w(C, A) = {0}

2 w(B, A) = ; UA ¼ ;
w(C, B) = ; UB ¼ ;
w(A, C) = ; UC ¼ fBg
w(A, B) = w(C, A) = {0}
w(B, C) = {1}

3 w(B, A) = ; UA ¼ fCg
w(C, B) = ; UB ¼ fAg
w(A, C) = ; UC ¼ fBg
w(A, B) = {0}
w(B, C) = {1}
w(C, A) = {2}

4 w(B, A) = ; UA ¼ fCg
w(C, B) = ; UB ¼ fAg

5 w(A, C) = ; UC ¼ fBg
w(A, B) = {0, 1}
w(B, C) = {2}
w(C, A) = {3}

Please cite this article in press as: P. Stuedi, G. Alonso, Mod
Comput. Netw. (2007), doi:10.1016/j.comnet.2007.09.014
fixed channel assignment w, E[fjX] simply computes
as E½fjX � ¼ 1

j� j
P
ðn0 ;nÞ2� fn0 ;njX¼X 	i

, where X 	i is the

given set of coordinates of the nodes. For both
examples we will consecutively derive E[fjX] by
going through the basic steps of Sections 2 and 5.

The first network topology we consider consists
of three nodes being distance d apart from each
other, as shown in Fig. 2a. To simplify the analysis,
we use the more primitive protocol interference
model as described in Eq. (3). Let us further assume
n
0 2 Dn for all n 0 5 n. According to jprotocol, the set

of senders Un is modeled in a way that a node n 0

belongs to Un if, and only if, no other concurrent
transmission with a signal stronger than P n n0 is
received by node n. Hence, the graph GT only
depends on how the different channels are assigned
to the nodes. We now want to illustrate the outcome
of E[fjX] for three possible channel assignments. We
keep track of all states and sets of the network
model for each of the three channel assignments in
Table 2.

In all the configurations we assume shortest path
routing and only assign channels to edges that are
also used when considering the traffic pattern � .
In the case of one common channel w(n 0, n) =
w(n, n 0) for all nodes n, n 0, no transmission can
� Bn;n0 E[fjX]

(A, B) 0 0
(B, C)
(C, A)

(A, B) BA,B = 0 1/6W
(B, C) BB,C = 1
(C, A) BC,A = 0

(A, B) BA,B = 1 1/3W
(B, C) BB,C = 1
(C, A) BC,A = 1

(A, B) BA,B = 2 1/3W
(B, C) BB,C = 1

(C, A) BC,A = 1

eling and computing throughput capacity of wireless ...,



Table 3
States for the chain scenario

T w(n 0, n) Un � Bn;n0 E[fjX]

2 w(A, B) = w(C, B) = {0} UA ¼ fBg (A, B) BA,B = 0 1/6W
w(B, C) = {1} UB ¼ ; (B, C) BB,C = 1
w(B, A) = ; UC ¼ fBg (C, A) BC,A = 0

3 w(A, B) = {0} UA ¼ fBg (A, B) BA,B = 1 2/9W
w(B, C) = {1} UB ¼ fAg (B, C) BB,C = 1
w(C, B) = w(B, A) = {2} UC ¼ fBg (C, A) BC,A = 0

4 w(A, B) = {0} UA ¼ fBg (A, B) BA,B = 1 1/4W
w(B, A) = {1} UB ¼ fA;Cg (B, C) BB,C = 1
w(B, C) = {2} UC ¼ fBg (C, A) BC,A = 1
w(C, B) = {3}

(A, C) BA,B = 1/2 1/6W
(B, C) BB,C = 1/2
(C, A) BC,A = 1

5 w(A, B) = {0} UA ¼ fBg (A, C) BA,B = 1 1/5W
w(B, A) = {1} UB ¼ fA;Cg (B, C) BB,C = 1
w(B, C) = {2,3} UC ¼ fBg (C, A) BC,A = 1
w(C, B) = {4}
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correctly be decoded at any receiver (Eq. (3)) which
leads to Un ¼ ;;E ¼ ;, Sn;n0 ¼ 0, fn;n0 ¼ 0 and finally
to E[fjX] = 0. In the presence of two separate chan-
nels (T = 2), two directed links can be established
(among the potential 6). Along with a communica-
tion pattern � = {(A, B), (B, C), (C, A)} (see Table
2), E[fjX] is W Æ 1/3 Æ (0 + 1/2 + 0) = 1/6 Æ W. If
transmissions are spread over three channels,
GT ðN;EÞ becomes fully connected and E[fjX]
equals W Æ 1/3 Æ (1/3 + 1/3 + 1/3) = 1/3 Æ W. Adding
a fourth edge, e.g., to the transmission between
node A and B, does not increase the capacity any
further. This is because the increase in the bottle-
neck (BA, B = 2) is compensated by the increase of
the total amount of used channels (T = 4).

The situation is slightly different for the scenario
in Fig. 2b since node B acts as a router and some of
its bandwidth is consumed by traffic sent from A to
C. The case T = 1 is trivial and comparable with the
corresponding case in the triangle scenario. Assign-
ing two channels to the four edges results in two
established links (UA ¼ fBg and UC ¼ fBg). Con-
sidering the traffic pattern � , it is sufficient for one
path to be established (e.g., SB,C = 1) and the result-
ing capacity E[fjX] computes to 1/6 Æ W. Two of the
three routes can be established if three channels are
used (T = 3), which results in E[fjX] = 2/9 Æ W. The
capacity of the given traffic pattern can be further
improved by assigning one channel per transmission
pair. All the routes can be established with a bottle-
neck of Bn;n0 ¼ 1; 8ðn; n0Þ 2 � and E[fjX] equals
1/4 Æ W. Obviously, the same channel assignment
Please cite this article in press as: P. Stuedi, G. Alonso, Mod
Comput. Netw. (2007), doi:10.1016/j.comnet.2007.09.014
results in a different capacity if another traffic pat-
tern is used, like, e.g. � = {(A, C), (B, C), (C, A)}.
Since the link between node B and C is used twice,
the values for BA,C BB,C reduce to 1/2. For such a
traffic pattern, a 5-channel assignment performs bet-
ter, as shown in Table 3.
7. Capacity of larger networks

In this section, we analyze throughput capacity
of various types of communication patterns and net-
work topologies. To simplify the notation we will
refer to E[f] as k for the rest of the paper. For each
analyzed configuration we also provide results taken
from simulations with ns-2 [22] under the very same
topology and communication setup. Throughout
this section, we use a path loss radio propagation
as defined by #pl and a SINR-based interference
model, jsinr, as described in Eq. (4). Since we use
#pl, the threshold for a node n 0 to be part of Dn only
depends on the distance between the two nodes. We
have set P 	n of Eq. (4) such that n0 2 Dn ()
jxn0 � xnj 6 250. To avoid mixing up capacity mea-
surements with routing issues, packets within ns-2
simulations are forwarded using pre-computed
shortest path routes. We further have set the
MAC data rate in ns-2 to 1 Mbit/s. This is necessary
since operating 802.11 at higher rates results in dras-
tically reduced efficiency and makes the measure-
ments difficult to compare as the per-packet
overhead dominates the overall cost. This is due
eling and computing throughput capacity of wireless ...,
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Fig. 3. Chain topology.
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to the fixed length 802.11 preamble used by the
hardware for bit synchronization.
4 Information-theoretic capacity refers to the capacity that can
be achieved with optimal routing and scheduling decisions, which
possibly require global knowledge.
7.1. Chain

In a first comparison we look at a configuration
of a chain of n nodes. Each node is 200 m away
from its neighbor. The first node acts as a source
of data traffic, the last node is the traffic sink. Data
is sent as fast as the MAC allows. We use Greedy as
the channel assignment algorithm. Since there are
no random components involved, k is a direct func-
tion of the channels needed, and computes to 1/4 as
the chain grows. From Fig. 3a, we see that the value
of k lies above the throughput measured with ns-2,
especially when the chain becomes large. This is
due to the overhead of headers, RTS, CTS and
ACK packets but also because in reality nodes fail
to achieve an optimal schedule. The results obtained
with our model match those presented in [13], where
the authors discuss throughput capacity measure-
ments taken from ns-2 simulations with respect to
theoretical upper bounds.

As a more realistic scenario, we now investigate
random communication patterns in chain topolo-
gies. For this purpose, we assign a random destina-
tion dðnÞ 2N fng to every node n 2N. Fig. 3b
shows the effect of such a traffic pattern on through-
put. The plot shows quite a close match between k
and the measurements obtained with ns-2. This is
not too surprising since we know from Fig. 3a that
the throughput of an 802.11 chain tallies with the
theoretical limit if the chain length is short. Under
a random communication pattern the average path
Please cite this article in press as: P. Stuedi, G. Alonso, Mod
Comput. Netw. (2007), doi:10.1016/j.comnet.2007.09.014
length in a chain is far below the maximum value
of n � 1, for a chain of length n. Furthermore, over-
lapping communication paths reduce capacity (Bn;n0

in our model) due to the forwarding load inflicted
upon the nodes, especially if the chain becomes
long.
7.2. Grid

We look at grid topologies where each node is
200 m away from its closest neighbor and the nodes
communicate using a random communication pat-
tern. Fig. 4a shows the capacity in the grid topology
for a cross communication pattern: source nodes in
the first column have a destination assigned in the
corresponding row in the last column, and source
nodes in the first row have a destination assigned
in the corresponding column in the last row. From
Fig. 4a we see that the model based computation
predicts a higher throughput capacity than the one
measured with ns-2. This is because the cross com-
munication pattern is actually composed of end-
to-end chain communications exactly like the sce-
nario used to compute Fig. 3a. We know that for
large chain communications, 802.11 throughput
capacity is far below the information-theoretic
capacity,4 for reasons explained in Section 7.1. In
the grid topology with cross communication this
behavior is amplified. Fig. 4b shows the capacity
in the grid for a random communication pattern
eling and computing throughput capacity of wireless ...,
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where each node gets assigned a random destina-
tion. Similarly to the chain example, the gap
between ns-2 measurements and results obtained
through our model disappears slightly when com-
munication becomes random. Random communica-
tion reduces the average path length and therefore
diminishes the impact of the suboptimal channel
assignment and the header overhead inherent in
802.11.

7.3. Random topology

We consider random topologies of n nodes dis-
tributed uniformly within an area of 1000 ·
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Please cite this article in press as: P. Stuedi, G. Alonso, Mod
Comput. Netw. (2007), doi:10.1016/j.comnet.2007.09.014
1000 m2. Here, we have configured P 	n such that
the transmission range of the nodes equals 200 m.
Each node n acts as a traffic generator and has a
random destination assigned, chosen uniformly
out of Nfng. Fig. 5a shows the throughput capacity
k in contrast with ns-2 simulation measurements.
The result supports the trend already observed in
the previous configurations of the chain and the
grid: randomness improves 802.11 throughput
capacity with respect to k. This might particularly
be the case in dense networks where the demand
for channels is high due to the high node degree,
leaving less room for an optimal channel
assignment.
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Algorithm 3. RandomEdge Channel Assignment

Input: The maximum number of channels T*

Output: Channel assignment w and number of
used channels
1: O :¼ E;
2: i:¼0;
3: while O 6¼ ; do

4: e :¼ ANY fe 2 Eg;
5: O :¼ O feg;
6: w(e):¼i;
7: i:¼(i + 1)MOD T*;
8: end while

9: if jNj < T 	 then

10: return jNj;
11: else

12: return T*;
13: end if
Fig. 6. Random networks and their schedule graphs

Please cite this article in press as: P. Stuedi, G. Alonso, Mod
Comput. Netw. (2007), doi:10.1016/j.comnet.2007.09.014
The model for throughput computation pro-
posed in this work allows to easily exchange any
of its components, such as, e.g., the scheduling algo-
rithm or the radio propagation. In the following
part, we will study the difference between a greedy
channel assignment and a random channel assign-
ment, with respect to throughput capacity. More
particularly, we use the RandomEdge channel
assignment (Algorithm 3), which assigns a set of
maximum T channels in a round robin manner
modulo T to all transmission pairs (n, n 0) with
n0 2 Dn. At each round, one transmission pair is
picked on a random basis. Fig. 5b shows the
throughput capacity when using RandomEdge in a
random topology of 200 nodes distributed within
an area of 2000 · 2000 m2. We consider a random
communication pattern. The result of Fig. 5b clearly
shows that there is an optimum in terms of the
under different channel assignment strategies.

eling and computing throughput capacity of wireless ...,
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number of channels T to be used when assigning
them randomly to the transmissions. If only a few
channels are used, all nodes transmit simultaneously
and no transmission can be correctly decoded. If too
many channels are used, most of the transmissions
can actually be decoded, but since many transmis-
sions are scheduled in separate channels, bandwidth
is wasted. In fact, RandomEdge achieves a maxi-
mum throughput of about 0.0012 with an input
set of around 50 channels, which is less than the
throughput capacity of �0.0016 achieved by the
Greedy channel assignment. Note that while Greedy
assigns the channels in a conflict-free way, Random-

Edge does not. This is also shown in Fig. 6 based on
a snapshot of 200 nodes, distributed randomly
within an area of 2000 · 2000 m2. Fig. 6a illustrates
the random topology and Fig. 6b–d refers to the
corresponding schedule graphs under the specific
channel assignment algorithms. In the network
graph, the dots represent the nodes and the edges
represent the possible transmissions in the absence
of interference (U). The schedule graph in Fig. 6c
is the result of a RandomEdge channel assignment
using a fixed set of 50 channels (which in Fig. 5
was shown to be the optimum). As can be observed
from Fig. 6b and c, Greedy (Algorithm 2) drops
edges unused by the routing, but maintains full con-
nectivity while RandomEdge, with 50 channels, pro-
duces a partially disconnected schedule graph. If we
use more channels (Fig. 6d), the connectivity of the
schedule graph improves, but more bandwidth is
wasted due to the increase in the channels used.

7.4. Summary

Section 7 has shown that throughput capacity,
computed based on the model proposed in this
paper, can be used as a reasonable approximation
for the potential throughput capacity of arbitrary
network configurations. In general, the simulation
results and the model based computations show a
similar behavior. In most of the cases, the through-
put capacity computed by the model is slightly
higher than the one measured with ns-2. This, how-
ever, is natural since the ns-2 simulations are based
on 802.11 which entails a suboptimal channel assign-
ment and packet overhead. It is anyway important
to note that the model should not be seen as a
throughput capacity predictor for 802.11 based mul-
tihop wireless networks, but rather as an approxima-
tion of the potential throughput capacity of such a
network in an information-theoretical sense.
Please cite this article in press as: P. Stuedi, G. Alonso, Mod
Comput. Netw. (2007), doi:10.1016/j.comnet.2007.09.014
8. Conclusions

In this work, we presented a model for studying
throughput capacity of wireless multi-hop networks
under realistic settings. Contrary to existing work,
looking at capacity from an asymptotic perspective
based on simplified network models (e.g., protocol
interference, unidirectional links, perfect scheduling
or straight line routing), our approach analyzes
capacity for finite networks under more realistic net-
work configurations. In our model, the effective
throughput of a random network is considered as
a random variable depending on the node distribu-
tion, the communication pattern, the radio propa-
gation, channel assignment, etc. Expected values
of that random variable are then computed using
Monte-Carlo methods. The various components of
the model can easily be exchanged to study any
form of physical and logical interaction (e.g., sha-
dow fading radio propagation, physical interfer-
ence, random scheduling, etc.) with regard to
throughput capacity. While the idea of treating
throughput capacity as the expected value of a well
modeled random variable serves as the basis for this
work, the general concept can also be applied to
other network properties. In that sense, the paper
also suggests a new approach to ad hoc network
analysis in cases where pure analytical approaches
fall short and protocol specific network simulations
are not generic enough. This is of particular impor-
tance considering the increasing computing power
of today’s hardware. For instance, although the
computational costs of our model is O(n3), we were
able to compute all the results within a few minutes
using a cluster of 32 machines and JOpera [16] as a
grid engine.
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